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Abstract
Climate change and cost pressure lead to new environmental and economic
challenges that increase the demand for innovative control systems to automate
and optimize agricultural tasks.
Automating speed control during power-intensive soil tillage can increase eciency
and sustainability and counteract the lack of qualied personnel in agriculture. A
survey was carried out focused on tillage by cultivating to obtain an overview of
the challenges farmers face during their work, including their target preferences.
Based on the obtained requirements for tillage by cultivating, a system was
developed automating working depth control by online Lidar plane detection to
ensure tillage quality and establish a basis for good plant growth. Automated
speed control is realized based on an online-parameterized draft force and
traction model combined with the usage of a neural network for fuel rate
prediction. The network is trained oine and adaptable to the individual
preferences of the farms and varying implements. Thereby, the operator can
choose and customize optimization objectives such as fuel eciency, performance,
or total cost.
During the evaluation, the control system was tested with various objectives
against a hu man driver and was able to perform optimization on the individual
objective. Furthermore, the transferability of the system was demonstrated with
the usage of another implement.

Keywords:
Speed Control, Fuel Economy, Agricultural Tillage, Articial Neural Networks

Kurzfassung
Durch die Veränderung ökologischer sowie ökonomischer Randbedingungen
durch Klima wandel und Kostendruck werden innovative Kontrollsysteme in der
Landtechnik benötigt, um die Arbeitsabläufe zu automatisieren sowie zu
optimieren.
Hierbei kann eine Automatisierung der Geschwindigkeitssteuerung bei
leistungsinten siver Bodenbearbeitung die Ezienz sowie Nachhaltigkeit des
Bearbeitungsprozesses optimieren. Zudem kann dies dem Mangel an
qualiziertem Fachpersonal im Landwirt schaftssektor entgegenwirken.



Um einen Überblick über die Herausforderungen sowie Präferenzen von
Landwirten während deren Arbeit zu erhalten, wurde eine Umfrage mit dem Fokus
auf die Bodenbear beitung durch Grubbern durchgeführt.
Auf der Basis der gewonnenen Erkenntnisse wurde ein System zur
Automatisierung der Arbeitstiefensteuerung auf Basis einer Ebenenerkennung
durch Lidarmessungen ent wickelt. Die Automatisierung der
Geschwindigkeitssteuerung wurde durch ein online parametrisiertes Zugkraft-
sowie Traktionsmodell in Kombination mit einem künstlichen neuronalen Netz zur
Vorhersage des Kraftstoverbrauches umgesetzt. Das Netzwerk wurde hierbei oine
auf Basis zuvor aufgenommener Messdaten trainiert und ist durch den modu laren
Aufbau adaptiv auf die individuellen Präferenzen verschiedener
landwirtschaftlicher Betriebe sowie für die Nutzung an unterschiedlichen
Anbaugeräten anwendbar. Hierbei kann der Bediener die Zielfunktionen, nach
denen die Geschwindigkeit optimiert werden soll, individuell und während des
Betriebs auswählen und verändern, beispielsweise für eine Optimierung der
Kraftstonutzung oder der Betriebskosten.
Bei der durchgeführten Evaluierung wurde das System gegen einen
menschlichen Fahrer als Referenz getestet und konnte dabei die Optimierung auf
die gewünschte Zielfunktion gewährleisten. Zusätzlich wurde auch die
Transferfähigkeit durch eine Testfahrt mit einem anderen Anbaugerät gezeigt.

Schlüsselwörter:
Geschwindigkeitssteuerung, Kraftstoezienz, Landwirtschaftliche
Bodenbearbeitung, Künstliche Neuronale Netzwerke
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1 Introduction
Due to the environmental challenges caused by climate change and resulting
demands to make processes more ecient and sustainable, existing procedures
must be examined closely to reduce greenhouse gas emissions.
Although the share of total fossil fuel consumption in agriculture is comparatively
low with less than 3-4.5 % of the total energy budget even in heavily industrialized
countries, every improvement in eciency does also mean reducing emissions, and



a much-desired counteract to the cause of global warming. [1]
At the same time, agricultural technology underwent a signicant transformation
from small farms, with a high demand for manual labor, to large farms, with
correspondingly higher machinery usage. These machines require well-educated
operators, and in com bination with the need to meet the stricter environmental
regulations, cost pressure is increasing for the farmers.
All these challenges require the total usage of the existing optimization potential.
This potential includes technical improvements of the machinery on the one
hand but also control optimization on the other. Since many agricultural tasks are
still partly controlled by a human operator, improved automated control systems
can increase eciency and decrease operating costs.
Simultaneously, due to innovations in technologies, Articial Neural Networks
(ANN) open new ways to optimize and automate processes that were tied to the
possibilities of strictly human-designed control loops so far.

This work focuses on improving the power and fuel-intensive soil tillage with this
new potential. As an exemplary use case, the choice of implement fell on the
cultivator for its exible usage from stubble cultivating to seedbed preparation.
Human drivers currently operate these machines, and while steering control is
already often handled automatically using GPS measurements, speed control is
still handled manually.
There are already automatic engine and transmission optimization systems on the
market, but target speeds are dened manually, and these systems solely
optimize the internal variables to t the specied target speed explicitly, if possible.
Adapting this target speed can yield further improvement since poorly chosen
speeds can force the engine and transmission to select worse operating points
to supply the resulting draft force requirements. The automation of these speed
specications reveals new optimization potential. Here, solely on optimizing the
speed specications up to 8 % in fuel savings can be expected. [2]

The rst chapters of this thesis are structured to give essential information about
the cultivation process, and model approaches of the forces that occur during this
process are presented. The following chapters give the necessary background
information about ANNs
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and their structure and training used during this thesis. Furthermore, currently
available control systems for agricultural tillage are explained, and
state-of-the-art attempts to optimize speed control and evaluate process quality.
The next chapter presents the results of a survey among farmers about cultivator
usage to maintain practical relevance. The following chapter describes the
measurement setup and insights into the recorded datasets. From the resulting
requirements and insights, a new system for working depth and speed control is
presented that combines the modeling of vehicle forces with the usage of an
ANN to predict the fuel rate of the system. The concluding chapters include an
evaluation of the system as well as a summary and an outlook for further
research.



2

2 Fundamentals

This chapter describes the necessary fundamentals relevant to this work. Firstly,
general information about the cultivation process on which this work is based is
given. Secondly, vehicle and implement modeling techniques are described.
Furthermore, relevant software for data collection and ltering methods are
presented, followed by point cloud processing techniques. Finally, information
about the structure and training of articial neural networks is given.



2.1 Cultivators
Cultivators are tillage implements that loosen, mix and re-compress the soil.
Blades or tines are mounted on a frame to loosen and mix the soil, depending on
the exact design. Flexible spring elements secure the implement from mechanical
overload. Cheaper options feature shear bolts that are usually installed on the
individual tines, which absorb excessive force by shearing to prevent damage to
the whole implement. After loosening the soil, disks for further mixing and a wide
variety of packers, ring-shaped metal elements, can be mounted to ensure the
soil’s subsequent compression and an even surface.
As no exact working depth is necessary or specied, cultivators can be used in a
wide variety of use cases, just like stubble cultivation as well as seedbed
preparation. Due to these exible application possibilities, cultivators’ use steadily
increasing, on some farms even replacing slow and performance-intensive
plowing.
There is a wide variety of specialized cultivators on the market, adapted to the
specic use case. [3][4]

2.2 Vehicle Forces
This section lists the relationships and parameters necessary to describe the
power trans mission between wheel and ground surface. Thereby it describes the
inuence of the weight of the vehicle and implement combination on traction and
drag forces caused by the implement and transmission resistances.

The Weight Force (𝐹𝑊 ) of a vehicle is calculated using the vehicle’s mass 𝑚 and
the acceleration due to gravity 𝑔.

𝐹𝑊 = 𝑚 · 𝑔 (2.1)

3
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(a) Slope and Weight Force(b) Pulling Force
and Draft Force

Figure 2.1: Vehicle Forces, Models extracted from [5] and [6]

The inuence of the slope(𝛿) on the distribution of the weight force (𝐹𝑊 ) to
horizontal weight force (𝐹𝑊 ,ℎ) and vertical weight force(𝐹𝑊 ,𝑣) horizontally and
vertically to the ground is described in gure 2.1a.
This leads to the following relationships:

𝐹𝑊 ,𝑣 = 𝑐𝑜𝑠(𝛿) · 𝐹𝑊 (2.2)
𝐹𝑊 ,ℎ = 𝑠𝑖𝑛(𝛿) · 𝐹𝑊 (2.3)

The Slippage (𝜎) describes the relationship between eective speed (GNSS Speed
(𝑣𝑔𝑛𝑠𝑠) or Radar Speed (𝑣𝑟𝑎𝑑𝑎𝑟)) and theoretical speed (𝑣𝑡ℎ𝑒𝑜 ) of the vehicle. [7] In
the following 𝑣𝑔𝑛𝑠𝑠will be used instead of 𝑣𝑟𝑎𝑑𝑎𝑟, because of superior accuracy.

𝜎 =𝑣𝑡ℎ𝑒𝑜 − 𝑣𝑔𝑛𝑠𝑠
𝑣𝑡ℎ𝑒𝑜(2.4)

The Traction Coeicient (𝜅) is the relationship between the traction force (𝐹𝑇 ) and
vertical weight force (𝐹𝑊 ,𝑣) on a single wheel-ground contact.

𝜅 =𝐹𝑇

𝐹𝑊 ,𝑣(2.5)

These forces are illustrated in gure 2.2a.
𝜅 is often brought into relationship with 𝜎 and highly depends on the contents and
hu midity of the soil as shown in gure 2.2b. [7]

For a 4-wheel drive tractor, the total force the tractor can provide in order to move
forward, the traction force, can be calculated using the sum of the individual axle
forces 𝐹𝑇 ,𝑓 (front) and 𝐹𝑇 ,𝑟 (rear) in the following formula: [8]

𝐹𝑇 = 𝐹𝑇 ,𝑓 + 𝐹𝑇 ,𝑟 (2.6)
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(a)
Tire-soil mechanics in pulling mode [7] (b) Relationship between 𝜅 and 𝜎 [7]

Figure 2.2: Traction Modeling

Horizontal Dra Force (𝐹𝐷) that is caused by the drag of the implement can be
calculated from the total pulling force (𝐹𝑃 ) using the dependency on the pulling
angle (𝛼) as visualized in gure 2.1b. [7]
The characteristics of this parameter highly depend on the choice of implement
and the speed of the vehicle.

𝐹𝐷 = 𝑐𝑜𝑠(𝛼) · 𝐹𝑃 (2.7)

Multipass-Eect describes the changes in soil caused by a consecutive rollover in
the same trajectory. The soil is compacted due to the load of the tire/vehicle.
During subse quent passes more traction force can be used as shown in gure
2.3a. The rst pass shows the highest eect on soil density change. [9][10]

The negative eects on plant growth caused by increased pressure on the soil
during consecutive passes will not be discussed here since the focus here is
solely the power transmission. [11]

Rolling Resistance (𝐹𝑟𝑜𝑙𝑙) is another impact factor mainly caused by deformation
of the tires, the soil, and slip sinkage. It is calculated using equation 2.8 using the



included rolling resistance coecient (𝜌). [7]
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σ

σ

(a) Multipass Eect, edited after [9]
(b) Rolling Resistance, edited after [12]

Figure 2.3: Inuences on Traction

𝐹𝑟𝑜𝑙𝑙 = 𝜌 · 𝐹𝑊 ,𝑣 (2.8)

The parameter is aected by the slippage as described in gure 2.3b.

The Acceleration Force (𝐹𝑎𝑐𝑐) counteracting the acceleration of the vehicle, is
calculated by equation 2.9.

𝐹𝑎𝑐𝑐 = 𝑚 ·𝑑𝑣𝑔𝑛𝑠𝑠

𝑑𝑡 (2.9)

Air Resistance (𝐹𝑎𝑖𝑟) does also reduce the amount of force that can be used to
pull the implement forward, but due to the relatively low speeds of tractors during
tillage, the impact can be neglected. [13]

2.2.1 Traction Force Simplifications



The tractive behavior of driven wheels is well known, and this section describes
the con nection between the behavior of a single wheel and the tractor as a
whole.

The traction force (𝐹𝑇 ) of a vehicle is described in relation to 𝜅 in Fundamentals of
Tractor Design. Adapting the relationship to the exclusive usage on a
4-wheel-drive tractor using equation 2.6 leads to equation 2.10. [7]

𝐹𝑇 = 𝜅𝑓· 𝐹𝑊 ,𝑣,𝑓 + 𝜅𝑟· 𝐹𝑊 ,𝑣 ,𝑟 (2.10)

6
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Renius proposed that ratio between 𝜅𝑓 and 𝜅𝑟 caused by the multi-pass eect can
be described with formula 2.11 using the multipass constant (𝑐𝑚𝑝 ), that depends
only on the tire dimensions and soil conditions. [7]

𝜅𝑟 𝑐𝑚𝑝 · 𝜅𝑓(2.11)

Using 2.10 this leads to:

𝐹𝑇 = 𝜅𝑓· (𝐹𝑊 ,𝑣,𝑓 + 𝑐𝑚𝑝 · 𝐹𝑊 ,𝑣 ,𝑟) (2.12)

In the simplied case, when conditions and weight forces remain constant during
obser vation, this relationship proposes that the function for 𝜅 of the whole
vehicle will also follow the characteristic behavior estimated for a single wheel
because all other parameters remain constant.

For this case equation 2.12 can be simplied further:

𝐹𝑇 = 𝜅 · const (2.13)

2.2.2 Traction Modeling

The relationship between 𝜅 and 𝜎 follows a characteristic behavior as shown in
gure 2.2b. There have been many empirical approaches in modeling this
relationship to describe the eects of power transfer between wheel and ground.
Jahns and Steinkampf describe the relationship between 𝜅 and 𝜎 with the
following parameters: [14]



𝜅(𝜎) = 𝑎 + 𝑏 · 𝑒𝑐·𝜎(2.14)

This equation has been improved by Schreiber and Kutzbach [15] to improve
usage in simulations, because the previous model cannot represent the
decrease of the traction coecient at high 𝜎 values:

𝜅(𝜎) = 𝑎 − 𝑏 · 𝑒−𝑐·𝜎 − 𝑑 · 𝜎 (2.15)

The included parameters were further improved by Meiners; Böttinger and
Regazzi [16], measuring not single tires, but on a two-wheel-drive tractor. They
concluded that it is possible to calculate the traction force from the pulling force
and a measured or assumed rolling resistance of the front tires.
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Their approach allows for a realistic simulation of 𝜅 under actual operating
conditions as shown in gure 2.4.

σ

σ

Figure 2.4: Simulated 𝜅/𝜎-curves for front and rear wheel of a standard tractor
under dierent ground conditions, edited after [16]

Pacejka presented another, more complex yet accurate empirical model known as
the Magic Formula. Using this formula, traction forces can be modeled using
factors for stiness, shape, curvature as well as a peak value. [17][18]

In forestry technology the relationship 𝐹𝑇 (𝜎) for a whole vehicle is described by



Jacke and Drewes using second-degree polynomials in equation 2.16. This
equation yields a simplied relationship between Traction Force (𝐹𝑇 ) and 𝜎 that
only requires three parameters. In this study the pulling force was measured on a
4-axle forwarder that was set under load by an attached braking tractor. It shows
that characteristic behavior of the 𝜅(𝜎)-curve (gure 2.2b) also applies to whole
vehicles 𝐹𝑇 (𝜎)-curve (gure 2.5) even if the multipass eect inuences tractive
forces of several axes. [19]

𝐹𝑇 (𝜎) = 𝑎𝑇 + 𝑏𝑇 · 𝜎 + 𝑐𝑇 · 𝜎
2(2.16)

This direct description of the relationship using 𝐹𝑇 (𝜎) conrms the simplications
resulting in equation 2.13.

2.2.3 Dra Force Modeling

The implement choice also decides upon the draft force (𝐹𝐷) caused by an
increase of the eective speed (here: 𝑣𝑔𝑛𝑠𝑠). This correlation diers signicantly
between various implements.

8
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σ

Figure 2.5: Traction Force and Slippage (without brush-wood), edited after [19]

Harrigan and Rotz parameterized this relationship using equation 2.17. A
comprehensive collection of parameters for dierent implements can be found in
“Draft Relationships for Tillage and Seeding Equipment”. [20]
The parameters important for cultivators have been listed in table 2.1. Therefore
also working depth (𝑡) and working width (𝑤) have to be considered. For some
implements like cultivators, the number of rows or tools is used instead of the
width of the processing area.

In general for non-turning tillage the parameter 𝑐𝐷 is set to zero. [2] 𝐹𝐷 = 𝑠𝐷 · (𝑎𝐷 +

𝑏𝐷 · 𝑣𝑔𝑛𝑠𝑠 + 𝑐𝐷 · 𝑣𝑔𝑛𝑠𝑠
2) · 𝑤 · 𝑡 (2.17)

Table 2.1: Implement Parameters for Cultivating [20]

Process 𝑎𝐷 𝑏𝐷 𝑐𝐷

Primary tillage 46.4 2.77 0
Secondary tillage 32.0 1.94 0

The included parameter 𝑠𝐷 depends on soil conditions that are hard to measure
continu ously.

9
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These ndings were later incorporated into the standard “ASAE D497.4
Agricultural Ma chinery Management Data”. [21]

Furthermore, studies by Getzla [22] and Gebresenbet [23] showed that increasing
working depths result in a progressive increase in draft force for the plowing
process. On the cultivating process Reich [24] also expected a progressive
increase in draft force with increasing working depth due to higher static shear
resistance in deeper soil layers. However, he could not prove this eect during
measurements.



To t the model to the above presented issues in the context of online simulation
based on currently observed conditions, Rößler; Kautzmann and Geimer [25]
proposed equation 2.18 for cultivators, as well as dierent equations for modeling
other implements. The parameter 𝑞 = 𝑎𝐷/𝑏𝐷 is thereby set to 20 because it remains
constant during operation. This simplication means that all unknown variables
can now be combined into one (𝑋 = 𝑠𝐷 ·𝑐 ·𝑤), which is determined during
operation based on currently measured values.

𝐹𝐷 = 𝑠𝐷 · (𝑐 · 𝑞 + 𝑐 · 𝑣𝑔𝑛𝑠𝑠) · 𝑤 · 𝑡2(2.18)

Another modeling approach is presented in as equation 2.19. According to
Al-Neama [26] this equation can be traced back to the Soviet agricultural
technology researcher Gor jatschin and was originally designed to describe the
horizontal forces of moldboard plow usage.

𝐹𝐷 = 𝑤 · 𝑡 · (𝑘 + 𝑒 · 𝑣𝑔𝑛𝑠𝑠
2) (2.19)

Grosa [27][28] conducted measurements with cultivators based on equation 2.19.
In contrast to previous evaluations of the model limited to 8 km/h, velocities up to
12 km/h were examined. The derived relationships apply to the individual tine as
well as to the whole implement. He concluded that implement specic inuence in
the model does also change due to changes in 𝑣𝑔𝑛𝑠𝑠. Therefore, the model is not
usable during online simulation. However, the measured relationships describe a
quadratic increase in the tractive force requirements with increasing 𝑣𝑔𝑛𝑠𝑠 as
shown in gure 2.6.

Bögel [29] conducted further experiments using single cultivator tines to evaluate
𝐹𝑇 in relationship with 𝑣𝑔𝑛𝑠𝑠 as well as soil prole changes during the process.
Thereby a steep increase in horizontal draft forces was observed due to an
increase in 𝑣𝑔𝑛𝑠𝑠. This work’s focus was mainly on changing mounting angles on
the tines to keep work quality constant despite speed changes.

Al-Neama [26] provided a extensive, tine-specic comparison between dierent draft
force regression-models. He concludes that the draft force can be calculated by
the sum of horizontal forces on the tines. Further he advises against the use of
equation 2.19, since required coecients are dicult to determine.
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Figure 2.6: Measured relationship between 𝐹𝐷 and 𝑣𝑔𝑛𝑠𝑠 on a cultivator, edited

after [27] 2.3 Data Filtering

Several approaches can be chosen to lter noisy sensor data. The here mentioned
Arith metic Mean and other alternatives are described in The Concise
Encyclopedia of Statis tics. [31]
The Arithmetic Mean is calculated by averaging over a specied amount of values.

𝑥 =

𝑛
𝑖=1𝑥𝑖

𝑛(2.20)

It can also be applied continuously on the last measured values. Then it is called
Moving Average Filter. [31]
Only states from the past can be observed in live systems, so the window 𝑛
cannot be chosen too wide to not lack behind in time. Another more
sophisticated approach for ltering an incoming data stream would be to use a
Kalman lter that is not as heavily inuenced by outliers.

2.4 Least-Squares Function Approximation



The least-squares method is a data tting method that minimizes the squared
errors’ sum to t a model to an observed dataset. The method is mainly used in
linear regression to approximate functions.
For a simple linear regression using 𝜖 as a non-observable error:

𝑦 = 𝛽0 + 𝛽1 · 𝑥 + 𝜖 (2.21)
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the method yields the estimated parameters
ˆ𝛽0 and

ˆ𝛽1:

ˆ𝛽1 =
𝑛
𝑖=1(𝑥𝑖 − 𝑥¯) · (𝑦𝑖 − 𝑦¯)

𝑛
𝑖=1(𝑥𝑖 − 𝑥¯)

2
(2.22)

ˆ𝛽0 = 𝑦¯ −
ˆ𝛽1 · 𝑥𝑖(2.23)

The method can also be applied to more complex regression models. [31]

2.5 Surface Estimation

2.5.1 Random Sample Consensus (RANSAC)

The RANSAC-Algorithm is used to estimate a model into a dataset containing
many outliers and uncertainties. It is frequently used for plane detection and is
known for being very robust.
According to Fischler and Bolles [32] the following steps have to be taken to
estimate a plane model:

• Randomly select three points from the dataset

• Build the model using the selected points

• Count how many points are part of the model given a certain

tolerance • Optimize the model (often by using least squares)

• Repeat the above as often as required

• Select the best-evaluated model

2.5.2 Standard Deviation of Heights (s)



The usage of the parameter Standard Deviation of Heights is a simplistic
approach for calculating and describing surface roughness.
The parameter is calculated with equation 2.24. [33]

s =

𝑁
𝑖=1𝑧

2
𝑖− 𝑧¯2

𝑁 − 1(2.24)

𝑧𝑖is the height of a specic point in the estimation dataset, 𝑧¯ the mean height of all
points, and 𝑁 the number of points.
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2.5.3 Mean Upslope Depression Index (MUD)

The Mean Upslope Depression Index is a parameter that was developed by
Hansen; Schjønning and Sibbesen [34] to describe soil roughness of tilled
surfaces. The elevation line is described by a xed amount of line sub-segments 𝑚,
each containing 𝑛 height measurement points.
The calculation is based on the dierence between the height of a reference point
𝑍𝑟 and the height of points in an upslope line sub-segment 𝑍𝑎.

MUD =
1𝑚𝑚

𝑖=1
1𝑛𝑛𝑗=1Δ𝑍(2.25)

where Δ𝑍 = 𝑍𝑟 − 𝑍𝑎 for 𝑍𝑎 < 𝑍𝑟 and Δ𝑍 = 0 for 𝑍𝑎 ≤ 𝑍𝑟.

The author proposed a length of 30 cm per line sub-segment. However, other
lengths can be advantageous depending on the individual circumstances. [33]
This calculation principle is visualized in picture 2.7.

Figure 2.7: Principle of MUD calculation [34]

2.6 Robot Operating System (ROS)



ROS is a software framework developed for simplifying communication in robots.
It allows seamless communication between sensors, programs, and other
components of the robots. The data exchange is established via topics where
dierent programs, known as ROS-nodes, can pass information.
The primarily used protocols are UDP and TCP, but access to other protocols
(here ISOBUS and CAN-Bus) can be achieved by bridges that pass the
information between the dierent information systems.
ROS1 is optimized for usage under Ubuntu, but there are also options available
for other Linux distributions, Windows, and Android.
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To record measurement data, ROS oers the option to save all incoming
messages in a rosbag le. The storage includes the recording time, as well as the
topic and content for each message. Rosbags allow easy playback for testing
purposes and direct access to the messages using an included Advanced
Programming Interface (API). [30]

2.7 Artificial Neural Networks (ANN)
The fundamental theory behind ANNs is based on biological nervous systems
that can acquire and handle knowledge. The nervous system structure is thereby
represented by articial neurons that are connected using weighted
interconnections. The output is determined by a xed, nonlinear activation function
𝑔(), which calculates a neuron’s specic output based on the sum of the weighted
incoming values. The neurons, as shown in gure 2.8a, feature a individual
activation threshold, also known as bias 𝜃, that shifts the activation function to the
left or right, so not only the slope of the activation function can be changed by the
weights of the incoming connections, but also the positioning (connections 𝑥𝑖,
weights 𝑤𝑖). [35][36][37]

−

−

(a) Articial neuron [35]− − − (b) Activation Functions



The individual neurons can then be combined in arrangements diering in
complexity and afterward trained on previously or interactively acquired data to
predict values, groups, or actions in previously unknown situations.

The following sections include information related to ANNs, starting with the
dierent available groups of algorithms and possible network architectures.
Furthermore, learning strategies, as well as parameter optimization algorithms,
are pre sented.
Finally, specic software related to the training of ANNs is described to close the
funda mentals.

2.7.1 Online and Oline Learning
Oine Learning, also known as batch learning, describes algorithms that are only
trained based on a xed and already known data set. If the data set changes or
new data should
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be added to it, the whole model needs to be discarded to be trained again. As a
necessity, all data needs to be available during the entire learning process.
[35][38] In contrast to this approach, Online Learning describes a method to split
the training data into smaller subsets and feed them to the network one by one.
Previously recorded data can also be used for this purpose. Therefore, new data
can improve an existing model, and the model can discard storage-intensive data
after calculation. [38]

2.7.2 Learning Strategies
ANNs can be sectioned into dierent groups depending on the specic use-case
and training strategy. These groups feature unique characteristics and are
therefore described in the following sections.

2.7.2.1 Supervised Learning

Supervised Learning algorithms contain features (input) and labels (output) and
attempt to learn the relationship in between. The term "supervised" comes from
the idea that a supervisor teaches the algorithm an appropriate output for given
input signals. Training requires many examples of features and their respective
labels.
These labels can either be the group where the training instance belongs to
(Classication: Figure 2.9a), or a numeric output value of the training instance
(Regression: Figure 2.9b). After the training, the obtained relationship can predict
the label or value for a new feature set. [38][36]



(a) Classication

(b) Regression

Figure 2.9: Supervised Learning Examples

2.7.2.2 Unsupervised Learning

This group of algorithms is used to learn the properties of the structure of a
dataset. Therefore the data itself contains no labels. Most probability distributions
are extracted from the learning data. Some other algorithms belonging to this
group also perform clustering to divide the dataset into smaller sets with similar
features. An example of this approach is illustrated in gure 2.10. [38][36]
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(a) Training Dataset
(b) Clustered Dataset



Figure 2.10: Unsupervised Learning: Clustering

2.7.2.3 Semisupervised Learning

This group of algorithms is used when only a part of the dataset contains labels,
and the rest is unlabeled. These algorithms cluster the data (Unsupervised) and
then use the labeled data to describe each data cluster individually. This method
can extend training datasets and reduce the required amount of labeled data
since manual labeling can be a time and cost-intensive task. Figure 2.11
illustrated this process. Grey points represent unlabeled data, the triangles the
relatively few labeled datasets. [38]

Figure 2.11: Semisupervised Learning

2.7.2.4 Reinforcement Learning

Reinforcement Learning allows the algorithm to interact with its environment due
to an implemented feedback loop. The algorithm contains an agent that observes
the en vironment and receives rewards or penalties based on the performed
actions as seen in
gure 2.12. Therefore the agent develops a policy that describes a strategy to
obtain the most reward (𝑅) or the least cost (𝐶) over time. [38][36]
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Figure 2.12: Reinforcement Learning, Tractor Model from [5] and [6]

2.7.3 Network Structure

The characteristics of an Articial Neural Networks are dened by the specic
structure and organization of the individual network. Thereby, if the network does
not contain any internal feedback loops and only oers a direct connection
between input and output, it is called a Feedforward Network. Depending on the
individual task the network has to perform, other important types of networks can
be used, such as Convolutional Neural Networks mainly for image processing as
well as Recurrent Neural Networks that can use their internal feedback loops to
process sequential sensor data. [36]
The following sections describe dierent modules that can be used in the
structure of a neural network.

2.7.3.1 Normalization

Incoming data can be normalized by the range of the individual inputs and
outputs to minimize the inuence in weights caused by dierent number
magnitudes. Normalization has to be done for training as well as test data. [35]

2.7.3.2 Hidden Layers

An ANN uses hidden layers to establish a connection between the input and the
network’s output data. Since the information in these layers in between is not
human readable, they are called hidden layers. [36]

2.7.3.3 Regularization

A machine learning algorithm needs to perform on new test data as well as on
initial training data. If an algorithm only performs well on its training data, it is
overtting by not nding a general rule that will t all data. Regularization is the
measurement to take
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against this generalization error, but not against the training error. [36]

Regularization can be achieved by adding weight decay functions that improve
general ization (often 𝐿2 or 𝐿1 Regularization). The weights are driven closer to
zero by an added penalizing term to limit the model parameters’ size. Early
stopping, another technique to regularize, is done by evaluating the current
network on a subset of the training data to stop training when the internal
validation does not improve anymore. Another option to achieve the same is the
usage of dropout layers. Thereby part of the internal connections in the network is
dropped by multiplying their output value with zero. [36]

2.7.4 Optimization and Training

Since the structure of a neural network oers many degrees of freedom, an
important task is to optimize the network’s internal parameters.
Therefore, a crucial task is the initialization of the network. If a previously
working conguration is already known, the adapted initial values can enable
faster optimization of the algorithm onto new data.
The real training uses an algorithm to minimize a loss function for the network to
optimize internal weight and thresholds. For regression problems, the mean
squared prediction error or mean absolute prediction error are often used as loss
functions. [36][35]

The fundamental basis of training of most neural networks is stochastic gradient
descent. Thereby, the weights and thresholds are minimized by calculating the
gradient of the error 𝐸(𝑤) regarding the weight vector 𝑤, which combines bias and
weights. 𝑤 is adjusted step-wise to minimize the error depending on the learning
rate 𝜂, which determines the speed of the training process. This iterative process
is visualized in gure 2.13. [35]



Figure 2.13: Gradient Descent [35]
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Usually, multiple training iterations are performed over the entire dataset to
increase the accuracy of the algorithm. Each iteration over the whole training
data is called an epoch. [36]

For multi-layer networks, the complexity of the training process increases, and
due to the non-linearity of the neuronal networks, a training algorithm called
optimizer is used to minimize the total prediction error of the network. These
algorithms often feature an adaptive learning rate to prevent the network from
converging to local minima or overshooting the optimal conguration. A frequently
used example of this is the opti mizer Adam, but current software libraries such
as Keras also feature a wide choice of alternatives like Adadelta, Adagrad,
Adamax, and SGD, that all have unique advantages and specications.
[36][39][40]

2.7.5 Hyperparameter Optimization

The previously described possible contents of Articial Neural Networks grant
many dif ferent possible structures. These parameter sets can be automatically
tuned and evaluated to nd the optimal conguration. This process costs
computational power but can also nd a not obvious solution that performs well.

2.7.5.1 Grid Search

When the number of hyperparameters is low, the search area can be explored
systematically and uniformly. With an increasing number, this method gets
increasingly computationally expensive because the whole search area is
explored evenly, and if the optimal conguration lies in between grid points, it will



not be detected. [36]

2.7.5.2 Random Search

Bergstra and Bengio [41] researched the eciency of grid search, compared with a
purely random approach. They concluded that randomly chosen trails are more
ecient due to nding at least equally performing models in a fraction of the
necessary computational time. Random Search is thereby not bound to the
programmer’s beliefs of grid arrangement but can eectively search through a large
variety of parameter congurations. Figure 2.14 shows the dierences between the
evaluated congurations of the two approaches.

2.7.5.3 Bayesian Optimization

Hyperparameter Search can also be conducted by modeling the validation error.
This model can then be used for proposing good guesses for new congurations.
Most widely Bayesian regression models are thereby used as described by
Snoek; Larochelle and Adams. [42]

Since Bayesian Optimization can only be used for continuous hyperparameters
and the results may vary from surpassing human experts to failing
catastrophically, the usage is only recommended to a limited extend. [36][43]

19
2 Fundamentals

Figure 2.14: Grid- and Random Search [41]

2.7.5.4 Hyperband

A drawback of the previously described methods is that every network that shall
be evaluated must be trained entirely for comparison. To x this drawback, Li et al.
proposes a method used to speed up Random Search instead of proposing a
model for the validation error.
The algorithm trains many random congurations for a xed number of epochs and
com pares their validation loss over time. Then lowest half of the performers are
discarded, and training is continued for the better performers that are then again
continuously evaluated. Since not promising congurations are abandoned early,



the saved computational time and resources can be used to raise the number of
total evaluated congurations, increasing the chances of optimizing the setup
further. [44][43]

2.7.6 TensorFlow

TensorFlow is an open-source software package that allows easy
implementation of a large amount of machine learning algorithms. Firstly
published by Google, it allows the execution of machine learning software on
various devices using a standard interface for coding. Also included are
implementations of already known algorithms like Keras, which can be combined
and used intuitively for the respective purpose. Application areas range from data
analysis over speech recognition to computer vision. [40]

Keras is an API designed to provide an easy interface for deep learning
applications. It is heavily interconnected with TensorFlow and provides a
comprehensive library of machine learning components that can be easily
interconnected to simplify the development of machine learning algorithms. It also
includes the commonly used Hyperparameter Search algorithms. [45]

2.7.7 CUDA

CUDA is an API by Nvidia that enables the execution of programs on a
CUDA-enabled Graphical Processing Unit (GPU). Since neural network training
consists of a high quantity

20
2.7 Articial Neural Networks (ANN)

of calculative operations that can be carried out simultaneously, this feature can
speed up the training process by using the parallel computation power of GPUs
for distributed processing. CUDA is supported by Tensorow. [46]



21

3 State of the Art

This chapter presents the current state of the art in machine control systems and



tillage quality monitoring to dene the context and necessity of this thesis. The
information describes currently available tillage-control systems and newer
research activities to highlight the need for simplistic yet functional automatic
control systems.

3.1 Automated Control Systems in Agriculture

Various control systems are already on the market. This section describes
systems that help maintain the operating speed of the tillage combination and
hitch control systems, supporting the operator in controlling the position of the
implement relative to the tractor.

3.1.1 Cruise Control

State-of-the-art cruise control systems allow the user to set static vehicle speeds
while the tractor engine and transmission control optimizes RPM and gear ratio
conguration. In modern power-split transmissions, these control systems such as
the Tractor Manage ment System (TMS) from Fendt relieve the driver even from
shifting gears during load changes.

3.1.2 Hitch Control Systems

Speed Control alone cannot adapt to soil composition changes, and the resulting
changes in vertical implement pulling forces, resulting in a change in tire loads
and traction. Hitch control systems were developed to adapt the implement
position to increase traction and prevent sticking, relieving the driver from
manual adaption. The rst proposed systems were merely hydromechanical
(Figure 3.1a), later introduced systems mostly grant additional signal connectivity
due to electronic components but also rising initial cost (Figure 3.1b). [7]
The complexity of such a modern control system is shown in gure 3.2. Modern
electro-hydraulic hitch control systems allow the use of two control modes. The rst
is Position Control, where the driver controls the hitch, and the second Draft
Control, where the driver adjusts the implement position based on the draft of the
implement to obtain a favorable weight distribution. These modes can also be
mixed in percentage. Slimařík; Bauer and Dostál conducted a study on fuel
consumption of dierent mode settings. They concluded that even the mixed draft
control increases the system eciency compared to position control. Thereby also
the drawback of strongly uctuating working
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(a) Hydromechanical control of a
Deutz rear hitch (1968) [7]

(b) Electro-hydraulic rear hitch control (EHR)
[7]

Figure 3.1: Hitch Control Systems

depths of a pure draft control can be reduced. [47]

The development of radar-based measurement methods of eective vehicle
speed in agriculture enabled the use of new possibilities and a new control mode
for the hitch. Slippage is calculated from radar speed and theoretical speed.
Implement position (𝑝) is then adapted to limit the slippage to a maximum
threshold. [47]

Figure 3.2: EHR system components [47]
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3.2 Improving Fuel Consumption
The previously described control systems that are already widely available focus
on maintaining the operating point that the operator has chosen.
During the last years, various research projects were conducted to enable further
op timization by eliminating the dependency of manually dened machine settings
and automatically choosing preferable operating points.
The presented ideas and projects are similar in that they either require extensive
modeling or signicant computational complexity to optimize agricultural
processes.

3.2.1 Holistic Eiciency Optimization

Kautzmann et al. [48][49] describe an approach to optimize fuel consumption
based on the current state of an agricultural vehicle. The vehicle was thereby
considered as a whole system to calculate the overall holistic eciency.
The system was based on a System under Observation and Control (SuOC)
algorithm that consists of an Observer that evaluates the current state of the
vehicle based on the combined eciency of a simulation model and a Controller
that suggests a state transition based on an evolutionary algorithm.

Figure 3.3: Generic Observer/ Controller architecture [48]

The architecture was able to increase holistic eciency by about 50 % in an
AMESim-Model running the PowerMix-cycle Z5K - rotary harrow of the German
Agricultural Society (DLG) as Input.



3.2.2 Reinforcement Learning

Becker et al. [50] used a Reinforcement Learning Approach to optimize dierent
reward functions on the example of the plowing process. Based on the selection
of a reward
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function, the network is trained to detect the optimal state transition to optimize
the reward (𝑅). The input data was derived directly from CAN-Bus.

The action space consisted of deceleration (−0.2 𝑘𝑚/ℎ), acceleration (+0.4 𝑘𝑚/ℎ),
and maintaining the tractor’s velocity.
The reward functions 3.1 and 3.2 were chosen for state transitions, including
parameters 𝑤1 and 𝑤2 as reward weights:

𝑅ecient(𝑠𝑡+1, 𝑠𝑡, 𝑎𝑡) = −𝑤1 ·𝐵

𝑣𝑟𝑎𝑑𝑎𝑟 · 𝑤(3.1)

𝑅performant(𝑠𝑡+1, 𝑠𝑡, 𝑎𝑡) = 𝑤2 · 𝑣𝑟𝑎𝑑𝑎𝑟 · 𝑤 (3.2)

The training process also involved an exploration phase directly on the eld and
hard and soft constraints to achieve system safety.
As a result, fuel eciency and system performance can be improved with the
trained agent illustrated in table 3.1. Since the agent had no continuous action
space, the initial optimization period must be removed from evaluation. The
increase of mean velocity by 5.17 % and decrease by 11.6 % in fuel per area,
generated by the appropriate target function, show the potential of such a system.

Table 3.1: Reinforcement Learning Results edited after Becker et al. [50]

Mean Velocity in km/h Mean Fuel Consumption in l/ha

Complete Distance After 30 meters Complete Distance After 30 meters

Reference 7.03 6.77 27.69 28.60 Ecient 6.11 6.29 24.68 25.29 Performant 6.72 7.12
24.34 27.10

3.2.3 Modeling Tractor-Implement Combinations
Schreiber [2] describes an approach to model tractor and implement combination
in order to predict the fuel consumption. This model is primarily used to compare



dierent agricul tural processes and process combinations regarding their energy
requirements. A high drawback of this approach is the high required amount of
knowledge about the specic setup.

Machl [51] visualized the relationship between relative pulling force and the speed
of the vehicle as illustrated in gure 3.4. This study was conducted to examine the
inuence of ballasting on traction power utilization but shows the vehicle speed’s
inuence on traction
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power utilization. For lower speeds, the limiting factor is tire-soil mechanics,
whereas the engine power limits the transmittable pulling power for higher
speeds. Therefore higher speeds shift the optimal ratio to lower pulling forces.



Figure 3.4: Engine and tractive power relative to the respective maximum power,
shown as a function of tractive eort and speed level, edited after [51]

3.2.4 Automatic Gear-Shiing based on Dra Force Characteristics

To optimize energy usage during tillage, Li et al. proposed a new theoretical
method of automating gear-shifting based on real-time identication of draft force
requirements. Thereby a mathematical model is presented to calculate torque
requirements based on the draft force model in ASABE D497. On this foundation,
an automated shifting schedule is presented to optimize fuel eciency. [13][21]

3.3 Soil Profile Estimation

Soil prole estimation can be used to quantify the working quality during
agricultural tillage. In this section, state-of-the-art estimation models are
described, focusing on soil aggregate distribution and parameter calculation of a
cross-section of the disturbed soil after tillage.

3.3.1 Soil Aggregate Observation

Steinhaus and Frerichs [52] describe an approach to detect soil aggregate
distribution based on 3D point clouds that are detected using a stereo camera
system. Their algorithm uses a Cloth-Simulation-Filtering process to remove
small aggregates from the point clouds. Thereby a virtual cloth is placed on the
captured cloud, and stiness and gravity adjusted so that only small aggregates
remain in contact with the cloth and can thereby be detected and removed.
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The remaining points are clustered by proximity using the DBSCAN
(Density-Based Spatial Clustering of Applications with Noise) algorithm.
Afterward, individual aggregates are clustered by size. The results are visualized
in gure 3.5.



(a) Original Point Cloud [52] (b) Detected
Aggregates [52]

Figure 3.5: Aggregate Distribution

Their methods showed high accuracy during laboratory tests for aggregates with a
diameter greater than 10 mm. They conclude that their method allows automated
data acquisition of surface structure without the necessity of personal interaction.

3.3.2 Line-Based Surface Estimation

Figure 3.6: Soil prole as cross section [26]

Measuring a line prole of the surface cross-section as visualized in picture 3.6,
parameters can be calculated to describe the elevation prole and enable
classication of tillage processes.
Martinez-Agirre; Álvarez-Mozos and Giménez performed a comparison between
a wide selection of evaluation parameters and ranked them by their individual
ability to distinguish soil proles after tillage processes. They concluded with the



recommendation of the parameter Mean Upslope Depression Index (MUD),
which takes horizontal as well as vertical deviations of the soil prole into account
(Section 2.5.3), and Standard Deviation of Heights (s) (Section 2.5.2), for their
simplicity and good performance. [33][34]
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4 Cultivator Survey

To meet the practicability requirement and to evaluate the usage of current control
systems in German agriculture, an anonymous opinion poll was conducted to
obtain information about the cultivating process and specically about farmers’
common problems and preferences during their work.
The questionnaire, which can also be found in the appendix, was sent to selected
farmers using postal delivery. Of 22 sent questionnaires in total, 17 were
returned, resulting in a return rate of 77.3 %.
Due to the small size of the poll, the result can only serve as an orientation of
variables relevant to farmers. Furthermore, the included questions were not
designed to meet psychological requirements for surveys and shall only serve as
an approximate guideline. Farm sizes ranged from 22.87 ha up to 2100 ha with
an average total operating area of approximately 264 ha and an average eld area
of approximately 254 ha. Figure 4.1 shows the distribution of the total area of the
individual farms.

Figure 4.1: Total operating Area and Field Area

Most of the participating farms have a strong focus on arable farming in terms of
acreage. However, especially in relatively small farms, a high percentage of areas
on which other plants are cultivated can also be observed. Due to the usually
more labor-intensive cultivation of perennial plants like viticulture and cultivation in
greenhouses, the respective farm focus can also be on other cultures despite



their predominant land usage for arable farming.
The questions ranged from general information about the farms to precise
information about the cultivating process, including machine settings, user control,
and process targets. The whole questionnaire can be found in the appendix in
section A.2.
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Figure 4.2 visualizes the power of the most frequently used tractor of each farm
during cultivating compared to their logarithmic visualized total operating area. An
increase in machine power can be seen up to a level of approximately 270 kW
(360 PS). This limitation can be traced to the fact that large farms use multiple
machines rather than increasingly larger ones due to limited availability and
drawbacks during road transition between elds.

Figure 4.2: Tractor Power compared to total Operating Area

4.1 Control Systems
Most of the questions were directly related to the cultivating process. In this
regard, the use of electronic support systems for the process was evaluated. The
farms were questioned on which support systems are used, and the results were
ordered by the magnitude and visualized in gure 4.3.



Figure 4.3: Control System Usage

Electronic Hitch Control is in use on 76.47 % of the farms, whereas it has to be
noted that the three farms with the largest cultivated area per year are not using
these systems. One of those two farmers also noted that due to the silty and
swampy soil caused by the farm’s location being in a terminal moraine, the
driver’s skills are of irreplaceable importance. Driving conditions frequently vary
due to up to four dierent soil types per
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consolidated eld, forcing the driver to adapt the working process manually.

The usage of automatic GPS-based steering systems is at 58.82 %, whereby it
has to be noted that such a system is in use at all surveyed farms with a cultivated
area of more than 300 ha per year. Usage varies for farms with less cultivated
area per year with no identiable trend.

Slippage Control is only in use on 41.18 % starting at farms with approximately
100 ha of an available eld area. The lack of usage in small farms can be
explained due to the necessity of Radar- or GPS-based sensors to evaluate
actual vehicle speed. These sensors are not always available on smaller
machinery.
However, even for the larger farms, no denite trend can be identied.

4.2 Working Depth Configurations

To obtain information about the range of work done using cultivators, working
depth congurations of the primarily used tractor-cultivator combination of each
farm were analyzed. The smallest participating farm did not include information
about their working depth setups and is therefore excluded from this specic
analysis.
The target working depths were ranging from 2 to 30 cm, with each farm using an
average of approximately 2.6 congurations.
The variety of congurations shows that some farms use one cultivator for a wide
variety, if not all, their tillage processes, as stated by the fact one machine



combination covers a wide range of working depths and use-cases. Only two
farms use their most-used combination solely for one specic working depth.
The survey was limited to one specic machine combination rather than all used
combina tions and machines on the farm and their usage of external services to
keep the survey duration low. The area covered by each machine combination
was also recorded but can therefore not be compared with the total area of the
respective farms, as some farmers cultivate elds of other farms as a service or
utilize such a service themselves.

In summary, it must be stated that cultivator usage and settings depend on
complex individual operational decisions, which result individually from the
respective conditions and machine availability. Optimization must comply with
every potential usage and setting of the machinery to improve the cultivating
process to a great extend.

4.3 Observation Parameters

The farmers were asked to rate possible parameters on how much attention they
pay on them during their work according to their priorities on a scale of 1 (No
attention) to 10 (Much attention) to obtain a better understanding of the
importance of specic possible observation parameters machine operators
evaluate during cultivating. The results were then ordered by average rating and
are displayed in table 4.1.
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Table 4.1: Observation Parameters

Parameter Average Rating

Clearing Straw and Catch Crop 9.26
Constant Working Depth 8.71
Surface Smoothness 8.53
Avoiding Clogging 8.50
Division of Large Chunks 7.71
Minimizing Fuel per Area 7.41
Minimizing Time 7.29
Slippage 6.67

The table shows that some factors, like clearing straw and catch crop and a
constant work ing depth are equally signicant for all the participating farmers. One
of the participants also mentioned that a constant working depth is decisive for a
constant crop growing of the subsequent planting.



A smooth surface is, for most farmers, also of high priority. The only rating of 3
points comes from a farm located in a region with soils containing a high amount
of clay. Due to the resulting diculties in tillage, the farm has a strong focus on a
constant working depth, avoiding clogging of the implement, and clearing of the
previous planting.

Most farms see high importance in the avoidance of implement clogging. The
only two exceptions are from a farm whose elds have sandy to slightly loamy soils
and a farm that stated that the clogging of the utilized cultivator is extremely rare
due to the high spacing between the tines compared to other cultivators on the
market.

The four remaining objectives were rated very broadly and dierently, so no clear
pattern could be recognized. This result suggests that monetary inuences, such
as lower fuel consumption or shorter working times, have only a relatively low
relevance in tillage, and the quality of the process is of the highest importance.

In conclusion, it can be said that most of the suggested targets feature a high
average relevance on the surveyed farms. Interestingly three of the four most
relevant targets, clearing straw and catch crop, surface smoothness, and
clogging avoidance, can only be perceived visually and show the open use cases
for camera and laser-based detection and scanning systems. The most relevant
targets are also heavily correlated with the quality of the cultivating process, but
targets must be set individually depending on the respective circumstances.
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4.3.1 Working Depth Evaluation

The working depth is one of the only parameters challenging to observe from the
driver’s seat. Therefore the participants were asked to mark the methods they
use out of a list of possibilities. The results were then ordered by usage and
displayed in gure 4.4.



Figure 4.4: Working Depth Control

It has to be noted that several farmers added that they measure and recognize the
working depth by the position of the soil on the cultivator blades. This option was
not included in the original survey.
Most farmers tend to dig the soil until undisturbed layers get visible. This method
is the safest way to ensure a constant working depth, but the driver needs to stop
the machine and check it manually.
The second most used method is a visual control. It was not specied whether this
happens from the driving position or by stopping the vehicle and checking it from
a side angle. Both options may cause high inaccuracy due to the roughness of the
soil close to the tines, which are the only close reference point on the machine to
evaluate working depth.

4.3.2 Preferred Optimization Targets

In addition to the questions concerning the current operating conditions and
preferences, the farmers were asked to rate dierent optimization parameters
under the assumption that they would have a fully autonomous cultivating
machine at their disposal that does not require any human operator input.

Table 4.2: Autonomous Cultivator Targets

Target Average Rating

Constant Working Depth 9.06
Smooth Surface Prole 9.0
Minimize Fuel per Area 8.69
Minimize Worktime 8.19
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The results of this question do further underline that the farmers prefer the
targets that aect tillage quality. However, the high average rating of all of the
specied targets signies that the combination of the parameters needs to fulll the
individual requirements, rather than one target that can be optimized solely.

4.4 Survey Conclusion



Concluding the survey, the farmers’ opinions and preferences show the need for
time saving and accurate working depth measurement, as all methods currently
used are either subject to inaccuracies or time-consuming hassle for the operator.
Furthermore, the usage of implement position control systems varies due to
varying soil conditions that depend on the total operational area of the farm. This
distribution means that new control systems have to feature a high level of
adaptability to obtain a high usage level. This requirement is underlined because
many farmers use the same tractor-cultivator combination for various tasks and
working depths on which such a system would have to function equally.
Concerning target functions during cultivation, it is apparent from the survey that
the quality of work is signicantly more critical than the optimization of economic
values such as a low total time or low fuel consumption per area. Before
optimizing the latter operational target gures, consistent working quality must be
ensured.
The fact that GPS-controlled steering is already widely used, especially on larger
farms, shows farmers’ acceptance of relatively new systems if the operational
improvements are apparent.
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This chapter describes the collection of training and evaluation data for neural
networks. It was possible to use the data collected for another project. In this
data, mostly cruise control was used as a driving strategy, and the drivers merely



adjusted the depth of the cultivator in dense soil conditions to keep a steadier
driving speed. A few additional driving strategies were used to obtain more
insights into the tractor and implement. This additional data was not used for the
training of neural networks.

5.1 System Setup

A Fendt 516 Vario in combination with a Horsch Terrano 4 FX cultivator and
added front weights was used for data collection and for evaluation.

Figure 5.1: Fendt 516 Vario with Horsch Terrano 4 FX

The power-split transmission of the tractor allows the gear ratio to be changed
without interruption. The tractor can continuously optimize engine and
transmission settings based on a given setpoint speed (𝑣𝑠𝑒𝑡) using the internal
transmission control TMS. The tractor features a nominal power of 120 kW at
2100 1/min and a maximum power of 126 kW. The engine characteristics from
the manufacturer, as well as the fuel consumption curves experimentally
determined by the DLG are shown in the gures 5.2. [53][54]
Communication was established between the CAN-Bus, ISOBUS, and the LAN
network using a computer running Ubuntu 20.04 with ROS noetic as a bridge. In
addition to the internal parameters, additional sensors were used to collect data
and control the internal signals. All sensor data was collected via ROS and saved
to rosbags.
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5.1 System
Setup

(a) Engine Characteristics, edited after
[53]

(b) Fuel Consumption, edited after [54]

Figure 5.2: Fendt 516 Characteristics



5.1.1 Pitch Angle Control
To check the internal Pitch Angle (𝜃) sensor an XSENS MTI 300 Inertial
Measurement Unit (IMU) was mounted on top of the vehicle. The orientation and
acceleration data were then published to the network using ROS.
It should be noted that high-frequency uctuations, possibly induced by the rough
ground surface, are automatically corrected by the positioning of the IMU on the
damped tractor cabin.

5.1.2 Visual Sensor Systems
To obtain visual information about the process, a Realsense L515 Lidar Sensor
was mounted to the cultivator frame as well as a Realsense D415e Stereo
Camera to the top of the cabin facing backwards. Mounting position, as well as
eld of view of the sensors, are visualized in gures 5.3 and 5.4.

Figure 5.3: Mounting position of D415e and L515, Models from [5] and [6]
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Figure 5.4: View of D415e and L515, Models from [5] and [6]

Both sensors were available during primary data collection, but only processed
data was recorded and not raw data due to limitations in the recording storage
capacity and the large amount of space required for recording point clouds.
Therefore, the generated point clouds were not recorded to the training data, and
both sensors can only generate online data during work.
The Lidar shall be primarily used for working depth calculation and the Stereo
Camera for surface parameter evaluation as described in the following sections.

5.1.2.1 Working Depth Calculation

A Raspberry Pi 4 was used to run the Lidar drivers and establish the network
connection to publish the sensor data in ROS-messages.
To decrease network load, the Pi 4 directly calculated the distance to the planar
surface using a RANSAC-Algorithm and published it to the ROS-network for data
collection. Figure 5.5 visualized that this algorithm is resistant to noise and can
calculate planar coordinates even on stubble elds. Here, the red points are
categorized as plane points and green points as outliers.

Figure 5.5: Plane Detection

The oset was then calculated by measurement on asphalt to calculate the working

depth: 𝑡 = oset − distance to plane (5.1)
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5.1.2.2 Surface Parameter Calculation

For surface parameter calculation, the mounted Realsense D415e was directly
connected to the system’s central computer to obtain information about the
surface structure.

The approach of obtaining a surface line of the processed soil is based on
Automatisierte Erkennung von Prozessparametern in der Landtechnik mittels
Stereokamera am Beispiel Pügen [55].
Using RANSAC, the surface plane parameters are detected from the point
cloud, and measured points on the implement were removed from the
observation area. A coordinate frame located in the centerline of the implement
and on the soil plane was generated. A Kalman lter was applied to the
coordinate transformation to correct measurement irregularities.
The point cloud was then transformed into the new coordinate system for
simplied calculations to allows easy processing because the z-coordinate of the
points is now orthogonal to the surface.
Point height coordinates were merged in the driving direction to observe a height
line of the cultivated surface similar to one generated by a laser scanner directly
mounted above. The mounting position of the camera on the tractor roof ensures
easy cable management and better operating conditions due to fewer dust
particles surrounding it.

The obtained height line now allows the calculation of slope-line dening
parameters like the Mean Upslope Depression Index (MUD) and Standard
Deviation of Heights (s), whereby the former has not been used because the
parameters depend on the slope of the measurement line.
Figure 5.6 shows the usage of this camera-based surface evaluation process.



(a) Normal Working Condition (s ≈ 0.12 𝑚)
(b) Implement lifted too high (s ≈ 0.2 𝑚)

Figure 5.6: Working Depth Variation

If the implement is lifted too high, the leveling disks and roller following the blades
cannot distribute and compact the soil after processing. Therefore, the single
lines of the roller disks can be detected to determine the operation state. If these
are not visible anymore
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and the amount of visible lines decreases to the number of tines on the last bar,
then the implement is lifted too high to ensure sucient machining quality. The
directly visually observable change in surface texture also yields a change in s.

5.2 Data Collection

The data was collected in Zaisenhausen, Baden Württemberg, using a human
driver with automated steering and TMS activated. Draft control and slippage
control were turned o. The training data was collected during summer with
ambient temperatures ranging from 14.8 to 23.3 °C, and soil composition was
varying between loess soil, sandy loam, and loam.

The frequency of each signal was analyzed based on the number of recorded
messages. The detected frequencies allow individual signal ltering based on
timeslots. The recorded parameters and frequencies are listed in table 5.1. The
numerical value for the engine torque was not available on the tractor connection
during data collection. Therefore, the read-out percentage represents the current
torque compared to the maximum possible torque at the associated engine
revolutions.

Table 5.1: Acquired Parameters



Parameter Source Frequency in Hz Comment

Traction Force (𝐹𝑇 ) CAN-Bus 4

Theoretical Speed (𝑣𝑡ℎ𝑒𝑜 ) CAN-Bus 4

GNSS Speed (𝑣𝑔𝑛𝑠𝑠 ) CAN-Bus 8

Workmode (𝑀𝑤) CAN-Bus 4 no lter required Implement Position (𝑝)
CAN-Bus 4
Pitch Angle (𝜃) ISOBUS 12-18 not reliable Pitch Angle (𝜃) IMU 100 not
transferable Fuel Rate (𝐵) CAN-Bus 4

Ambient Temperature (𝑇 ) CAN-Bus 4 informational Relative Engine

Torque (𝜏%) CAN-Bus 4

Engine Revolutions (𝑛) CAN-Bus 4
Working Depth (𝑡) L515 8 not in collected data Surface Parameters D415e
not in collected data
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5.2.1 Slope Calculation

Since there is no slope (𝛿) signal available we need to calculate it using the pitch
angle (𝜃). A simple but imprecise approach to this is equation 5.2. The oset was
calculated by placing the tractor facing upwards and downwards in the same
position while measuring the internal signal.

𝛿 = 𝜃 − 3◦(5.2)

The pitch angle signal read from the CAN-Bus depends on the pulling angle (𝛼)
of the implement, causing the rear tires to contract due to high vertical forces.
The pulling angle is not directly measurable with the current setup, but due to the
recently installed L515 the accuracy of the slope angle can be improved in
further validation and data collection. The L515 is mounted on the implement
frame, so it can detect the oset angle 𝛿soil. Therefore, the varying inuence of the
implement position (Implement Position (𝑝)) has to be considered and adapted
using a correction term.

𝛿 = 𝜃 + 𝛿soil + 𝑝 · correction (5.3)

The kinematic of the angle between the tractor and implement caused by
variation of 𝑝 can be described as a direct relationship to the actual mounting



angle since the measurable percentage 𝑝 is directly interconnected with the
positional angle of the implement relative to the tractor due to the xed mounting to
the lower and upper lift arms. During active driving, the changes of 𝛿soil can
therefore be used to calculate 𝛿 more precisely in further work.

5.2.2 Extract Rosbag Data

During data collection, every signal of the system was saved as a rosbag le. In
earlier works, the collected rosbags were only used via playback, therefore
needing much time to train models. On the basis of example code by Speal, a
script was written to extract the necessary information of the rosbags using the
rosbag Python-API in order to speed up the training process. [56]

The script allows choosing topics and searches through the rosbag le to nd all
published messages on the specied topics. These messages are then saved in a
separate .csv le for each topic ordered by their timestamp.

Afterward, messages are smoothed by calculating the arithmetic mean of this
sensor’s data obtained in the last recorded second. An exemplary result can be

seen in gure 5.7.

Furthermore, these messages in the separate les of the dierent sensors and
signals are then merged by the closest recording timestamp to create complete
datasets of all sensors
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Figure 5.7: Filtered Pitch Angle Signal, Measurement taken at Zaisenhausen,
lange Seeacker 21/10/20

combined to use them as the system state at each point in time. If the value of a
topic is missing, the whole row is dropped.
The merged le is then also saved and a le that includes the rosbag timestamp
and only information from data or value-elds of the messages. This le can then be
used for neural network training.
The whole collection and extraction process is visualized in gure 5.8.

Figure 5.8: Collection and Extraction
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5.3 Data Analysis
The total collected and extracted datasets are described in table 5.2. The pitch
angle signal published via ISOBUS is missing in some time slots of the data
collection process. The missing data can be retrieved with the equations
described in section 5.3.1.

It can be seen that the number of datasets per second is related to the lowest
transmission frequency. The lower total dataset frequency at the sets containing
𝜃-data from the ISOBUS can be explained by the fact that the internal signal is
unreliable and often temporarily unavailable.



Table 5.2: Data Overview

Type Time Datasets per Second

With Pitch Angle 60.23 min 14273 3.95
Without Pitch Angle 242.98 min 58220 3.99

Total 303.22 min 72493

The collected data was then ltered for data analysis and network training, as
described in section 5.3.2.

5.3.1 Pitch Angle
Fixing the issue of missing pitch angle (𝜃) from the ISOBUS can be done by
using the IMU-orientation signal, which, when negated, correlates with a static
oset. The IMU is only installed on the current tractor, and to ensure
interchangeability between tractors, we cannot rely on installing and calibrating a
sensor on each tractor. Therefore we calculate the pitch angle only for missing
data points and use the internal ISOBUS signal otherwise.

The IMU-orientation signal is published as quaternion 𝑞, to obtain 𝜃 in Euler
angles we need to use the conversion 5.4 as stated by Blanco. [57]

𝑠𝑖𝑛(𝜃IMU,raw) = 2 · (𝑞𝑟· 𝑞𝑦 − 𝑞𝑥 · 𝑞𝑧) (5.4)

The relationship between 𝜃IMU and 𝜃IMU,raw can be calculated using a static oset:

𝜃IMU = oset − 𝜃IMU,raw (5.5)

The static oset was calculated and averaged for all data points where both
signals were available to receive 𝜃. The oset is highly inuenced by outliers, but
oset ≈ 2,6° can be chosen as a reference.
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The IMU and ISOBUS-data is visualized in gure 5.9. The signicantly smoother
course of the orientation data of the IMU is due to the positioning on the
suspended driver cabin.
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Figure 5.9: Pitch Angle Calculation from IMU Data

5.3.2 Data Filtering

For further analysis and neural network training, outliers of the data were removed
by the rules described in table 5.3.

Table 5.3: Data Selection

Rule Reason

𝑣𝑔𝑛𝑠𝑠 > 1 𝑘𝑚/ℎ Move Forward

𝑀𝑤 = 1 Workmode On

120 𝑘𝑁 > 𝐹𝑇 > 0 𝑁 Positive Draft Force
0 < 𝜎 < 1 Slippage Limits

The limiting rule for traction force (𝐹𝑇 ) limits the maximum value to 120 kN since
higher values are unrealistic due to a necessary traction coecient (𝜅) of more
than 1 (𝐹𝑊 ≈ 12 𝑡 · 9.81𝑚/𝑠2). The number of data points was reduced from 72493
to 53773 during ltering.

These lters also have to be applied to the live system’s incoming data stream to
validate the current state for prediction models.
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5.3.3 Shell Schemes
This section showcases the training data set to display optimization potential.

Figure 5.10a shows the distribution of data relative to engine parameters. Each
data point was assigned to a bin where the respective number of containing data



sets is displayed on a logarithmic scale. The gure showcases that the TMS only
chooses specic engine states during heavy tillage operations due to the high
power demand. Furthermore, the exceptionally high count of values at the
maximum relative engine torque shows the tractor’s under-sizing concerning the
implement’s pulling force requirements.

In areas where the amount of data points is small, the natural compensation of
outliers by averaging cannot take place. Therefore, outliers in these areas are
expected to be not representative.

(a) Data Count

(b) Fuel Rate
Characteristics

Figure 5.10: General Data and Engine Information

Figure 5.10b shows the fuel consumption of the engine dependent on engine
torque and revolutions. The color-coding shows the arithmetic mean of each bin.



As expected from the literature, fuel consumption increases with rising torque and
revolutions. Interestingly most of the collected datasets come from operating
points close to the maximum fuel consumption.

5.3.3.1 Reward Functions

In chapter 3.2.2 dierent reward functions were described, that were previously
also used for a Reinforcement Learning approach by Becker et al. [50]
The therein contained dependency to eective speed (𝑣𝑔𝑛𝑠𝑠) is problematic for
visualization since the levels are not comparable due to changing implement
position and non-static soil density. To establish comparability in visualization, the
traction power (𝑃𝑇 ) was used instead of 𝑣𝑔𝑛𝑠𝑠:

𝑃𝑇 = 𝐹𝑇 · 𝑣𝑔𝑛𝑠𝑠 (5.6)
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This adaptation establishes comparability since traction limits apply.
Consecutively the reward functions were changed as well using equations 5.7
and 5.8.

𝑅perf,visual = 𝑃𝑇 (5.7)

𝑅e,visual =𝑃
𝑇
𝐵(5.8)

The comparability of the functions is displayed in gure 5.11. The distribution of
𝑅perf,visual is similar to 𝐵. The high reward outliers have to be disregarded
because they belong to sparsely populated data bins.

Furthermore, comparing the two available reward functions, the shift from
performance to eciency shows a lowering engine torque, as well as a shift to
lower engine revolutions due to varying gear ratio by the TMS to improve eciency
instead of maximizing traction power transmission.
Due to the correlation in gure 5.11b it is possible to assume that the TMS will
automatically optimize engine and transmission settings if the system is not
forced to make full use of the available engine power by a too high-speed setting.
In this case, it is only necessary to provide a target speed, and there is no need to
adapt the transmission setting manually.
The inverse of 𝑅e,visual represents the specic fuel consumption of the tractor.



(a) Performance

(b) Eciency

Figure 5.11: Reward Comparison

5.3.4 Currently Available Control-Systems

To evaluate the progression of the working depth on the control systems currently
avail able on the market, they were activated in parallel rows on the same eld.
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Two rows per control system were measured, one upslope and one downslope, to
establish comparability.

The altitude of the eld is displayed in gure 5.12.



(a) Track 1

(b) Track 2

Figure 5.12: Working Depth on changing Soil Conditions

5.3.4.1 Constant Implement Position

As a reference, the two tracks were driven using a constant setting with target
speed set to 5 km/h and implement position to 50 %. Figure 5.13 visualizes that
even though the implement position remained constant in reference to the
tractor, working depth and draft force changed signicantly. Because this eect
occurs independent of the slope, the assumption can be raised that the reason
for this change is varying soil conditions.



(a) Track 1



(b) Track 2

Figure 5.13: Working Depth on changing Soil Conditions

Heavy soils lead to an increase in horizontal draft force requirements and vertical
force requirements. The load of the implement and vertical forces are split
between the rigidly connected roller and the tractor lift arms. The graphs suggest
that this increase yields a compression of the rear tires and underlying soil and
an increase in working depth. This eect further leads to increased draft force
requirements until the increase in tire pressure
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and denser packed soil underneath counteract the increased forces and result in
a new equilibrium.

5.3.4.2 Dra Force Control

The draft force control mode usually uses force sensors in the rear lift arms to
maintain constant draft force requirements by adjusting the implement position.
Theoretically, in this control mode, according to equation 2.17, heavier soils in
combination with a constant draft force and speed should result in a decrease in
working depth since implement parameters remain constant. This eect should
counteract the increase in working depth caused by tire and soil compression.



(a) Track 1

(b) Track 2

Figure 5.14: Draft Control

Figure 5.14 visualizes the eects of this control mode onto the working depth of
the cultivator. In total, the working depth is less aected by changing soil
conditions in this control mode. Draft force is also more consistent, as expected,
due to the usage as the control parameter. Thereby it has to be noted that the
results are expected to dier with non-constant speed settings.

5.3.4.3 Slippage Control

The Slippage Control lifts the implement never to exceed a specied maximum
slippage. It is expected, with optimal traction conditions and limited draft force
requirement, the mode would behave similarly to a constant implement position.
However, with rising power demand and the necessary increase in slippage close
to the specied maximum, a behavior similar to the draft control mode is expected
from traction relationships (Figure 2.2b). To visualize this, gure 5.15 shows one
track with a theoretical speed of approximately 5 km/h, where the traction of the
tractor could easily manage draft force requirements without a signicant increase
in slippage. A parallel track was measured as a comparison with increased
speed settings of 7 km/h, which could also be achieved all the time. Slippage
values increased as well due to the expected traction behavior.
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(b) Track 2

Figure 5.15: Slippage Control

The lower speed curve has a high similarity to gure 5.13. Due to the increased
draft force requirements with higher speed settings, slippage increases, and the
slippage control adjusts the implement position more frequently to avoid the
maximum specied slippage of 10%. The curve gets thereby increasingly similar to
the draft control mode in gure 5.14.

In conclusion, the control mode analysis suggests that the working depth must be
controlled automatically to maintain a constant working depth and ensure optimal
plant growth since the former is not achieved by any of the currently available
control systems.
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This chapter describes the developed system to automate working depth and
speed control based on the specied requirements from the previous chapters.

6.1 Requirements
This section gives a short overview of the specic requirements of the control
system. The system should

• be robust and able to adapt to a wide range of soil conditions

• always ensure the optimal operating point of the machine

• minimize the demand of a trained human operator to specify machine setup
and operating conditions

• adapt to changing soil conditions fast enough so that even within rapidly
changing soil conditions, uninterrupted optimization can be provided

• be adaptable to individual system targets dened by the operators’ needs
and re quirements

• prioritize good cultivation to optimization of the operating speed and fuel



consump tion in order to t the farmer’s priorities

• only use previously collected data for the neural network training process,
since the model must be robust enough to function without having to retrain
or explore in previously unknown situations

In contrast to the suggested approach by Li et al., transmission and engine
control shall be controlled by the TMS of the tractor. Therefore, the control
system shall not interfere with the automatic control of the power-split
transmission and shall only specify target speeds. [13]

6.2 Working Depth Control
To ensure consistent working tillage quality and counteract the variance caused by
chang ing soil texture, the working depth was held constant by a ROS-node that
adjusts the implement position. The working depth measurements by the L515
were used, and if a
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threshold of one centimeter below or above the requested working depth is
breached, the position of the implement is adjusted step-wise subsequently.
Due to the rough surface texture and the resulting variance in working depth
measure ments, a lower threshold is unfeasible. The implemented control
system executes the demand for a constant working depth after the cultivator is
once initialized correctly. Figure 6.1 shows the necessity of this system due to
the changes in implement position necessary to maintain a constant working
depth.



Figure 6.1: Working Depth and Implement Position

Furthermore, the now presumably constant working depth allows a simplied
online parameterization of draft force relationships.
However, using a more advanced control system might improve results and
decrease variance in working depth further.

6.3 Speed Optimization Strategy
This section describes and compares dierent strategies for improving system
performance or eciency.
One option for such a strategy is the usage of a Reinforcement Learning
algorithm. The involved agent can evaluate measurement data and propose a
policy that suggests state transitions based on a reward function. Therefore, the
reward function must be specied in advance of the training process to enable the
algorithm to learn from mistakes and achievements. Thereby the background
behind the agent’s decisions is not directly ac cessible or understandable, and
the system would therefore function as a black-box. To obtain an acceptable
policy, the agent must explore its environment after a possible static learning
process on previously collected data.
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The other strategy is to individually model or predict system states for various
theoretically possible target speed settings. The modeled states can be compared
based on the reward functions from the reinforcement learning approach to
choose the best state transition. Furthermore, these functions can be edited since
they are independent of the modeling of the state variables. Theoretically, traction
and draft relationships and the characteristics of the power train and engine of the
vehicle can be modeled. However, apart from traction and draft relationships,
these settings are very dependent on the individual machine and drastically
increase the modeling process’s complexity. The usage of an ANN to predict the
fuel rate based on draft and traction modeling can decrease this eort by solely
requiring enough measurement data to train the algorithm to predict the fuel rate.



6.4 State Prediction Model
The second approach mentioned in 6.3 of modeling the future state of the
vehicle’s forces and speeds based on the current measurement data combined
with an ANN for fuel rate prediction was chosen. The ow chart 6.2 describes one
iteration of this algorithm. In the next section, the required components for this
optimization process are described, followed by a detailed schedule of one
iteration in section 6.5. These iterations need to occur repeatedly to allow the
system to adapt to changing soil conditions or slope angles.

Figure 6.2: Optimization

Figure 6.3 illustrates the ow of the information for the modeling and prediction
process in more detail. The extracted measurements from the CAN-Bus and
ISOBUS are used for calculating static variables like slope and weight force.
Furthermore, the information is used to parameterize current traction and draft
relationships to enable system modeling.
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The combination of these equations allows modeling the vehicle’s tractive
behavior to elaborate on possible system states. Therefore, multiple suggestions
for theoretical speeds can be entered in order to generate a complete parameter
set.



Figure 6.3: Information Flow

The state variables of dierent evaluated speed settings are then entered in an
ANN to approximate the associated fuel rate. The resulting state variables can
then be used to select the best setting based on the reward of each state.

The model assumes that the ground’s soil conditions and slope do not change
between the current and predicted state during one iteration of the algorithm.
Therefore, the vehicle’s weight forces and weight distributions are assumed not
to change during the proposed state transitions in one iteration. If an occasional
change occurs, the algorithm will therefore have to adapt subsequently.
The slippage cannot be evaluated independently for the dierent wheels as we do
not measure the weight distribution changes between the front and rear axle. All
tires are therefore assumed to have the same speeds.
Due to the proposed working depth control in section 6.2, the working depth is
assumed to be constant.
This simulation part can be divided into the calculations dependent on the tractor’s
tractive behavior and the implements draft forces. The combined calculation can
generate the parameter set described in table 6.1 which can be used to compare
dierent modeled states.
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Table 6.1: Parameter Calculation



Parameter Source

Horizontal Weight Force (𝐹𝑊 ,ℎ) Stationary
𝛿 Stationary

Modeled Theoretical Speed (𝑣∼𝑡ℎ𝑒𝑜 ) Proposed
Modeled GNSS Speed (𝑣∼𝑔𝑛𝑠𝑠 ) Model
Modeled Traction Force (𝐹∼𝑇) Model
Modeled Draft Force (𝐹∼𝐷) Model
Predicted Fuel Rate (𝐵∼) Neural Network

6.4.1 Modeling System Parameters

The vehicle’s forces are modeled using a combination of a traction model used to
obtain power and speed relationships from the wheel to the surface and a draft
force model to dene the inuence of changing speeds on draft force requirements.

6.4.1.1 Online-Parametrization of Traction Relationships

Both in the fundamentals described relationships, equations 2.15 and 2.16 have
a high similarity in the relevant range of 0 < 𝜎 < 0.2 proposed by traction eciency,
so both can be used for modeling traction with the assumed assessment of 2.15
being more accurate due to optimization onto agricultural vehicles.
For online parameterization, however, these equations must be simplied to the
extent that a single measured dataset is sucient to determine the respective
curve. This approach has been chosen to limit the extent of the time slot needed
to dene exterior conditions so that the system can quickly adapt to changes.
This time limitation yields diculties together with the requirement for the system’s
simple usage without the need of the farmer to specify soil conditions for model
parameter calculation due to twice-restricted input parameter count. Thereby
equation 2.16 allows the online parameterization with the fewest additional
simplications due to the small number of free constants.
These still required simplications are based on correlations of 𝐹𝑇 and 𝜅 with 𝜎
identied in previous research work (e.g. Figures 2.2b and 2.5).

The rst simplication is based on the assumption that no Traction Force can be
supplied while 𝜎 is zero, based on “ASAE S296.4 General Terminology for
Traction of Agricultural Tractors, Self-Propelled Implements, and Traction and
Transport Devices”. [58] This denition can be adopted based on dierent zero-slip
conditions. Schreiber and Kutzbach provide a comparison between the
commonly used denitions. [59]
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The second simplication is thereby based on the assumption that the maximum
𝐹𝑇 can be provided while 𝜎 = 0.6.

For equation 2.15 this leads to the following simplications:

𝜅(𝜎 = 0) ≈ 0 (6.1)
𝜅(𝜎 = 0.6) ≈ 0 (6.2)

Using the previously specied simplication of constant weight forces and
distributions, these equations can be transferred directly from 𝜅 to 𝐹𝑇 to be used
in equation 2.16:

𝐹𝑇 (𝜎 = 0) ≈ 0 (6.3)
𝐹𝑇 (𝜎 = 0.6) ≈ 0 (6.4)

Resulting also in an equation that is solvable using only one measured dataset:

𝐹𝑇 (𝜎) = 1.2 ·𝑐𝑇 · 𝜎 − 𝑐𝑇 · 𝜎
2(6.5)

Figure 6.4 illustrates the progression of the traction force as a function of the
parameter 𝑐𝑇 that is parameterized online.

−

−

−



Figure 6.4: Traction Force Curves

The generalizations needed to solve previously described equations show further
opti mization potential to improve the model’s accuracy. These values can be
optimized using pulling experiments described by Holm [9].
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6.4.1.2 Online-Parametrization of Dra Relationships

For modeling the draft force (𝐹𝐷) of the implement the approach was chosen to
calculate the current parameter set incrementally as described by Rößler;

Kautzmann and Geimer. [25]

The implement model consisted of using equation 2.17 and with the in chapter
2.2.3 described literature values.
Relationships of 𝑎𝐷 and 𝑏𝐷 as described in table 2.1 were used to describe the
pulling force requirements.
Based on the proposed relationships by Harrigan and Rotz and Rößler;
Kautzmann and Geimer the following equations are proposed for tting the draft
model to the tractor implement conguration.

𝐹𝐷 = 𝑠𝐷 · (𝑎𝐷 + 𝑏𝐷 · 𝑣𝑔𝑛𝑠𝑠 + 𝑐𝐷 · 𝑣𝑔𝑛𝑠𝑠
2) · 𝑤 · 𝑡 (6.6)

𝐹𝐷 = 𝑠𝐷 · (𝑎𝐷 + 𝑏𝐷 · 𝑣𝑔𝑛𝑠𝑠 + 𝑐𝐷 · 𝑣𝑔𝑛𝑠𝑠
2) · 𝑤 · 𝑡2(6.7)

The working depth is held constant. Therefore, during the online calculation of 𝑠𝐷,
the two equations are equivalent in this specic use case. The implementation
used equation 6.6. Figure 6.5 illustrates the progression of the draft force as a
function of the product of 𝑠𝐷, 𝑤 and 𝑡 that is parameterized online. Therefore there
is no need to enter these values manually. Since 𝑤 and 𝑡 are constants due to the
implement choice and regulated working depth, the calculation is only aected by
soil specications (𝑠𝐷).
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Figure 6.5: Draft Force Curves
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6.4.1.3 Combined Model

To combine traction and draft forces, the simplied equation 6.8 is used,
neglecting the inuence of rolling resistance, air resistance and acceleration force
in a way that their sum is assumed to follow the same characteristics in regard to
changes in working speed (𝑣𝑔𝑛𝑠𝑠) as the implement draft force (𝐹𝐷).

𝐹𝑇 = 𝐹𝐷 + 𝐹𝑊 ,ℎ (6.8)

Air resistance and acceleration resistance can be neglected due to limited
speeds and accelerations during agricultural tillage.
Rolling resistance, however, has a signicant inuence on the tractive behavior of
the vehicle. The assumption of neglecting the rolling resistance can only be valid
if the implements draft force characteristics feature a signicant static share
independent from the vehicles working speed.
A correction term to consider this resistance into the equation, for instance, in the
most simplistic way by using a static rolling resistance coecient 𝜌 of 0.1, could
improve results further but is not considered during this work.
Some simplication is necessary because forces need to be eliminated from the
equation system to determine speed relationships.
Some heavy tractors do not feature sensors for detecting the actual draft force of
the implement and only allow the calculation of the traction force (𝐹𝑇 ) based on



gearbox pressures. This equation can therefore also be used to calculate 𝐹𝐷 from
𝐹𝑇 . On the other hand, if only 𝐹𝐷 is measured, 𝐹𝑇 can be calculated for online
parameterization.
Even though the tractor that has been used in this measurement setup does
feature sensors for measuring both 𝐹𝑇 as well as an equivalent value to the draft
force 𝐹𝐷, the calculation of actual draft force values from these measurements
does involve correction factors due to the lever arms on the sensor mounting
points. Because of that, the method of calculating 𝐹𝐷 from 𝐹𝑇 has been chosen.

The relationship between the measured 𝐹𝑇 and 𝜎 allows the calculation of 𝑐𝑇 .
Using equation 6.8, 𝐹𝐷 can be obtained in order to calculate 𝑠𝐷with the usage of
the measured 𝑣𝑔𝑛𝑠𝑠.

Subsequently entering the online-parameterized equations that have been
presented during the previous sections yields a relationship between 𝑣∼𝑡ℎ𝑒𝑜 and
𝑣∼𝑔𝑛𝑠𝑠 that is valid for the next state transition. After calculation of the parameters
𝑐𝑇 and 𝑠𝐷 based on latest measurement data, the equation can be used to
calculate 𝑣∼𝑔𝑛𝑠𝑠 for hypothetical values of 𝑣

∼
𝑡ℎ𝑒𝑜 . It additionally follows that due to

the obtained correlations, also 𝐹∼𝑇and 𝜎∼can be calculated from this relationship.

1.2 ·𝑐𝑇 ·

𝑣∼𝑡ℎ𝑒𝑜 − 𝑣∼𝑔𝑛𝑠𝑠
𝑣∼𝑡ℎ𝑒𝑜

− 𝑐𝑇 ·
𝑣∼𝑡ℎ𝑒𝑜 − 𝑣∼𝑔𝑛𝑠𝑠
𝑣∼𝑡ℎ𝑒𝑜
2

= 𝑠𝐷 · (𝑎𝐷 + 𝑏𝐷 ·

𝑣∼𝑔𝑛𝑠𝑠 + 𝑐𝐷 ·

𝑣∼𝑔𝑛𝑠𝑠
2) · 𝑤 · 𝑡 +

𝐹𝑊 ,ℎ (6.9)
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6.4.2 Fuel Rate Prediction
The Fuel Rate (𝐵) is the only variable that cannot be predicted by modeling the
system without further insight into the transmission and engine control. Therefore
a Directional Neural Network was chosen to approximate the fuel consumption
for a specic state transition. Afterward, the derived values can be used to
compute rewards functions.

The prediction of 𝐵 is the only part of the whole reward prediction model that
needs specic customization onto the vehicle.
During tests, it was shown that the engine and transmission parameters are not
necessary for predicting the vehicle’s fuel consumption and that the values
derived from the simula tion model are sucient for the prediction of fuel
consumption.

The thereby used inputs for the training process were:

• Pitch Angle (𝜃)

• Theoretical Speed (𝑣𝑡ℎ𝑒𝑜 )



• Traction Force (𝐹𝑇 )

• GNSS Speed (𝑣𝑔𝑛𝑠𝑠)

• Slippage (𝜎)

Only these input variables and the fuel rate that needs to remain as a label for the
training process remained in the training data. Any other content was purged
after ltering the outliers.
Due to the dependency of 𝜎 to 𝑣𝑡ℎ𝑒𝑜 and 𝑣𝑔𝑛𝑠𝑠, it could probably be also eliminated
from the training data in further projects.

The machine model can supply all relevant inputs for 𝐵∼ prediction except 𝜃,
which is assumed to be constant during state transition, as previously described.
After training, these modeled traction and draft parameters are therefore entered
as input parameters to obtain 𝐵∼:

• The latest measured Pitch Angle (𝜃)

• A proposed Theoretical Speed (𝑣∼𝑡ℎ𝑒𝑜 )

• The associated modeled Traction Force (𝐹∼𝑇)

• The associated modeled GNSS Speed (𝑣∼𝑔𝑛𝑠𝑠)

• The associated modeled Slippage (𝜎∼)

The input parameters were normalized before being entered into the network to
neutralize dierent value quantities and ranges during training and application of
the neural network.
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Figure 6.6 visualizes that this method allows fuel rate approximation when
applied on currently measured traction and draft data. The previous chapters
propose that this input data can be modeled suciently accurate for other states
based on dierent proposed 𝑣∼𝑡ℎ𝑒𝑜 - proposals. In that case, the prediction of the
fuel rate allows the usage of this parameter for reward calculation without
requiring a complete power-train model.



Figure 6.6: Fuel Rate Prediction

The optimal network parameter set was chosen by using a Hyperparameter
search. There fore the structure was adapted subsequently based on the results of
training and evaluating dierent architectural changes.

6.4.2.1 Network Structure Optimization

A Hyperband-Algorithm implemented in Keras was used for searching the optimal
network parameter conguration.
To speedup the search, the hardware chosen for was a computer featuring a
Intel(R) Core(TM) i5-9500 CPU and a CUDA-enabled Nvidia GEFORCE GTX
1660 GPU running Ubuntu 20.04.
The software in use was TensorFlow 2.3.0 and CUDA 10.1.

A Hyperparameter search was conducted to optimize the network’s structure.

Hyperparameter Search The rst hyperparameter search was conducted to obtain
the rough network structure using a hyperband algorithm. During this process,
6222 dierent network congurations were trained and evaluated.

As preparation, the data was split randomly into a training (80 %) and an
evaluation set (20 %). This distribution remained constant to establish
comparability between the dierent trained networks. Of the remaining training
data, 20 %, meaning 16 % of the total data, was used as internal validation
during training.

57
6 System Modeling and Control Strategy



Furthermore, the input data was normalized to eliminate the dierent orders of
magnitude of input parameters.
The learning rate was left to the initial values for each optimizer implementation
in TensorFlow to be then adapted during the second hyperparameter search.
Some of the evaluated optimizers also feature dynamic learning rate adaption
and therefore had an advantage over optimizers with static learning rates.
The maximum number of training epochs per network was set to 1000. Table 6.2
shows the total evaluated hyperparameter congurations.

Table 6.2: Hyperparameter Search 1

Parameter Range Step

Number of Hidden Layers 1 - 11 2 Neurons per Layer 64 - 512 64 Activation
Function relu, tanh, sigmoid, softmax, selu

L1 Regularization 0 - 0.2 0.01 L2 Regularization 0 - 0.2 0.01 Dropout 0 - 0.5
0.1 Optimizer Adam, Adadelta, Adagrad, Adamax, Nadam, Ftrl

As loss function the mean squared error was chosen. The hyperband was then
sorting the networks by mean squared error on the included validation data. After
successful search, the networks presented in table 6.3 performed best.

Table 6.3: Hyperparameter Search 1: Best Networks

Parameter Network 1 Network 2 Network 3

Number of Hidden Layers 9 9 7
Neurons per Layer 256 192 256
Activation Function relu relu relu
L1 Regularization 0 0.01 0.01
L2 Regularization 0.18 0.07 0.1
Dropout 0 0 0
Optimizer Adadelta Adagrad Adagrad
Best MSE 0.895 0.896 0.93

For ne-tuning the parameters, a second hyperparameter search was conducted.
Since the best performing network in the previous search all feature adaptive
learning rates, there
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is no need to add the learning rate to the hyperparameter list. Furthermore, the
dropout layers were removed.
The activation function was set to ReLu for all layers. In this run, the number of
neurons and the regularizing terms were set individually for each layer. The total
evaluated hyper parameter set is shown in table 6.4.

Table 6.4: Hyperparameter Search 2

Parameter Range Step

Number of Hidden Layers 6 - 10 1
Optimizer Adadelta, Adagrad

Per Layer: Neurons 64 - 512 64
Per Layer: L1 0 - 0.2 0.01
Per Layer: L2 0 - 0.2 0.01

Learning Rate 10−9, 10−8, ... , 10−2

After the second Hyperparameter Search, the initial value of the learning rate
was opti mized for the best performing model. However, the second
Hyperparameter Search could not yield any improvement compared to the
conguration that the rst search obtained.

6.4.2.2 Final Network Architecture

The nal network architecture is displayed in gure 6.7a and consisted of a
normalization layer, 9 densely connected hidden layers with 256 neurons each.
Every neuron used the activation function ReLu and had a regularization term L2
of 0.18. To train the network, the optimizer Adadelta was chosen with an initial
learning rate of 0.001. The training process was stopped early when the
algorithm did not improve predictive performance anymore.
The nal MSE of the trained network on the evaluation dataset was 0.895. Figure
6.7c illustrates these predictions as well as their distribution. The predictions are
compared to the actual fuel consumption of the dataset. The closer the values of
the predictions get to the orange line, the better the performance. The graph
shows that the predictions were not always perfect, but the number of outliers is
minimal. The distribution is further visualized in a histogram in gure 6.7b.
It is also expected that while comparing predictions from similar environmental
conditions, the associated predictions will tend to have their deviations from the
actual value pointing in the same direction.
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(a) Final Network Architecture
(b) Performance Histogram

(c) Network Evaluation

Figure 6.7: Final Network Structure and Performance

6.4.3 State Evaluation

The previously described system can predict the vehicle’s state based on various
suggested values for𝑣∼𝑡ℎ𝑒𝑜 . The possible states have to be evaluated and
compared to select the optimal state transition.
This comparison can be established with the usage of dierent reward functions.
The model’s simplicity allows a comparison using dierent functions without
changing the model and network training, allowing individual parameter adaption
even during opera tion.
The target functions from Machine Learning for Process Automation of Mobile



Machines in Field Applications presented in chapter 3.2.2 were adapted to
establish comparability. Furthermore, a new target function is proposed to
compare total machine costs for dierent states.

6.4.3.1 Eiciency

𝑅ecient =𝑣
∼
𝑔𝑛𝑠𝑠 · 𝑤

𝐵
∼
(6.10)

60
6.5 Usage of the State Prediction Model

6.4.3.2 Performance

𝑅performant = 𝑣∼𝑔𝑛𝑠𝑠 · 𝑤 (6.11)

6.4.3.3 Total Cost

The additional target function includes machine costs and driver costs to perform
state selection based on the total cost per area for the combined process. It

shows the model’s exibility to use dierent target functions without the necessity of
retraining the network. The values from the billing overview of the Maschinenring
Baden-Württemberg were used as orientation. The included implement costs are

based on a calculation using a working
width of 3 m since there was no data available for other widths. [60] These
values can be adapted to t the individual operating costs of a specic farm.

Table 6.5: Operating Costs [60]

Product Symbol Cost Unit Cost

4-Wheel-Drive Tractor 112-129 kW (152-175 PS) 𝐶𝑇 h 33.60 € Driver 𝐶𝐷 h

18.00 € Light cultivator with roller 𝐶𝐶,𝑙𝑖𝑔ℎ𝑡 ha 17.40 € Heavy cultivator with

roller 𝐶𝐶,ℎ𝑒𝑎𝑣𝑦 ha 20.30 € Fuel 𝐶𝐹 l 1.00 €

The specic total cost per area can be calculated using formula 6.12. The result
has to be minimized for state selection.

𝐶𝑐𝑜𝑠𝑡 = 𝐶𝐶 +𝐶𝑇 + 𝐶𝐷 + 𝐵∼· 𝐶𝐹

𝑣∼𝑔𝑛𝑠𝑠 · 𝑤(6.12)



6.5 Usage of the State Prediction Model

This section briey describes the usage of the state prediction model. The steps
necessary for a single optimization iteration are listed here in order. At the end of
one optimization iteration, the next one can be started directly or after a short
waiting period.

1. Extraction: All values 𝑣𝑡ℎ𝑒𝑜 , 𝑣𝑔𝑛𝑠𝑠, 𝐹𝑇 , 𝜃 are read from the tractors internal ECUs

2. Processing: The obtained signals are averaged over the last second
(Frequencies listed in table 5.1)

3. Filtering: Outliers are ltered using the criteria listed in table 5.3 61
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4. Calculation: 𝛿 and 𝐹𝑊 ,ℎ are calculated from 𝜃 (equations 5.2
and 2.3) Furthermore, 𝐹𝐷 is calculated from 𝐹𝑇 and 𝐹𝑊 ,ℎ

(equation 6.8)

5. Traction Parameterization: Traction relationship parameter 𝑐𝑇 is calculated
(Sec tion 6.4.1.1)

6. Draft Parameterization: Draft relationship parameter𝑠𝐷 is calculated (Section

6.4.1.2) 7. Combination: Traction and draft relationships are combined

(Section 6.4.1.3)

8. Modeling: Forces and speeds are modeled for a freely select-able set of
Theoretical Speeds (𝑣∼𝑡ℎ𝑒𝑜 ) based on the combined model

9. Prediction: The fuel rate (𝐵∼) is predicted for each of the modeled
parameter sets (Section 6.4.2)

10. Selection: The best parameter set is chosen based on a target function

(Section 6.4.3) 11. Application: The best 𝑣∼𝑡ℎ𝑒𝑜 is applied as new 𝑣𝑠𝑒𝑡 of the tractor
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7 Evaluation

This chapter describes the evaluation process of the control system which was
carried out in the area of Zaisenhausen, Baden Württemberg, equally to the
collection of the training data. In this area, slope angle and soil conditions, and
composition can vary to a large degree, which allows an extensive and diverse
evaluation. Firstly, measurement runs were conducted using the same test setup
as during training data collection. Secondly, the implement was exchanged to a
light cultivator to display the capability of the control system to be transferable to
various implements. Afterward, advantages and disadvantages are discussed.

7.1 Heavy Cultivator
Tests were conducted within dierent environment settings than during training
data collection to evaluate the system for the dierent reward functions. Testing
occurred at an ambient temperature of about -10 °C, which is signicantly lower
than the lowest temperature of 14.8 °C during training data collection. The
testing eld was frozen yet already partly defrosting and contained signicant



dierences in slope.
The elevation of the evaluation eld is shown in gure 7.1. Tests were performed in
the same working direction (Track 1), whereas the test runs with minimizing total
cost as reward function used Direction 2 to establish comparability. For a better
representation, the altitude values in this graphic have been adjusted to the
minimum altitude contained therein.

(a) Track 1

(b) Track 2

Figure 7.1: Elevation Prole Heavy Cultivator Testing



Since the test area did not feature changing soil types and because the soil was
already defrosting, the automatically lifting feature could not be evaluated, and
testing was limited to comparing dierent speed setup congurations using a
constant working depth.
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States where the network predicted more than 34 l/h in fuel rate were declared
unreachable and therefore removed from the possible list of state transitions since
they never occurred during training data collection. Working depth was set to 18
cm for all automatic control modes and maintained and adjusted automatically.
The human reference driver used pulling force control by 50 % and had to
maintain working depth himself for a realistic comparison of state of the art.

Due to computational eort in model evaluation and fuel rate prediction, only the
current theoretical speed and 0.5 km/h faster and slower were compared. The
model features a continuous solution space, but due to restricted computational
performance on the Thinkpad E495 notebook used to calculate state transitions,
the choice was made to limit the action space to maintain a high update rate.
This choice results in the problem that the algorithm takes time to increase and
decrease speed levels at the beginning of each evaluation run, which can be
solved using a faster computer.

The performance target was expected to be similar to full throttle since slippage
could never reach values greater than 60 %. The drop in tractive power
transmission typically found in this range can not be achieved due to too low
tractor power. Parallel rows were driven in the same direction to deliver
comparable results.

Figure 7.2 shows the results of the dierent control modes considering their
performance (𝑣𝑔𝑛𝑠𝑠) and their fuel eciency per area.



(a) Performance
Comparison

(b) Eciency Comparison

Figure 7.2: Comparison of Control Modes

In performance, as expected, the performance control mode always gained higher
speeds than human and eciency control. However, during the rst 30 meters, the
speed was reduced compared to the human because of the low starting speed
and the forced incre mental increase. As previously described, this can be xed
using the continuous solution space of the model or by setting a higher initial
speed either manually or by initializing with the speed setting of the last track.
It is clear to see that the eciency control mode succeeded over the other two

modes. This 64

7.1 Heavy Cultivator

results from the fact, due to lower speed settings, superior total power train
eciency can be achieved by the TMS as it is not being forced to deliver full
performance and therefore able to run the engine at the optimal operating point.



An additional increase in eciency can be expected by tweaking the assumed
constant oset between slope angle and pitch angle or replacing the static oset with
an implement position-based surface angle calculation as described in equation
5.3. Figure 7.3a shows the comparison of the individual fuel rates of the driving
strategies. The lower performance of the reference run can also be explained by
the fact that pulling forces can vary due to diculties during manual working depth
control without exact working depth measurement. Figure 7.3b showcases this
eect. Compared to the human driver, the automatic control system delivered a
more constant working depth. The noise in the measurement data can be traced
back to the snow and the plants on the eld. Furthermore, the measurement noise
is inuenced by the relatively small eld of view of the L515. A wider eld of view
could improve plane detection and reduce noise but is impractical due to limited
mounting space between the tractor and implement.



(a) Fuel Rate Comparison
(b) Automatic Working Depth Control

Figure 7.3: Comparison of Control Modes

Table 7.1 shows the numeric results of the evaluation. Thereby, these results are
due to both the automatic working depth control and speed control. A separate
evaluation was not possible due to limited test capacities.

When comparing the three evaluated settings, the rst 30 m need to be excluded
since the results of the automated control modes in the initial period are aected by
the limitations in computational power and an unsuitable initial speed. This period
is therefore omitted from the comparison to generate more representative results
regarding maximum model capabilities.
Consequently, compared to the reference, the eciency target system improved
fuel eciency by 18.94 %. Under the assumption of a linear eciency disadvantage
caused by the increase of working depth of the implement in the reference
measurement, the latter value drops to 11.68 % but still represents a signicant
improvement.
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Table 7.1: Results

Mean Velocity in km/h Mean Fuel Rate in l/ha

Complete Distance After 30 meters Complete Distance After 30 meters

Reference 6.56 6.74 11.69 11.30 Ecient 4.09 4.20 9.55 9.16 Performant 6.40 7.32
11.38 11.10

In the same way, performance mode achieved an increase in average speed by
8.61 % compared to the human reference drive.



Due to the limited engine power of the tractor and the fact that slippage never
exceeded 60 % during evaluation, performance mode resembles full throttle with
working depth control active.

Cost eciency control modes were run using 1.20 €/l and a hypothetical value of
50 €/l as fuel cost to display the exibility and possibilities of the model. Figure 7.4
visualizes the speed of the vehicle when the control system is adapted to
minimize total operational cost. Due to limited evaluation elds, the driving direction
used to collect the data for this graph was the opposite of the previously described
graphs (Track 2). The same explanation applies to the shorter range of the 50 €/l
curve due to unequal track length at the edge of the eld. However, because the
eld contained a hill in the center, comparability should be ensured.

Figure 7.4: Eect of Fuel Price Increase
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