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a b s t r a c t 

A well-known and thoroughly studied phenomenon in nonlinear wave propagation is that

of modulation instability (MI). MI is usually approached as a perturbation to a pump, and

its analysis is based on preserving only terms which are linear on the perturbation, dis- 

carding those of higher order. In this sense, the linear MI analysis is relevant to the un- 

derstanding of the onset of many other nonlinear phenomena, such as supercontinuum

generation, but it has limitations as it can only be applied to the propagation of the per- 

turbation over short distances.

In this work, we propose approximations to the propagation of a perturbation, con- 

sisting of additive white noise, that go beyond the linear modulation instability analysis,

and show them to be in excellent agreement with numerical simulations and experimental

measurements.

 

 

 

 

 

1. Introduction

Pulse propagation in single-mode lossless nonlinear fibers is modeled by the Nonlinear Schrödinger Equation (NLSE) [1] 

∂A 

∂z 
− i ̂  βA = i ̂  γ A | A | 2 . (1) 

A ( z, T ) is the pulse envelope, z is the direction of propagation and T is the time referred to a co-moving frame with group

velocity v g = β−1 
1 

(i.e., T = t − zβ1 ). Linear dispersion is modeled by the operator ˆ β, while ˆ γ is related to the third-order

susceptibility: 

ˆ β = 

∑ 

k ≥2

i k βk 

k ! 

∂ k 

∂T k 
, ˆ γ = 

∑ 

k ≥0

i k γk 

k ! 

∂ k 

∂T k 
. (2) 

We must note that, for the sake of simplicity, we have omitted the contribution of the stimulated Raman response of the

medium. Furthermore, we have not included any noise source such as spontaneous Raman emission. 

Analytical solutions of Eq. (1) are known in a variety of simplified cases. For instance, solitonic solutions can be found

by means of the inverse-scattering method originally proposed by Zakharov and Shabat [2] (see also, e.g., [3] ), but only
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under some simplifications such as no higher-order dispersion ( βk = 0 for k ≥ 3). An important family of periodic solutions,

known as Akhmediev breathers [4] , has attracted attention in relation to supercontinuum generation and rogue waves [5,6] .

Although Akhmediev breathers were originally found for low-dispersion cases, Eq. (1) has been found to be integrable in

more complex cases (see, for example, [7–11] and references therein). However, the number of exactly integrable variations

of the NLSE is still very limited. 

Although exact solutions of simplified versions of Eq. (1) provide important insight into many features of the propagation

of pulses in nonlinear fibers, they do not provide a precise description in general. For this reason, the NLSE is usually studied

by means of simulations based on efficient algorithms such as split-step Fourier (SSF) [1] or a fourth-order Runge-Kutta in

the interaction picture (RK4IP) [12] . 

In this work, we put forth a perturbation analysis of the Eq. (1) when a continuous-wave (CW) laser pumps the non-

linear fiber. The CW pump is always accompanied by technical and quantum noise and we focus on the noise propagation

along the fiber. Our goal is not to propose an efficient methodology that can substitute numerical simulations of the non-

linear Schrödinger equation, but to introduce approximate expressions that can provide a more intuitive and comprehensive

understanding of the main processes involved in higher-order modulation instability. 

One possibility is to study noise propagation as a perturbation to the CW. The first-order perturbation or linear stabil-

ity analysis is related to the study of the modulation instability (MI) phenomenon [4,5,13–23,23–29] (see also Chapter 5

of Ref. [1] and references therein.) Exact solutions of MI accounting for a full model of the NLSE, including the Raman re-

sponse and the dependence of the nonlinear parameter with frequency, have been developed [30,31] . The particular case

of the propagation of additive noise has been dealt with in the literature (see, e.g., [32,33] ). Note, however, that the wave

propagation analysis of a noisy CW pump in a MI setting has several limitations. The continuous-wave pump is assumed

undepleted and, hence, the results are only valid over short propagation distances. Furthermore, as it is a first-order pertur-

bation analysis, it disregards the ’cascading effect’ of four-wave mixing, in the sense that perturbations to the pump can as

well act as pumps themselves once they have attained enough power. One alternative to incorporate such cascading effect

is to solve the NLSE through Picard’s iterations. Resulting expressions are, nevertheless, not easily tractable and even their

numerical evaluation may turn out to be an expensive computational effort as compared to pure numerical solutions ob-

tained from the usual SSF or RK4IP algorithms. For this reason, we put forth several simplifications that allow an analysis

of higher-order perturbations. The validity of these simplifications is tested through numerical simulation and experimental

measurements. 

We must note that there are alternative approaches which are related to ideas presented in this work. In particular, many

tools have been developed for the statistical analysis of optical wave turbulence (see, e.g., [34–38] ). 

The remaining of this paper is organized as follows. In Section 2 we develop a higher-order perturbation analysis of

the nonlinear Schrödinger equation and motivate the simplifications that allow tractability. We validate our approach with

experimental results and numerical simulations in Section 3 . Finally, we present some conclusions and lines of future work

in Section 4 . 

2. Perturbation analysis

Let us again consider the nonlinear Schrödinger equation. It is useful to normalize the propagation distance as ζ = γ0 P 0 z.

We study the propagation of a small perturbation a ( ζ , T ) to the stationary solution of Eq. (1) , i.e., we consider A (ζ , T ) =√ 

P 0 [ 1 + a (ζ , T ) ] e iζ . Fourier transformation (with respect to time T ) leads to the following coupled differential equations 

i∂ ζ ˜ a (ζ , �) + B (�) ̃  a (ζ , �) + ˜ γ (�) ̃  a (ζ , −�) = −γ (�) ̃  N ( ̃  a (ζ , �)) , (3)

−i∂ ζ ˜ a (ζ , −�) + B (−�) ̃  a (ζ , −�) + ˜ γ (−�) ̃  a (ζ , �) = −γ (−�) ̃  N ( ̃  a (ζ , −�)) , (4)

where ˜ a (ζ , �) is the Fourier transform of a ( ζ , T ), B (�) = 

˜ β(�) + 2 ̃  γ (�) − 1 , 

˜ β(�) = 

1 

γ0 P 0 

M ∑ 

m =2

(−1) m 

m ! 
βm 

�m , ˜ γ (�) = 

1 

γ0 

N ∑ 

n =0

(−1) n 

n ! 
γn �

n , (5)

˜ N ( ̃  a ) = 

˜ a (ζ , �) ∗ ˜ a (ζ , −�) + 

˜ a (ζ , �) ∗
[

˜ a (ζ , �) + 

˜ a (ζ , −�) 
]

+ 

˜ a (ζ , �) ∗ ˜ a (ζ , �) ∗ ˜ a (ζ , −�) . (6)

2.1. Linear stability analysis 

Analysis of modulation instability (MI) proceeds by neglecting the nonlinear terms in Eqs. (3) –(4) . Let us assume that

˜ a (0 , �) is a noisy perturbation such that 〈
˜ a (0 , �) 

〉
= 0 , 

〈
˜ a (0 , μ) ̃  a (0 , ν) 

〉
= sδμ−ν, 

〈
˜ a (0 , μ) ̃  a (0 , ν) 

〉
= 0 , (7)



 

 

 

 

 

 

for some positive constant s . It can be shown that the first-order MI approximation is given by (see [33] ) 〈| ̃  a (ζ , �) | 2 〉 ≈ s · M 

2 (�) + G 

2 
1 (�) + ˜ γ 2 (�) 

4 G 

2 
1 
(�) 

· e 2 G 1 (�) ζ , (8) 

where 

M(�) = 

˜ βe (�) + 2 ̃  γe (�) − 1 , (9) 

	1 (�) = 

√
˜ γ (�) ̃  γ (−�) − M 

2 (�) , (10) 

G 1 (�) = 

{
	1 (�) if 	1 (�) ∈ R , 

0 otherwise, 
(11) 

and 

˜ βe and ˜ γe contain even terms of ˜ β and ˜ γ , respectively. 

Eq. (8) describes how white noise with mean spectral density s is amplified by an MI gain G 1 ( �). Modulation instability

analysis, however, suffers from several shortcomings. Since higher-order nonlinear interactions are neglected, expressions so 

far cannot capture the cascading effect of four-wave mixing. 

2.2. Perturbation ansatz 

Eq. (8) motivates a perturbative approximation to the solution of the form 

˜ a (ζ , �) ≈
∞ ∑ 

n =1

s 
n 
2 
n (�) e iφn (ζ , �) e G n (�) ζ , (12) 

where the following random-phase assumption is satisfied 〈
e iφn (x,μ) e −iφm (y,ν) 

〉
= δn,m 

δ(x − y ) δ(μ − ν) , (13) 

Note that, to a first order, Eq. (12) agrees with Eq. (8) with G 1 given by Eq. (11) and, for G 1 ( �) � = 0, 〈| 
1 (�) | 2 〉 = 

M 

2 (�) + G 

2 
1 (�) + ˜ γ 2 (�) 

4 G 

2 
1 
(�) 

. (14) 

If we also assume that 
n are independent of φm 

for all n, m, 
n is independent of 
m 

for m � = n , and G n is deterministic

and real, the mean squared value of the perturbation must evolve as 〈| ̃  a (ζ , �) | 2 〉 ≈
∞ ∑

n =1

s n 
〈| 
n (�) | 2 〉e 2 G n (�) ζ . (15) 

In order to find expressions for 〈 | 
n ( �)| 2 〉 and G n ( �), we substitute Eq. (12) in Eqs. (3) –(4) and use Eq. (15) . However,

to make calculations tractable and final expressions simpler, we propose several simplifying hypotheses which are detailed

in Appendix A . Although the true extent of their effect can only be comprehended in the context of the detailed calculations

presented in the appendix, some of these simplifications are easy to understand: 

1. We assume that the functions G n ( �) are even. This assumption is motivated by the fact that G 1 ( �) (the MI gain) is even.

2. We also assume that 〈 | 
n ( �)| 2 〉 are even functions. Again, this simplification is motivated by the modulation instability

case: as it can be shown, from Eq. (14) , 〈 | 
1 ( �)| 2 〉 is even.

3. We neglect the interaction of higher-order MI terms: we only keep the interaction of n 〉 1 terms in Eq. (12) with the

modulation instability ( n = 1 ) term.

4. We also neglect three-fold interactions of terms in Eq. (12) .

5. Substitution of Eq. (12) in Eq. (6) leads to a number of convolution integrals. We consider that the weight of the corre-

sponding integrands is maximized when the exponents (G 1 (u ) + G n −1 (u − v )) and G 1 (u ) + G n −1 (v − u )) are maximized.

This approximation is very important to obtain simple expressions for G n , as it is explained in Appendix A .

6. Finally, we repeatedly use Eq. (13) , we use the fact that 
〈
∂ ζ φn (ζ , �) 

〉
= 0 and neglect higher-order moments of ∂ ζ φn ( ζ ,

±�). 

After some lengthy manipulations, we arrive at the following expressions: 

G n (�) = max 
u

G 1 (u ) + G n −1 (u − �) , (16) 

〈| 
n (�) | 2 〉 =
αn −1 ˜ γ 2 (�) ·

[| B (−�) − iG n (�) | 2 + ˜ γ 2 (−�)
]

| ( B (�) + iG n (�) ) ( B (�) − iG n (�) ) − ˜ γ (�) ̃  γ (−�) | 2 . (17)



Fig. 1. G 1 , G 2 and G 3 . The cascading four-wave mixing process is readily observed.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The positive constant α in Eq. (17) is related to the MI gain bandwidth. 

Although Eq. (15) correctly describes the evolution of the perturbation, it is not accurate at ζ = 0 . Indeed, as it can be

readily calculated, 〈| ̃  a (0 , �) | 2 〉 ≈
∞∑

n =1

s n 
〈| 
n (�) | 2 〉. (18)

This equation does not lead to the known value 
〈| ̃  a (0 , �) | 2 〉 = s . Eq. (15) can be made accurate even at ζ = 0 , that is, for

the initial random pertubation, by making a minor correction to Eq. (12) : 〈| ̃  a (ζ , �) | 2 〉 ≈ s + 

∞ ∑ 

n =1

s n 
〈| 
n (�) | 2 〉(e 2 G n (�) ζ − 1 

)
. (19)

2.3. Discussion 

Eq. (16) is a result of the cascading effect of four-wave mixing. Fig. 1 shows an example of G i for i = 1 , 2 , 3 that helps

understand the cascading effect when perturbations attain enough power and themselves act as new pumps. The result-

ing higher-order MI sidebands have already been discussed in the literature. Erkintalo et al. [22] , for example, describe

how an Akhmediev-breather evolves and splits into subpulses using the Darboux transformation and demonstrate a good

agreement with experimental results. While Ref. [22] develops higher-order solutions by iteratively applying the Darboux

transformation, Zakharov et al. [29] present a class of multisolitonic solutions which may be used to describe MI devel-

opment. Kimmoun et al. [39] study a similar higher-order cascading process in surface gravity waves in deep-water and

Armaroli et al. [40] also analyze the second-order sidebands in the case of the Dysthe equation. 

For the sake of simplicity, we have omitted the influence of stimulated Raman scattering. However, simple modifica-

tions to the formulas presented here allow to incorporate in straightforward fashion the molecular Raman response of the

medium. 

It must be noted that the proposed approximation assumes that the CW pump acts as an unlimited source of optical

power. As a matter of fact, Eq. (19) predicts a continuous growth of the perturbation. Since the power of the perturbation

cannot exceed that of the pump at the input end of the optical fiber, the proposed analytical model does not apply to

an arbitrary long propagated distance ζ , a shortcoming also present in the linear modulation instability analysis. However,

first-order MI analysis does not account for higher-order nonlinear interactions, such as the cascading four-wave mixing and,

thus, it fails to give an accurate description of the evolution of the perturbation for even shorter propagation lengths. We

verify this assertion in the next Section. 

3. Experimental and numerical results

In order to test our approach we performed measurements on a 770 m-long, dispersion-stabilized Highly-Nonlinear Fiber

(HNLF) [41] . A CW 30-dBm pump laser at 1590.4 nm was launched at the input end of the fiber. Fig. 2 presents a comparison

between the observed power spectral density (measured with 0.1-nm resolution) and the proposed analytical approxima-

tion. The latter was obtained by using Eqs. (16) , (17) and (19) (adding up to n = 4 ) with γ0 = 8 . 7 W 

−1 Km 

−1 
, γk = 0 for



Fig. 2. First-order (dashed line) and fourth-order (dotted line) analytical approximations vs. experimental results (solid line). A CW 30-dBm pump laser at

1590.4 nm was launched at the input end of the 770-m long dispersion-stabilized HNLF.

Fig. 3. Analytical approximations (dashed lines) vs. simulation results (solid lines). Numerical results correspond to the average of 100 noise realizations.

Results correspond to distances 5 L NL , 6 L NL , 7 L NL , 8 L NL .

 

 

 

 

 

 

 

 

 

k 〉 0, β2 = −3 . 9198 ps 2 /km, β3 = −0 . 1267 ps 3 /km, β4 = 1 . 7594 × 10 −4 ps 4 /km and βk = 0 for k 〉 4. As it is readily observed,

experimental and analytical results are in excellent agreement. Fig. 2 also shows the first-order perturbative solution, that

is, the solution predicted by the classical modulation instability analysis. MI cannot account for much of the detail observed

as it only predicts two gain sidebands. 

In order to further explore the validity of the approximations, we performed computer simulations using the algorithm

in [42] . Fig. 3 shows results for the average of 100 realizations. The distance is normalized to the so-called nonlinear length

L NL = (γ0 P 0 ) 
−1 , where P 0 is the input power, giving a parameter-independent distance metric. It is observed that the ac-

curacy of the approximation decreases with the propagation distance, although reasonable good results are obtained even

after 7 L NL ( ≈ 800 m). 

As it can be seen in the bottom-right panel of Fig. 3 , analytical expressions fail to adequately represent the simulated

behavior at 8 L NL . In particular, a limitation of the analytical model becomes apparent; namely, the analytical spectral density

has a higher power than that from simulations. As discussed, the analytical model assumes an unlimited pump power source



Fig. 4. Total signal power for the analytical approximation (dashed line) vs. simulation (solid line). The crossing at nearly 7 L NL (cf. Fig. 3 ) marks the

maximum propagated distance at which the analytical approximation remains valid.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

that enables continuous growth of the perturbation, as shown in Fig. 4 and in accordance with Eq. (19) . However, since

total power (pump plus perturbation) must remain constant, we can expect the analytical model to be valid as long as

the calculated power of the perturbation remains lower than that of the input pump. As shown in Fig. 4 , this condition is

satisfied up to ∼ 7 L NL , entirely consistent with results in Fig. 3 . 

4. Conclusions

Modulation instability in nonlinear wave propagation is either approached by means of a linear perturbation analysis to

a continuous-wave pump, or by the numerical solution of the Nonlinear Schrödinger equation. While the former approach

gives some insight into the initial stages of propagation, it fails at providing an accurate picture over long propagated dis-

tances; the latter can provide accurate results over longer distances, but hides the underlying physics. 

In this work, we put forth a perturbation analysis that goes beyond the linear modulation instability, offering both a

more precise analytical description and meaningful physical insights that capture higher-order cascading four-wave mixing

effects. We showed this analysis to be accurate by comparing its predictions to actual experimental results. Furthermore, we

successfully validated the approximations made with numerical simulations for propagated distances up to nearly 7 L NL . 

The mathematical derivation presented is complex and involves a number of simplifying assumptions but leads to simple

and tractable formulas. It is a matter of future work to look for a shorter path and less restrictive simplifications. 

In this paper, we do not deal with the nonlinear stage of modulation instability, that is, when the energy of the MI

sidebands is comparable to that of the pump. There is also the question of the effect of the particular statistics of the initial

perturbation on this stage. These problems are a subject of future research. We study the case of an homogeneous, un-

doped, single-core and single-mode optical fiber. A more complex setting can be found in, e.g., dual-core [43] and resonant

[44] optical fibers.

Finally, we believe our results to be of value when tackling the study of the early stages of supercontinuum generation,

and to contribute tools for the better understanding of nonlinear processes such as rogue-wave formation. 
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Appendix A. Mathematical derivation 

In order to find expressions for 〈 | 
n ( �)| 2 〉 and G n ( �), we substitute Eq. (12) in Eqs. (3) –(4) and use Eq. (15) . How-

ever, to make the calculations tractable and the final expressions simpler, we resort to several simplifications which were

summarized in Section 2.2 . 

https://doi.org/10.13039/501100002923


 

 

 

 

 

Assuming that the series can be derived term by term, substitution of Eq. (12) into Eqs. (3) –(4) 

∞ ∑ 

n =1

s 
n 
2 e G n (�) ζ · B ·

[

n (�) e iφn (ζ , �) 


∗
n (−�) e −iφn (ζ , −�) 

]
= −

[
˜ γ (�) ̃  N ( ̃  a (ζ , �) ) 

˜ γ (−�) ̃  N ( ̃  a (ζ , −�) ) 

]
, (A.1) 

where 

B = 

[
B (�) + iG n (�) − ∂ ζ φn (ζ , �) ˜ γ (�) 

˜ γ (−�) B (−�) − iG n (�) + ∂ ζ φn (ζ , −�) 

]
. (A.2) 

In the derivation of Eqs. (A .1) –(A .2) we have made use of the assumption that that the functions G n ( �) are even (simplifying

assumption #1 in Section 2.2 ). 

Using Eqs. (6) and (12) , 

˜ N ( ̃  a (x, μ) ) = 

∞ ∑ 

n =1

s 
n
2

{
n −1 ∑ 

m =1

∫ + ∞ 

−∞ 

2
m 

(u ) 
n −m 

(u − μ) e (G m (u )+ G n −m (u −μ)) x e i (φm (x,u ) −φn −m (x,u −μ)) du 

+ 

∫ + ∞ 

−∞ 


m 

(u )
n −m 

(μ − u ) e (G m (u )+ G n −m (μ−u )) x e i (φm (x,u )+ φn −m (x,μ−u )) du 

+ 

n −m −1 ∑ 

k =1

∫ + ∞ 

−∞ 

∫ + ∞

−∞ 


m 

(u )
k (v ) 
n −m −k (u + v − μ)

× e (G m (u )+ G k (u )+ G n −m −k (u + v −μ)) x e i (φm (x,u )+ φk (x, v ) −φn −m −k (x,u + v −μ)) d ud v
}
. (A.3) 

In order to make these equations tractable, we resort to the approximations 3–5 spelled out in Section 2.2 . First, ap-

proximation #3 implies that we keep only the first term in the sum, that is, m = 1 . Second, aproximation #4 means

that we neglect the terms with double integrals as higher-order perturbations. Finally approximation #5 is, perhaps, the

most relevant: we consider that the weight of the integrands is maximized when the exponents (G 1 (u ) + G n −1 (u − μ)) and

(G 1 (u ) + G n −1 (μ − u )) are maximized. Since we have already assumed that the G n are even, 

max 
u

(G 1 (u ) + G n −1 (u − μ)) = max 
u

(G 1 (u ) + G n −1 (μ − u )) 

= max 
u

(G 1 (u ) + G n −1 (μ + u )) 

= max 
u

(G 1 (u ) + G n −1 (−μ − u )) . (A.4) 

With all these simplifications, we obtain 

˜ N ( ̃  a (x, μ) ) ≈
∞ ∑ 

n =1

s 
n 
2 · e 

max 
u 

(G 1 (u )+ G n −1 (u −μ)) x · { I 1 (x, μ) + I 2 (x, μ) } , (A.5) 

where 

I 1 (ζ , �) = 

∫ + ∞ 

−∞ 

2
1 (u ) 
n −1 (u − �) e i (φ1 (ζ ,u ) −φn −1 (ζ ,u −�)) du, (A.6) 

I 2 (ζ , �) = 

∫ + ∞ 

−∞ 


1 (u )
n −1 (� − u ) e i (φ1 (ζ ,u )+ φn −1 (ζ , �−u )) du. (A.7) 

Using Eqs. (A .4) –(A .7) in Eq. (A.1) , we get 

∞ ∑ 

n =1

s 
n
2 · e G n (�) ζ · B ·

[

n (�) e iφn (ζ , �) 


∗
n (−�) e −iφn (ζ , −�) 

]
= 

∞ ∑ 

n =1

s 
n
2 · e 

max 
u 

(G 1 (u )+ G n −1 (u −�)) ζ ·
[ − ˜ γ (�) ( I 1 (ζ , �) + I 2 (ζ , �) )

− ˜ γ (−�) 
(
I 1 (ζ , −�) + I 2 (ζ , −�) 

)].

This equation leads to 

G n (�) = max 
u

G 1 (u ) + G n −1 (u − �) , (A.8) 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

with G n ( �) an even function, and [

n (�) e iφn (ζ , �) 


∗
n (−�) e −iφn (ζ , −�) 

]
= −B 

−1 

[
˜ γ (�) ( I 1 (ζ , �) + I 2 (ζ , �) )

˜ γ (−�) 
(
I 1 (ζ , −�) + I 2 (ζ , −�) 

)]. (A.9)

What remains is to take the mean squared value of 
n ( �) which can be found from Eq. (A.9) . In the process, a useful

simplification is to assume that 〈 | 
n ( �)| 2 〉 are even functions (as it can be shown, from Eq. (14) , that 〈 | 
1 ( �)| 2 〉 is even).

We also neglect higher-order moments of ∂ ζ φn ( ζ , ±�) and use Eq. (13) (see simplifying assumption #6 in Section 2.2 ). 

From Eq. (A.2) , 

−iJ(�)
n (�) e iφn (ζ , �) = 

(
−B (−�) + iG n (�) + 

∂φn (ζ , �)

∂ζ

)
˜ γ ( �) ( I 1 ( ζ , �) + I 2 (ζ , �) ) 

− ˜ γ (�) ̃  γ (−�) 
(
I 1 (ζ , −�) + I 2 (ζ , −�) 

)
, (A.10)

where J(�) = det ( B ) . Multiplying this expression by its conjugate, 

| J(�) | 2 | 
n (�) | 2 = ˜ γ 2 (�) ·[(
−B (−�) + iG n (�) + 

∂φn (ζ , −�)

∂ζ

)
( I 1 (ζ , �) + I 2 (ζ , �) ) − ˜ γ (−�) 

(
I 1 (ζ , −�) + I 2 (ζ , −�) 

)]
·[(

−B (−�) − iG n (�) + 

∂φn (ζ , −�) 

∂ζ

)(
I 1 (ζ , �) + I 2 (ζ , �) 

)
− ˜ γ (−�) ( I 1 (ζ , −�) + I 2 (ζ , −�) ) 

]
. (A.11)

Eq. (13) and Eqs. (A .5) –(A .7) lead to 〈
I 1 (ζ , �) I 2 (ζ , �) 

〉
= 

〈
I 1 (ζ , �) I 2 (ζ , −�) 

〉
= 0 , (A.12)

〈
I 1 (ζ , �) I 1 (ζ , �) 

〉
= 

〈
I 2 (ζ , �) I 2 (ζ , −�) 

〉
= 0 , (A.13)

〈| I 1 (ζ , �) | 2 〉 = 

∫ + ∞

−∞ 

4 

〈| 
1 (u ) | 2 〉〈| 
n −1 (u − �) | 2 〉du, (A.14)

〈| I 1 (ζ , −�) | 2 〉 = 

∫ + ∞

−∞ 

4 

〈| 
1 (u ) | 2 〉〈| 
n −1 (u + �) | 2 〉du, (A.15)

〈| I 2 (ζ , �) | 2 〉 = 

∫ + ∞ 

−∞ 

〈| 
1 (u ) | 2 〉〈| 
n −1 (� − u ) | 2 〉du, (A.16)

〈| I 2 (ζ , −�) | 2 〉 = 

∫ + ∞ 

−∞ 

〈| 
1 (u ) | 2 〉〈| 
n −1 (−� − u ) | 2 〉du. (A.17)

Using simplification #2 in Section 2.2 (i.e, assume that 〈 | 
n ( �)| 2 〉 are even functions), we may write〈| I 1 (ζ , �) | 2 〉 + 

〈| I 2 (ζ , �) | 2 〉 = 

〈| I 1 (ζ , −�) | 2 〉 + 

〈| I 2 (ζ , −�) | 2 〉 = 5 

∫ + ∞ 

−∞ 

〈| 
1 (u ) | 2 〉〈| 
n −1 (u − �) | 2 〉du. (A.18)

Finally, using approximation #6 in Section 2.2 , 〈| J(�) | 2 | 
n (�) | 2 〉 = ˜ γ 2 (�) ·
[| B (−�) − iG n (�) | 2 + ˜ γ 2 (−�) 

]
· 5 

∫ + ∞ 

−∞ 

〈| 
1 (u ) | 2 〉〈| 
n −1 (u − �) | 2 〉du. (A.19)

Although we may incur in an error, we approximate 〈 | J ( �)| 2 | 
n ( �)| 2 〉 ≈ 〈 | J ( �)| 2 〉 〈 | 
n ( �)| 2 〉 . Using the fact that〈
∂ ζ φn (ζ , �) 

〉
= 0 and neglecting higher-order moments of ∂ ζ φn ( ζ , ±�) (i.e., simplifying assumption #6 in Section 2.2 ),

we obtain 〈| J(�) | 2 〉 = | ( B (�) + iG n (�) ) ( B (�) − iG n (�) ) − ˜ γ (�) ̃  γ (−�) | 2 . (A.20)

Introducing Eq. (A.20) in Eq. (A.19) , 

〈| 
n (�) | 2 〉 ≈
˜ γ 2 (�) ·

[| B (−�) − iG n (�) | 2 + ˜ γ 2 (−�)
]

| ( B (�) + iG n (�) ) ( B (�) − iG n (�) ) − ˜ γ (�) ̃  γ (−�) | 2 · 5

∫ + ∞ 

−∞ 

〈| 
1 (u ) | 2 〉〈| 
n −1 (u − �) | 2 〉du. (A.21)



 

 

 

By the way we defined 
1 (see Eq. (14) ), the integral is actually a definite integral. Since the integrands are nonnegative, by

the mean-value theorem we may write ∫ + ∞ 

−∞ 

〈| 
1 (u ) | 2 〉〈| 
n −1 (u − �) | 2 〉du = 

〈| 
n −1 (c(�)) | 2〉 ∫ + ∞ 

−∞ 

〈| 
1 (u ) | 2 〉du. (A.22)

This equation motivates our last simplification. Let us define 

n = 5 

∫ + ∞ 

−∞ 

〈| 
1 (u ) | 2 〉〈| 
n −1 (u − �) | 2 〉du. (A.23) 

We assume that 

n ≈ αn −1 for n > 1 , 1 = 1 . (A.24) 

Using this approximation, we have 

〈| 
n (�) | 2 〉 ≈ αn −1 ·
˜ γ 2 (�) ·

[| B (−�) − iG n (�) | 2 + ˜ γ 2 (−�)
]

| ( B (�) + iG n (�) ) ( B (�) − iG n (�) ) − ˜ γ (�) ̃  γ (−�) | 2 . (A.25) 

In practice, α may help compensate some of the approximations in the derivation of Eq. (A.25) and needs to be estimated

for each particular scenario. 
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