Wavelets for sleep scoring: A machine learning approach

Eugenia Moris · Cecilia Forcato · Ignacio Larrabide

Laboratorio de Laboratorio de Sueño y Memoria pladema

Motivation

Sleep scoring it a common method used by experts to monitor the quantity and quality of sleep in people, but it is a time-consuming and labour-intense task.

Materials

Sleep-EDF public dataset was used, considering only the Fpz-Cz channel [1].

Data was classified into different sleep stages according to Rechtschaffen and Kales (R&K) sleep manual[2]. REM and Awake stage were not considered.

Train	Validation	Test
14	Leave	6
Subjects	one out	Subjects

Methods -

Discrete Wavelets were used to extract features from each epoch and perform a classification into 3 sleep stages (S1, S2 and S3) [3].

Different discrete Wavelets' families were considered for feature extraction. Due to a strong imbalance between data samples in each sleep stage, Random Under Samplig (RUS) was used for balancing and, posteriorly, Principal Component Analysis (PCA) was used to reduce dimensionality.

Results

per class

Stage 1

Stage 2

Stage 3/4

Accuracy

83,66%

70,79%

85,42%

Fscore

49,05%

72,83%

70,80%

An **accuracy** = **69,94**% and a **Fscore Macro = 64,23%** was obtained.

Fscore for each class 1.0 8.0 0.6 0.4 0.2 0.0 Stage 1 Stage 2 Stage 3 Each point correspont to a subject.

Conclusion

We observed that wavelets are a good choice when identifying different sleep stages.

Automated classification of Stage 1 showed the worst performance, a previously observed in other works [4,5,6]. Improvement of results in Stage 1 is work in progress.

Further, classification including information form the previos epoch is considered, to provide further predictive accuracy to the method.

Acknowledgement -

This work was partially funded by PICT 2016-0116 and by an NVidia hardware grant. EM is funded by a CONICET PhD Scholarship.

References -

- [1] Goldberger A. et al. Circulation, 2000
- [2] Wolpen E. A, Archives of General Psychiatry, 1969
- [3]Motamedi-Fakhr S. et al, Biomedical Signal Procesing and Control, 2014
- [4]Lui Yam et al. Quantitative Imaging in Medicine and Surgery, 2020
- [5]Stretch R. and Zeidler M, Sleep, 2020
- [6]Hassan, A.R. and Bhuitan, M. I. H., Journal of neurosciens methods, 2016

Contacts