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Abstract. The Generalized Nonlinear Schrodinger Equation (GNLSE)
finds several applications, especially in describing pulse propagation in
nonlinear fiber optics. A well-known and thoroughly studied phenomenon
in nonlinear wave propagation is that of modulation instability (MI). MI
is approached as a weak perturbation to a pump and the analysis is based
on preserving those terms linear on the perturbation and disregarding
higher-order terms. In this sense, the linear MI analysis is relevant to
the understanding of the onset of many other nonlinear phenomena, but
its application is limited to the evolution of the perturbation over short
distances. In this work, we propose quasi-analytical approximations to
the propagation of a perturbation consisting of additive white noise that
go beyond the linear modulation instability analysis. Moreover, we show
these approximations to be in excellent agreement with numerical simu-
lations and experimental measurements.

24.1 Introduction

Pulse propagation in single-mode lossless nonlinear fibers is modeled by the
Generalized Nonlinear Schrédinger Equation [1]

z—A—ZﬂA Z"}/A/ R(T")|A(z, T — T')| dr’. (24.1)
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A(z,T) is the pulse envelope, z is the direction of propagation and T is the time
referred to a co-moving frame with group velocity v, = Bt (e, T =1t — 20).
Linear dispersion is modeled by the operator 3, while 4 is related to the third-
order susceptibility:
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Finally, R(T") models instantaneous and molecular Raman responses.

Analytical solutions of Eq. (24.1) are known in a variety of simplified cases.
For example, solitonic solutions can be found by means of the inverse-scattering
method originally proposed by Zakharov and Shabat [2] (see also, e.g., [3]), but
only under some simplifying assumptions such as neglecting higher-order disper-
sion (B = 0 for k > 3). An important family of periodic solutions, known as
Akhmediev breathers [4], has attracted attention in relation to supercontinuum
generation and rogue waves [5,6]. Although Akhmediev breathers were originally
found for low-order dispersion cases, Eq. (24.1) has been found to be integrable
in more complex cases (see, for example, [7-11] and references therein). However,
the number of exactly integrable variations of the GNLSE is still very limited.

Although exact solutions of simplified versions of Eq. (24.1) provide impor-
tant insight on many characteristics of the propagation of pulses in nonlinear
fibers, they cannot give a precise description in general. For this reason, the
GNLSE is usually studied by means of simulations based on efficient algorithms
such as split-step Fourier (SSF) [1] or a fourth-order Runge-Kutta in the inter-
action picture (RK4IP) [12].

In this work, we propose analytical approximations to the solution of
Eq. (24.1) that provide a precise description of pulse propagation for a par-
ticular case of great interest. Our analysis focuses on a continuous-wave (CW)
laser pumping the fiber. This CW pump is always accompanied by technical
and quantum noise. One possibility is to approach noise propagation as a per-
turbation of the CW state. First-order perturbation or linear stability analysis
is related to the study of the modulation instability (MI) phenomenon [4,5,13~
23,23-29] (see also Chapter 5 of Ref. [1] and references therein). Exact solutions
of MI accounting for the complete GNLSE have also been developed [30,31]. The
particular case of the propagation of additive noise has been dealt with in the
literature (see, e.g., [32,33]).

The wave propagation analysis of a noisy CW pump in an MI setting has sev-
eral limitations. The continuous-wave pump is assumed undepleted and, hence,
results are valid for short propagation distances. Furthermore, as it is a first order
perturbation analysis, it disregards the four-wave mixing ‘cascading effect’, in
the sense that perturbations to the pump, in turn, act as pumps themselves as
soon as they attain enough power. One alternative to incorporate such cascading
effect is to solve the GNLSE through Picard’s iterations. Resulting expressions
are, nevertheless, not easily tractable and even evaluating them numerically may
be an expensive computational effort as compared to pure numerical solutions
obtained from the usual SSF or RK4IP algorithms. For this reason, we put



forth several simplifications that allow a simpler analysis of higher-order per-
turbations. The validity of these simplifications is tested through numerical and
experimental studies.

It must be mentioned that there are alternative approaches which are related
to ideas presented in this work. In particular, many tools have been developed
for the statistical analysis of optical wave turbulence (see, e.g., [34-38]).

The remaining of this paper is organized as follows. In Sect. 24.2 we develop
a higher-order perturbation analysis of the GNLSE and motivate the simplifi-
cations that allow tractability. We validate our approach with experiments and
simulations in Sect. 24.3. Finally, conclusions are presented in Sect. 24.4.

24.2 Higher-Order Perturbation

Let us again consider the generalized nonlinear Schrodinger equation. It is useful
to normalize the propagation distance as ¢ = 9 Fpz. We study the propagation
of a small perturbation a(¢,T’) to the stationary solution of Eq. (24.1), i.e., we
consider A(¢,T) = /Py [1+ a(¢,T)] /. Fourier transformation (with respect to
time T') leads to

aa(gérz) — A(R)a(¢, 2) + N(@E(C, 2)), (24.3)

where a(¢,2) = [a(¢, 2), a(¢, —2) T, with a(¢, 2) the Fourier transform of
a(¢,T). The linear and nonlinear terms in the right-hand side are defined by

[ B®) ) <. _ AN @, 2)
A= [—B(—Q) —C(—Q)] , N(a(¢, ) = AN (@ 2)| (24.4)
where B(£2) = 3(12) + 7(2)[1 + R(2)] - 1, C(2) = 3(2)R(%2),
M m N _1\n
~( _ 701130 ZZZ (_ni? ﬁmﬁrn’ ~(Q) _ % go ( 1') nQn7 (24 5)

a(¢, @) [R(2) (a(¢, ) +a(¢. - )| + (24.6)
a(¢, 2) « [R(2) [a(c. 2) al¢, - 2],

and R(£2) is the Fourier transform of R(T). For the sake of simplicity, in this
work we let R(Q) = 1, that is, we neglect stimulated Raman scattering in the
analysis.

Let us focus on the case where a(0, T') is white noise. In particular, we assume

that the mean power spectral density s = (|a(0, 2)]?) is constant and that
(a(0, £21)a(0,$22)) = 0 and (a(0, $21)a(0, 22)) = 0 for 1 # (2. Using these



hypotheses, it is simple to show [32,33] that the solution to Eq. (24.3) when the
nonlinear term is neglected is given by
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where G1(§2) is the MI gain given by

(24.8)

with 6(2) = B(—2) — B(2) and ¢(2) = C(2)C(—N) — B(2)B(—N). Let us
assume that there is gain, i.e., G1(£2) € R, for some (2. Then, we may approxi-
mate

(lao(C, D) ~s + (2D 1) |A4y(2) 2. (24.9)
where )
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Equations (24.9)—(24.10) suggest the perturbative ansatz
a(¢, Q) m oG L N (eGn(mC - 1) A (2)V/smei®n &2 (24.11)
n=1

Substitution of Eq. (24.11) in Eq. (24.3), along with the formal computation of
the mean power spectral density, allows the determination of A,, and G,,. Since
the equations are quite involved, several simplifications must be made. One of
the main simplifying assumptions is that (exp{i(¢n(z,p) — ¢m(y,v))}) = 0 if
either n # m, © # y or u # v. After some tedious computations, it may be
shown that, for n > 2

G (£2) ~ max (G (1) + Groa (2 = )] (24.12)
|An(2)] = AL T(GR(92), 92), (24.13)

where Ay, is a positive constant and

VIB=2) —ig] H)P + [0 f(-2)
[B(2) + ig] [B(—92) — ig] — C(2)C(~12)]

J(g,92) = (24.14)

Although we do not present the details of the calculations due to the lack of
space, some intuition on Eq. (24.12) may be gained by referring to the nonlinear
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Fig.24.1. Normalized gain for different perturbation orders. As the order increases,
the gain captures the cascading effect of four-wave mixing
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Fig. 24.2. Analytical approximation (blue dashed line) vs. experimental results (red
solid line). A CW 30-dBm pump laser at 1590.4 nm was launched at the input end of
the 770-m long dispersion-stabilized HNLF

operator in Eq. (24.6). The sum in Eq. (24.12) arises from the convolutions in
the nonlinear operator. We are able to simplify the corresponding integrals by
assuming that results are dominated by the largest gain and thus we take the
maximum value. Figure 24.1 shows that, as the perturbation order n increases,
G, captures the cascading effect of four-wave mixing. Indeed, G; represents the
well-known MI-gain due to the pump. G,+1 incorporates the gain due to the
perturbations amplified by G,, acting as nth order ‘pumps’.
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Fig. 24.3. Analytical approximation (blue dashed line) versus numerical results (red
solid line) for different propagated distances: ~0.25 km (top left), ~0.50 km (top right),
~0.75 km (bottom left) and ~1 km (bottom right)

24.3 Experimental and Numerical Results

In order to test our approach we performed measurements of MI in a 770 m-
long, dispersion-stabilized [39] Highly-Nonlinear Fiber (HNLF). A CW 30-dBm
pump laser at 1590.4 nm was launched at the input end of the fiber. Figure 24.2
presents a comparison between the observed power (measured with 0.1-nm reso-
lution) and the quasi-analytical approximation. The latter was obtained by using
Eqgs. (24.11)-(24.14) (adding up to n = 8) with 7o = 8.7 W 'Km™*, v, = 0 for
k>0, 3y = —3.9198 ps?/km, B3 = 0.1267 ps®/km, 34 = 1.7594 x 10~* ps* /km
and [ = 0 for &k > 4. As it is readily observed, experimental, and analytical
results are in excellent agreement.

In order to further explore the validity of the approximations, we performed
computer simulations using the split-step Fourier algorithm. Figure 24.3 shows
that the accuracy of the approximation decreases with the propagation distance,
although reasonable good results are obtained even after 1 km. Figure 24.4 shows
how approximations improve as the number of terms in Eq. (24.11) increases.
Comparison to Fig. 24.1 helps to understand that the increasing detail is a con-
sequence of the incorporation of the cascading four-wave mixing effect through
higher-order perturbation gains G,,.
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Fig. 24.4. Analytical approximation when increasing orders of approximation are used,
at a propagation distance ~0.75 km

24.4 Conclusions

A continuous-wave laser pump is always accompanied with technical and quan-
tum noise. Thus, the propagation of a CW pump in a nonlinear optical fiber is
a complex process. Its study is usually based on two different tools: numerical
simulations and first-order linear stability (MI) analysis. While computer simula-
tions are useful, they tend to hide the underlying basic physics. On the contrary,
the modulation instability analysis gives some insights on the initial stages of
propagation but fails at providing an accurate picture for longer propagated
distances.

In this work, we put forth a perturbation analysis that offers both a pre-
cise description and meaningful physical insights. In particular, we showed our
formulas to be accurate by comparing their predictions to actual experimental
results. Furthermore, we validated our approximations with numerical simula-
tions for propagated distances up to 1 km. The perturbation analysis also reveals
the relevance of the cascading effect of four-wave mixing. In simple words, we
might understand how produced MI gain spectra act as a new pumps further
on.

The derivation of our approximation is complex and involves many simpli-
fying assumptions. It is a matter of future work to look for a shorter path and
less restrictive simplifications. It must be noted that, while those simplifications
lead to extremely simple formulas, they may hide some interesting phenomena.
For instance, it may be argued that the cascading effect of four-wave mixing is
implicitly embedded in our choice of keeping only the largest gain in Eq. (24.12),
but such an approximation might neglect relevant details appearing at longer
distances (see Fig. 24.2). Finally, we believe our analysis to be of value when
studying the early stages of supercontinuum generation and to contribute tools
for the better understanding of rogue-wave formation.
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