
EvoSpex: An Evolutionary Algorithm for
Learning Postconditions (artifact)

Facundo Molina∗†, Pablo Ponzio∗†, Nazareno Aguirre∗†, Marcelo Frias†‡
∗Department of Computer Science, FCEFQyN, University of Río Cuarto, Argentina
†National Council for Scientific and Technical Research (CONICET), Argentina

‡Department of Software Engineering, Buenos Aires Institute of Technology, Argentina

Abstract—Having the expected behavior of software specified
in a formal language can greatly improve the automation of
software verification activities, since these need to contrast the
intended behavior with the actual software implementation.
Unfortunately, software many times lacks such specifications, and
thus providing tools and techniques that can assist developers
in the construction of software specifications are relevant in
software engineering. As an aid in this context, we present
EvoSpex, a tool that given a Java method, automatically produces
a specification of the method’s current behavior, in the form of
postcondition assertions. EvoSpex is based on generating software
runs from the implementation (valid runs), making modifications
to the runs to build divergent behaviors (invalid runs), and
executing a genetic algorithm that tries to evolve a specification
to satisfy the valid runs, and leave out the invalid ones. Our tool
supports a rich JML-like assertion language, that can capture
complex specifications, including sophisticated object structural
properties.

INTRODUCTION

Software verification seeks to ensure that the software

implementation meets its corresponding expected behavior. At

the level of source code, the expected behavior can be specified

in a number of ways, e.g., informally as comments that

describe what the software is supposed to do, or formally, as

statements that assert properties that the software must satisfy

at certain program points. While formal program assertions

would be preferred, since these can be exploited more directly

for some automated verification activities, they are seldom

found accompanying source code. Formal program specifica-

tions in the form of contract assertions, such as preconditions,

postconditions and invariants, can be used for a variety of

powerful verification tasks, such as runtime assertion checking,

and property-based test generation. Then, the lack in general

of these assertions calls for tools and techniques that can aid

developers in constructing specifications.

Motivated by the above observations, we developed

EvoSpex, a tool that takes a Java method, and automatically

produces a specification of the method’s current behavior,

in the form of postcondition assertions. While the assertions

capture the actual software behavior rather than the intended

one, the produced specifications have various applications.

For instance, they can be examined as a summary of the

method’s behavior, and if correct, they may be used for

regression analysis on subsequent, improved modifications of

the method. EvoSpex first generates software runs from the

implementation, which are considered valid runs, as well as

import java.util.AbstractList;

public final class AvlTreeList<E> extends AbstractList<E> {

private Node<E> root;

public void add(int index, E val) {
if (index < 0 || index > size())
throw new IndexOutOfBoundsException();

if (size() == Integer.MAX_VALUE)
throw new IllegalStateException("Max size reached");

root = root.insertAt(index, val);
}

private static final class Node<E> {

private E value;
private int height;
private int size;
private Node<E> left;
private Node<E> right;

public Node<E> insertAt(int index, E obj) {
assert 0 <= index && index <= size;
if (this == EMPTY_LEAF)
return new Node<>(obj);

int leftSize = left.size;
if (index <= leftSize)
left = left.insertAt(index, obj);

else
right = right.insertAt(index-leftSize-1, obj);

recalculate();
return balance();

}
}
}

Fig. 1. Add method of class AvlTreeList

divergent behaviors, i.e., invalid runs that do not correspond

to the method’s execution. It then executes a genetic algorithm

that tries to evolve an assertion to satisfy the valid runs, and

leave out the invalid ones. Our tool supports a rich JML-like

assertion language, that can capture complex specifications

involving object navigations, transitive closure and standard

arithmetic and relational operators. It can capture expressive

postconditions, including sophisticated object structural prop-

erties.

HOW TO USE EVOSPEX

To describe how EvoSpex is used, let us consider as illustrat-

ing example a Java implementation of lists over balanced trees,

AvlTreeList, and more specifically, an insertion routine

(add) in this implementation. The implementation is shown in

185

2021 IEEE/ACM 43rd International Conference on Software Engineering: Companion Proceedings (ICSE-Companion)

978-1-6654-1219-3/21/$31.00 ©2021 IEEE
DOI 10.1109/ICSE-Companion52605.2021.00080

20
21

 IE
EE

/A
C

M
 4

3r
d 

In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 S

of
tw

ar
e 

En
gi

ne
er

in
g:

 C
om

pa
ni

on
 P

ro
ce

ed
in

gs
 (I

C
SE

-C
om

pa
ni

on
) |

 9
78

-1
-6

65
4-

12
19

-3
/2

0/
$3

1.
00

 ©
20

21
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
IC

SE
-C

om
pa

ni
on

52
60

5.
20

21
.0

00
80

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 24,2021 at 08:32:32 UTC from IEEE Xplore.  Restrictions apply. 



// root
this.root != null &&
this.root.left != null &&
// height
all n : this.root.*(left+right) : (
n.left != null => n.height > n.left.height &&
n.right != null => n.height > n.right.height

) &&
// size
old_this.root.size < this.root.size &&
this.root.size == #(this.root.*(left+right - null)) - 1 &&
all n : this.root.*(left+right) : (
n.left != null => n.size > n.left.size &&
n.right != null => n.size > n.right.size

) &&
// arguments
index != this.root.size &&
val in this.root.*(left+right).value &&
// structural
all n : this.root.*(left+right) : n !in n.^(left + right)

Fig. 2. Postcondition generated by our tool for AvlTreeList.add(int, E)

Figure 1. As it can be seen, both the data representation and

the method are relatively complex. When applied to method

add, EvoSpex produces a set of postcondition assertions,

that declaratively, and formally, capture the behavior of the

method. In particular for this case, EvoSpex produces the

specification shown in Figure 2. The assertion language is

similar to JML [1], from an expressiveness point of view, as

it features transitive and reflexive-transitive closures. Notice

how the generated postconditions can refer to the receiver’s

attributes (direct and indirect) and method parameters, both at

the “exit” point of the method and the “entry” point (the latter

prepended with old_). Notice how the postcondition captures

the fact that the size is increased, the relationship between

size and the number of nodes in the tree (using reflexive-

transitive closure *), that the inserted element belongs to the

tree after the method is executed, and that the tree structure is

indeed acyclic. We refer the reader to our technical paper [3]

for further details regarding the assertion language.

The EvoSpex tool and the package for reproducing the

experiments in [3] are publicly archived1, and accessible from

a repository2. The tool is entirely developed in Java, and we

provide scripts for facilitating the execution of each step of

our technique, on a variety of case studies. The tool can be

installed and run natively, or via a provided Docker container,

with the experimental data and the configured tool.

Running EvoSpex

EvoSpex receives as input a Java method. The first step

in running the tool is the generation of sets of valid and

invalid method executions, which our tool summarizes as

corresponding sets of pre/post state pairs. As described in

our research paper [3] the valid pre/post state pairs are

generated by a bounded-exhaustive test generation approach

(a bound is provided for the maximum number of allo-

cated objects by each test during the generation); the invalid

1http://doi.org/10.5281/zenodo.4458256
2https://github.com/facumolina/evospex-ae

pre/post state pairs are produced by a mutation mechanism,

that alters the valid pairs. For our AvlTreeList exam-

ple, the valid/invalid state pairs can be generated, from the

$EVOSPEXOG/generate-objects-datastr folder, as fol-

lows:

$ ./generate_objects.sh casestudies.motivation.AvlTreeList 4

Notice how the call to the script receives a bound for bounded-

exhaustive generation (4 in this case), and is done for the

whole class containing the method of interest, add in our

case. That is, the above command will produce the valid and

invalid pre/post state pairs required to enable the execution

of the evolutionary stage of EvoSpex for every AvlTreeList
method.

With the valid and invalid pre/post state pairs ready, the

EvoSpex genetic algorithm can be executed, to generate the

postcondition assertions. For our example, this can be done

from folder $EVOSPEX, with the following command:

$ ./evospex.sh casestudies.motivation.AvlTreeList folder_name

The script receives a folder_name, the folder containing the

valid/invalid state pairs produced in the previous step (details

are in the repository). The output of the algorithm is shown

in standard output, and can be easily redirected to a file.

Reproducing the Experiments
All the experiments in [3] can be reproduced following the

instructions available with our artifact. For convenience, valid

and invalid pre/post state pairs have already been computed,

and are available with the experimental data.
Our evaluation involved measuring the precision of the gen-

erated postconditions, using the OASIs tool [2]. This precision

measuring step is rather manual. The obtained postconditions

have to be manually inserted as assertions at the end of

the corresponding methods (we provide a runtime assertion

checker for our language, that checks for the satisfaction of

our produced assertions in a program point), to run OASIs.

Also, OASIs typically involves a human-in-the-loop process,

where first the false positives have to be identified and removed

through multiple iterations, and then the false negatives, as we

indicate in our artifact’s instructions.

REFERENCES

[1] Patrice Chalin, Joseph R. Kiniry, Gary T. Leavens, and Erik Poll.
Beyond assertions: Advanced specification and verification with JML
and esc/java2. In Frank S. de Boer, Marcello M. Bonsangue, Susanne
Graf, and Willem P. de Roever, editors, Formal Methods for Components
and Objects, 4th International Symposium, FMCO 2005, Amsterdam, The
Netherlands, November 1-4, 2005, Revised Lectures, volume 4111 of
Lecture Notes in Computer Science, pages 342–363. Springer, 2005.

[2] Gunel Jahangirova, David Clark, Mark Harman, and Paolo Tonella. Test
oracle assessment and improvement. In Andreas Zeller and Abhik
Roychoudhury, editors, Proceedings of the 25th International Symposium
on Software Testing and Analysis, ISSTA 2016, Saarbrücken, Germany,
July 18-20, 2016, pages 247–258. ACM, 2016.

[3] Facundo Molina, Pablo Ponzio, Nazareno Aguirre, and Marcelo Frias.
EvoSpex: An evolutionary algorithm for learning postconditions. In
Proceedings of the 43rd ACM/IEEE International Conference on Software
Engineering ICSE 2021, Virtual (originally Madrid, Spain), 23-29 May
2021, 2021.

186

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 24,2021 at 08:32:32 UTC from IEEE Xplore.  Restrictions apply. 


