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Abstract—This work addresses the design and validation of
a time-gap synchronized leader-follower formation scheme for
wheeled mobile multi-robot systems. This scheme generates
reference trajectories for each robot through the estimation via
observer of the delayed behavior of its predecessor. A second
goal of this paper is the precise and efficient tracking of these
references to achieve the desired movement of the chained
formation. Therefore, a robust two-stage controller is proposed,
where the angular velocity of lateral wheels is regulated in a first
stage by a torque controller, with velocity references provided
by a tracking controller that commands the robot’s pose in a
second stage. The outlined theory is validated through successful
results in simulations of multi-body dynamic models, integrating
ADAMS and MATLAB.

Index Terms—Mobile Robots, Robust Control, Leader-follower
Formations, Multi-body Dynamics.

I. INTRODUCTION

Nowadays, mobile robotics is one of most popular research
topics, due to the wide range of possible applications. Partic-
ularly, mobile multi-robot systems have attracted the research
community due to several advantages obtained with syn-
chronized vehicles such as flexible reconfigurability, diverse
functionality, and increased coverage, which are appreciable
in recent developments (see [1]–[3]). Within this context, the
main aim of this paper is focused on presenting a way to
synchronize the movement of a chained wheeled n-robot sys-
tem. Therefore, a Time-gap Leader-follower formation (TLF)
methodology is employed for achieving this synchronization,
where an arbitrary reference trajectory can be built to be
tracked by a leader robot {1}, and the others n−1 are delayed
followers of {1} that use adjustable time-gap separations to
remain at a desired proximity. TLF consists in the inclusion of
a non-linear observer for estimating the delayed behavior of
each robot in the formation, and using it as reference trajecto-
ries for subsequent robot. It differs from other techniques such
as the leader-follower scheme [4], where the pose of each robot
is regulated as a function of the distance between them. TLF
governs the time instead of such distance and consequently
varies the velocity of each vehicle to ensure the desired time-

gap. Potential advantages include better reaction responses
of follower robots over unexpected deviation maneuvers by
leader robots to avoid collisions with detected obstacles.

On the other hand, high precision and robustness are de-
manded in the tracking of reference trajectories generated
by TLF. Therefore, some concepts of robust and non-linear
control are appropriated here to design a two-stage controller
(two control loops in cascade) that governs the behavior
of wheeled non-holonomic mobile robots, by conveniently
dividing velocity regulation and trajectory tracking. Thus, an
angular velocity controller (AVC) is designed in a first stage,
from a simple lumped-parameter model that describes the
dynamics of each lateral wheel. It allows to independently
regulate the rotation of these wheels through a SISO classical
linear control structure that provides the needed input torque
on their gyro axes. Then, a non-linear tracking controller (TC)
is proposed in a second stage, based on Lyapunov redesign, to
ensure robust tracking of reference trajectories and rejection of
side slipping disturbances associated to the kinematic model.
Successful results obtained in realistic simulations validate the
effectiveness of the whole control system.

Regarding the developed realistic simulations, ADAMS was
used because of its capability to generate a detailed simulation
for the behavior of rigid and/or flexible multi-body dynamic
systems (see [5]–[7]). So, a virtual dynamic plant of several
differential mobile robots was built in ADAMS/View to in-
clude the more relevant dynamics that affect these vehicles
in a real world environment. This plant was linked to MAT-
LAB/Simulink in simulation run-time, where the two-stage
controller and TLF were suitably implemented.

The structure of this paper from this point ahead is arranged
such that Section II describes the kinematic and dynamic
model of the mobile robot built on ADAMS. Section III
encompasses the formulation of the robust two-stage tracking
controller. Section IV reveals the TLF methodology for multi-
robot trajectory generation. Section V exhibits the obtained
results in simulations with three and five robots, and finally
Section VI gives some concluding remarks.



II. ROBOT MODELING

A. Kinematic model

An idealized model of a differential-drive wheeled mobile
robot is exhibited in Fig. 1, with a distance L between the
point-contact of their assumed knife edge lateral wheels, and
a rotation axis center located at point c, where the body
reference frame {xb, yb} is defined. Lateral wheels of this
non-holonomic vehicle have radius R, and they are commonly
actuated by a torque applied around their giro axes. The
robot’s center of mass cm is displaced behind point c by
certain unknown distance d, improving the vehicle’s stability
and maneuvering conditions. A rear castor wheel serves as a
support point-contact to balance the weight distribution. When
the robot is in motion, its position with respect to the inertial
frame {χ, γ} is given by {x, y} variables, while its orientation
is provided by angle θ. So, it moves on a planar surface by
generating a trajectory p that depends on the linear velocities
vr = ωrR and vl = ωlR, where ωr and ωl are the angular
velocities of right and left wheels.
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Fig. 1: Kinematics of a two-wheeled non-holonomic mobile robot.
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Fig. 2: Free-body diagram of the mobile robot. Subscripts r and l mean the
vehicle’s right and left sides.

The kinematic model of this system is then:



ẋ
ẏ

θ̇


=



−u1 sin θ
u1 cos θ

u2


 ,

[
u1

u2

]
=

Sω︷ ︸︸ ︷[
R/2 R/2
−R/L R/L

] [
ωl
ωr

]
, (1)

where u1 and u2 correspond to the robot’s linear and angular
velocities at point c, and they are related to the wheels’ angular
velocities by matrix Sω . Then, the control objective is to
regulate u1 and u2, for achieving a robust and efficient tracking
of reference trajectories such as r in Fig. 1.

B. Dynamic model
Although Lagrangian-based dynamic models are commonly

stated for these robots, we considered for simplicity to sep-
arately model the traction dynamics of the actuated lateral
wheels1. Thus, Fig. 2 is considered for the wheels’ traction
dynamics, in which lumped forces and momentum have been
defined at their giro axes and contact-points with the floor
(assuming that the robot moves on a flat surface). So, wr, wl
and wc represent the forces associated to the vehicle’s weight
distribution that act on the wheels’ axes, whose relationship
with the total weight is assumed as 0.8mt = wr

g + wl
g , and

0.2mt = wc
g (see Table I for mt and g). τr and τl are the

applied torques to lateral wheels or control inputs, while fr
and fl depict their exerted friction forces by the reaction with
the road surface, when moving at certain linear velocity vr
and vl. Then, by Newton’s balanced forces and momentum
laws on Fig. 2, a lumped-parameter model is derived as

f{r,l} =
w{r,l}
g

v̇{r,l}, (2)

τ{r,l} = Rf{r,l} +
Jv̇{r,l}

R︸ ︷︷ ︸
Jω̇{r,l}

+Tf{r,l}, (3)

µroll =
f{r,l}

fn{r,l}
, (4)

where {r, l} stands for right wheel or left wheel, J is the mo-
ment of inertia, µroll is the assumed-constant rolling friction
coefficient (J and µroll are supposed equal for both wheels),
fn is the normal force, which is proportional to the angular
acceleration of each wheel, and Tf is the friction torque on
wheels’ giro axes, which is considered as an input disturbance.
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Fig. 3: Frictional torque dynamics for each wheel.

Consequently to the robot’s motion-resistant, Tf appears
due to each wheel’s angular velocity. Therefore, its dynamics
is modeled by the following non-linear expression:

Tf = µ

[
Rn |Fa|+Rp

√
F 2
rxj

+ F 2
ryj

+
Rp
Rb

Tr + Tpre

]
. (5)

1One advantage is that derived equations allow to design a linear control
system in Subec III-A that adequately governs the behavior of both wheels.
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Each term in (5) has its representation in Fig. 3(a), where Fa
and Fr are the joint reaction forces, Tr is the bending moment
in the ~n direction, Rp, Rn, and Rb are the corresponding pin
radius, friction arm, and bending reaction arm. Tpre is a preload
torque and µ depicts the friction coefficient, whose value varies
depending on three friction regimes (static friction, dynamic
friction, and a transition state between both) and the joint’s
linear velocity transitions vs=Rωs and vd=Rωd as Fig. 3(b)
shows, being ωs and ωd the angular velocity transitions.

C. Virtual dynamic model built in ADAMS™software

According to Subsections II-A and II-B, a virtual plant
of mobile robots was built in ADAMS, characterized by the
parameters in Table I. Fig. 4 shows a top view of one virtual
robot in ADAMS/View environment2, which is a multi-body
dynamic system constituted by a chassis, two lateral wheels
and a castor wheel rear mechanism, and they are connected
by revolute joints. Besides, a flat and rigid surface represents
the road, whose reaction contact forces with the vehicle’s
wheels were also modeled by the contact force parameters of
Table I. This virtual model is exported to MATLAB/Simulink
as a MIMO non-linear plant for developing cooperative sim-
ulations, where control systems can be easily programmed
on Simulink’s graphical structure, to command the ADAMS
model through their input and output variables.

Table I: Parameters of the mobile robot.

Physical properties of the mobile robot

Total mass mt 1.245 kg
Radius of lateral wheels R 50 mm
Distance between lateral wheels L 156 mm
Mass moment of inertia of lateral wheels J 52.91 kg · mm2

Offset distance of center of mass d unknown
Gravity g 9.807 m/s2

Parameters to model friction into robot’s joints

Parameters Lateral
wheels

Castor
wheel

Steering of
castor wheel

Static friction coefficient µs 0.15 0.15 0.05
Dynamic friction coefficient µd 0.1 0.1 0.033
Friction arm Rn 12 mm 6.2 mm 2.5 mm
Pin radius Rp 8 mm 3.025 mm 2.5 mm
Bending reaction arm Rb 36 mm 30 mm 3 mm
Stiction transition velocity vs 1 mm/s 1 mm/s 1 mm/s
Dynamic transition velocity vd 1.5vs 1.5vs 1.5vs
Friction torque preload Tpre 0.0 N · mm 0.0 N · mm 0.0 N · mm
Switched effects in friction model

Effect Lateral
wheels

Castor
wheel

Steering of
castor wheel

Reaction force On On On
Preload Off Off Off
Bending moment On On On
Inactive during static Off Off Off
Contact force parameters for the wheels
Impact force parameters

Stiffness 10 N/mm
Force exponent 2.2
Damping 0.2 N · sec/mm
Penetration depth 1× 10−3 mm
Coulomb friction parameters

Static friction coefficient µsf 7.3× 10−2

Dynamic friction coefficient µdf 5.5× 10−2

Stiction transition velocity vsf 2 mm/s
Friction transition velocity vdf 3 mm/s

III. CONTROL SYSTEM FORMULATIONS

Trajectory tracking for each robot in the formation is
achieved through the two-stage control system exhibited in

2This block exhibits that angle θ is unavailable as output, therefore an
extended Kalman filter (EKF) will be used to estimate it.
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Fig. 4: Multi-body dynamic model of the mobile robot.

Fig 5. In the first stage, an angular velocity controller (AVC)
is designed for each lateral wheel, based on the previously
described traction model and certain known information about
uncertainty and disturbing dynamics on it. The second stage
implements a tracking controller (TC) that ensures robust
tracking of reference trajectories in the vehicle. Computed
control actions in TC serve as the input angular velocity
references of AVC, which provides the needed torque to the
lateral wheels’ axes to regulate these desired velocities.
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Fig. 5: Control system for each robot in the formation.

A. Angular velocity controller (AVC) for lateral wheels

From (2) and (3), the traction model for each lateral wheel
is rewritten as

ω̇ =
1(

wR2

g + J
) (τ − Tf ) = κ (τ − Tf ) , (6)

where κ is a constant that accompanies the control input τ ,
and Tf is the non-linear disturbance considered as an unknown
function, but continuous in R and absolutely bounded, |Tf |≤
ρ. Uncertainty on κ suggests that (6) be rewritten with its
known nominal term κ̂ as follows:

ω̇ = κ̂

(
1 +

κ− κ̂
κ̂

)
τ −

ξ︷︸︸︷
κTf . (7)

Remark 1: Observe that it is convenient to redefine the
traction model (7) in the frequency domain as a set of
models G parametrized by a nominal model G0(s), a weight
transfer function Wδ(s) associated to uncertainty features and
multiplied by an uncertainty bound ∆ ∈ C, and the additive
non-linear disturbance ξ at the input. That is,

G = {G0(s) [1 +Wδ(s)∆] , ‖∆‖2 ≤ 1} , (8)
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where the nominal model is defined as G0(s) = κ̂
s , and

Wδ(s) must be designed to cover the uncertainty
(
κ−κ̂
κ̂

)
for

all frequencies, where its ultimate bound is assumed to be in
the ball B∆ = {‖∆‖2 ≤ 1}. The κ parameter has a dynamic
uncertainty on its bound that is unknown at high frequencies,
where angular accelerations and vehicle orientation produce
unmodeled dynamics in µroll and f definitions. This justifies
the selection of the set G for the traction dynamics3.
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Fig. 6: Blocks diagram of control system for AVC stage.

Fig. 6 shows the structure of the AVC stage, where ω∗ is the
angular velocity reference, δω and δn represent the associated
disturbances to measuring error and noise at the output ω,
ξ is the disturbing friction torque at the input τ , and terms
Wδ and We are weighting transfer functions to bound the
model uncertainty distribution and the tracking error energy
for all frequencies (∀w). That said, the following necessary
conditions for robust stability and robust performance must
be satisfied:
• For robust stability, a controller K(s) is capable to stabi-

lize the whole set of models G, if satisfies the following
necessary condition:

‖Wδ(s)T (s)‖∞ = sup
jw
|Wδ(jw)T (jw)| < 1 ∀w, (9)

being T (s) = G0(s)K(s)/[1 +G0(s)K(s)] the comple-
mentary sensitivity function of the closed-loop control
system.

• By defining the performance as the attenuation of tracking
error energy (weighted by We(s)) of certain set of
reference signals r(t), then, the controller K(s) must
satisfy the following necessary condition for nominal
performance:

‖We(s)S(s)‖∞ = sup
jw
|We(jw)S(jw)| < 1 ∀w, (10)

where S(s)=1/[1 +G0(s)K(s)] is the sensitivity func-
tion of the closed-loop control system. It allows to also
define the necessary condition for robust performance as
follows:

sup
jw
{|We(jw)S(jw)|+|Wδ(jw)T (jw)|}<1 ∀w. (11)

Hence, based on previous experience on traction dynamics,
the two weighting function candidates are selected as

Wδ(s) =
s+ 1.27

2.54
and We(s) =

s+ 0.1

1.5s
, (12)

3Uncertainty characterization into frequency domain allows to distinguish a
range inwhich it significantly affects to nominal model. Then, a robust control
can be designed with a specific and efficient bandwidth to compensate it.

where robust stability would be guaranteed with a 50% relative
error of κ̂ parameter, up to 2.12 rad/s, and performance
would be conditioned at least to the robust tracking of step-
references in spite of all kind of bounded disturbances ξ
and δω (‖ξ(s)‖2 < α1 and ‖δω(s)‖2 < α2), until 0.09 rad/s.
Then, controller K(s) was designed by the single-input single-
output (SISO) loop shaping method to satisfy stability and
performance conditions (9), (10), and (11). According to this
method, the following linear controller is proposed:

K(s) =
150

(
s2 + 3s+ 0.3025

)

s (s+ 2)
≈ 150 +

22

s
+

128

s+ 2
, (13)

which shapes the nominal internal loop L(s) = G0(s)K(s)
to be located into the delimited zone between We(s) and
1/Wδ(s) at low and high frequencies as Fig. 7(a) shows.
So, the control system attenuates ξ and δω until approxi-
mately 0.189 rad/s, and its closed-loop bandwidth attenuates
in turn the noise δn at the output. This controller allows that
conditions (9), (10), and (11) be satisfied such as Fig. 7(b)
exhibits, and its integral action ensures zero-velocity-error
in the tracking of any ramp-reference, with an anti-windup
scheme that handles actuator saturation4.

Finally, robustness of AVC was validated by an experimen-
tal nyquist diagram on the open loop control system L, where
a modulus margin value ∆M ≈ 0.81 is found by measuring
the distance between the point [−1, 0] and the nyquist plot as
Fig. 7(c) shows. This parameter allows to quantify stability
margins of AVC on the virtual dynamic model, and its larger
value than 0.5 is enough to say that control system is robust.
This nyquist plot was obtained by using a sufficiently excited
pseudo-random binary signal (PRBS) as the reference ω∗ and
a digital implementation of (13) for AVC. Then, data for error
eω and output ω were collected and used to generate the
frequency-domain representation of L through Fourier analysis
and non-parametric identification methods (see [8], [9]).

B. Tracking controller (TC) for one robot

Consider the following disturbed kinematic model:


ẋ
ẏ

θ̇


 =



− sin θ 0

cos θ 0
0 1



[
u1 + δ1
u2 + δ2

]
. (14)

Remark 2: Note that (14) is the extended model of (1),
where additive disturbances δ1 and δ2 have been included to
involve the slipping effect of lateral wheels when in motion.
Although these disturbances are unknown, they are assumed as
continuous and absolutely bounded functions in R, and their
bounds are perfectly known.

For the tracking problem, a reference trajectory q∗ =
[x∗ y∗ θ∗]

T must be followed by the robot trajectory q =
[x y θ]

T. Then, an ideal reference robot could be imagined
by generating q∗, through the following kinematic model:

4The operation range for the actuators were settled from -15 N·mm to 15
N·mm.
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Fig. 7: Loop shaping method for tuning AVC.



ẋ∗

ẏ∗

θ̇∗


 =



− sin θ∗ 0

cos θ∗ 0
0 1



[
u∗1
u∗2

]
, (15)

where u∗1 and u∗2 are the kinematic control variables of refer-
ence robot, i.e. the desired time-variant values of linear and
angular velocities to generate q∗. Hence, a feedback control
law [u1 u2]

T
= u(q, q∗, u∗1, u

∗
2) could be designed such that

tracking error eq=q∗−q effectively converges to zero, in spite
of slip disturbances in (14). For this reason, a robust controller
based on Lyapunov redesign is proposed here, by taken into
consideration the following assumptions:

Assumption 1: Kinematic variables u∗1 and u∗2, are com-
pletely available and absolutely bounded.

Assumption 2: Reference trajectories are established in such
a way that u∗1 and u∗2 do not go to zero simultaneously until
the robot reaches a desired final pose.

Besides, a tracking error model is necessarily defined as
beq︷ ︸︸ ︷


e1

e2

e3


 =

Se︷ ︸︸ ︷

− sin θ cos θ 0

cos θ sin θ 0
0 0 1




eq︷ ︸︸ ︷

x∗− x
y∗− y
θ∗− θ


, (16)

where eq is conveniently expressed in a frame related with the
body frame {xb, yb} through non-singular matrix Se (which
in this case it is not only a rotation, because the axes
were redefined), for achieving an independent tracking error
dynamics from inertial frame {χ, γ}. Then, the derivative of
(16) with respect to time is computed to obtain the following
differential equations:

ė1 = −e2(u2 + δ2) + u∗1 cos e3 − (u1 + δ1),

ė2 = e1(u2 + δ2)− u∗1 sin e3,

ė3 = u∗2 − (u2 + δ2),

(17)

which are used by Lyapunov redesign as outlined below.
1) Lyapunov redesign: Firstly, a nominal controller based

on Lyapunov theorem is designed such that the tracking errors
vector beq without slip disturbances, asymptotically converges
to the origin. Then, this nominal controller is redesigned by

adding another complementary non-linear term to tackle these
assumed disturbances and consolidate the asymptotic stability
of closed-loop control system. In this way, the following
nominal controller is proposed.

Proposition 1 (Nominal controller design): Given the fol-
lowing tracking error dynamical equations without slip distur-
bances:

ė1 = −e2ū2 + u∗1 cos e3 − ū1,

ė2 = e1ū2 − u∗1 sin e3,

ė3 = u∗2 − ū2,

(18)

then, a nonlinear control law is proposed for (18) as follows:

ū1 = k1e1 + u∗1 cos e3,

ū2 =
k2

k3
sin e3 + u∗2 −

e2u
∗
1

k3
,

(19)

with the arbitrarily chosen gains k1, k2, and k3 as positive
constants to ensure asymptotic stability into the domain D=
{∀ [e1 e2 e3]

T ∈R3 : −π < e3 < π} where the tracking error
trajectories converge to zero.

Proof 1: For the sake of brevity, the proof is not included
here, but it directly follows the steps of [10]. �

Remark 3: Note that the following closed-loop dynamical
system (control law (19) applied to (18)):

ė1 = − e2

k3
(k2 sin e3 − e2u

∗
1 + k3u

∗
2)− k1e1,

ė2 =
e1

k3
(k2 sin e3 − e2u

∗
1 + k3u

∗
2)− u∗1 sin e3,

ė3 = − 1

k3
(k2 sin e3 − e2u

∗
1) ,

(20)

has an infinite set of equilibrium points E = {[e1 e2 e3]
T

=
[0 0 jπ]

T
: j ∈ Z}, and it is easy to see that those with an

odd number in j are unstable. Therefore, according to Prop. 1,
trajectories of tracking error vector beq into any domain such
that (j−2)π < e3 < jπ will converge to the origin (j−1)π,
∀j(odd)∈Z. Unstable points of jπ are named as singular values
of the control system.

Control gains are settled as k1 = 0.23, k2 = 0.83 and
k3 = 12E3, to guarantee a convergence for tracking error
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trajectories as Fig. 8 exhibits. Then, complementary control
law is proposed below to give robustness to the closed-loop
control system.

Proposition 2 (Complementary control law): Given that
the nominal control law [ū1 ū2]

T succeeded in achieving the
asymptotic stability of nominal system (18) in the domain D,
then, a complementary control law is designed as follows:

[
%1

%2

]
=

{
−η sign (λ) , if η ‖λ‖1 ≥ ε,
−η2λ

ε , if η ‖λ‖1 < ε,
(21)

with η ≥ ‖[δ1 δ2]‖∞ and λ = [−e1 − k3 sin e3]
T, so that

the overall continuous control [u1 u2]
T

= [ū1+%1 ū2+%2]
T

achieves robust stabilization of the closed-loop system by
ensuring that all tracking error trajectories in D will be
confined into a small bounded ball that is function of ε (with its
center in the origin) and forced to remain there in the presence
of slip disturbances.

Fig. 8: Behavior of tracking error trajectories around equilibrium points
[0 0 0]T and [0 0 2π]T.

Proof 2: Consider (17) arranged as ė=f(e)+g(e)(u+δ), with
f(e) =

[
u∗1 cos e3 −u∗1 sin e3 u∗2

]T
, u =

[
u1 u2

]T
, g(e) =


−1 −e2

0 e1

0 −1


 , and δ=

[
δ1 δ2

]T
. Then, a Lyapunov candidate

function is selected as V1 = 1
2 (e2

1+e2
2)+k3 (1−cos e3), whose

time derivative along (17) results as follows:

V̇1 = −k1e
2
1 − k2 sin2 e3 + λ

Tδ + λ
T%, (22)

where λT = ∂V1

∂e g(e)=[−e1 − k3 sin e3] and %=[%1 %2]
T is the

control law (21). Given that bounds of δ1 and δ2 are assumed
known, then ‖δ‖∞≤β, with β also known, and V̇1 is bounded
by the following inequality:

V̇1 ≤ λ
Tδ + λ

T% ≤ ‖λ‖1 ‖δ‖∞ + λ
T%. (23)

In order to cancel δ, control law % is proposed as (21)
specifies, with η ≥ β. In consequence, for the case when
η ‖λ‖1≥ε the following expression is obtained:

V̇1 ≤ ‖λ‖1 ‖δ‖∞ − η ‖λ‖1 ≤ (β − η) ‖λ‖1 ≤ 0. (24)

So, β ‖λ‖1 ≤ η ‖λ‖1, and V̇1 remains a negative semi-
definite and uniformly continuous function so that V̇1 → 0 as
t → ∞, and tracking error solutions are forced to the origin

in spite of disturbances. Finally, in the case η ‖λ‖1<ε results
the following inequality:

V̇1 ≤ β ‖λ‖1 −
η2 ‖λ‖21

ε
≤ η ‖λ‖1 −

η2 ‖λ‖21
ε

≤ ε

4
, (25)

where ε/4 is the maximum value of V̇1. Then, from (22) and
(25) is deduced that V̇1 satisfies

V̇1 ≤ −k1e
2
1 − k2 sin2 e3 +

ε

4
≤ −k

∥∥beq
∥∥2

2
+
ε

4
, (26)

with k=min {k1, k2}, which yields

V̇1 ≤

−α(‖beq‖
2
)

︷ ︸︸ ︷
−k (1− φ)

∥∥beq
∥∥2

2
if − kφ

∥∥beq
∥∥2

2
+
ε

4
≤ 0, (27)

with 0 < φ < 1. Hence V̇1 ≤ −α(
∥∥beq

∥∥
2
) for

∥∥beq
∥∥

2
≥√

ε
4kφ = ς(ε). It guarantees an uniform ultimate boundedness

for the closed-loop control system, where the tracking error
solutions e1, e2 and e3 will be forced to remains into the ball
Bς =

{∥∥beq
∥∥

2
≤ ς
}

in spite of δ1 and δ2, and ultimate bound
ς will be as small as ε be reduced. �

Control law [%1 %2]
T is a continuous approximation of the

discontinuous function sign(·), which avoids some problems
such as chattering phenomenon and fluctuations in the control
response due to switching imperfections that discontinuous
ones cause in practical applications. Additionally, as Remark 3
explains, closed-loop dynamics are repetitive each 2π radians
along e3, therefore, robustness of TC holds regardless of
changes of the origin location. On the other hand, given that
the unavailable robot’s orientation θ is used for TC (see Fig. 4),
the EKF is implemented to estimate it based on the robot
position and control inputs. Simulations with virtual multi-
robot dynamic models are presented in Section V, where
implementation of TC uses η = 1.9E−3 and ε = 0.1 for all
robots, showing good performance5.

C. Extended Kalman filtering (EKF)

Given that angle θ can be adequately estimated from other
known variables, such as measured distances x and y, then,
an odometry-based motion model6 is prescribed as

xi︷ ︸︸ ︷

xi
yi
θi


=

f(xi-1,ui)∈R3

︷ ︸︸ ︷

xi−1−u1,i sin θi
yi−1+u1,i cos θi
θi−1+u2,i


,

ui∈R2

︷ ︸︸ ︷[
u1,i

u2,i

]
=

[
s∆c,i+δs,i
θ∆c,i+δθ,i

]
, (28)

and

∆i∈R2

︷ ︸︸ ︷[
s∆c,i
θ∆c,i

]
=

[
s∆r,i + s∆l,i

2

s∆r,i − s∆l,i

L

]T

, (29)

5Effectiveness of two-stage controller can be appreciated in the following
video: https://youtu.be/0EAvl1veC-o.

6Models (28)-(30) are a discrete approximation of the continuous model (1),
in function of the traveled linear distance by both lateral wheels. i=1, 2, . . .
is used in this paper as the discrete variable.
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where δ∆ = [δs,i δθ,i]
T is the gaussian-assumed noise vec-

tor, which disturbs the distance and angle increments vector[
s∆c,i

θ∆c,i

]T
that robot effectuates in the interval (i−1, i),

whose input variables are in function of the linear circular
displacements of right s∆r,i and left s∆l,i wheels. Eventually,
a measurement model at the output is also considered as

yi =

h(yi)∈R
2

︷ ︸︸ ︷[
xi + δx,i
yi + δy,i

]
, (30)

where δx,i and δy,i are also gaussian-assumed noise signals,
that invade to the measured variables xi and yi. These models
are necessarily used to represent the kinematics of the robot,
and to formulate the following estimator EKF.

Proposition 3 (Extended Kalman filter): The optimal esti-
mation of position (x̂i, ŷi) and orientation (θ̂i) for system (28)-
(30), are obtained through the following non-linear observer:

x̂i = f (x̂i−1,ui) + li (yi − ŷi) , (31)

ŷi = h (x̂i) =
[
x̂i ŷi

]T
, (32)

where x̂i = [x̂i ŷi θ̂i]
T is the estimation vector, and li is the

applied Kalman gain to the observer. Then, the observer forces
the estimation error trajectories ẽi =xi−x̂i to converge towards
a small vicinity of zero where it remain ultimately bounded as
t→∞, due to the Kalman gain, which depends on procedure
stated below.

Given that model (28) can be approximated as

xi ≈ Fixi−1 + Gi∆i + GiQi, (33)
yi ≈ Hixi + HiRi, (34)

with the jacobian matrices

Fi =
∂f (x̂i−1,ui)

∂xi−1
, Gi =

∂f (x̂i−1,ui)

∂ui
and Hi =

∂h (ŷi)

∂yi
, (35)

another matrix

Qi =

[
(α1|u1,i|+α2|u2,i|)2

0

0 (α3|u1,i|+α4|u2,i|)2

]
, (36)

where noise energy is bounded within the motion model (33),
and matrix

Ri =

[
σ2
m 0
0 σ2

m

]
, (37)

inwhich variance information of gaussian noise in measured
variables xi and yi are contained. Then, Kalman gain is
determined by the following calculations:

1) Prediction of covariance matrix Σ̄i
7:

Σ̄i = FiΣi−1FT
i + GiQiG

T
i . (38)

2) Innovation covariance matrix Si:

Si = HiΣ̄iH
T
i + Ri. (39)

3) Kalman gain li:

li = Σ̄iH
T
i S−1

i . (40)
7Qi is mapped to the space of Σi by Gi

4) Correction of covariance matrix Σi:

Σi = (I− liHi) Σ̄i. (41)

Proof 3: See [11], [12]. �
Fig. 9 illustrates the implementation of extended Kalman

filter, whose procedure assumes an equal variance σ2
m = 0.2

for noise in measured variables {xi, yi} and an established
boundedness by α1 = 2E−3, α2 = 1E−2, α3 = 1E−2 and
α4 =1E−3 for noise at inputs {u1,i, u2,i}.

+

+

+

+

Ts��z � 1��2  z � 1
Integrator

f(x̂i-1,ui)

∏

∆i
+

+

Sample time: Ts = 0.005 sec

R

1/z

λ1 = [0  0  1]
λ2 = [ 1 0 0

0 1 0
]

1/z 1/z
λ1

λ
2

Fi

Gi

Qi

Hi

Ri

li

u1,i

u2,i

yi

δnr
δnl

]]

ωr
ωl
]] s∆r,i

s∆l,i

]]

ŷi

xiˆ

θî

︸︷︷︸
Noise

Fig. 9: EKF Scheme. Angular velocities {ωr, ωl} and location {x, y} are
received as input variables and used for computing the estimation θ̂.

IV. TIME-GAP LEADER-FOLLOWER FORMATION (TLF)

Given that our main aim is to built a set of leader-follower
reference trajectories based on time-gap synchronization for a
n-robot system (see Fig. 10), then, a methodology is proposed
so that a leader robot {1} will command the navigation
mission by tracking a desired reference r, while the rest of
each involved follower robot {m} (m = {2, 3, . . . , n}) will
track the trajectory p generated by its predecessor {m−1},
with an available time-gap separation.

r

p

t−τ1t−τ2t−τn−1

{1}{3} {2}y
n−1

x
n−1

θ
n−1

{n−1}

xn

yn
θn

{n}

x1

y1
θ1

x2

y2
θ2

y3
x3

θ3

Fig. 10: Leader-follower scheme with time-gap separation.
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In this methodology, it is firstly considered an existing
dynamics that governs the delayed behavior of each robot
{g=m−1} as follows:

τg q̇g =



ẋg(t−τg)
ẏg(t−τg)

θ̇g(t−τg)


=

F(τgqg,
τgug)︷ ︸︸ ︷


−u1g(t−τg) sin θg(t−τg)
u1g(t−τg) cos θg(t−τg)

u2g(t−τg)


, (42)

where u1g(t−τg), u2g(t−τg) and θg(t−τg) are the input velocities
and orientation of {g} with a time-delay τg. Responses of
(42) can be perfectly estimated via a non-linear observer and
associated to {m} through their initial conditions, to be pos-
teriorly used as reference trajectories of two-stage controllers.
Then, under the following additional assumption, a non-linear
observer is proposed below in Proposition 4.

Assumption 3: Delayed state τgqg =[xg(t−τg) yg(t−τg) θg(t−
τg)]T, and delayed kinematic input τgug = [u1g(t−τg) u2g(t−
τg)]T of each {g} are available for whichever design purpose.

Proposition 4 (Delayed dynamics observer): According to
model (42), the correct estimation of delayed state τg q̂g =

[x̂g(t−τg) ŷg(t−τg) θ̂g(t−τg)]T of each {g} are obtained through
the following non-linear observer8:

τg ˙̂qg =F(τg q̂g,
τgug) + Γg[τgqg − τg q̂g], (43)

which represents a copy of system (42), but as a function of
the estimated delayed orientation θ̂g(t−τg) and the estimation
error vector τgeqg = (τgqg−τg q̂g). Vector Γg = [b1g b2g b3g]

T

of positive gains forces the trajectories of τgeqg to converge
towards a small vicinity of zero where they remain ultimately
bounded as t→∞ and this vicinity can be reduced as much
as gains vector βg is permissibly increased.

Proof 4: Let be τgexg=xg(t−τg)−x̂g(t−τg), τgeyg=yg(t−τg)−
ŷg(t−τg), and τgeθg=θg(t−τg)−θ̂g(t−τg) the estimation errors
of (43), and they are conveniently expressed at the delayed
body frames {xg(t−τg), yg(t−τg)} as follows:


z1g
z2g
z3g


=



− sin θg(t−τg) cos θg(t−τg) 0

cos θg(t−τg) sin θg(t−τg) 0
0 0 1





τgexg
τgeyg
τgeθg


. (44)

Now, estimation error dynamics of each {g} are obtained
by computing the time derivative of (44), which yields

ż1g =−z2gu2g(t−τg)+u1g(t−τg)[1−cos z3g]−bz1g, (45)
ż2g =z1gu2g(t−τg)−u1g(t−τg) sin z3g−bz2g, (46)
ż3g =−bz3g, (47)

with b1g = b2g = b3g = b> 0. Note that (47) is exponentially
stable, furthermore u1g(t−τg)[1−cos z3g −sin z3g]

T converges
to zero as fast as parameter b is increased, and the problem is
reduced to prove asymptotic stability on

ż1g =−z2gu2g(t−τg)−bz1g, (48)
ż2g =z1gu2g(t−τg)−bz2g. (49)

8State τgqg is obtained here by delaying the signals that EKF provides.

It is easy to see that by selecting V2 = (z1g+z2g)
2
/2 as a

candidate Lyapunov function, its time-derivative V̇2 =−bz2
1g−

bz2
2g results negative definite, which guarantees asymptotic

stability around the unique equilibrium point C = [0 0 0]
T of

(45)-(47), which concludes this proof. �
Programmed observer in {m} ensures the tracking of de-

layed behavior of {g} from its initial pose9, and originated
responses serve as the reference of its two-stage controller as
follows:

x∗m= x̂g(t−τg), y∗m= ŷg(t−τg), θ∗m= θ̂g(t−τg),

u∗1m=

√
˙̂xg(t−τg)2+ ˙̂yg(t−τg)2, and u∗2m=

˙̂
θg(t−τg).

(50)

Finally, a smoothing discrete function ℘ was placed in series
with the observer’s integral action to overcome the effect of
peaking phenomena caused by maximum estimation errors at
initial run-time seconds. So, ℘ yields

℘(iTs)=

{
1
2

(
1−cos π5 iTs

)
if iTs<5 sec,

1 if iTs≥5 sec.
(51)

This TLF uses b1g = b2g = b3g = 3 in the simulations of
Section V, and successful results are exhibited together with
the implementation of the two-stage controller.

V. SIMULATION RESULTS

Two dynamic simulations (integrating ADAMS with MAT-
LAB) are presented here to validate the robustness of the two-
stage controller, and the correct functionality of the proposed
leader-follower formation. In the first simulation a “∞” shape
trajectory is used as reference of robot {1}, which is described
by following expressions:

x∗= 2E3 sin (t/8) + x∗(0), x∗(0) = 2.5E3 mm,
y∗= 2E3 sin (t/4) + y∗(0), y∗(0) = 2.5E3 mm.

(52)

Thus, Fig. 11(a) shows an adequate tracking of this refer-
ence made by three robots that use a leader-follower formula-
tion, with a time-gap of 5 seconds. It is interesting to notice
how they get closer or farther away at different intervals to
regulate this time delay10.

Now, similarly to the first simulation, five robots are com-
manded in a second simulation to track a four-petal flower
shape reference, characterized by the following equations:

x∗=2.5E3 cos (πt/30) sin (πt/60)+x∗(0), x∗(0)=5E3 mm,
y∗=−2E3 cos (πt/30) cos (πt/60)+y∗(0), y∗(0)=4E3 mm.

(53)

Dynamics of all robots in this simulation are shown in
Fig. 11(d), where each vehicle executes an appropriate tracking
of the reference trajectory left by its predecessor, with the
same time-gap of the first simulation. In addition, it is clearly
perceptible that the proposed two-stage controller is effective
according to stability and regulation objectives. Regarding

9Observer integrator must be settled with the initial conditions of involved
follower robot.

10Additionally, several simulations of TLF can be found in the following
video: https://youtu.be/WqMPkJ7GrcY.

8

https://youtu.be/WqMPkJ7GrcY


3000 3500 4000 4500 5000 5500 6000 6500 7000

3000

3500

4000

4500

5000

5500

6000

6500

7000

7500

X distance (mm)

Y 
di

st
an

ce
 (m

m
)

2500 

Reference
Robot 1
Robot 2
Robot 3

Time: 0 sec

Time: 45 sec

Time: 105 sec

(a) Evolution of 3-robot system in first simulation.
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(d) Evolution of 5-robot system in second simulation.
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Fig. 11: Controlled navigation of 3-robot and 5-robot systems.

control system performance, tracking error functionals were
computed as:

Jz=

∫ t

0

[(xz−x∗z)+(yz−y∗z)]dt and Jθz=

∫ t

0

(θz−θ∗z)dt,

z=1, 2, . . . , n,

(54)

for evaluating how good the behavior of each mobile robot is
in the tracking mission. Then, the evolution of Jz and Jθz
are respectively exhibited in Fig. 11(b), Fig. 11(c), Fig. 11(e)
and Fig. 11(f) for both simulations. Under ideal conditions, a
constant value trend is expected for the computed functionals,
however, friction, slip disturbances and other unconsidered
dynamics cause the undesired time-variant and oscillatory
behavior shown after 20 seconds, when tracking error values
are minimum.

VI. CONCLUSIONS

Developed simulations demonstrated that the two-stage con-
troller is robust and effective in the tracking of trajectories for
differential-drive wheeled mobile robot. Control law % in TC
was efficient rejecting disturbances caused by wheels’ slipping
when in motion. The dynamics of these disturbances were
in principle assumed as unknown, and TC allowed to reject
them with only a prior knowledge of their boundedness value
(‖δ‖∞), which results useful with respect to other control
strategies. Additionally, EKF achieved an adequate estimation
of θ, which is indispensable in TC stage, and results indicate
that EKF does not compromise the closed-loop stability. AVC
together with a loop-shaping tuning method guarantee a wide
range of frequencies with robust stability and performance

in the closed-loop system. Simulations validate the correct
tuning of this controller and the appropriate selection of
weighting functions to bound the associated uncertainties and
disturbances to the first stage.

Finally, the synchronized navigation under TLF is an in-
teresting formulation that facilitates the creation of references
for each member in the formation. Moreover, whole control
system is a decentralized strategy, where the motion of any
robot depends only on that of its predecessor. The proposed
system could additionally be augmented with a supervisory
system to prevent inter-robot collisions at the initial run-time
seconds. In a future work, it would be attractive to explore
TLF in other kind of robots such as unmanned aerial vehicles
(UAVs).
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