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Abstract— Identify spike-and-waves patterns in epileptic signals is a typical problem in electroencephalographic
(EEG) signal processing. In this paper we propose cross-correlation coupled with decision tree model as new method
in order to assess and detect spike-and-wave discharges (SWD) in long-term epileptic signals. The proposed approach
is demonstrated in terms of accuracy, sensitivity and specificity classification on real EEG signals using a database
developed with medical annotations.
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Resumen— Identificar patrones de pico-y-onda en señales epilépticas es un problema tı́pico en el procesamiento de
señales electroencefalográficas (EEG). En este trabajo proponemos la correlación-cruzada junto con el modelo de árbol
de decisión como un nuevo método para evaluar y detectar descargas de pico-y-onda (SWD) en señales epilépticas
a largo-plazo. El enfoque propuesto se demuestra en términos de precisión, sensibilidad y especificidad durante la
clasificación en señales de reales EEG, utilizando una base de datos desarrollada con anotaciones médicas.
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I. INTRODUCTION

THE International League Against Epilepsy (ILAE) [1]
defines epileptic seizure as a transient occurrence of signs

and/or symptoms due to abnormal excessive or synchronous
neuronal activity in the brain. Electroencephalography (EEG)
is a non-invasive and widely available biomedical moda-
lity that is used to diagnose epilepsy and plan treatment;
neurologists trained in EEG are able to properly determine
epilepsy diagnose. They visually identify its onset and pre-
sence through the analysis characteristic waveforms, known
as spikes, associated with epileptic seizures, which include:
mode of onset and termination, clinical manifestations, and
abnormal enhanced synchrony [2]. A spike is characterized by
short bursts of high amplitude, synchronized and multi-phasic
activity, in which polarity changes occur several times, which
manifest themselves at or around the epileptic focus and stand
out from the background EEG [3]. A spike-and-wave discharge
(SWD), see Figure 1, is a regular, symmetrical, generalized
EEG pattern seen particularly during absence epilepsy; its
detection is a typical problem in bioengineering and it has
been addressed in various research works such as [4]–[6].

Spike-and-wave detection fits into the broad framework
of decisions support systems analysis: typical features into
relevant information for tasks such as classification, regression,
density estimation, and clustering [7]. In this study we will
focus on a decision tree, it is a hierarchical data structure
implementing the divide-and-conquer strategy. It is an efficient
nonparametric method, which can be used for both classi-
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Fig. 1. Spike-and-wave waveform example from annotated database. x axis
is time and y axis is amplitud in mV.

Fig. 2. Spike-and-waves in one EEG epoch, we can see the waveform
occurrence at second 15 in all channels. x axis is time and y axis is amplitud
in mV.

fication and regression [8]. See [9]–[12] for some works in
epileptic signals.

In this work, we create a database with 96 spike-and-waves
from different EEG raws and we estimate the spike-and-wave



detection in two EEG long-term epileptic signals, see Figure 2.
For this estimation, we compare the waveforms in all channels
of EEG with each spike-and-wave of the database using a
cross-correlation coefficient.

The greater cross-correlation coefficient absolute number,
more similar the waveforms are, so only the ones with the
higher coefficients are spike-and-waves candidates. These are
then ordered in a matrix, such that the similarity with the
waveforms found in the database is greater than 40% of the
total, with at least one-second distance between the candi-
dates. Next, a spike-and-wave classification using k-fold cross-
validation through the decision tree is estimated in terms of
accuracy, sensitivity and specificity values.

The preliminary test suggests that this methodology is
potentially useful for effectively detecting spike-and-wave
discharges in epileptic seizures with an accuracy of 97% with
86% and 98% values on sensibility and specificity respectively.
The remain of this document is structured as follows. Spike-
and-wave is introduced in section II, then the proposed
methodology is explained in Section III, next in Section IV the
decision tree is introduced, in Section V the methodology is
demonstrated on real EEG epileptic signals. Discussions and
conclusions are finally reported in Section VI.

II. SPIKE-AND-WAVE DISCHARGE

The spike-and-wave pattern seen during an absence seizure
is the result of a bilateral synchronous firing of neurons
ranging from the neocortex to the thalamus, along the thala-
mocortical network [13]. Absence Seizures are more common
in children. It causes lapses in awareness, sometimes with
staring and it can be so brief they sometimes are mistaken
for daydreaming and may not be detected for months. Chil-
dren between the ages of three and seven exhibit continuous
spike-and-wave discharges during slow-sleep. This disorder
is found in 0.2%-0.5% of all child epilepsy cases. Spike-
and-wave activity occupies about 85% of the non-rapid eye
movement sleep [14]. This continuous pattern during sleep,
like other aspects of the spike-and-wave activity, are not
completely understood either. However, what is hypothesized
is that corticothalamic neuronal network that is involved in
oscillating sleep patterns may begin to function as a pathologic
discharging source [5]. Since marking the spike-and-wave
seizures in long-term EEG recordings manually is a time
consuming task, especially if one is interested in the number
of occurrences and the duration of each absence seizure, an
automatic absence seizure detection method is highly desired.
A spike-and-wave discharge detection algorithms can be cla-
ssified in the following three categories [4]:

1) Algorithms that use the information extracted from
changes in the amplitude (magnitude) of the EEG signal
when SWD occurs.

2) Detection based on monitoring the energy power in the
frequency bands which SWD occupied.

3) Combination of the first two methods together into
labeling the SWD activities in the EEG recordings. The
threshold, overlapping window technique and band pass
filter are commonly used for enhancing the performance
of the detection algorithm.

III. METHODOLOGY

Let X̂ ∈ RN×M be an EEG raw signal, measured simulta-
neously on N different channels with 256 Hz of sample rate
and ŜW ∈ R1×P a spike-and-wave pattern database gathered
from different EEG signals X̂ , given by

X̂ = [x1, x2, ..., xm, ..., xN ]T with 1 ≤ m ≤ N (1)

ŜW = [sw1, sw2, ..., swp, ..., swP ] with 1 ≤ p ≤ P (2)

where N = 23 and P = 96. The proposed methodology is
composed in four stages.
The first stage is the filtering of X̂ and ŜW using two cascade
Butterworth IIR filters in Z domain with empirical design
based on physicians experience, a 2-order lowpass filter with
cutoff frequency of 100 Hz and 1-order highpass filter with
cutoff frequency of 30 Hz, see eq. 3-4 respectively

Wlp(z) =
b

(1− az−1)2
(3)

Whp(z) =
b(1− z−1)
(1− az−1)

(4)

Let X and SW be the filtered original signals. Then in the
second stage the filtered signal X is splitted into set of non-
overlapping 1 seconds segments using a rectangular sliding
window so that

X(i) = Ω(i)X (5)

Ω(i) =
[
0L×iL, IL×L,0L×N−iL−L

]
(6)

where 0N×M ∈ RN×M is the null matrix, IN×N ∈ RN×N
is the identity matrix and L is the number of measurement
obtained in 1 seconds.
In the third stage, a cross-correlation is used to find the
best match between the two signals X(i) and SW p. Cross-
correlation measures the similarity between SW p and shifted
(lagged) copies of X(i) as a function of the lag. Note that X(i)

is an EEG RN×M matrix and SW p is a R1×P vector which
contains all the spike-and-wave to be analyzed, assuming that
i = p = n then a cross-correlation rX,SW for the displacement
in time of each EEG channel with respect to each spike-and-
wave is given by

rX,SW [τ ] =
1

N

N∑
n=1

X [τ−n]SW [n] (7)

Then waveforms similarity are classified by the local peaks
of the absolute value of rX,SW . Of which, only the peaks
greater than a certain threshold given by eq. 8, are considered
similar enough. Besides, a minimum distance of 1 second is
established between peaks, which means that for this algorithm
there could not be more than one SWD per second.

max
[X,SW ]T

∣∣rX,SW [τ ]

∣∣− σ (rX,SW [τ ]) (8)

where |.| is the absolute value and σ is the standard deviation.
Finally in fourth stage, a spike-and-wave candidates are or-
dered in a C ∈ RN×P matrix, where N = 23 channels
and P = 96 spike-and-waves. Only the candidates which are



similar to at least the 40% of the waveforms found in the
database, are kept.

P ∗ 40% ≤ [C1,1 ≤ C1,2 ≤ ... ≤ Cn,p ≤ ... ≤ CN,P ] ≤ P
(9)

Last two stages are using as a D-dimensional input vector for
decision trees classifier in two regions namely spike-and-wave
and non-spike-and-wave. The proposed methodology can be
summarized by using the next algorithm:

Data: EEG raw
Result: SWD detection
for each SWD do

for each X(i) for each channel do
1. Cross-correlation estimation between each
SWD and X(i), see eq. (7);

2. SWDs candidates selection: based-on the
waveform similarity and the distance between
peaks of 1 second greater than a threshold
given by eq. (8);

3. SWDs: Only the SWDs greater than 40% of
the total of coincidences are chosen, see eq.
(8) and Figure 4;

4. Steps 2. and 3. are using as a D-dimensional
input vector r for decision trees classifier in
two regions namely spike-and-wave and
non-spike-and-wave, see Figure 3;

end
end

Algorithm 1: SWD detection by using cross-correlation
and decision trees.

IV. DECISION TREE

A decision tree is a hierarchical model for supervised
learning whereby the local region is identified in a sequence of
recursive splits in a smaller number of steps. A decision tree
is composed of internal decision nodes and terminal leaves,
see Figure 3. It is defined in a way that there is a single node,
called the root, which has no parents, and all other nodes only
have one parent. When a node receives an input a specific
test, designed for that particular node, is applied to it and
one of the branches is taken depending on the outcome. This
process starts at the root and is repeated recursively until a
leaf node is hit, at which point the leaf’s value constitutes the
output. Each specific test is a simple function which defines a
discriminant in the input space dividing it into smaller regions
that are further subdivided as we take a path from the root
down. In this manner a complex function is broken into a
series of simple decisions by simply writing the tests down as
a tree.

Let C be a matrix of input variables. Training data consist of
inputs vectors or channels from EEG signal X , see section III,
along with the corresponding continuous labels {t1, ..., tN}.
It begins with a single root node, corresponding to the whole
input matrix C, then growing the tree by adding nodes one at
a time with respect to the threshold P ∗40% where the optimal
choice of predictive variable is given by the local average of
C. This is repeated for all possible choices of variable to be
split, i.e. all database values from threshold P ∗ 40% to total

Cross-correlation

Similarity
non

Similarity

non-SWD
(0.4) non

SWD
(0.6) yes

yes

Fig. 3. A decision tree example. Consider the decision problem as to whether
or not to go ahead with a cross-correlation similarity. If we go ahead with
the similarity and meets the threshold (0.6), then we have a spike-and-wave
candidate; on the other hand, if we don’t go ahead with the similarity (0.4)
then the threshold is not met and therefore we don’t have a spike-and-wave
candidate. Note that, this tree has only two regions given by the similarity
threshold for SWD or non-SWD.

P -candidates; and the one that gives the smallest residual sum-
of-squares error is retained.

We now introduce the detection trees in general form using
the methodology from [16]. The goal is to predict a single tar-
get variable t from a D-dimensional vector r = (r1, ..., rD)

T

of input variables related to the cross-correlation in our study.
The training data consists of input vectors {r1, · · · , rN} along
with the corresponding continuous labels {t1, ..., tN}. If the
partitioning of the input space is given, and we minimize the
sum-of-squares error function, then the optimal value of the
predictive variable within any given region is just given by
the average of the values of tn for those data points that
fall in that region, two regions or classes in our case spike-
and-wave or non-spike-and-wave, see Figure 4. To determine
the structure of the decision tree, the first step is start with
a single root node, corresponding to the whole input space,
and then growing the tree by adding nodes one at a time. At
each step there will be some number of candidate regions in
input space that can be split, corresponding to the addition of
a pair of leaf nodes to the existing tree. For each of these,
there is a choice of which of the D input variables to split,
as well as the value of the threshold. For a given choice of
split variable and threshold, the optimal choice of predictive
variable is given by the local average of the data. This is
repeated for all possible choices of the variable to be split, and
the one that gives the smallest residual sum-of-squares error
is retained. The stopping of the addition of nodes, is related
to the number of data points associated with the leaf nodes,
to then prune back the resulting tree. The pruning is based on
a criterion that balances residual error against a measure of
model complexity. For example, if we denote the starting tree
for pruning by T0, then we define T ⊂ T0 to be a subtree of
T0 if it can be obtained by pruning nodes from T0. Suppose
the leaf nodes are indexed by τ = 1, · · · , |T |, with leaf node τ
representing a region Rτ of input space having Nτ datapoints,
and |T | denoting the total number of leaf nodes. The optimal
prediction for region Rτ is then given by

yτ =
1

Nτ

∑
rn∈RT

tn (10)

and the corresponding contribution to the residual sum-of-
squares is given by

Qτ (T ) =
∑

rn∈RT

{tn − yτ}2. (11)



The pruning criterion is then given by

C(T ) =

|T |∑
τ=1

Qτ (T ) + λ|T | (12)

The regularization parameter λ determines the trade-off be-
tween the overall residual sum-of-squares error and the com-
plexity of the model as measured by the number |T | of
leaf nodes, and its value is chosen by cross-validation. For
classification problems, the process of growing and pruning
the tree is similar, except that the sum-of-squares error is
replaced by a more appropriate measure of performance of
the Gini index for a binary classifier, defining pτk to be the
proportion of data points in region Rτ assigned to class k,
where k = 1, · · · ,K, in our case we have two classes spike-
and-wave and non-spike-and-wave, see eq. (13).

Qτ (T ) =
K∑
k=1

pτk(1− pτk). (13)

For a detailed explanation on decision tree, we refer the reader
to [8], [15], [16].

V. RESULTS

We evaluate the performance of the proposed seizure de-
tector in two epochs of 40 and 60 seconds, see Figure 4,
which correspond to sleep long-term epileptic signals record-
ings of one patient at Fundación contra las Enfermedades
Neurológicas Infantiles (FLENI). The recordings have 23
channels and were made in a routine clinical environment,
so non-seizure activity and artifacts such as head/body move-
ment, chewing, blinking, early stages of sleep, and electrode
pops/movement are present in the data.

Fig. 4. Scatter plot example between all 23 channels (x axis) and the total
coincidences (y axis) into database, the line in 40 is the threshold used.

We compare the medical annotate data with our cross-
correlation classifier, and using 10 and 20 empirical K-fold
cross-validation through decision tree to evaluate how our
results can be generalize to an independent data set. We found
an accuracy of 97% in 874 predictors corresponding to all
database candidates from two EEG epochs with 23 channels,
with 86% sensitivity and 98% specificity for spike-and-waves
detection in long-term epileptic signals, see classifier perfor-
mance in ROC Figure 5.

VI. DISCUSSION AND CONCLUSIONS

This paper presented a new method to detect spikes-and-
waves events in EEG signals. The method is based on cross-
correlation coupled with decision trees. The performance was

Fig. 5. Receiver operating characteristic curve (ROC) in 874 predictors

evaluated on real data in two epochs of long-term EEG
signals using a database containing 96 spike-and-wave signals
from different patients. Detection has 97% of accuracy, with
86% of sensitivity and 86% of specificity for spike-and-wave
detection. Preliminary results reported in this work suggest
that the proposed methodology is potentially useful for spike-
and-wave detection in EEG long-term signals in epilepsy.

Perspective for future work includes an extensive evaluation
of the proposed methodology, Implement other regularization
parameter algorithms to improve sensitivity and/or specificity,
as well as performing comparisons with other detection meth-
ods from the state of the art, statistical measures performance,
and spectral, Time-frequency and wavelet analysis.
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