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希望がある所に道もあります1

1”Where there is a wish, there is path.”
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Abstract

Brain Computer Interface (BCI) or Brain Machine Interfaces (BMI), has proved the feasibility

of a distinct non-biological communication channel to transmit information from the Central

Nervous System (CNS) to a computer device. Promising success has been achieved with

invasive BCI, though biocompatibilities issues and the complexity and risks of surgical

procedures are the main drive to enhance current non-invasive technologies.

Electroencephalography (EEG) is the most widespread method to gather information

from the CNS in a non-invasive way. Clinical EEG has traditionally focused on temporal

waveforms, but signal analysis methods which follow this path have been neglected in BCI

research.

This Thesis proposes a method and framework to analyze the waveform, the shape of

the EEG signal, using the histogram of gradient orientations, a fruitful technique from

Computer Vision which is used to characterize image local features. Inspiration comes from

what traditionally electroencephalographers have been doing for almost a century: visually

inspecting raw EEG signal plots.

This technique can be outlined in five steps, (1) signal preprocessing, (2) signal segmen-

tation, (3) transformation on a channel by channel basis of each signal segment into a binary

image of a signal plot, (4) assignment of keypoint locations on positions over the newly

created image depending on the physiological phenomena under study and finally (5) the

calculation of the histogram of gradient orientations using finite differences from the image

around keypoints. This method generates features, normalized 128-dimension descriptors.

These features are used to classify signal segments, hence to analyze the underlying cognitive

phenomena.

The validity of the method is verified by studying three cognitive patterns. First, Visual

Occipital Alpha Waves are analyzed. An experimental protocol is designed and a dataset is

produced using a commercial-grade EEG device. Additionally, the ability of the method

to capture oscillatory processes is verified by analyzing a public dataset. Second, this

methodology is extended to study a related oscillatory process: Motor Imagery Rolandic

Mu rhythms. The performance of the method to discriminate right vs left motor imagery
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against a public dataset of healthy subjects, is verified. Results are reported.

Finally and thirdly, the method is modified to capture transient events, particularly the

P300 Event Related Potential (ERP). A description on how to extract the ERP from the

EEG segment is offered, and a detailed depiction of how to implement a P300-Based BCI

Speller application is outlined. Its performance is verified by processing a public dataset

of Amiotrophic Lateral Sclerosis (ALS) patients and contrasted against an own dataset

produced in-house replicating the same experimental conditions. Results are compared

against other methods referenced in the bibliography

The benefits of the approach presented here are twofold, (1) it has a universal applicability

to BCI because the same basic methodology can be applied to detect different patterns in

EEG signals and (2) it has the potential to foster close collaboration with physicians and

electroencephalograph technicians because this direction of work follows the established

procedure of the clinical EEG community of analyzing waveforms by their shapes.
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Resumen

Las interfaces BCI (Brain Computer Interfaces, interfaces cerebro computadora) o BMI

(Brain Machine Interfaces, interfaces cerebro máquina) han surgido como un nuevo canal de

comunicación entre el cerebro y las computadoras, máquinas o robots, distinto de los canales

biológicos estándar. Se han obtenido resultados prometedores en el empleo de la variante

invasiva de BCI pero, además de los problemas de biocompatibilidad, los procedimientos

quirúrgicos requeridos son complejos y riesgosos. Estas razones, han impulsado las mejoras

de las tecnoloǵıas no invasivas.

La electroencefalograf́ıa (EEG) es el método más difundido para obtener información

del sistema nervioso central de manera no invasiva. La electroencefalograf́ıa cĺınica se

ha enfocado tradicionalmente en el estudio de las formas de ondas temporales, pero los

métodos de procesamiento de señales que exploren esta metodoloǵıa han sido ignorados en

las investigaciones sobre BCI.

Esta tesis propone un método y un marco para analizar las formas de las señales de EEG

utilizando los histogramas de gradientes orientados, una técnica de visión por computadora

que es utilizada para identificar y clasificar caracteŕısticas locales en regiones de una imagen.

Este procedimiento está inspirado en lo que tradicionalmente los técnicos electroencefalógrafos

han realizado por casi un siglo: inspeccionar visualmente los registros electroencefalográficos.

El método propuesto puede resumirse en 5 pasos, (1) preprocesamiento de la señal cruda,

(2) segmentación de la señal, (3) obtención de una gráfica blanco y negro de la señal canal

por canal, (4) asignación de localizaciones dentro de la imagen para posicionar parches

de un determinado tamaño y escala dependiendo del fenómeno cognitivo en estudio, y (5)

cálculo del histograma de los gradientes orientados de la intensidades de los pixeles usando

diferencias finitas. Este mecanismo genera vectores de 128 dimensiones, que se utiliza para

comparar los segmentos de señales entre śı, y que permite entonces analizar el fenómeno

cognitivo subyacente.

La validez del método se verifica estudiando tres patrones cognitivos. Primero se analizan

las ondas alfa de la corteza visual occipital sobre dos conjuntos de registros: uno obtenido

a partir de la aplicación de un protocolo experimental y mediante la utilización de un

xiii



dispositivo electroencefalográfico digital de uso comercial, y otro obtenido de una base de

datos pública de registros electroencefalográficos. Segundo, se analiza otro tipo de onda

oscilatoria conocida como ritmo Mu correspondiente a la corteza motora que puede ser

también activada si el sujeto imagina una actividad motora. Se reporta la efectividad del

método para discriminar entre la actividad de la corteza motora derecha e izquierda en

base al estudio de otro conjunto de registros públicos de pacientes sanos. Los resultados son

reportados y publicados.

Finalmente, el método propuesto se utiliza para estudiar eventos transitorios, parti-

cularmente, el potencial evocado P300. La eficiencia del sistema es verificada mediante

el procesamiento de un conjunto de registros públicos de pacientes con esclerosis lateral

amiotrófica, y corroborada contra un conjunto de registros de sujetos sanos obtenidos de

manera experimental, replicando el mismo protocolo. Para ambos conjuntos de registros, se

realiza una descripción detallada de cómo extraer este potencial de la señal de EEG, y se

implementa un procesador de texto basado en P300 para comparar el desempeño del método

propuesto respecto de otros citados en la bibliograf́ıa.

Los beneficios de esta propuesta se resumen en, (1) tiene una aplicación potencialmente

universal a BCI, debido que el mismo tipo de metodoloǵıa puede ser aplicada para detectar

cualquier tipo de patrón obtenido en la señal de EEG, y (2) ofrece la posibilidad de

incentivar la colaboración y utilización de estas técnicas en la cĺınica médica especializada

en electroencefalograf́ıa ya que esta perspectiva basada en el estudio de las formas de onda

de las señales, es un procedimiento conocido y ya establecido por esa comunidad.
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este trabajo. Le agradezco también por esas enseñanzas que van más allá del Doctorado.
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Notation

• X - a multichannel digital signal X ∈ RC×N , with N being the length of the digitalized

signal in sample points, and C is the number of available channels.

• x(n) - vector column of EEG matrix; vector for a sample point index n in digital time

for every available channel.

• x(n, c) - a multichannel digital signal as a scalar time-series for a particular channel c.

• x(n) - a single-channel digital signal for any channel.

• b·c - Floor operation, rounding of the numeric argument to the closest smaller integer

number.

• d·e - Ceil operation, rounding to the closest bigger integer number.

• b·e - Rounding operation to the closest number, with .5 rounded to the smaller.

• ‖·‖ - Norm of a vector.

• f = {fi}n1 or f = {fi}i∈J - Concatenation of scalar values to form a multidimensional

feature vector f = {f1, f2, ..., fn}.
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Chapter 1

Introduction

The brain is a machine with the sole purpose to respond appropriately to external and

internal events, and to spread its own presence into the environment where it belongs 1.

Hence, the brain needs to communicate and it possesses mainly two natural ways to do it:

hormonal or neuromuscular. When those natural channels are interrupted, they are not

available or when it needs to increase or enhance the communication alternatives, a new

artificial communication channel which is not based on natural pathways, is needed. It is

based, instead, on a new technology feat that decodes the information from the CNS and

transmits it directly to a computer or machine.

Brain Computer Interface, BCI, is a system that measures brainwaves and converts them

into artificial output that replaces, restores, enhances, supplements and improves natural

brain output and changes the ongoing interactions between the Central Nervous System and

its external or internal environment [153]. Brain Machine Interface (BMI) generally refers to

invasive devices. Brain Neural Computer Interfaces (BNCI) may refer to devices that do not

exclusively use information from the CNS, they also may use any kind of biological signal

that can be harnessed with the purpose of volitionally transmit information. In essence,

every kind of BCI system is after all a communication device.

There are five motives behind BCI: the first is the aging of societies: estimated for 2025,

800 millions people will be over 65 years old, and 2/3 of them on developing countries [79].

This may lead to an increased tendency to develop diseases that affect motor pathways

and require some form of assistance from technology. The second reason is the digital

world that calls for more methods of interaction. This digital society [40] demands more

mechanisms to interpret the surrounding world and to translate human intentions through

digital gadgets. Additionally, the advancement of smart wearable devices that can be used

1The sensorimotor Hipothesis [155, 153] and The Extended Mind Thesis [30]

1
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over the skin is also pushing the frontiers to go deeper into the body to find there useful

information. The third motive is the impulse of neuroscience research and the advances

that this discipline is having worldwide. The fourth reason is the potentialities of BCI as a

clinical tool which can help to diagnose diseases, as aid in the field of neurorehabilitation, or

to provide neurofeedback. The fifth, final and most important motive, the reason behind

Brain Computer Interfaces, is the still unfulfilled societal promise of social inclusion of

people with disabilities. It is known that the ability to walk and live independently is a key

indicator of psychological and physical health, and we have to do all we can to provide the

technological tools to achieve this goal [111, 31, 153, 63].

In line with the aforementioned motives, there are several applications currently under

development for BCI. People affected by any kind of neurodegenerative diseases, particularly

those affected by advanced stages of Amyotrophic Lateral Sclerosis (ALS) with locked-

in syndrome may find in BCIs the only remaining alternative to communicate. Other

applications targeted for the general population include alertness monitoring, telepresence,

gaming, education, art, human augmentation [156], biometric identification, virtual reality

avatar, assistive robotics and education. Novel niches where this new communication channel

can be useful are found routinely [90]. In spite of all this hype [47], there is still a long way

ahead. This area advanced rapidly but the complexity of brain signals in all their forms is

still a big problem to tackle.

Electroencephalography (EEG) is the most widespread technique to capture electrical

brain information in a non-invasive and portable way, and it is the most used device in BCI

research and applications. The clinical and historical tactic to analyze EEG signals were based

on detecting visual patterns out of the EEG trace or polygraph [129]: multichannel signals

were extracted and continuously plotted over a piece of paper. Electroencephalographers or

Electroencephalography technician have decoded and detected patterns along the signals by

visually inspecting them [122]. Nowadays clinical EEG still entails a visually interpreted

test [129].

In contrast, automatic processing, or quantitative EEG, was based first on analog elec-

tronic devices and later on computerized digital processing methods [66]. They implemented

mathematically and algorithmically complex procedures to decode the information with

good results [156]. The best materialization of the automatic processing of EEG signals

rests precisely in the BCI discipline, where around 71.2% is based on noninvasive EEG [53].

Hence, the traditional strategy of analyzing the electroencephalography by signal shapes
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on plots, was mainly neglected in BCI research, and the waveform of the EEG was replaced

by procedures that were difficult to link to existing clinical EEG knowledge.

On the other hand, the study of biological visual sensory system provided insights and

models that are very useful to understand brain functions. Additionally, they serve as

inspiration to develop Computer Vision algorithms that intended to reproduce a similar

level of accuracy as those obtained by biological beings, including humans. The Histogram

of Gradient Orientations is one successful method from Computer Vision useful to image

recognition that aims to mimetically reproduce how the visual cortex discriminate shapes.

This thesis tries to unravel the following question: is it possible to analyze and discriminate

electroencephalographic signals by automatic processing the shape of the waveforms using

the Histogram of Gradient Orientations ?

To do that, this work unfolds as follows: Chapter 2 gives details of what is a Brain

Computer Interface and the particularities of the first window of the electric mind: the EEG.

It also covers the state of the art in the methods that explore the waveform automatically.

Chapter 3 provides an overview on the procedure to construct a plot representing the signal.

Chapter 4 is the core of this thesis and describes the Histogram of Gradient Orientations

and how it can be used to process one-dimensional signals. Next, results and experimental

procedures are described to analyze EEG signals and implement BCI paradigms: Alpha

Waves are covered in Chapter 5 and Motor Imagery in Chapter 6. The P300 Wave is studied

in Chapter 7. Future Work and Conclusions are addressed in Chapter 8.

1.1 Significance

This thesis propose

• A procedure to construct analyzable 2D-images based on one-dimensional signals.

• An enhancement over the Histogram of Gradient Orientation technique to allow

non-squared patches and to adapt it to signal plots.

• A mapping procedure to link EEG time-series characteristics to features of 2D-images.

• A feature extraction method for EEG signals that can be used objectively to encode a

representation of the waveform.

• A classification algorithm that use the encoded representation with the purpose of

comparing and identifying waveforms for BCI applications.
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1.2 Summary

• What is this all about? A method to analyze EEG signals based on extracting local

features from their 2D image plot representation.

• What will be found in this thesis? A point of view that emphasizes the importance of

providing mechanisms that help to understand signals based on how they look like on

plots.

• Does it work? It works when the waveform contains the discriminating information. If

a person is able to discriminate the signals, this method would also do that.

• Can it be used? Yes, it can. The developed software is open-source and it can be

used out-of-the-box. It is particular useful when an intelligible automatic classification

procedure is required.



Chapter 2

Interface between the Computer

and the Brain

...the brain is not a passive decoder of

information but a dynamic and

distributed modeler of a reality...

Nicolelis

With Vidal’s work in 1970s, Brain-Computer Interfaces started as a technological

amusement, and it steadely moved toward a mature and highly researched area of work.

Outstanding success has been achieved with invasive BCI, i.e. with surgically implanted elec-

trodes. Success stories have been made public like Braingate’s implants on Jan Scheuermann,

Cathy Hutchinson and Dennis Degray [102]. Other works include the total reproduction

of arm movement [60], the restoration of reaching and grasping movements through a

brain-controlled muscle stimulation device on a person with tetraplegia [2] and the remote

control of a manipulator by a macaque using brainwave information [152]. Notwithstanding,

the downside of invasive techniques are the persistent biocompatibilities issues and the

pervasive complexity and risks of surgical procedures. One noteworthy aspect of this novel

communication channel is the ability to transmit information from the central nervous

system to a computer device and from there use that information to control a wheelchair [24],

as input to a speller application [54], in a virtual reality environment [82] or as aiding tool

in a rehabilitation procedure [71]. Other novel applications include the real-time control of

flight simulators [96] and the implementation of neuroadaptive interfaces where the computer

detects the correctedness of a given command based on brainwave analysis [158]. Overall, the

holly grail of BCI is to implement an alternative pathway to restore lost locomotion [153].

5
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This graphic shows a brief chronology of the main events in BCI history, starting from

the early works on Neurofeedback in the 70s and walking through the different paradigms. In

recent years, this discipline has gained mainstream public awareness with worldwide challenge

competitions like Cybathlon [115, 97] and even been broadcasted during the inauguration

ceremony of the 2014 Soccer World Cup [98]. New developments are approaching the

out-of-the-lab high-bar and they are starting to be used in real world environments [53, 62].

Moreover, BCI research had rampantly been advanced accomplishing a BCI Society, a BCI

Journal, BCI Award, annual conference meetings, practical applications, myriads of startups

companies and even included in the Gartner Hype Cycle [47].

From its root as assistive technology it has now expanded to include several application

niches like temporal induced disability, neuroergonomy, early detection of human error, affec-

tive computing, biometric authentication, teleprescence (improvement of haptic interface),

cyberinfrastructure and assistive robotics [156]. Intensive Care Units (ICU) and Disorders

of Consciousness (DoC) [8] (detection of remaining brain activity in comatose patients) are

recent disciplines where BCI is showing tremendous prospects and possible applications.

Their adoption as a clinical tool is still years ahead. Stroke rehabilitation is the only area

where clinical trials for BCI are being conducted. It is understood that the neurofeedback

provided by a BCI interface improves the prognosis of motor rehabilitation [7].

BCI Definition (circa 2018)

Definition 2.0.1. A system that measures central nervous system activity and converts it

into artificial output that replaces, restores, enhances, supplements, or improves natural

CNS output and thereby changes the ongoing interactions between the CNS and its external

and internal environment [153].

Hybrid or multi-modal BCI, or Brain Neural Computer Interface, are BCI devices that

use not only signals from the CNS, they utilize any kind of available biosignal that can be
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volitionally modulated to transmit information (this is called dependant BCI). When the

pace of the BCI is regulated by external stimulus it is called synchronous and when the user

choose their own pace, it is often called asynchronous or self-paced BCI.

Recent years have seen an incredible advance of passive BCI, pBCI [157]. The original

definition of BCI did not include passive modalities but per definition 2.0.1 it is now part of

this discipline. Passive technologies do not entail necessary the volitional requirement to

transmit information. EEG-based passive BCI has showed significant advances in areas like

workload assessment [118] and drowsiness detection [10], and is a promising area of research

and of eventual commercial applications.

Despite all this, its primary objective, its core motive of moving into real applications

for disabled people has yet to come [22, 70, 4]. They still lack the necessary robustness, and

its performance is well behind any other method of human computer interaction, including

any kind of detection of residual muscular movement [31]. Among current challenges of BCI

[22] one which is still perennial is precisely their inability to be used and applied outside the

BNCI community and specifically in clinical context.

Quoting experts in the field:

”We yet have an impractical and inaccessible exotica for very specific user groups”

(Allison 2010),

”Effectiveness of non-invasive BCI systems remain limited. . . ” (Wolpaw 2011),

”. . . to ponder if BCIs are really promising and helpful, or if they are simple a passing

rod, reinforced by their sci-fi side...” (Lotte 2016).

The feasibility of the system has been proved but there are several challenges in BCI

that need to be tackled. They can be summarized as increasing the speed of the system,

the pervasive low signal-to-noise ratio of brainwaves, particularly of noninvasive signals

[80], the reliability, portability and usability of the system [150], and at the same time

decreasing the biocompatibilities problems, the setup, the training and calibration time

and the subject’s inter/intra variability. The search for practical, relevant, and invariant

features that convey good-enough information about the underlying cognitive process is

still a goal to be achieved [104]. Ethical aspects of BCI [156] must also be considered and

handled: cybersecurity threats and privacy concerns, agency and identity issues that might

be occurring by deleterious plasticity with BCI users and the strict peg to the Primun non

nocere 1 mandate.

1First, do not harm, in reference to the Hippocratic Oath
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Figure 2.1: General components of a BCI system.

2.1 Brain Computer Interface Model and Architecture

The draft architecture of a BCI system can be summarized in Figure 2.1. A volitional

control, a will to transmit information, is exerted by a user. A brain signal acquisition

device captures her/his signals using a measurement modality. This module obtains the

brainwaves and the information is digitalized and transmited to a computer device. Signal

preprocessing is applied to eliminate nuisances and artifacts and to enhance the Signal to

Noise Ratio (SNR), or to apply spatial or frequency filters. In the next step, a feature is

carefully constructed in order to differentiate at least between two different mental states.

Finally a classification step is applied to derive the actual information bit out of the system.

An application system uses this information to affect some external device. By visual or any

other sensory means, the feedback is fed back to the user and a loop is finally closed.

The central point of this system is called the Brain Machine Dilemma [153]. The

underlying idea is that the BCI system adapts to the user’s thinking patterns but, at the

same time, the brain is adapting to what the system is doing, and changing their own signals

in the process. This is the reason why it is often called, a co-adaptive system, where two

different intelligent devices, one biological and the other electronic, try to adapt to each

other.
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Let X be a multichannel digital signal X ∈ RC×N , with N being the length of the

digitalized signal in sample points, and C is the number of available channels. This signal

matrix is

X =



X(1, 1) · · · X(n, 1) · · · X(N, 1)
...

...
...

X(1, c) · · · X(n, c) · · · X(N, c)
...

...
...

X(1, C) · · · X(n,C) · · · X(N,C)


. (2.1)

The column x(n) of this matrix is a vector for a sample point index n in digital time

for every available channel. Additionally, x(n, c) is a row with the multichannel signal as a

scalar time-series for a particular channel c. When the particular channel is not important,

the notation x(n) is used.

The basic model of any BCI is to take this multichannel digital signal x(n), and transform

it to an output control signal y(n) which can be a scalar or binary function. The BCI system

can be modeled as the transformation T , which operates on the equation

y(n) = T [x(n)] . (2.2)

What a BCI system must do, is to take at least a single bit of information out of y(n)

and use that information to derive some action.

2.2 Signal Processing

From this signal processing point of view, BCIs are:

• Causal: y(n) = T [x(m)], where m ≤ n. The action of a BCI system depends on the

history of the captured brainwaves.

• Dynamic: y(n) = T [x(m), ẋ(m), ẍ(m), · · · ]. A BCI system is dynamic, where the

output function does not depend only on the current value being observed, it does

depend on its dynamic interactions.

• Time invariant: y(n) = T [x(n)] ⇒ y(n − p) = T [x(n− p)]. The output of a BCI

system does not depend on the particular time frame where it is being used. However,

adaptive BCI, which adapts to the user behavior, is time variant.
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• Nonlinear: a system is linear when T [a1x(n) + a2x(n)] = a1T [x(n)]+a2T [x(n)]. Due

to brainwave complexity, BCI systems are not linear.

• Multirate or broadband [88]: The energy of brainwave spectrum is not confined to a

certain band, and almost all frequency channels may convey some information.

There are several filters that can be applied to the system to eliminate artifacts, enhance

the signal, and to ease the detection of the discriminative information.

Static filters like square or logartihmic, were traditionally used in analog signal pro-

cessing and are currently already embedded in the measuring device. Wiener and Kallman

filters are usually applied to invasive techniques [58]. The filter, particularly when it is linear,

can be viewed as the matrix M in:

y(n) = MT [x(n)] (2.3)

Spatial filters are carefully adapted to the arrangement of sensors around or within

the head and they emphasize the spatial structure of the information that is being captured.

The head is divided in anatomical regions and electrode locations around the head are

arranged according to neuroanatomical planes or axes (Figure 2.2).

Spectral filters, on the other hand, consider brainwaves as digital signals, and perform

different transformations based on the spectral information contained within the signal x(n).

They can be combined and aggregated creating filter banks to enhance signal quality.

(a) Neuronal Planes (b) Neuroanatomical regions of the brain.

Figure 2.2: Neuronal Planes regularly used in neuroscience research. In BCI they are used
to understand electrode location and spatial filters.
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2.3 The Forward and Inverse Model

Brainwaves are obtained via sensors. Each one of them captures only a part or a version

of the information. However, whatever is actually happening inside the brain is recovered

indirectly from the sensor space. From there, the information can be traced back to the

real landscape where the information source is located, inside the source space. This is a

regular problem found in engineering and it is not different in BCI. Calculating the signal

on each a sensor from a projection of a known source of information from within the head is

called The Forward Problem[103, 153] and doing the opposite, estimating the contributions

of different sources to whatever activity is found on sensors is called The Inverse Problem.

Although the latter is a complex ill-posed problem, it is more relevant in BCI because it

allows to determine source origins that can be mapped more directly to cognitive activities.

Particularly for noninvasive electrophysiological modalities, an additional problem makes

things harder. Due to its electrical properties, the brain acts like conductive gel, and any

signal that is generated inside the brain is irradiated to every direction and it can influence

every sensor regardless of its position. This is called Volume conduction [90, 23] and can be

visualized in Figure 2.3.

2.4 Brain Signals Measuring Techniques

The measuring technique determines the most important taxonomic differentiation in BCI,

according to the methodology that is applied to extract the information from the CNS. All

of them have been used so far for BCI applications.

1. EEG Electroencephalography: it is based on the electrical voltage detected by electrodes

at the scalp. It is explained in detail in Section 2.5.

2. ECoG Electrocorticography: the electrodes are located below the skull and above the

cortex, on the exposed region of the brain. Thus, a craniotomy is required. It offers a

very high temporal resolution, broader bandwidth and much better spatial resolution

than EEG. This modality has allowed very good performance in complex BCI schemes

like speech synthesis from direct neural signals [59].

3. MEG Magnetoencephalography: when active neurons generate electric currents, mi-

nuscule magnetic fields are generated. It is considered complementary to EEG and

ECoG, due to the fact that it is sensitive to the firing of neurons aligned parallel to
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Figure 2.3: A source signal with positive/negative polarity is generated in a very specific
region of the brain but due to volume conduction their influence affects a widespread area of
the scalp where sensors are located (Image of the brain from Swartz Center for Computational
Neuroscience).
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the scalp, which are hard to detect in EEG and ECoG. Although MEG equipment is

bulky and room-size, recent advances [18] are aiming to develop portable and wearable

versions.

4. PET Positron Emission Tomography: this radio nuclear measuring device, use a tracer

molecule like fludeoxyglucose, which emits positrons. Positrons interacts with biological

tissue generating photons in exact opposite directions. The tracer is spread around

the body and the brain, and its concentration is higher in those areas where active

neuron firing is being conducted which requires more glucose [89].

5. fMRI functional Magnetic Resonance Imaging: this noninvasive, non-portable mea-

suring technique, measures the so-called BOLD response: the Blood Oxygen Level-

Dependent contrast. This is based on the principle that firing neurons generate an

imbalance of oxyhemoglobin and deoxyhemoglobin which can be detected on the

magnetic resonator, with a very high spatial accuracy.

6. fNIRS functional Near Infra Red Spectroscopy: it also measures the concentration

changes of oxy/deoxy-hemoglobin using light pulses of near-infrared wavelengths. The

different types of hemoglobin molecules absorb these light frequencies at different rates.

It is an indirect measure of brain activity. It is also portable and wearable. Although

it provides very good spatial localization, temporal localization is hindered by the

hemodynamic response [89].

7. INR Intracortical Neuron Recordings: Electrodes, tetrodes, or Multielectrode Arrays,

MEAs (i.e. Utah Array) [2], can be implanted inside the brain. Often called iEEG,

intracraneal EEG, are designed to detect Local Field Potentials LFPs or even single-unit

recording [23].

ECoG and INR are invasive technologies that require a neurosurgery or craniotomy. The

implantation of electrodes is performed inside the skull for the former, and inside the brain

for the latter. The remaining measuring techniques are external or noninvasive.

2.5 Electroencephalography

Above all, electroencephalography, is the most widespread method to gather information

from the CNS in a non-invasive way. It is of particular interest in BCI mainly because of its

non-invasiveness, its optimal time resolution and acceptable spatial resolution. Moreover,
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it is portable, cheap, wearable and can be more easily integrated into fashionable designs

aimed for real users, which prefer cap-like devices [63].

The electroencephalography consists on the measurement of small variations of electrical

voltage over the scalp. This represents mainly the summed activity of Post-Synaptic

Potentials (PSPs) of pyramidal neurons located perpendicular to the scalp [90]. Only one

percent of synchronized activity of pyramidal neurons are stronger that the remaining

desynchronized neurons [122] and explain ninety-nine percent of the signals obtained from

EEG. This technique is one of the most widespread used methods to capture brain signals

and was initially developed by Hans Berger in 1924 and has been extensively used for decades

to diagnose neural diseases and other medical conditions. Figure 2.4 shows a sample EEG

signal trace obtained with a digital and wearable EEG device.

The first characterization that Dr. Berger detected was the Visual Cortical Alpha Wave,

the Berger Rythm [66]. He understood that the amplitude and shape of this rhythm was

coherently associated to a cognitive action (eyes closing). We should ask ourselves if the

research advancement that came after that discovery would have happened if it weren’t so

evident that the shape alteration was due to a very simple and verifiable cognitive process.

The EEG signal is a highly complex multi-channel time-series. It can be modeled as a

linear stochastic process with great similarities to noise [135]. It is measured in microvolts,

and those slightly variations are contaminated with heavy endogenous artifacts and exogenous

spurious signals.

The device that captures these small variations in current potentials over the scalp is called

the electroencephalograph (Figure 2.6). Electrodes are located in predetermined positions

over the head, usually embedded in saline solutions to facilitate the electrophysiological

interface and are connected to a differential amplifier with a high gain which allows the

measurement of tiny signals. Although initially analog devices were developed and used,

nowadays digital versions connected directly to a computer are pervasive. A detailed

explanation on the particularities and modeling of EEG can be obtained from [64], and

a description of its electrophysiological aspects from [55]. Further details are covered in

Chapter 4.

2.6 EEG Signals

Overall, EEG signals can be described by their phase, amplitude, frequency and waveform.

The following components regularly characterize EEG signals:
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Figure 2.4: Sample EEG signal obtained from (g.Nautilus, g.Tec, Austria). Time axis is
in seconds and five seconds are displayed. The eight channels provided by this device are
shown.

Figure 2.5: International 10-20 system that standardize electrode locations over the scalp.



16

Figure 2.6: Digital and wearable electroencephalographs.

• Artifacts: These are signal sources which are not generated from the CNS, but can be

detected from the EEG signal. They are called endogeneous or physiological when they

are generated from a biological source like ocular movements or from any other muscle,

etc., and exogeneous or non-physiological when they have an external electromagnetic

source like line induced currents or electromagnetic noise [151]. Ambulatory studies or

out-of-the lab studies introduces artifacts that are derived from the person movement,

from any kind of muscular electrical stimulator for rehabilitation treatments or from

other devices in hybrid, or multi-modal BCIs.

• Non-Stationarity: the statistical parameters that describe the EEG as a random

process are not conserved through time, i.e. its mean and variance, and any other

higher-order moments are not time-invariant [66].

• DC drift and trending: in EEG jargon, which is derived from concepts of electrical

amplifiers theory, Direct Current (DC) refers to very low frequency components of

the EEG signal which varies around a common center, usually the zero value. DC

drift means that this center value drifts in time. Although sometimes considered as a

nuisance that needs to get rid of, it is known that very important cognitive phenomena

like slow cortical potentials or slow activity transients in infants do affect the drift and

can be used to understand some particular brain functioning [145, 122].

• Basal EEG activity: the EEG is the compound summation of myriads of electrical

sources from the CNS. These sources generate a baseline EEG which shows continuous

activity with a small or null relation with any concurrent cognitive activity or task.

• Intra-subject and Inter-subject variability: electroencephalographic signals vary from

person to person. Additionally, EEG can be affected by the person’s behavior like
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sleep hygiene, caffeine intake, smoking habit or alcohol intake previously to the signal

measuring procedure [43].

Regarding how the EEG activity can be related to an external stimulus that is affecting

the subject, it can be considered as

• Spontaneous: activity related to basal EEG, arising spontaneously, or self-regulated

by the person.

• Evoked: activity that can be detected synchronously after some specific amount of

time from the onset of the stimulus. This is usually referred as time-locked. In contrast

to the previous one, it is often called induced activity.

Additionally, according to the existence of a repeated rhythm, the EEG activity can be

understood as

• Rhythmic: EEG activity consisting of waves of approximately constant frequency. It

is often abbreviated RA (regular or rythmic activity). They are loosely classified by

their frequencies, and their naming convention was derived from the original naming

used by Hans Berger himself:

– Delta (0-4 Hz)

– Theta (4-8 Hz)

– Alpha Waves (10 Hz)

– Sigma (12-16 Hz)

– Beta (12-30 Hz)

– Gamma (30-100 Hz)

– Omega (60-120 Hz)

– Rho (250 Hz) hippocampal

– Sigma Thalamocortical burst (600 Hz) [45].

The last three are hardly encountered in conventional EEG [145].

• Arrhythmic: EEG activity in which no stable rhythms are present.

• Dysrhythmic: Rhythms and/or patterns of EEG activity that characteristically appear

in patient groups and rarely seen in healthy subjects.
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The number of electrodes and their positions over the scalp determines a spatial structure:

signal elements can be generalized, focal or lateralized, depending on in which channel (i.e.

electrode) they are found.

2.7 BCI EEG Paradigms

BCI Paradigms are referred to noninvasive EEG-based BCI configurations that are used

to transmit volitional information. The popularity of EEG in BCI Research influenced the

adoption of conventional paradigms exclusively for noninvasive BCI. Their chronology can

be found at the beginning of the Chapter. They can be roughly [27] described as:

1. Steady State Evoked Potentials: the basis for this paradigm is that when a subject

attends certain stimulus, the dominant frequency component contained in the stimulus

source can be found in the brain waves. When stimulus sources are light, this is called

SS Visual EP and the signals are prominent in occipital regions. A similar process can

be obtained with auditory stimulus, in which case they are called SS Auditory EPs.

Finally, this can be extended to somatosensory stimulation (i.e. tactile) and it is called

SS Somatosensory EP. By using different stimulus sources with different frequencies,

the one that is selectively attended by a subject can be inferred based on the main

frequency component found on the EEG trace [89].

2. Bereitschaftspotentials, Readiness Potential or Movement-Related (Cortical) Potentials:

these signals are low frequency [0.05, 3] Hz cortical potential that can appear when

a subject is just about to engage in a movement related activity. They are used

in BCI as triggering markers, or to identify movement-related EEG activity for

neurorehabilitation [125].

3. Motor Imagery ERD/ERS: the motor imagery, i.e. the mental visualization of move-

ment without actually performing it, triggers a neurophysiological response which is

very similar to the one obtained when the movement is physically performed. Fre-

quencies on the α range of EEG are desynchronized prior to movement imagery, and

synchronized afterwards. At the same time, β frequencies are resynchronized and

increase in power after motor imagery. A subject can learn to think about moving

a feet or moving a limb, and transfer an information bit from this thinking patterns.

This paradigm requires intensive training from subjects. This is further explained in

Chapter 6.
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4. P300: the positive deflection at 300 ms is activated by a cognitive experiment called

the oddball paradigm and can be used to detect which symbol a subject is paying

attention on a flickering matrix. By exploiting this information, a speller application

can be implemented. This important signal is explained in details in Chapter 7.

5. Mental Tasks: mentally rotating 3D objects, or calculating arithmetic operations are

used to generate signals that can be detected and utilized to transfer an information

bit [126].

6. Slow Cortical Potentials: these are very slow shifts in the electrical activity found in the

cortex, of a very low frequency. They can be modulated by operand conditioning

protocols [153].

7. Error Potentials: when a person recognizes that an error was committed during a task,

a recognizable signal called ErrP can be detected along the EEG trace, time-locked to

the onset when the error information is fed back to the person. This very important

potential is used in BCI applications to enhance the identification of false positives

and to improve the overall interaction between the subject and the computer [35].

8. Visual Spatial Covert Attention: oscillatory activity in the α band of EEG can be

modulated by changes in visual covert attention. Visual covert attention is the ability

to focus attention on objects on the peripheral vision. Humans can voluntarily focus

attention to locations in visual space without moving their eyes. This voluntary control

is reflected in changes on Visual Occipital Alpha Waves [68]. Alpha Waves are further

detailed in Chapter 5.

These paradigms have been exploited in the most popular BCI configurations, the

Wadsworth BCI, the Graz BCI, the Berlin BCI and the Tübingen BCI. These platforms

introduced pragmatic enhancements to use these paradigms to implement more practical

devices [90, 122, 16, 105, 91, 147].

2.8 State of the Art of BCI Algorithms for EEG processing

According to the general layout of a BCI system, Figure 2.1, specific algorithms or techniques

are required for both the feature extraction and classification step. The most relevant features

used nowadays in BCI are:



20

• Time points: the sequence of time series, often, concatenated in time or space.

• Band Power: frequency based features.

• Complexity: based on complexity measurements like entropy, or fractal.

• Statistical: Auto-regressive parameters or covariance matrices.

The most successfull used and verified classification methods for BCI [81] can be described

as linear versions of machine learning tools. Particularly, Support Vector Machines (SVM),

Linear Discriminant Analysis (LDA) and its variant Stepwise Linear Discriminant Analysis

(SWLDA) [76, 121]. SWLDA is relevant for two reasons: the first is that the stepwise

dimension weighting improves the feature selection criteria and it also enhances the spatial

filter that this procedure encompass. The second reason, from a pragmatic perspective,

is that this method is included in the popular BCI2000 [120] package and is the default

option for the identification of event related potentials. Spatial filters are also used and

they show substantial improvements in classification accuracies: the canonical Common

Spatial Patterns CSP [6] for the identification of Motor Imagery as well as the xDAWN [116]

algorithm for P300 identification.

In recent years (circa 2018) classification accuracies in BCI have improved but the focus

was not centered on any particular classification algorithm. Instead, current contributions

concentrate their efforts on how these algoritms are used [80]. Recent works can be described

as:

• Ensemble classifiers: SVM ensembles [108] and variants of random forest [130]. Features

are segmented and divided and the forest performs a classification step on aggregated

parts, maximizing classification accuracies.

• Cross-paradigm BCI: the use of a reinforced signal with ErrP feedback or the use of

SSVEP in combination with P300 detection [80].

• Adaptive classifiers: the parameters of the classifiers are adapted continuously and

online, adapting to the natural variation of the EEG signals [80].

• Transfer learning: transfer the calibration information obtained by users to new

subjects. This aims to ease the issue of the inter-subject variability in BCI, and to

reduce the set-up and calibration times of a BCI system [159].
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• Rienmann geometry classifiers: the EEG stream is directly mapped onto a geometrical

space equipped with a suitable Riemannian metric. Hence, further data manipulation

is carried out following principles of Riemannian geometry which yields very good

results in terms of accuracies [159].

• Tensor-based BCI: the EEG data is viewed as a multidimensional matrix, a tensor.

The BCI operation is considered as an optimization problem that can be solved with

sparsity and nonnegativity constraints [149, 29].

• Deep learning: deep learning is a very successful technique driven by the increased

computational power of current computer devices. Deep learning techniques have also

being applied to BCI applications [138].

2.9 EEG Waveform Analysis

This section describes the depictions that are used to describe EEG signals waveforms and

the automatic procedures that were developed with this purpose.

2.9.1 EEG Waveform Characterization

The shape of the signal, the waveform, can be defined as the graphed line that represents

the signal’s amplitude plotted against time. It can also be called EEG biomarker, EEG

pattern, motifs, signal shape, signal form and a morphological signal [66].

The signal context is crucial for waveform characterization, both in a spatial and in a

temporal domain [66]. Depending on the context, some specific waveform can be considered

as noise while in other cases is precisely the element which has a cognitive functional

implication.

A waveform can have a characteristic shape, a rising or falling phase, a pronounced

plateau or it may be composed of ripples and wiggles. In order to describe them, they are

characterized by its amplitude, the arch, whether they have (non)sinusoidal shape, by the

presence of an oscillation or imitating a sawtooth (e.g. Motor Cortical Beta Oscillations).

The characterization by their sharpness is also common, particularly in Epilepsy, and they

can also be identified by their resemblance to spikes (e.g. Spike-wave discharge).

Other depictions may include, subjective definitions of sharper, arch comb or wicket

shape, rectangular, containing a decay phase or voltage rise, peaks and troughs, short term

voltage change around each extrema in the raw trace. Derived ratios and indexes can be used
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as well, like peak and trough sharpness ratio, symmetry between rise and decay phase and

slope ratio (steepness of the rise period to that of the adjacent decay period). For instance,

wording like ”Central trough is sharper and more negative that the adjacent troughs” are

common in the literature.

Other regular characterizations which are based on shape features may include:

• Attenuation: Also called suppression or depression. Reduction of amplitude of EEG

activity resulting from decreased voltage. When activity is attenuated by stimulation,

it is said to have been ”blocked” or to show ”blocking”.

• Hypersynchrony: Seen as an increase in voltage and regularity of rhythmic activity, or

within the alpha, beta, or theta range. The term suggests an increase in the number

of neural elements contributing to the rhythm and a synchronization of neurons with

similar firing patterns [23].

• Paroxysmal: Activity that emerges from background with a rapid onset, reaching

(usually) quite high voltage and ending with an abrupt return to lower voltage activity.

• Monomorphic: Distinct EEG activity appearing to be composed of one dominant

activity.

• Polymorphic: Distinct EEG activity composed of multiple frequencies that combine to

form a complex waveform.

• Transient/Component: An isolated wave or pattern that is distinctly different from

background activity.

The conventional clinical procedure consists in analyzing the paper strip that is generated

by the plot of the signal obtained from the device. Expert technician and physicians analyze

visually the plots looking for specific patterns that may give a hint of the underlying cognitive

process or pathology. Atlases and guidelines were created in order to help in the recognition

of these complex patterns. Even video-electroencephalography scalp recordings are routinely

used as a diagnostic tools [48]. The clinical EEG research has coined a term for the graphical

depictions of EEG waves: graphoelements, and a whole branch of electrophenomenology has

arisen around them [122].

Sleep research has been studied in this way by performing Polysomnographic recordings

(PSG) [117], where the different sleep stages are evaluated by visually marking waveforms
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or graphoelements in long-running electroencephalographic recordings, looking for patterns

based on standardized guidelines. Visual characterization includes the identification or

classification of certain waveform components, or transient events, based on a subjective

characterization (e.g. positive or negative peak polarity) or the location within the strip. It

is regular to establish an amplitude difference between different waveforms from which a

relation between them is established and a structured index is created (e.g. sleep K-Complex

is well characterized based on rates between positive vs. negative amplitude) [139]. Other

relevant EEG patterns for sleep stage scoring are alpha, theta, and delta waves, sleep spindles,

polysplindles, Vertex Sharp Waves (VSW), and sawtooth waves (REM Sleep).

Moreover, EEG data acquisition is a key procedure during the assessment of patients

with focal epilepsy for potential seizure surgery, where the source of the seizure activity

must be reliably identified. The onset of the epileptic seizure is defined as the first electrical

change seen in the EEG rhythm which can be visually identified from the context and it

is verified against any clinical sign indicating seizure onset. The Interictal Epileptiform

Discharges (IEDs) are visually identified from the paper strip, and they are also named

according to their shape: spike, spike and wave or sharp-wave discharges[21].

2.9.2 EEG Waveform Analysis Algorithms

Shape or waveform analysis methods are considered as nonparametric methods. They explore

signal’s time-domain metrics or even derive more complex indexes or features from it [136].

One of the earliest approach to automatically process EEG data is the Peak Picking

method. Although of limited usability, this procedure has been used to determine latency

of transient events in EEG [67, 160]. Straightforward in its implementation, it consists

in selecting a simple component based on the expected location of its more prominent

deflection [100]. Evoked Potentials (EPs) and Event Related Potentials (ERPs) are transient

component that may arise as a brain response to an external visual, tactile or auditory

stimulus. Auditory EPs are regularly used clinically to assess auditory response in infants.

Particularly, the P300 signal that is used for some BCI Spellers is a prototypical Event

Related Potential. ERPs are characterized by their most prominent peaks, where the name

of many of the EEG features evoke directly a peak within the component, e.g. P300 or

P3a, P3b or N100. This leads to a natural procedure to classify them visually by selecting

appropriate peaks and matching their positions and amplitudes in an orderly manner.

The letter provides the polarity (Positive or Negative) and the numbering shows the time
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referencing the stimulus onset, or the ordinal position of each peak (first, second, etc).

Finally, the trailing letter is added to describe different variants of components that initially

were considered the same.

A related method is used in [5] where the area under the curve of the EEG is sumarized

to derive a feature. This was used in the seminal work of Farwell and Donchin on P300

[42, 153]. Additionally, a logarithmic graph of the peak-to-peak amplitude which is called

amplitude integrated EEG (aEEG) [124] is utilized nowadays in Neonatal Intensive Care

Units (NICU).

Other works explored the idea to extend human capacities analyzing EEG waveforms

[74] where a feature from the amplitude and frequency of its signal and its derivative in

time-domain is used. Moreover, alternative schemes explored the use of Mathematical

Morphology, where the time-domain structure of contractions and dilations are studied [154].

The Merging of Increasing and Decreasing Sequences (MIDS) [161] provides a filter or

heterogeneous downsampling scheme which is based on the waveform structure, similar to

what is provided in Local Binary Patterns (1-D LNBP, 1D-LBP and LBP) algorithms [65].

Finally the proposals of Burch, Fujimori, Uchida and the Period Amplitude Analysis (PAA)

algorithm are few of the earliest algorithms where the idea of capturing the shape of the

signal were established [140]. Three algorithms are explained in detail in the following

section.

2.9.3 Waveform-based Feature Extraction Algorithms

The method presented in this Thesis generates a feature that can be classified. Likewise,

the following methods provide a feature that can be used as a template, whereas all of them

are based on metrics extracted from the shape of the signal. These features can be used to

create dictionaries or template databases. These templates provide the basis for the pattern

matching algorithm and offline classification. The notation f = {fi}n1 or f = {fi}i∈J is

utilized to describe the concatenation of scalar values to form a multidimensional feature

vector f = {f1, f2, ..., fn}, while x(n) is used as a single-channel EEG time series for a given

fixed channel.

Matching Pursuit - MP 1 and MP 2

Pursuit algorithms refer, in their many variants, as blind source separation [149] techniques

that assume the EEG signal as a linear combination of different sparse sources extracted
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from a template’s dictionaries. Matching Pursuit MP [86], the most representative of

these algorithms, is a greedy variant that decomposes a signal into a linear combination

of waveforms, called atoms, that are well localized in time and frequency [26]. Given a

signal, this optimization technique, tries to find the indexes of m atoms and their weights

(contributions) that minimize,

ε =

∥∥∥∥∥x(n)−
m∑
i=1

wigi(n)

∥∥∥∥∥ (2.4)

which is the error between the signal and its approximation constructed by the weighted wi

atoms gi, and calculating the euclidean norm ‖·‖2. The algorithm goes by first setting the

approximating signal x̃0 as the original signal itself,

x̃0(n) = x(n) (2.5)

and setting the iterative counter s as 1. Hence, it searches recurrently the best template out

of the dictionary that matches current approximation.

gs = arg max
gi

∣∣∣∣∣
N∑
n=1

x̃s−1(n) gi(n)

∣∣∣∣∣ (2.6)

where gi are all the available scaled, translated and modulated atoms from the dictionary.

The operation |·| corresponds to the absolute value of the inner product. This step determines

the atom selection process, and their contribution is calculated based on

ws =

∑N
n=1 x̃s−1(n) gs(n)

‖gs‖2
(2.7)

with s representing the index of the selected atom gs and ‖·‖ its euclidean norm. Finally

the contribution of each atom is subtracted from the next approximation [32, 119, 86]

x̃s(n) = x̃s−1(n)− wsgs(n) (2.8)

The stopping criteria can be established based on a limiting threshold on Equation 2.4 or

based on a predetermined number of steps and selected atoms. Two variants of this algorithm

are evaluated. In MP 1 the dictionary is constructed with the normalized templates directly

extracted from the real signal segments which is a straightforward implementation of the

pattern matching technique. In MP 2 the coefficients of Daubechies least-asymetric wavelet

with 2 vanishing moments atoms are used to construct the dictionary [146]. For the first
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version, the matching against the template is evaluated according to Equation 2.4 directly,

whereas for the latter each feature is crafted by decomposing the signal in its coefficients

and building, an eventually sparse, vector with them:

f =

{
wi

}D
1

(2.9)

where D is the size of the dictionary.

Permutation Entropy - PE

Bandt and Pompe Permutation Entropy has been extensively used in EEG processing, with

applications on anesthesia, sleep stage evaluation and increasingly for Epilepsy pre-ictal

detection [11]. This method generates a code based on the orderly arrangement of sequential

samples, and then derives a metric which is based on the number of times each sequence is

found along the signal. This numeric value can be calculated as information entropy [92].

Let’s consider a signal on a window of length W represented by the sample points

(x1, x2, ..., xW ) (2.10)

and resampled by τ intervals, starting from the sampling point n, doing

(xn, xn+τ , xn+2τ ..., xn+(m−1)τ ). (2.11)

This sequence is of order m, which is the number of sample points used to derive the

ordinal element called π. There are m! ways in which this sequence can be orderly arranged,

according to the position that each sample point holds within the sequence in a decreasing

order relationship. For example if m = 3, and the first sample point is the bigger, the

second is the smaller and the third one is in the middle, the ordinal element π corresponds

to (1, 3, 2). Thus, along the signal window there can be at most k different ordinal (and

overlapping) elements πs

(π1, π2, ..., πk) (2.12)

with k = W−(m−1)τ . The probability density function pdf for all the available permutations

of order m should be p = (p1, p2, ..., pm!) with
∑m!

i=1 pi = 1.
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Hence, the time series window is mapped to a new set of k ordinal elements, and the pdf

can be calculated by the empirical permutation entropy,

pi =
1

k

k∑
s=1

[πs = πi] (2.13)

with 1 ≤ i ≤ m!. The Iverson Bracket [·] resolves to 1 when their logical proposition

argument is true, 0 otherwise. Therefore, for each i only those ordinal elements πs that

were effectively found along the signal are counted to estimate pi, and zero elsewhere. The

empirical permutation entropy can be calculated from the histogram as,

H(p) =

m!∑
i=1

pi log
1

pi
. (2.14)

An efficient implementation can be derived from [141], and the model description is

based on [14]. This procedure produces a scalar number for the given signal window of size

W . To derive a feature, a sliding window procedure must be implemented to cover an entire

segment of length N . Thus, the length of the feature is N − (W + τ(m− 1)).

f =

{
H(p)u

}N
W+τm

. (2.15)

with u varying on a sample by sample basis along the signal, starting from the specified

index.

Slope Horizontal Chain Code - SHCC

This algorithm [5] proceeds by generating a coding scheme from a sequence of sample points.

This encoding is based on the angle between the horizontal line on a 2D-plane and any

segment produced by two consecutive sample points, regarding them as coordinates on that

plane.

A signal of length N , can be represented by a list of ordered-pairs e,

e = [(x, y)1, (x, y)2, ..., (x, y)N ] (2.16)

and it can be divided into G different blocks. These blocks are obtained by resampling the

original signal from the index

G = bn+ (m∆) + 0.5c (2.17)
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with n being the original sampling index on 1 ≤ n ≤ N and b·c being the floor operation,

i.e. rounding of the number argument to the closest smaller integer number. On the other

hand, ∆ can be obtained by

∆ =

⌈
N

G+ 1

⌉
(2.18)

with G < N and using instead d·e as the ceil operation, the rounding to the closest bigger

integer number. Lastly, the value m can be derived from

m = sign

(
N − 1

∆

)⌊ ∣∣∣∣N − 1

∆

∣∣∣∣ ⌋. (2.19)

This resampling produces a new sequence of values,

e′ =
[
(x′, y′)1, ..., (x

′, y′)s, ..., (x
′, y′)G

]
. (2.20)

The next step is the normalization of each ordered-pair as vectors x’ = (x′1, ..., x
′
G) and

y’ = (y′1, ..., y
′
G) according to

x̂ =
x’−min(x’)1

max(x’)−min(x’)
(2.21)

ŷ =
y’−min(y’)1

max(y’)−min(y’)
(2.22)

with 1 being the vector of length G with all their components equal to 1. Hence, the scalar

components x̂s of x̂, and ŷs of ŷ, with s varying between 1 and G are effectively normalized

to x̂s, ŷs ∈ [0, 1].

Finally, the feature is constructed by calculating the point-to-point slope against the

horizontal plane,

f =

{
ŷs − ŷs−1

x̂s − x̂s−1

}G
2

(2.23)



Chapter 3

From signals to images

A regular practice in image processing is to analyze images as bidimensional signals. In this

Thesis the opposite is done and signals are studied by how they are represented on images.

This chapter describes the procedure to plot an image from the digital EEG signal. This

image is used to extract features which represents the waveform, the structure of the signal

on a plot. By analyzing these features, we hypothesize that the underlying cognitive process

can be detected and it can be used to implement a brain-computer communication device.

3.1 Electroencephalographic Plotting

The plotting of the EEG is intrinsically mixed with the nuisances of the electroencephalog-

raphy itself. Plotting proceed by using a chart recorded with a single pen [69]. Voltages are

represented on a vertical axis while time is represented on the horizontal axis, in a Cartesian

arrangement. The most salient characteristics of a plot are:

1. Sensitivity: also termed gain due the amplification procedure. Its units are mV
mm . In

the digital form, it is µV
pixel .

2. Epoch/Paper speed: the time span that is represented in a single screen. For paper

strips it is usually 10s. In its digital counterpart is w
pixel with w being the length in

seconds of the signal segment.

Additionally, on analog plotting montage is essential, while digital plotting allows flexible

montage configuration from software. Montage can be monopolar or bipolar. On monopolar

montages each electrode obtains the potential difference against a common reference. With

bipolar montages, electrodes are paired, eventually in chained configurations, and the

potential difference is obtained between each pair of electrodes [21].

29
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Neuroimaging

With the advent of digital computers and the digital revolution, plotting has became

imaging. Medical imaging is defined as the making of a visual representation of an organ

with a detector or sensor. However, the concept has extended and brain imaging modalities

is synonym of brain measuring devices. Neuroimaging [46] entails image mapping activity or

structure to neuroanatomical regions. There are currently three categories of neuroimaging:

structural which includes Computed Tomography (CT), Magnetic Resonance Imaging (MRI)

and Diffusion Tensor Imaging (DTI), functional, which encompass EEG, MEG, fMRI, PET,

Single Positron Emission Computed Tomography (SPECT), NIRS and chemical which

involves special dyes which are sensible to neuron firing. Indeed, analyzing image plots is a

form of brain imaging.

3.2 Signal to Image transformation

The EEG signal is represented by

x(n, c) (3.1)

where n is the index of sample points digitalized at sampling frequency Fs. This is a

multichannel signal, for c varying between 1 ≤ c ≤ C. Each one of this channels is assigned a

name according to the 10-20 international system (see Figure 2.5), and there are C available

channels. The sample index n varies between 1 and N . The span of the signal λ is the

length in milliseconds of the waveform under study.

The length of segment N in sample point units, the sampling frequency Fs in Hz and

the segment length w in seconds are related by

N = bFs wc . (3.2)

Additionally the signal can be scaled on amplitude by the scale factor γ or in time by

the time scale factor γt. The γt parameter can also be used to convert from time to sample

point index by doing

n = bFs tc γt. (3.3)

To extract features from an image, it should be first constructed. The straightforward

way to do it, replicating the analog or digital EEG plotting, is to draw a line on a contrast
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Figure 3.1: Sample EEG signal plot. For this sample image, the length of the signal is 1s,
which is 250 sample points. The height of the image is 73 pixels, which is the peak-to-peak
amplitude of the signal segment. Channel Oz of baseline EEG activity is being shown.

background. This line represents the voltage amplitude of a channel c in relation to

a reference zero-level z(c), with a positive deflection going upwards and downwards for

negative deflection. Figure 3.1 shows an example of an EEG signal segment plot. This

image is a black-and-white binary image. The color selection is arbitrary (white for the line,

black for the background), but it has some implications in terms of the feature extraction

procedure that will described in Section 4.2.

This chapter mostly deals with the coordinates transformation that need to be enforced

while converting the signal into a plot. Figure 3.2 shows the image coordinate system where

the (z1, z2), with z1, z2 ∈ N0 × N0, represent the horizontal and vertical locations, and the

(0, 0) value is the upper-left position of the image.

Let ci be a given constant channel, the values of I(z1, z2) are obtained for n varying

between 1 and N or c varying between 1 and C. In order to convert the EEG original signal

x(n, c) into a time-domain image I(z1, z2) representation, the following alternatives can be

used:

1. Channel-by-channel binary image:

The standard plotting, on a black-and-white image with lines representing voltage

amplitude:

I(ci)(z1, z2) =

 255 if z1 = n; z2 = x(n, ci) + z(ci)

0 otherwise
. (3.4)

Due to the coordinates transformation, the signal plotted by this procedure is inverted

on the image. Thus, it is necessary to multiply x(n, ci) by (−1) to invert it before

plotting.
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(0,0)

(Wx, Hy)

+

+

Figure 3.2: The image coordinate system and the mapping from the signal segment. The
origin is the (0, 0) position at the upper-left corner of the image. Time is represented as
sample points on the horizontal axis, and the amplitude in µV is shown on the vertical
axis. Image height Hy and width Wx are obtained based on signal parameters. The signal’s
zero-level z(c) is the vertical location where the signal zero value is located. The plot of the
signal is obtained by first setting the sample points on the predetermined image locations
according to equation 3.15 and then applying a discrete interpolation algorithm to connect
them with straight lines. The plotted waveform is a K-Complex.

2. Multichannel full greyscale image

The image is greyscale. Voltage amplitudes are represented by the pixel content and

each channel is represented on the vertical axis. The height of the signal is equal to

the number of channels. This is used in Neuroimaging [46] plots of ERP events:

I(z1, z2) =
{
φ(x(n, c)) if z1 = n; z2 = c . (3.5)

3. Multichannel stationary binary image:

The horizontal axis of the image is not time, but it is the number of the channel

instead. In this representation different contributions from different channels can be
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explored at the same time, but time dynamics is lost.

I(ni)(z1, z2) =

 255 if z1 = c; z2 = x(ni, c) + Z

0 otherwise
. (3.6)

In this case, the vertical position where the signal’s zero value is located in Z.

4. Multichannel stationary greyscale image

This is a variant of the previous one, where the horizontal axis also represent the

channel. In this form, the intensity of the contribution of each channel is represented

by the greyscale pixel value. Combined with head models and forward projection

solutions this is the methodology used to represent scalp heatmaps [50]:

I(ni)(z1, z2) =

 φ(x(ni, c)) if z1 = c; z2 = Z

0 otherwise
. (3.7)

5. Channel by channel full greyscale image

This is similar to a raster plot [32] but the greyscale image representing voltages in

pixel intensities can be replicated or epoched H times, which at the same time is the

height of the image. The selection of this value depends on the number of epochs or

repetitions to show. In this case, the mapping is

I(ci)(z1, z2) =
{
φ(x(n, ci)) if z1 = n; z2 = H . (3.8)

To analyze effectively an EEG signal, many signal segments must be produced. Hence,

the transformation from signal to image is continuously repeated, and many images need to

be crafted for the EEG signal under analysis. How to determine the size of all the images so

that they can be effectively compared between them ? The first option is to regularize the

signal and fit in an equal size for every image. An alternative choice is to autoscale every

image according to the zero-level position. Figure 3.3 shows two sample artificial impulse

signals and their alternative transformation into images.
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3.3 Standardized plotting

The z-score is a widely used method to regularize a signal [142, 161]. This standardization

procedure is defined for 1 ≤ n ≤ N and 1 ≤ c ≤ C by doing

x̃(n, c) =
x(n, c)− x̄(c)

σ̂(c)
(3.9)

where x(n, c) is the multichannel EEG signal segment for the sample point index n and for

channel c. The values

x̄(c) =
1

N

N∑
n=1

x(n, c)

and

σ̂(c) =

{
1

N − 1

N∑
n=1

[x(n, c)− x̄(c)]2
} 1

2

are the mean and estimated standard deviation of x(n, c), 1 ≤ n ≤ N , for each channel c.

Figure 3.3(a) shows an impulse signal and their standardized representation.

3.4 Autoscaled plotting

This plotting scheme allows each image to adapt to the underlying signal. The signal is

centered [142] while the image height is autoscaled. The height is set at twice the value

of the zero-level, and the signal mean is subtracted from the original signal, producing a

vertical displacement, according to the following Equation,

x̃(n, c) = x(n, c)− x̄(c) (3.10)

Figure 3.3(b) shows the results of the plotting for an impulse signal. Equation 3.10

has the advantage that any low frequency component, particularly the EEG DC drift is

eliminated, due to the fact that plot of the signal is always centered on each image.

3.5 Zero-Level

The zero-level z(c) is the image vertical position where the signal’s zero value has to be

situated in order to fit the entire signal within the image for each channel c:

z(c) =

⌊
maxn x̃(n, c)−minn x̃(n, c)

2

⌋
−
⌊

maxn x̃(n, c) + minn x̃(n, c)

2

⌋
(3.11)
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(a) Standardized: The signal is standardized and
the height of the image is determined according to
the peak-to-peak amplitude, which is similar for
every image.

(b) Autoscaled: The plotted image height is twice
the zero-level, which is also determined according to
the peak-to-peak amplitude of each segment, propor-
tional to γ, and not constant. Transformed images
do not have the same height, but the zero-level is
always located at half the height of the image.

Figure 3.3: An artificial signal pulse and its plotting representations.

where the minimization and maximization are carried out for n varying between 1 ≤ n ≤ N .

This value represents the vertical location on the image where the signal goes to zero.

3.6 Image Size

Height

The height of the image is calculated according to the peak-to-peak amplitude of the signal

segment, and proportional to the amplitude scale factor γ:

Hy = max bγ x̃(n, c)e −min bγ x̃(n, c)e (3.12)

while for the autoscalable version, it is just twice the value of the zero-level:

Hy = 2 z(c). (3.13)

Width

The width, on the other hand, is obtained based on the length of the signal segment, scaled

by the γt scale time factor,

Wx = γtN (3.14)
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3.7 EEG Signal Plot

Once the regularization procedure, the size and the scale of the image are defined, a binary

image I(c) can be constructed from a variant of the method specified in Equation 3.4

according to

I(c)(z1, z2) =

 255 if z1 = γt n and z2 = bγ x̃(n, c)e+ z(c)

0 otherwise
(3.15)

where 1 ≤ c ≤ C and 1 ≤ n ≤ N . The amplitude scale factor γ and time scale factor γt are

used to determine the image size and at the same time the image resolution. This scheme

produces a black-and-white plot of the signal with 255 being white and 0 black. There is

one image per channel per segment.

3.8 Interpolation

Equation 3.15 produces a set of isolated pixels over the image I(c). To produce the plot

I(c), the Bresenham [20, 110] algorithm is used to digitally interpolate straight lines between

each pair of consecutive pixels. Figure 3.4(a) shows an image plot constructed by only using

the sample points, while 3.4(b) shows the digital interpolation produced by the Bresenham

algorithm.

On Figure 3.4(c) the same signal can be observed produced when the time scaling factor

γt is increased to 4. It can be noticed that there are very sharp edges around sample pixels.

This can lead to a quantization of histogram gradients that will be discussed in the next

Chapter. To reduce this sharpness of the signal on the plot, an alternative procedure is to use

a smoothing interpolation of the signal x̃(n, c) using splines. Instead of just situating time

point values at a bigger step according to Equation 3.15, intermediate values are computed

according to a linear, quadratic or cubic interpolation, hence smoothing the curve around

each point. The result of this interpolation can be seen on Figure 3.4(d), where the edges

around each sample point are more rounded. This procedure is similar to what the Matlab’s

resample function does which also includes an antialiasing FIR lowpass filter [99].

Special care must be taken by the presence of artifacts around the signal endpoints, at

the edges of the image. Those regions are excluded from further analysis.
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(a) Sample points are located on the image according to Equation 3.15.

(b) Sample points are linearly interpolated in a discrete procedure using the Bresenham algorithm.

(c) The digital signal is scaled 4 times (γt = 4) and the generated sample points are interpolated using
the Bresenham algorithm.

(d) The digital signal is upsampled 4 times with a linear interpolation with splines. The Bresenham
algorithm is used to perform the final digital interpolation to compose the plot.

Figure 3.4: Generated images based on different interpolation schemes.
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(a) Vertical axis is voltage in µV
while horizontal axis is expressed
in sample points units.

(b) An image generated by the plotting algorithm for the same signal.
Image height is 76 pixels, while width is 250. The zero-level z(c) value
is 32.

Figure 3.5: One-second length basal EEG signal and the generated image, with Fs = 250.

3.9 Resolution and Precision

Image creation and signal plotting is a digitalization process [122]. Figure 3.5 shows an EEG

signal and their plot representation. Any digitalization process is defined by their resolution,

precision and dynamic range.

The resolution [32] of the image transformation can be determined based on the char-

acteristics of the digital signal and the parameter selection. On the horizontal axis of the

image, one pixel is equivalent to

1Px ≡
1

Fs γt
[s] (3.16)

where Fs is the sampling frequency in Hertz, and γt is the time scale factor. This gives a

value in seconds. For example, for Figure 3.1 where the length is 1s, the sampling frequency

is 250Hz, and γt = 1, this gives a resolution of 1Px ≡ 0.0040s. Table 3.1 shows some

reference values.

Table 3.1: Reference values for horizontal resolution

γt 1Px

1 1 1
Fs

s

2 1
2

1
Fs

s

3 1
3

1
Fs

s

10 1
10

1
Fs

s

100 1
100

1
Fs

s
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Consistently, on the vertical axis, one pixel is analogous to

1Py ≡
1

γ
[µV ] (3.17)

where γ is the amplitude scale factor. As EEG time-series are digitalized in µV , this is

the unit of choice. In Figure 3.1, 1 vertical pixel represents exactly 1µV . It is important

to notice that the minimum recommended resolution for an EEG device is around 0.5 µV ,

which is an acceptable and practical level to detect physiological meaningful signals [122].

This level can be reached when γ is equal to 2. See Table 3.2 to see some reference values.

Table 3.2: Reference values for vertical precision and resolution

γ 1Py Decimal Precision

1 1µV 0
2 1

2µV 0.5
3 1

3µV 0.3
10 1

10µV 0.1
100 1

100µV 0.01

Regarding the precision, discrete EEG time-series are floating-point numbers and the

image is constructed based on discrete and integer pixels. Image’s pixel values (z1, z2) are

obtained according to Equation 3.15. Thus, on the horizontal axis z1, no discretization is

needed because time is already digitalized in sample units. Hence, there is no loss of precision

in time from the one generated by the digital device where pixel values are obtained with

z1 = γt n, (3.18)

where n refers to the sample point index. The maximum frequency that can be captured by

the plotting scheme is half the number of pixels per seconds [122]. Equation 3.18 determines

at least a 1-to-1 relationship between pixels and sample points, thus the effective maximum

frequency is only constrained by the Nyquist Frequency [99].

On the other hand, on the vertical axis, pixels are discretized according to

z2 = bγ x̃(n, c)e (3.19)

where γ is the amplitude scale factor parameter, which also affects the height of the image

in Equation 3.12. A rounding operation b·e is applied to obtain an integer representation.
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This means that precision is lost on the voltage amplitude. Table 3.2 shows some decimal

precision values for different γ.

Finally, the dynamic range of the digital capturing device is reduced to what is actually

needed for each segment, because the height of the image is adjusted dynamically to the

peak-to-peak amplitude, regardless of the plotting scheme.



Chapter 4

The Histogram of Gradient

Orientations of Signal Plots

This Chapter introduces the EEG feature extraction procedure based on the Histogram of

Gradient Orientations. This method is grounded on an extension and modification of the

SIFT [83] Descriptor which is used in Computer Vision to extract and map local regions of

an image. At the same time, this Chapter brings to completion the previous one, describing

how to mine the information from a plot and build a feature out of it.

4.1 Introduction

The work of Edelman, Intrator and Poggio [41] on how the visual cortex sense features

was the inspiration to the development of an algorithm to identify and decode salient local

information from image regions. The Scale Invariant Feature Transform (SIFT) method

is composed of two parts, the SIFT Detector and the SIFT Descriptor. The first is the

procedure to identify relevant areas of an image. The second is the procedure to describe and

characterize a region of an image (patch) using the Histogram of Gradient Orientations 1.

The SIFT algorithm is biomimetically inspired in how the visual cortex detects shapes by

analyzing orientations [41]. The patch description is also based on the Theory of Receptive

Fields and other related ideas [78].

1It should not to be confused with HOG [37], the Histogram Of Gradients which is another method from
Computer Vision based on similar ideas. Actually, the descriptor part of the SIFT Method has no specific
name, but it is based on building a histogram of gradient orientations.

41
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4.2 Feature Extraction: Histogram of Gradient Orientations

The basic procedure is composed of,

1. Keypoints kp are located on an image of a signal plot.

2. A region of an image, a patch, is established using keypoints as centers. Each patch

has a horizontal St and vertical scale Sv, which determines the size in pixels Sx and

Sy, along the horizontal and vertical axis respectively.

3. From each patch, a descriptor d is derived which is used as a representation of the

graphical information contained within the patch.

On the image generated by the procedure detailed in previous Chapter, a keypoint kp

is placed on a pixel (xkp, ykp) over the image plot and a window around the keypoint is

considered. A local image patch of size Sx×Sy pixels is constructed by dividing the window

in 16 blocks. It is arranged in a 4× 4 grid and the pixel kp is the patch center. Figure 4.1(a)

shows a plot of a signal, a keypoint in red at the center and the surrounding patch.

Pixel intensity gradients can be obtained from an image by applying the Sobel filter [134]

and using finite differences to obtain pixel differences on the x and y direction. Composing

them as vectors, oriented gradients on each pixel can be calculated. Figure 4.1(b) and (c)

show vector field of oriented gradients.

A local representation of the signal shape within the patch can be described by obtaining

the gradient orientations on each of the 16 blocks and creating a histogram of gradients.

In order to calculate the histogram, the interval [0− 360] of possible angles is divided in 8

bins, each one at 45 degrees. Figure 4.1(d) shows a sample histogram obtained for eight

orientations.

Hence, for each spatial bin i, j = {0, 1, 2, 3}, corresponding to the indexes of each block

Bi,j , the orientations are accumulated in a 3-dimensional histogram h through the following

equation:

h(θ, i, j) =
∑
p

ωang(∠J(p)− θ)ωij (p− kp) ‖J(p)‖ (4.1)

where p is a pixel from within the patch, θ is the angle bin with θ ∈ {0, 45, 90, 135, 180, 225, 270, 315},
‖J(p)‖ is the norm of the gradient vector in the pixel p, computed using finite differences,

and ∠J(p) is the angle of the gradient vector. The scalar ωang(·) and vector ωij(·) functions
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are linear interpolations used by [83] and [148] to provide a weighting contribution to eight

adjacent bins. They are calculated as

ωij(v) = ω

(
5 vx

∆s St
− xi

)
ω

(
5 vy

∆s Sv
− yi

)
(4.2)

ωang(α) =

1∑
r=−1

ω

(
8α

2π
+ 8r

)
(4.3)

where xi and yi are the spatial bin centers located in xi, yi ∈ {−3
2 ,−

1
2 ,

1
2 ,

3
2}. The function

parameter v = (vx, vy) is a vector variable and α a scalar variable. The value of ∆s is

the unit length of the patch, which is described in the section 4.4. On the other hand, r

is an integer that can vary freely in the set {−1, 0, 1} and allows the argument α to be

unconstrained in terms of its values in radians. The interpolating function ω(·) is defined as:

ω(z) = max(0, |z| − 1). (4.4)

These binning functions conform a trilinear interpolation that has a combined effect of

sharing the contribution of each oriented gradient between their eight adjacent bins in a

tridimensional cube in the histogram space, and zero everywhere else. This procedure is

important to avoid quantization issues that may appear with the histogram (i.e. elimination

of intermediate values).

Lastly, on Equation 4.2 the values of 5
∆s St

and 5
∆s Sv

allow a unit conversion from pixel

to units-of-patch. As the patch has 16 blocks and 8 bin angles are considered, a feature d

called descriptor of 128 dimension is obtained. This technique is a modification of Lowe’s

SIFT Descriptor method.

In Figure 4.2 the possible orientations on each patch are illustrated. The first eight

orientations of the first block B1,1, are labeled from 1 to 8 clockwise. The orientations

of the second block B1,2 are labeled from 9 to 16. This labeling continues left-to-right,

up-down until the eight orientations for all the sixteen blocks are assigned. They form the

corresponding kp-descriptor of 128 coordinates.

4.3 Keypoint Location

The keypoint kp location must be accurately specified in order to establish the region from

the signal where the waveform is located.
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(a) Example of a plot of the signal, a keypoint
and the corresponding patch.

(b) A Sobel filter is applied to the image and a
vector field of oriented gradients is calculated for
each pixel.

(c) Zoomed-in vector field of oriented gradients
around the signal plot. Each pixel is assigned
an orientation and magnitude.
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(d) Eight oriented bins are used on each block
to identify the oriented gradients within each
block.

Figure 4.1: Patch and vector field of oriented gradients.
.

For the horizontal position, the localization of the keypoint is based on a priori information,

based on the characteristics of the event under study. For instance, ERPs have a specific

timing that can be explored to elucidate in which position the expected signal pattern will

be generated.

Additionally, there can be more than just one keypoint and patch located over the

signal plot. This is particular important for oscillatory processes where many waveforms

are contained within the same signal segment. This needs to be addresses by defining a
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Figure 4.2: A scheme of the orientation’s histogram computation. The first eight orientations
of the first block B1,1, are labeled from 1 to 8 clockwise. The orientation of the second block
B1,2 is labeled from 9 to 16. This labeling continues left-to-right, up-down until the eight
orientations for all the sixteen blocks are assigned. They form the corresponding descriptor
of 128 coordinates. The length of each arrow represent the value of the histogram on each
direction for each block.

keypoint density parameter kpd. A value of kpd = 1 determines that keypoint are located

on every sample point that is used to mark a pixel en Equation 3.15. A value of kpd = 2

implies that keypoints are located after two sample points, and so on. Figure 4.3(a) shows

keypoints being located at a keypoint density kpd equals to 10.

Regarding the Vertical Location, there are two options. The first one is along the signal,

exactly on the sample points calculated by the Equation 3.15. The second is on a fixed
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(a) Fixed size patches are located all along the EEG
signal trace at a given keypoint density kpd. Closed
to image’s margins no keypoint are located.

(b) A patch is used to map an artificial signal us-
ing an autoscale plotting scheme, and mapping the
entire waveform within the patch. The keypoint is
located on the zero-level z(c) value.

Figure 4.3: Two different alternatives of keypoint locations and patch geometry.
.

position over the zero-level as described by 3.11. Figure 4.3(a) show the former while

on 4.3(b) the latter can be spotted.

4.4 Patch Geometry

The standard implementation of the SIFT Descriptor uses a squared-size patch, and there

is only one scale parameter S. However, this is not appropriate to capture waveforms

which may expand on the horizontal axis, on the time scale. The Histogram of Gradient

Orientations on the other hand, allows to have a rectangular patch geometry which can be

used to cover an entire waveform, regardless of their span λ. The original SIFT scale, is

modified in this implementation to allow two scale parameters, one per each axis.

The Horizontal Patch Scale St determines the size of the patch on the image horizontal

axis, and it is related to the span λ of the waveform to analyze according to

St =
λ Fs γt

∆s
(4.5)

where Fs is the sample frequency, γt is the time scale factor and ∆s is the unit length of

the patch which determines the pixel conversion factor. This value depends on the actual
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implementation of the Histogram of Gradient Orientations of the SIFT method. In this

case, its value is ∆s =
√

2 3 5, where 3 is the fixed magnification factor, and 5 correspond to

the number of blocks in which the patch is divided, plus half the size of the block on each

direction. Check Appendix A for details on the SIFT method implementation.

On the other hand, on the vertical axis, the vertical patch scale depends on the peak-to-

peak amplitude ∆µV , and the amplitude scale factor γ, as

Sv =
∆µV γ

∆s
. (4.6)

The vertical scale can be dynamically adjusted according to the peak-to-peak amplitude

of each segment, or it can be set fixed. This is more appropiate if the underlying signal is

bounded which is the case if the standardized procedure described in 3.3 is applied.

Sx × Sy

Sv
St

γ

γt

Figure 4.4: The scale of local patch is selected in order to capture the whole waveform,
which can be scaled in the time γt and amplitude γ direction. This determines appropriate
horizontal St and vertical Sv patch scales. The size of the patch is Sx × Sy pixels. The
vertical size consists of 4 blocks of size Sy pixels which should be high enough as to contain
the signal ∆µV , the peak-to-peak amplitude of the signal component. The horizontal size
includes 4 blocks, up to Sx pixels, and should cover the entire duration in seconds of the
signal waveform, λ.

Figure 4.4 shows the different parameters of the patch and how they are related to the

underlying signal. Once these parameters are set, the size in pixels of the patch can be
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obtained in both dimensions. Hence, the horizontal patch size in pixels is

Sx = b∆s Stc+ 1 (4.7)

and the vertical patch size in pixels can be calculated from

Sy = b∆s Svc+ 1 (4.8)

where ∆s being the unit length of the patch. The parameters St and Sv are the horizontal

and vertical patch scale. This region is arranged in a 4 × 4 grid and the pixel kp is the

patch center. For instance, for a given set of values of Sv = 1 and St = 1, the patch is a

squared region on the image of size 22 pixels.

The patch size cannot be bigger than the image itself, whose width is Wx and its height

is Hy . This is reflected by the following two inequalities that restrict the size of the patch

according to

Wx − 1

∆s
≥ St, (4.9)

on the horizontal axis, and on the vertical axis,

Hy − 1

∆s
≥ Sv. (4.10)

4.4.1 Oscillatory Processes

For these patterns, the strategy is to locate keypoints, and their patches, all along the

signal trace, filling the entire signal segments with all the possible patches. In this case, the

keypoint density kpd determines the step at which a keypoint is located along the trace

of the signal, sample point after sample point. Care must be taken close to the margins,

where there should be a gap to avoid locating incomplete patches. This can be observed in

Figure 4.3(a).

4.4.2 Transient Events

For transient events, descriptors are treated as representatives of the single transient wave-

forms. This leads to usually just one keypoint that is located in a meaningful position along

the horizontal axis. Additionally, for autoscale plotting, the zero level can be used to localize
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keypoints. Figure 4.3(b) shows the plot of an artificial waveform with the corresponding

patch.

4.5 BCI Algorithm

Now that all the ingredients have been exposed, the general layout of the BCI algorithm

can be described. Going back to BCI model referenced in 2.1, the following sections outline

the Preprocessing, Calibration and Classification step.

Terminology Clarification

Definition 4.5.1. Keypoint: A keypoint is a specific pixel on the image. The keypoint is

the center of a patch and it is used to outline a region of interest.

Definition 4.5.2. Patch: An image region centered around a keypoint. It is divided in a

rectangular 4x4 grid.

Definition 4.5.3. Descriptor: A 128-dimensional feature vector. Contains the histogram

of 8 angular directions per each block of the 16 blocks of the patch.

Definition 4.5.4. Waveform: A signal shape, a transient component or an oscillatory

wave, with a potential cognitive implication.

Definition 4.5.5. Signal: The EEG Signal. This Thesis refers to a multidimensional

signal or to a single-channel signal. When the clarification is of relevance, it is provided.

Definition 4.5.6. Image: The canvas with sample points created from equation 3.15.

Definition 4.5.7. Plot: The trace of the EEG signal on the Image.

Definition 4.5.8. HIST: This the acronym that hereafter is being used to describe the

feature extraction method proposed in this Thesis.

4.5.1 Preprocessing

Signal preprocessing [127] can be applied to x(n, c) before applying the plotting scheme.

Preprocessing depends on the cognitive paradigm under study and it is covered more deeply

in Chapter 7.
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4.5.2 Calibration

The calibration step of BCI entails designing an experimental protocol or procedure to

allow the computer to learn the signals that identify a cognitive pattern. Once those

patterns are learned, the BCI system tries to identify new unlabeled signals comparing them

against those learned patterns. By performing the feature extraction method outlined in

this Chapter, descriptors can be extracted from images and stored in template dictionaries.

These templates are generated on a channel-by-channel basis. Each dictionary T bpc is used to

represent one type of signal to discriminate. The data structure proposed to store descriptors

is a KD-tree [83].

Moreover, the calibration can be also used to identify the bpc, the Best Performing

Channel. This value is used to evaluate the spatial performance based on the electrode

where the best classification accuracy is obtained [28].

4.5.3 Classification

A discriminative [153] semi-supervised classification method based on Naive Bayes Nearest

Neighbor (NBNN) [17] is applied to classify EEG signals using the features provided by

the calculated descriptors. In order to classify a new image, a query image, Q descriptors

are extracted from it. The NBNN technique allows to categorize this image to one class by

comparing the set of extracted descriptors q
(bpc)
i to those which are more similar on each

dictionary T bpc. This algorithm is very easy to implement, and is based on the following

Equation:

L̂ = arg min
L

Q∑
i=1

k∑
h=1

∥∥∥q(bpc)
i − d

(L,bpc)
h

∥∥∥2
(4.11)

where the Q descriptors q
(bpc)
i are extracted from a query image for the bpc and, the dictionary

descriptors d
(L,bpc)
h ∈ NT (q

(bpc)
i ) with the set NT (q

(bpc)
i ) defined as NT (q

(bpc)
i ) = {d(L,bpc)

h ∈
T bpcL /d is the k-nearest neighbor of q

(bpc)
i }. This set is obtained by sorting all the elements

d
(L,bpc)
h in T bpcL based on distances between them and q

(bpc)
i , choosing the k with smaller

values. Hence, the estimated class label L̂ of a query image is calculated as the class label L

that minimizes the summation of the distances between descriptors q
(bpc)
i that belong to

the query image and their corresponding near neighbor descriptors d
(L,bpc)
h that belong to

the template dictionary for each class. Figure 4.5 show a scheme of how this classification

method works.
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Q

∑
i=1

k

∑
h=1

Class Label 1 Class Label 2

[q(bpc)
1 , q(bpc)

2 , ⋯, q(bpc)
Q ]

L1 L2

Q

∑
i=1

k

∑
h=1

Template Dictionaries

Query Image

Descriptors <

L̂ = L1

(1) (1)

(1)

(2)

(2)

(3)

(3)

(4)

(a)

Figure 4.5: Classification Algorithm: Step 1 Two Dictionaries are created from templates
descriptors obtained in a calibration session for two different classes, labeled 1 and 2. On
the other hand, a set of query descriptors are extracted from a new image that needs to be
categorized. Step 2 Distances from every descriptor qi are calculated against the closest
one from the dictionary of class 1. Distances summations are accumulated. Step 3 Distance
values from every descriptor qi are calculated against the closest one from the dictionary of
class 2, the other class. Distances summations are accumulated. Step 4 The two summation
values for each class label are compared against each other. The summation that achieved
the lesser value is the one that more closely resembles the set of templates, thus is the one
predicted by the classification algorithm.

4.5.4 Algorithm

In brief, based on segmented signals from at least two labeled classes, a set of images is first

generated. For each image, keypoints are localized and descriptors are extracted during the

training or calibration step of a BCI procedure and they are grouped in template dictionaries

for each one of the classes. Additionally, the spatial performance is evaluated and the bpc

value is computed.

Hence, given a new unlabeled signal segment, an image plot is generated as well, their

keypoints localized and their descriptors extracted. They are fed into Equation 4.11 in order
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to determine the class which minimizes the summation and thus provide the information bit

to the BCI controller.

4.A Model Summary

This section provides a mapping cheat-sheet to convert and obtain the parameters of the

algorithm for a given set of signal parameters.

The input signal parameters are N ,Fs, λ and the peak-to-peak amplitude ∆µV of the

waveform to study. The unit length of the patch is ∆s =
√

2 15 and as has been earlier

mentioned, depends on the particular SIFT implementation.

Output parameters are: γ γt Hy Wx St Sv Sy Sx kp

Mappings:

Time to sample point index conversion

n = bFs ∆tc γt

Span of a Patch

∆t =
St ∆s

Fs γt

Amplitude scale factor

γ =
Hy

∆µV

Time scale factor

γt =
Wx

Fs w

Horizontal Patch scale

St =
λ Fs γt

∆s
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Vertical Patch scale

Sv =
∆µV γ

∆s

Restriction on the horizontal patch scale

Wx − 1√
2 15

≥ St

Restriction on the vertical patch scale

Hy − 1√
2 15

≥ Sv

Horizontal Patch size in pixels

Sx = b∆s Stc+ 1

Vertical Patch Size in pixels

Sy = b∆s Svc+ 1

Pixel Resolution on the horizontal axis

1Px ≡
1

Fs γt
[s]

Pixel Resolution on the vertical axis

1Py ≡
1

γ
[µV ]
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Chapter 5

Alpha Wave: spotting wiggles

The electroencephalogram represents a

continuous curve with continuous

oscillations in which... one can

distinguish larger first order waves with

an average duration of 90 milliseconds...

Berger

This Chapter describes the experiments performed over a well-established but still

mysterious EEG cognitive signal: The Berger Rhythm or Visual Occipital Alpha Waves. An

own dataset of resting subjects with and without alpha blocking is produced and the details

of their generation are outlined. Additionally, an experiment on a public dataset is also

delineated. Conclusions and discussion are described in the last section.

5.1 Introduction

Alpha Waves were the first signals ever spotted from the Electroencephalography. They are

regularly characterized as 10Hz, or more broadly between the frequency band of 8-12 Hz.

They are physiologically consistent across subjects, though it has been reported inter- and

intra- variations with functional cognitive implications [56]. Moreover, they are associated

with synchronous inhibitory processes and attention shifting [119]. They tend to be more

prominent while subject’s eyes are closed and appear stronger in occipital regions, around

O1 and O2 [153, 132]. These waves are also called Prominent Posterior Alpha or Posterior

Dominant Rhythm due to their pervasiveness in EEG [122, 56].

Figure 5.1 shows two records of 8-channels signals. Figure 5.1(a) contains the registered

alpha waves of a subject with their eyes open while the (b) contains the same information
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with their eyes closed. The characteristic pattern of wiggles can be spotted in the latter,

while their absence entails the blocking of alpha waves in the former [13].

(a) EEG signals of a relaxed healthy subject with
their eyes open.

(b) EEG signals of the same relaxed subject with
their eyes closed. Alpha Waves wiggles can be spot-
ted since the first second.

Figure 5.1: Five seconds of EEG signals obtained from the Emotiv EPOC device. Fourteen
channels are shown on the vertical axis, while x-axis shows time in seconds.

This important rhythm is an oscillatory process. As such, it is understood and studied in

the frequency-domain. Figure 5.2 shows the results of applying the Fast Fourier Transform

to two different segments of 10s length. For each segment, the power spectral density is

calculated and their values are shown on the vertical axis. Frequency values are shown on

the horizontal axis. On Figure 5.2(a) no particular frequency component can be spotted.

However, on Figure 5.2(b) the prevalence of the 10-Hz alpha wave component can be

observed.

5.2 Materials and Methods

These experiments consist in performing a binary classification of EEG signal segments

between the two defined classes. Class 2 is assigned to segments containing significant alpha

waves (i.e. eyes closed), whereas class 1 identifies those where these signals are blocked (i.e.

eyes open).

5.2.1 Dataset I - Emotiv EPOC alpha waves own dataset

The first dataset is gathered using the EEG EPOC Emotiv Headset. Although this is a

commercial-grade device, it provides an acceptable price-performance ratio and it has been
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(a) Subject was sit, relaxed in front of the Computer
Monitor with his eyes open.

(b) Subject was sit, relaxed in front of the Com-
puter Monitor with his eyes closed. A strong 10Hz
component can be observed.

Figure 5.2: Spectrum components of a 10s signal segment of a subject with their eyes
open. Horizontal axis shows different frequencies while the vertical axis represents the power
spectral density. In both diagrams a 50Hz line component can be visualized.

used to investigate basic EEG processes [39, 38]. In order to obtain the multichannel raw

EEG signal, a C++ SDK library provided by the manufacturer is used and an in-house

software program is developed. This device has 14 channels, and a sampling rate of 128

Hz [132]. Available channels are AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8,

AF4. Ten healthy subjects between ages 20-50 are recruited and they accept to wear the

device and to participate in the experiments.

A 30 minutes procedure is required to adjust the headset to each user, in order to decrease

the impedance on each electrode (below 5kΩ). This is achieved by physically adjusting the

headset position over the scalp, and by embedding each electrode electrode pad in saline

solution. A software program developed by the manufacturer is used to obtain the measured

impedance. Once the set up is finished, each subject is instructed to sit in a relaxed position.

Subsequently, she/he is commanded to watch the screen for 15 seconds, trying to avoid,

as much as possible, to abruptly move its body or head. During that time, a single-trial

of 10 seconds-length window of EEG signals data is transferred to a PC and logged into

standard binary files. After a 5 minutes pause, the subject is asked to close the eyes avoiding

any movement while keeping the same pose for another batch of 15 seconds. Again, 10

seconds of EEG information are transferred into the PC. This produces a dataset of 10

subjects, 2 classes per subject, composed of 14 channels, 10-seconds length or 1280 samples

per window. These windows are further divided into 10 segments per class and per subject.
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(a) (b) (c) (d)

Figure 5.3: (a) EPOC Emotiv consumer-grade 14-channels wireless EEG.(b) This device
has a fixed set of positions according to the 10-20 International System.(c) While resting
and sitting confortable in a chair, subjects had to fixate their sight to the center of this
image which was being displayed on a computer monitor, 1 meter away from the subject.(d)
Subject performing the experiment to produce the dataset described in 5.2.1.

.

Measuring BCI Performance

Measuring the performance of the BCI system, as it is described in the model of Figure 2.1,

is of quite relevance in the field. The term Accuracy in BCI refers in general to binary

classification accuracy, which means how many bits predictions between two different

classes and on unlabeled data is the BCI classifier able to perform correctly. This is the

metric that is being used in this Chapter. Other metrics include Cohen Kappa (used to

measure agreements between different experts), Recall (sensitivity), Specificity, Precision

and F-Score [93, 28, 3, 153, 31, 90]. At the same time, the theoretical chance level is a

related concept that determines what will be the outcome if the classifier is just randomly

selecting one choice [90]. For binary classification this value is 50% when datasets are

balanced [137]. For unbalanced data the Receiving Operating Characteristics (ROC) curve

helps to understand and compare better the predictive efficiency of the classifier [44].

For more practical systems, like P300-Based BCI Spellers, it is preferred a measure of

the plain performance of the system to achieve the task at hand (e.g. like character

recognition rates) [76]. When the interface aspect of the system is remarked, or when the

communication speed is of relevance, the Information Transfer Rate (ITR) or Bit Transfer

Rate (BTR) is used to provide a metric on the amount of bits that it is possible to extract

from the BCI system to transmit information.

Despite all this, the best metric is the one provided from real users using a robust system

or from clinicians using a helpful tool [63, 95, 94].
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5.2.2 Dataset II - AlphaNet Dataset

Additionally, the performance of HIST was tested against the public dataset EEG Motor

Movement/Imagery Dataset of the PhysioNet effort published and mantained by the U.S.

National Health Service [120, 49].

Baseline records and motor/imagery tasks were performed by 109 healthy volunteers,

using the BCI2000 system [120] at a sampling frequency Fs = 160. At the same time

64-channel EEG records were registered where each subject completed 14 tasks, called Runs.

The first two are the baseline calibration tasks, of relevance for this Chapter. These Runs

1 and 2 are each one-minute records of resting subjects with eyes open and eyes closed.

From these records, 60 segments of 1-second length are further extracted per subject. Class

labeling is the same as Dataset I. The experiment was performed on 25 randomly selected

subjects out of the 109.

5.2.3 Parameters

Images and plots are generated according to Section 3.7, with an autoscale plotting scheme.

Keypoint localization is determined according to Section 4.3 by following the trace of the

signal, with a kpd = 1. Descriptors are extracted from all the generated images, from both

classes, and they are used to classify images in a 10-fold cross-validation procedure. The

classification method described in Section 4.5.3 is used to perform a binary classification.

The parameter γ is set to 2, as well as γt.

5.3 Results

Dataset I was controlled and verified by processing it with a 8-12Hz band-pass filter, and

calculating the average power spectral density across subjects for all channels. It can be

observed on Figure 5.4(a) that values corresponding to class 2 (eyes closed) are always

higher than the values obtained for class 1 (eyes open). On the other hand, for the sake of

illustration, a scatter plot of the obtained segment’s power spectral density for O1 vs O2 for

Subject 2 is shown, where a separation of classes can be devised. This proves that there is

discriminative information in the frequency-domain.

Results of applying the 10-fold cross validation procedure on the entire set of labeled

descriptors is shown on Figure 5.5. Template dictionaries for class 1 and class 2 are formed

using training descriptors for all the subjects at the same time. Hence, the testing step of
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(a) Power spectral density averaged across 10 sub-
jects for each channel. Values for Class 2 (red) are
always higher than values for Class 1 (blue).

(b) Scatterplot of power spectral density for the
channel O1 vs O2. There is a separation of classes
between the red (class 2) and blue(class 1) dots.

Figure 5.4: Frequency analysis of Dataset I

the cross-validation procedure is implemented subject by subject, but performing a transfer

learning between subjects. The classification is subject-independent, and an averaged

accuracy across all subjects is above 70%, obtained in occipital channels.

Af3 O1O2 Af4
0

0.7

Channel

A
cc

u
ra

cy

(a) Ten-fold cross-validated accuracy values, aver-
aged across 10 subjects. Descriptors used for calibra-
tion are intermixed to create one template dictionary
which is used for all subjects.

(b) Amplified image containing a sample patch lo-
cated on one of the images generated for one 1-
second long segment of this dataset. The keypoint
location is on a sample point along the EEG trace.

Figure 5.5: Dataset I: The classification accuracy is maximum on occipital channels O1 and
O2. The horizontal patch scale St and the vertical patch scale Sv are set to 1, whereas γ
and γt are set to 2, which corresponds to a variation of ∆µV = 10 microvolts in the signal
amplitude during λ = 0.08 seconds.

For the Dataset II, training and testing steps of the cross-validation procedure are

implemented subject by subject. An averaged accuracy across 25 subjects of around 70%

is obtained, also on occipital channels O1, Oz, O2 and Iz (numbered 61 to 64) while
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(a) Ten-fold cross-validated accuracies values for a
randomly selected subject (number 12), using runs
1 and 2.
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(b) Ten-fold cross-validated accuracy boxplots for
occipital channels O1, Oz, O2 and Iz, for the 25
subjects. Mean values are around 70%.

Figure 5.6: Dataset II: Classification Accuracy for segments of 1s (N = 160) of EEG, between
class 1 and class 2. In this case as the sampling frequency Fs is lower, the signal span is
λ = 0.06 s

.

discriminating runs 1 versus 2 (baseline eyes open vs baseline eyes closed). Figure 5.6(a)

shows the 10-fold validated accuracy for one random subject. A higher accuracy in the

classification of the signals can also be seen over occipital channels. This information can

also be devised on Figure 5.6(b) where boxplots of the accuracies for these four occipital

channels and for all the 25 subjects, are represented.

5.4 Conclusion

It is known and it was verified here that the discriminative information in EEG alpha waves

is mostly contained in the frequency-domain. In spite of this, there is enough information

encoded in the alpha waves wiggles to classify signal segments solely on the features captured

by the HIST method, proposed in this Thesis.

It was also verified that the presence of oscillatory alpha waves is higher around occipital

regions and that an automated procedure which analyze visually the image structure

can detect them. This important oscillatory rhythm has many connections with shifting

of attention and with volitional changes and is of quite relevance in BCI research [13].

Particularly, the BCI paradigm of Visual Spatial Covert Attention is a further area of

research for this method due to the fact that it is entirely based on analyzing alpha

waves [144]. Moreover, the posterior rythm has many implications outside the field of BCI
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and is very important to assess healthy EEG patterns. The exact meaning of alpha waves

is still debated [1] and this basic procedure can open the possibility to explore it under a

different perspective and verify if they can be robustly used for BCI control, understanding

or improvement.



Chapter 6

Motor Imagery: the hunt for a

greek letter

...utilizing the brain signals in

man-computer dialogue.

Vidal

6.1 Introduction

Motor Imagery is an EEG or ECoG based BCI paradigm originated on changes of SMR,

sensorimotor rhythms, that are altered when a person engages in motor behavior, but

it can also be elicited when a person imagines to perform any movement. Particularly,

the Rolandic wicket rhythm, the µ rhythm, is of the same frequency (e.g. 8-12 Hz) of

visual occipital alpha waves, but from a spatially different location (posterior frontal and

anterior parietal areas)[153]. Although SMR patterns presents a high inter- and intra-

subjects variability regarding the signal features required to identify them, an Event Related

Desynchronization/Synchronization of µ rhythm is in general consistent across subjects,

regardless of the specificity of the imagined movement (i.e. what is being imagined to move).

6.2 Materials and Methods

In order to verify if this ERD/ERS could be detected by the method presented in this Thesis,

i.e. by automatically extracting the information from the signal plots, a BCI Simulation is

performed against the public Motor Imagery Dataset 002-2014, published by BNCI-Horizon

2020 website and initiative [130]. This dataset is composed of channels C3, Cz and C4. Four
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surrounding channels are also provided on each of these electrodes conforming a spatial

Laplacian arrangement. The protocol consisted of 8 runs for 14 participants, aged between

20 and 30 years, five females, with a sampling frequency of Fs = 512. Nine out of these 14

participant reported never been exposed to a BCI device. One session per participant is

recorded on a single day and one session consisted of eight consecutive runs with short pauses

between them. The first 5 runs are used for training without feedback, and the remaining 3

runs are used to test the results. The original online experiment was performed with 20 trials

on each run, 10 corresponding to imagining moving the right hand and the other 10 to feet

movement. Figure 6.1 schematize the protocol and the structure of this published dataset.

This BCI simulation experiment is divided in two. In the first simulation, baseline signals,

corresponding to the 1st second of each trial are compared against right hand motor imagery,

which is 4.5 seconds ahead of the beginning of each trial. Signal segments of 1-second length

are processed for 10 trials for each of 5 runs and their descriptors are extracted for both

classes. The second BCI simulation is similar but only extracting trials corresponding to

feet movement imagery.

BCI Simulation or Cross Validation?

The task of decoding information from brain signals inherits practices from Machine

Learning (ML). Cross-validation is used in ML to reduce overfitting bias and to increase

the independence on the dataset that is used as calibration (see Section 4.5.2). However,

the brain data used in BCI is extracted from a person who is performing a task and whose

signals are changing while trying to adapt to this operation. Hence, mixing the dataset,

shuffling the sessions and trials is at least a challenging assumption. BCI Simulation, on

the other hand, is not very well defined in BCI research, but their practice, without naming

it, has been the regular approach for BCI Competitions. It consists in reproducing the

operational sequence that was utilized to generate the dataset. Hence, the experiment is

replicated offline using the training information to train or calibrate a classifier, and to

classify the testing signals as if they were generated at that same moment.

Regardless of any definition, the online validation with feedback of any BCI system is the

unquestioned gold standard of the discipline [153].

6.3 Results

Binary classification accuracies are calculated based on the output of the BCI simulation

on the remaining 3 runs for each participant, in a single-trial approach: for each sampled
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Figure 6.1: Fourteen voluntary participants performed 5 sessions of training and 3 sessions
of testing. On each session each subject had 10 trials to perform Right Hand Motor Imagery
(RH) and 10 trials for Feet Movement (FM). At the same time, each trial has a 2-seconds
baseline and a 4-seconds section to perform the imagery task. For each BCI Simulation,
class 1 is defined from the EEG segments obtained from the baseline section, while class 2 is
based on extracting segments from the imagery section of the EEG signal.
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segment of 1-second length, classification based on the classification algorithm described

in 4.5.3 is applied and a match or mismatch is obtained. Results are shown in Figure 6.2

where for right-hand detection RH, average accuracies of around 70% are obtained for the

channel C3, the best-performing channel bpc, coincidentally with the contralateral structure

of the imagined movement. On the other hand, the binary classification accuracy for feet

imagery detection FM, achieves in all the channels accuracies of just above chance level.

(a) (b)

Figure 6.2: Classification Accuracy for discriminating segments of 1s (N = 512) of EEG
for Motor Imagery detection BCI simulation. (a) Accuracy values for channels C3, Cz and
C4 for the 14 participants of the described MI dataset discriminating between baseline and
right-hand imagery. (b) The same procedure for feet imagery. Accuracy levels averaged
to 70% are obtained only for right-hand movement on the contralateral channel C3. The
horizontal St and vertical Sv patch scale are adjusted to 6, while the amplitude scale factor
γ and time scale factor γt are set equal to 2. This gives an span λ = 0.12 s and maximum
peak-to-peak amplitude ∆µV of 64 µV .

6.4 Conclusion

Offline BCI Simulation of single trial asynchronous triggering for right hand MI based on

signal plots is implemented with a level of success of 70% for 7 out of 14 Participants. Single

trial asynchronous triggering of BCI can be implemented with this paradigm, particularly

for right-hand motor imagery. The name µ rhythm was precisely coined because the shape

of the waves have some resemblance to the greek letter [33]. Additionally, in line with

previous chapter results, though the differentiation information is contained in the frequency

domain, the method based on the Histogram of Gradient Orientation detected differences in

the shape of the signals. Coincidentally with results obtained from Alpha Waves, there is
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information that is mapped in the structure of the waveform, at least for frequencies on the

10 Hz range, which characterize both types of waves.
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Chapter 7

Event Related Potential: The P300

Wave

Talking off the top of your head....

Farwell and Donchin

7.1 Introduction

The P300 [12, 42, 75] is a positive deflection of the EEG signal which occurs around 300 ms

after the onset of a rare and deviant stimulus that the subject is expected to attend. It is

produced under the oddball paradigm [153] and it is consistent across different subjects. It

has a lower amplitude (±5µV ) compared to basal EEG activity, reaching a Signal to Noise

Ratio (SNR) of around −15 db estimated based on the amplitude of the P300 response

signal divided by the standard deviation of the background EEG activity [61].

This signal can be cleverly utilized to implement a speller application by means of a

Speller Matrix. Farwell and Donchin P300 Speller [42] is one the most used BCI paradigms

to implement a thought translation device and to send commands to a computer in the form

of selected letters, similar to typing on a virtual keyboard. This procedure exploits this

cognitive phenomena by detecting along the EEG trace of a person which is focusing on a

sequence of two different visual flashing stimulus, the distinctive P300 transient component

each time the expected stimulus flashes. On the P300 Speller, rows and columns of a 6x6

matrix flash randomly but only the flashing of a column or row where the letter that a user

is focusing will trigger concurrently the P300 ERP.

Figure 7.1 shows an example of the Speller Matrix used in the OpenVibe open source

software [112], where the flashes of rows and columns provide the deviant stimulus required
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to elicit this physiological response. Each time a row or a column that contains the desired

letter flashes, the corresponding synchronized EEG signal should also contain the P300

signature and by detecting it, the selected letter can be identified.

Figure 7.1: Example of the 6× 6 Speller Matrix from the OpenVibe software. Rows and
columns flash in random permutations.

7.2 Materials and Methods

In this section, the signal preprocessing, the ERP extraction, and the speller matrix identifi-

cation are described. Additionally, the experiments that were conducted, are also expounded.

7.2.1 Preprocessing Pipeline

Up to this point, EEG signals were treated in raw form. For the signals studied in Chapter 5

and 6 no preprocessing step was necessary. The reason being, the oscillatory processes that

are studied contain a waveform that is detected from raw signal plots. Additionally, for the

sake of analyzing waveforms as they are, purposely intensive preprocessing procedure are

avoided. However, this is not the case with the P300 Wave. The preprocessing step, and



71

more importantly an enhancement of the SNR through signal averaging, is mandatory in

order to extract the ERP waveform.

P300

Templates

Row 1

Ensemble 
Averaging

Col 12

Selected Row 

and Column

S41(n, c)

S4
ka

(n, c)

S91(n, c)

S9
ka

(n, c)
x̃4(n, c) x̃9(n, c)

l = 1 l = 12I(l,c) I(l,c)

q(row,bpc)
q(col,bpc)

( ̂row, ̂col)

Figure 7.2: For each column and row, an averaged, standardized and scaled signal x̃l(n, c)
is obtained from the segments Sli corresponding to the ka intensification sequences with
1 ≤ i ≤ ka and location l varying between 1 and 12. From the averaged signal, the image
I(l,c) of the signal plot is generated and each descriptor is computed. By comparing each
descriptor q against the set of templates, the P300 ERP can be detected, and finally the
desired letter from the matrix can be inferred.

The 6 rows and 6 columns of the Speller Matrix are intensified providing the visual

stimulus. The number of a row or column is a location. A sequence of twelve randomly

permuted locations l conform an intensification sequence. The whole set of twelve intensifi-

cations is repeated ka times. The data obtained by the capturing device is digitalized and

a multichannel EEG signal is constructed. The raw signal is preprocessed, segmented and

averaged according to:

• Signal Enhancement: This stage consists of the enhancement of the SNR of the

P300 pattern above the level of basal EEG. The pipeline starts by applying a notch

filter to the raw digital signal, a 4th degree 10 Hz lowpass Butterworth filter and finally

a decimation with a Finite Impulse Response (FIR) filter of order 30 from the original
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sampling frequency down to 16 Hz [76]. Group delay is accounted for and properly

corrected.

• Artifact Removal: For every complete sequence of 12 intensifications of 6 rows and

6 columns, a basic artifact elimination procedure is implemented by removing the

entire sequence when any signal deviates above/bellow ±70µV .

• Segmentation: For each of the 12 intensifications of one intensification sequence, a

segment Sli of a window of w seconds of the multichannel signal is extracted, starting

from the stimulus onset, corresponding to each row/column intensification l and to

the intensification sequence i. As intensifications are permuted in a random order, the

segments are rearranged corresponding to row flickering, labeled 1-6, whereas those

corresponding to column flickering are labeled 7-12. Two of these segments should

contain the P300 ERP signature time-locked to the flashing stimulus, one for the row,

and one for the column.

• Signal Averaging: The P300 ERP is deeply buried under basal EEG so the standard

approach to identify it is by point-to-point averaging the time-locked stacked signal

segments. Hence the values which are not related to, and not time-locked to the onset

of the stimulus are canceled out [77].

Balanced Information Transfer Rate (ITR)

This signal averaging procedure determines the operation of any P300 Speller. In order to

obtain an improved signal in terms of its SNR, repetitions of the sequence of row/column

intensification are necessary. And, at the same time, as long as more repetitions are needed,

the ability to transfer information faster is diminished, so there is a trade-off that must be

acutely determined [76].

In brief, the procedure to obtain the point-to-point averaged signal goes as follows:

1. Highlight randomly the rows and columns from the matrix. There is one row and

one column that should match the letter selected by the subject.

2. Repeat step 1 ka times, obtaining the 1 ≤ l ≤ 12 segments Sl1(n, c), . . . , Slka(n, c),

of the EEG signal where the variables 1 ≤ n ≤ N and 1 ≤ c ≤ C correspond

to sample points and channel, respectively. The parameter C is the number of

available EEG channels whereas N is the segment length and Fs is the sampling
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frequency. The parameter ka is the number of repetitions of intensifications and

it is an input parameter of the algorithm.

3. Compute the Ensemble Average by

xl(n, c) =
1

ka

ka∑
i=1

Sli(n, c) (7.1)

for 1 ≤ n ≤ N and for the channels 1 ≤ c ≤ C. Once this is computed, the

averaged signal xl(n, c) can be standardized using the procedure from Section 3.3,

conforming x̃l(n, c) for the twelve locations 1 ≤ l ≤ 12.

7.2.2 Speller Matrix letter Identification

The speller matrix operation is divided in three parts. First, the EEG signal is processed

and ERPs are extracted. Second, descriptors obtained from these ERPs are used to build

the template dictionary T during the calibration phase of the speller. And finally, the spelled

letter is identified by extracting descriptors from new signals, and using the classification

algorithm to identify them. The next sections outline details of these procedures.

P300 ERP Extraction

Segments corresponding to row flickering are labeled 1-6, whereas those corresponding to

column flickering are labeled 7-12. The extraction process has the following steps:

• Step A: First highlight rows and columns from the matrix in a random permutation

order and obtain the Ensemble Average as detailed in steps 1, 2 and 3 in Section 7.2.1.

• Step B: Plot the signals x̃l(n, c), 1 ≤ n ≤ N , 1 ≤ c ≤ C, according to Section 3.7 in

order to generate the images I(l,c) for rows and columns 1 ≤ l ≤ 12.

• Step C: Obtain the descriptors d(l,c) for rows and columns from I(l,c) in accordance

to the method described in Section 4.2.

Calibration

A trial, as defined by the BCI2000 platform [120], is every attempt to select just one letter

from the speller. A set of trials is used for calibration and once the calibration is complete it

can be used to identify new letters from new trials.
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During the calibration phase, two descriptors d(l,c) are extracted for each available

channel, corresponding to the locations l of a selection of one previously instructed letter

from the set of calibration trials. These descriptors are the P300 templates, grouped together

in the template set T c. This set is constructed using the steps described in Section 7.2.1

and the steps A, B and C of the P300 ERP extraction process.

Additionally, the best performing channel, bpc is identified based on the the channel

where the best character recognition rate is obtained.

Letter identification

In order to identify the selected letter, the template set T bpc is used as a database. Thus,

new descriptors q(l,bpc) from query images are computed for each location l and they are

compared against the descriptors belonging to the calibration template set T bpc.

• Step D: Match to the calibration template T bpc by computing

ˆrow = arg min
l∈{1,...,6}

k∑
h=1

∥∥∥q(l,bpc) − d
(bpc)
h

∥∥∥2
(7.2)

and

ĉol = arg min
l∈{7,...,12}

k∑
h=1

∥∥∥q(l,bpc) − d
(bpc)
h

∥∥∥2
(7.3)

with d
(bpc)
h belonging to the set NT (q(l,bpc)), which is defined, for the best performing

channel, as NT (q(l,bpc)) = {d(bpc)
h ∈ T bpc/d(bpc) is the k-nearest neighbor of q(l,bpc)}.

This procedure is a unary classification scheme, an adapted version of the algorithm

described in Section 4.5.3 to the letter identification required in the P300-Based BCI

Speller implementation.

By computing the aforementioned equations, the letter of the matrix can be determined

from the intersection of the row ˆrow and column ĉol. Figure 7.2 shows a scheme of this

process.

7.2.3 Experimental Protocol

To verify the validity of the proposed framework and method over transients events, ex-

periments over four different datasets are performed. The first three datasets use a similar
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experimentation protocol, whereas the last one is from a BCI Competition.

First, the public dataset 008-2014 [114] published on the BNCI-Horizon website [22]

by IRCCS Fondazione Santa Lucia, is used. A BCI Simulation is performed to decode the

spelled words from the provided signals.

Additionally, an own dataset with the same experimental conditions is generated. A

different BCI Simulation is implemented and the decoding of letters is performed.

In order to verify how this method performs against other similar methods that also use

the structure of the waveform, a pseudo-real dataset is constructed where the characteristics

of the ERP are carefully adjusted simulating different cognitive mechanisms that can alter

their shape.

Finally, the performance of the method presented in this Thesis is tested against one of

the dataset published by the BCI Competitions.

Dataset I - P300 ALS Public Dataset

The experimental protocol used to generate this dataset is explained in [114] but can be

summarized as follows: 8 subjects with confirmed diagnoses but on different stages of ALS

disease, were recruited and accepted to perform the experiments. The Visual P300 detection

task designed for this experiment consisted of spelling 7 words of 5 letters each, using

the traditional P300 Speller Matrix [42]. The flashing of rows and columns provide the

deviant stimulus required to elicit this physiological response. The first 3 words are used

for calibration and the remaining 4 words, for testing with visual feedback. A trial is every

attempt to select a letter from the speller. It is composed of signal segments corresponding

to ka = 10 repetitions of flashes of 6 rows and ka = 10 repetitions of flashes of 6 columns of

the matrix, yielding 120 repetitions. Flashing of a row or a column is performed for 0.125 s,

following by a resting period (i.e. inter-stimulus interval) of the same length. After 120

repetitions an inter-trial pause is included before resuming with the following letter.

The recorded dataset was sampled at 256 Hz and it consisted of a scalp multichannel

EEG signal for electrode channels Fz, Cz, Pz, Oz, P3, P4, PO7 and PO8, identified according

to the 10-20 International System, for each one of the 8 subjects. The recording device was

a research-oriented digital EEG device (g.Mobilab, g.Tec, Austria) and the data acquisition

and stimuli delivery were handled by the BCI2000 open source software [120].

In order to assess and verify the identification of the P300 response, subjects are instructed

to perform a copy-spelling task. They have to fix their attention to successive letters for
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copying a previously determined set of words, in contrast to a free-running operation of the

speller where each user decides on its own what letter to choose.

Dataset II - P300 for healthy subjects

We replicate the same experiment on healthy subjects using a wireless digital EEG device

(g.Nautilus, g.Tec, Austria). Figure 7.3 shows the front and back of the g.Tec head cap and

two subjects performing this experiment. The experimental conditions are the same as those

used for the Dataset I, as detailed in section 7.2.3. The produced dataset is available in a

public online repository [109].

Participants are recruited voluntarily and the experiment is conducted anonymously in

accordance with the Declaration of Helsinki published by the World Health Organization.

No monetary compensation is handed out and all participants agree and sign a written

informed consent. This study is approved by the Departamento de Investigación y Doctorado,

Instituto Tecnológico de Buenos Aires (ITBA). All healthy subjects have normal or corrected-

to-normal vision and no history of neurological disorders. The experiment is performed

with 8 subjects, 6 males, 2 females, 6 right-handed, 2 left-handed, average age 29.00 years,

standard deviation 11.56 years, range 20-56 years.

EEG data is collected in a single recording session. Participants are seated in a com-

fortable chair, with their vision aligned to a computer screen located one meter in front of

them. The handling and processing of the data and stimuli is conducted by the OpenVibe

platform [112].

Gel-based active electrodes (g.LADYbird, g.Tec, Austria) are used on the same positions

Fz, Cz, Pz, Oz, P3,P4, PO7 and PO8. Reference is set to the right ear lobe and ground is

preset as the AFz position. Sampling frequency is slightly different, and is set to 250 Hz,

which is the closest possible to the one used with the Dataset I.
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(a) Front view of g.LADYbird cap showing
three frontal electrodes AFz, Fz and Cz.

(b) Rear view of g.LADYbird cap showing Cz
and Pz electrodes.

(c) Subject performing the experiment de-
scribed in section 7.2.3.

(d) A different subject performing the P300
Speller experiment.

Figure 7.3: The g.Tec device, wearable and wireless g.Nautilus headset. Subjects wearing
the g.LADYbird cap.
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Dataset III - P300 Pseudo-Real Dataset Generation

To construct this artificial dataset, a P300 ERP template, obtained from the Dataset I of

ALS patients, is superimposed into a distinct EEG stream with null-signals. This EEG

trace was experimentally obtained by a subject which was observing the flashing of the

stimulus matrix during a P300 Speller procedure but did not engage in focusing on any

letter in particular. Everything is there, except the P300 ERP component. Along the EEG

stream, the markers information was used to localize the True segments where the P300

should have been found, and those timing locations are used to superimpose the extracted

ERP waveform. By implementing this pseudo-real approach, it is possible to effectively

control null-signals and to adjust the shape of this evoked potential in accordance to similar

procedures used in other works [100, 67, 107].

The template ERP is acquired from the Subject Number 8 of the public dataset 008-2014

of ALS patients. Segments from the EEG signal containing the ERP are extracted for the

trial number 2, and they are point-to-point coherently averaged. This P300 ERP can be

seen in Figure 7.4.

The EEG stream with null-P300 signal is obtained by the following procedure: A

subject participant is recruited voluntarily and the experiment is conducted anonymously in

accordance with the Declaration of Helsinki published by the World Health Organization.

No monetary compensation is handed out and she/he agrees and signs a written informed

consent. This study is approved by the Departamento de Investigación y Doctorado, Instituto

Tecnológico de Buenos Aires (ITBA). The participant is healthy and have normal or corrected-

to-normal vision and no history of neurological disorders. This voluntary subject is aged

between 20-30 years old. EEG data is collected in a single recording session. She/He is

seated in a comfortable chair, with her/his vision aligned to a computer screen located

one meter in front of her/him. The handling and processing of the data and stimuli is

conducted by the OpenVibe platform [112]. Gel-based active electrodes (g.LADYbird, g.Tec,

Austria) are used on locations Fz, Cz, Pz, Oz, P3,P4, PO7 and PO8 according to the 10-20

international system. Reference is set to the right ear lobe and ground is preset as the AFz

position. Sampling frequency is set to 250 Hz.

The participant is instructed to passively watch the flashing screen while not focusing

on any particular letter. The experimental conditions are the same as those described for

previous datasets. A questionnaire is handed out at the end of the experiment with questions

about how the participant felt during it, without giving more details.
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Figure 7.4: ERP Template obtained from the coherent point-to-point ensemble average from
the signals of Subject Number 8 of the Dataset I of ALS patients. The template is 1-second
long which is 256 sample points, and the eight channels are superimposed with different
colors. Vertical axis represents amplitude in µV while horizontal axis reflects discrete sample
points. The P3b component can be seen around the sample index 150 and 200.

Figure 7.5 shows a 5s sample of the EEG trace obtained with the MNE library [50].

Channel S represents the twelve different stimulus markers (columns or rows) while channel

L represent the label (True vs False). Labels are represented by square signals. False

segments are marked with single amplitude square signals while True segments are identified

by double-amplitude square signals. Subfigure (a) shows the signals before the ERP template

is superimposed while subfigure (b) shows the same signals with the superimposed ERP

template. At first-sight, differences are really hard to spot visually. Subfigures (c) and (d)

show only one second of channels Cz and L from the same segment. The superimposed

ERP can be devised enclosed by the vertical bars, around 31.5 seconds, where in (d) the

peak is slightly bigger. Figure 7.6 shows the obtained ensemble average ERPs as result of

superimposing the template signal into the EEG stream, time-locked to the stimulus onset.

These 12 point-to-point averaged segments correspond to the first trial of the EEG stream.

Inter- and Intra-trial variability, with eventually cognitive implications, can alter the

shape of the evoked P300 potential. Hence, it is of interest to assess at which extend
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(a) EEG trace of the original signal.
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(b) The same eight-channel signal segment with
the superimposed template.
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(c) EEG sample of Cz and L channel of the
original EEG trace.
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(d) The same segment with the superimposed
template.

Figure 7.5: Eight-channel EEG signal without and with the superimposed ERP Template.
The channel L, the mark which identifies where to superimpose the P300 ERP, is shown as
well as the channel S which identifies the stimulus that was presented. On (c) and (d) the
small variation that was introduced by the superimposition of the ERP can be seen enclosed
by the vertical bars, where the slope of the bump on subfigure (d) is slightly bigger

waveform-based algorithm can handle these variations. Using this dataset, the following

experiments are conducted to simulate known alterations over waveform components and

to verify the performance of the algorithms expounded on Section 2.9.3, MP1, MP2, PE,

SHCC and the one proposed by this Thesis: HIST.

• Experiment 1 - Letter Identification Performance: the letter identification performance

of each one of these methods on the artificially generated pseudo-real dataset.

• Experiment 2 - Latency Noise: Instead of superimposing the P300 ERP over the EEG

trace at the exact locations where stimulus onsets are situated, an artificial latency lag

is added. The lagging value is picked from a uniform distribution U(0, 0.4) [s] ranging

from 0 to 0.4 of the 1s segment size [36].

• Experiment 3 - Component Amplitude Noise: the amplitude of the main P3b component

of the ERP template is randomly altered. This component is defined to be located

from the stimulus onset between 148 ms up to 996 ms which is around 840 ms long.
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This waveform element, multiplied by a gain factor, is subtracted from the original

template. This gain factor between 0 and 1 is drawn from a uniform distribution

U(0, 1). Additionally this subtracted waveform is multiplied by a Gaussian window

with a support of the same length [57]. This avoids adding any discontinuity into the

artificial generated signal.
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Figure 7.6: Point-to-point averaged signals for the first letter identification trial. The ERP is
superimposed on locations 3 and 9. Location l = 3 is obtained while averaging the segments
where the row of the speller matrix is intensified whereas locations 9 is calculated from the
intensification of the corresponding column.

The classification method Support Vector Machine SVM with a linear kernel, is added

for comparison as control using a feature f constructed by normalizing the signal on each

channel [76]. This method has been proved efficient in decoding P300 in several BCI

Competitions [72].

All these experiments are executed using a cross-validation procedure dividing the letter

to spell in two sets, preserving the structure of the letter identification trials. Spelling letters

are scrambled while the order and group of each intensification sequence is preserved.

Dataset IV - P300 Dataset IIb BCI Competition II (2003)

Finally the performance at letter identifications for the method proposed on this Thesis

and the other similar methods described in 2.9.3 is evaluated by performing an offline BCI

Simulation on the Dataset IIb of the BCI Competition II (2003) [15]. The protocol of this

dataset is very similar to what was used to obtain the pseudo-real dataset. The sampling

frequency of this dataset is 240, the number of letters are 73 where the first 42 are used to

create the template dictionary for all the methods and the remaining 31 are used to test the

character recognition rate performance.
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Parameters

The P300 event can have a span λ of 400 ms and its peak-to-peak amplitude ∆µV can reach

10µV [111]. Hence it is necessary to utilize a signal segment of size w = 1 second. In order

to compute the patch parameters, Equations 4.5 and 4.6 are used to determine the value of

3 for the horizontal patch scale St as well as the vertical patch scale Sv. It is important to

remark that as it is described in Section 7.2.1 the effective sampling frequency Fs of the

signal is 16 Hz.

As the peak-to-peak amplitude is small, to have a better resolution, the amplitude

scales parameter are selected to be γ = 4, and γt = 4. With this configuration, the local

patch and the descriptor can identify events of at most 16 µV of amplitude, with a span

of λ = 0.99 seconds, covering almost the entire segment. According to Equations 3.17

and 3.16, this also determines that 1 pixel represents 1
γ = 1

4µV on the vertical direction,

and 1
Fs γt

= 1
64 seconds on the horizontal direction. The keypoints kp are located at

(xkp , ykp) = (0.55Fs γt, z
l(c)) = (35, zl(c)) for the corresponding channel c and location l

(see Equation 3.11). In this way the whole transient event is captured.

Lastly, the number of channels C is equal to 8 for the first three datasets and the

number of intensification sequences ka is fixed to 10, whereas for the Dataset IV of the BCI

Competition, C is equal to 64 and the value ka is equal to 15. The parameter k used to

construct the set NT (q(l,c)) is assigned to k = 7, which was found empirically to achieve

better results. In addition, the norm used on Equations 7.2 and 7.3 is the cosine norm, and

descriptors are normalized to [−1, 1] (check Chapter A).

7.3 Results

Table 7.1 shows the results of applying the Histogram of Gradient Orientations (HIST)

algorithm to the subjects of the Dataset I of ALS patients. The percentage of correctly

spelled letters is calculated while performing an offline BCI Simulation. From the seven

words for each subject, the first three are used for calibration, and the remaining four are

used for testing. The best performing channel bpc is informed as well. The target ratio is

1 : 36; hence theoretical chance level is 2.8%. It can be observed that the best performance of

the letter identification method is reached in a dissimilar channel depending on the subject

being studied. Moreover, this table shows for comparison the obtained performance rates

using single-channel signals with the Support Vector Machine (SVM) classifier. This method

is configured to use a linear kernel. The best performing channel bpc, where the best letter
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identification rate was achieved, is also depicted.

Table 7.1: Dataset I: Character recognition rates for the public dataset of ALS patients
using HIST calculated from single-channel plots. Performance rates using single-channel
signals with the SVM classifier are shown for comparison. The best performing channel bpc
for each method is visualized

Participant bpc HIST bpc Single Channel SVM

1 Cz 35% Cz 15%
2 Fz 85% PO8 25%
3 Cz 25% Fz 5%
4 PO8 55% Oz 5%
5 PO7 40% P3 25%
6 PO7 60% PO8 20%
7 PO8 80% Fz 30%
8 PO7 95% PO7 85%
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Figure 7.7: Performance curves for the eight subjects included in the dataset I of ALS
patients. Three out of eight subjects achieved the necessary performance to implement a
valid P300 speller.

The Information Transfer Rate (ITR), or Bit Transfer Rate (BTR), in the case of reactive

BCIs [153] depends on the amount of signal averaging required to transmit a valid and robust

selection. Figure 7.7 shows the performance curves for varying intensification sequences for

the subjects included in the dataset of ALS patients. It can be noticed that the percentage

of correctly identified letters depends on the number of intensification sequences that are

used to obtain the averaged signal. Moreover, when the number of intensification sequences
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tend to 1, which corresponds to single-intensification character recognition, the performance

is reduced. As mentioned before, the SNR of the P300 obtained from only one segment of

the intensification sequence is very low and the shape of its P300 component is not very well

defined.

Table 7.2: Dataset II: Character recognition rates and bpc using HIST calculated from
single-channel signals. Performance rates using single-channel signals with the SVM classifier
are shown for comparison.

Participant bpc HIST bpc Single Channel SVM

1 Oz 40% Cz 10%
2 PO7 30% Cz 5%
3 P4 40% P3 10%
4 P4 45% P4 35%
5 P4 60% P3 10%
6 Pz 50% P4 25%
7 PO7 70% P3 30%
8 P4 50% PO7 10%

In Table 7.2 the results obtained for 8 healthy subjects are shown. It can be observed that

the performance is above chance level. It was verified that HIST method has an improved

performance at letter identification than SVM that process the signals on a channel by

channel strategy (Wilcoxon signed-rank test, p = 0.004 for both datasets).

Table 7.3: Character recognition rates and the best performing channel bpc for the pub-
lic dataset I using the HIST versus performance rates obtained by SWLDA and SVM
classification algorithms with a multichannel concatenated feature.

Participant bpc HIST Multichannel SWLDA Multichannel SVM
for HIST

1 Cz 35% 45% 40%
2 Fz 85% 30% 50%
3 Cz 25% 65% 55%
4 PO8 55% 40% 50%
5 PO7 40% 35% 45%
6 PO7 60% 35% 70%
7 PO8 80% 60% 35%
8 PO7 95% 90% 95%

Tables 7.3 and 7.4 are presented in order to compare the performance of the HIST

method versus a multichannel version of the SWLDA and SVM classification algorithms for

both datasets. The feature was formed by concatenating all the channels [76]. SWLDA is

the methodology proposed by the ALS dataset’s publisher. As can be observed in Figure 7.8,
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it was verified for the dataset I of ALS patients that HIST has similar performance against

other methods like SWLDA or SVM, which use a multichannel feature (Quade test with

p = 0.55) whereas for the dataset of healthy subjects significant differences were found

(Quade test with p = 0.02) where only the HIST method achieved a different performance

than SVM (with multiple comparisons, significant difference of level 0.05).

Figure 7.8: Boxplots obtained for the methods HIST and multichannel SVM and SWLDA
for the Datsets I and II. The achieved performance for the HIST method is similar to the
performace obtained for the other methods (Quade test with p = 0.55).

Table 7.4: Character recognition rates and the best performing channel bpc for the dataset II
using HIST versus performance rates obtained by SWLDA and SVM classification algorithms
with a multichannel concatenated feature.

Participant bpc HIST Multichannel SWLDA Multichannel SVM
for HIST

1 Oz 40% 65% 40%
2 PO7 30% 15% 10%
3 P4 40% 50% 25%
4 P4 45% 40% 20%
5 P4 60% 30% 20%
6 Pz 50% 35% 30%
7 PO7 70% 25% 30%
8 P4 50% 35% 20%

The P300 ERP consists of two overlapping components: the P3a and P3b, the former
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with frontocentral distribution while the later stronger on centroparietal region [106]. Hence,

it is known that the stronger response of this ERP is usually found on the central channel

Cz [114]. However, [76] shows that the response may also arise in occipital regions. We

found that by analyzing only the waveforms, occipital channels PO8 and PO7 show higher

performances for some subjects.

As subjects have varying latencies and amplitudes of their P300 components, they also

have a varying stability of the shape of the generated ERP [89]. Figure 7.9 shows 10 sample

P300 templates patches for patients 8 and 3 from the Dataset I of ALS patients. It can be

discerned that in coincidence with the performance results, the P300 signature is more clear

and consistent for subject 8 (A) while for subject 3 (B) the characteristic pattern is more

difficult to perceive.

Figure 7.9: Ten sample P300 template patches for Subjects 8 (A) and 3 (B) of the public
Dataset I of ALS patients.

Additionally, the stability of the P300 component waveform has been extensively studied

in patients with ALS [123, 84, 95, 85, 87] where it was found that these patients have a

stable P300 component, which were also sustained across different sessions. In line with
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these results we do not find evidence of a difference in terms of the performance obtained by

analyzing the waveforms, by using the HIST method, for the group of patients with ALS

and the healthy group of volunteers (Mann-Whitney U Test, p = 0.46). Particularly, the

best performance is obtained for a subject from the ALS dataset for which, based on visual

observation, the shape of they P300 component is consistently identified.

It is important to remark that when applied to binary images obtained from signal

plots, the feature extraction method described in Section 4.2 generates sparse descriptors.

Under this subspace we found that using the cosine metric yielded a significant performance

improvement (check Chapter A). On the other hand, the unary classification scheme based

on the NBNN algorithm proved very beneficial for the P300 Speller Matrix. This is due to

the fact that this approach solves the unbalance dataset problem which is inherent to the

oddball paradigm [137].

Regarding Experiments 1, 2 and 3 for the Dataset III, results are shown in Table 7.5

and in Figure 7.10, 7.11 and 7.12. Table 7.5 shows the performance for the Experiment I,

II and III while identifying each letter of the standard P300 Speller Matrix, and the bpc,

the channel where the best performance is attained. Figure 7.10 shows the performance

curves attained for the Experiment 1, for the six algorithms under comparison. Each one

represents the percentage of letters that is actually predicted by each algorithm using a

cross-validation procedure. As previously described the data is continuously divided in

two sets, where the first 15 letters are used to derive the dictionary of templates while

the remaining 20 letters are used to measure the letter identification performance. This is

repeated one hundred times, and performances averaged. Figure 7.11 shows the same results

for the Experiment 2, where a noisy latency lag was included. Last but not least, Figure

7.12 represents the performance values obtained for the Experiment 3, when the amplitude

of the P3b component of the template is randomly attenuated.

A significant reduction of performance was found when latency noise is added (Experiment

1 vs 2, Wilcoxon rank sum test, one tail, with p = 0.0022). The latency noise added to

each segment Sli under the Experiment 3, reduces the information contained in the averaged

signal, mainly due to the invalidation of the SNR enhancement performed by the signal

averaging procedure. This reduction alters the obtained shape of the waveform of the ERP

and impacts on the performances regardless of the method. On the other hand, all the

algorithms show some resistance to noise in peak amplitudes of the main component. This is

shown by the similarities of obtained results between the Experiment 1 and 3 (Wilcoxon rank
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sum test, two tails, not rejected with p = 0.1797). Additionally, a two-way balanced Quade

test was performed to evaluate the performance’s differences for the three experiments for

the dataset III, and for the six methods. Difference among the method’s letter identification

rates were found with p = 0.0019. The methods SHCC, HIST, MP-1 performed much better

than the other algorithms, including SVM. By making multiple comparisons at a level 0.05,

significant differences are found between SHCC vs MP-1,MP-2, PE and SVM, between

HIST vs. MP-2 and PE, and between SVM and MP-2.
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Figure 7.10: Speller performance obtained for each method for the Experiment 1. Y-axis
shows performance accuracy while X-axis shows the number of intensification sequences
used to calculate the point-to-point signal average.

Finally, results obtained for the dataset BCI Competition 2003 IIb are shown in Figures

7.13 and in Table 7.6. As mentioned before, for this experiment the number of available

intensification sequences is 15. The obtained character identification rate is above theoretical

chance level, and for HIST close to the usable threshold of 70% [73].
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Figure 7.11: Speller performance obtained for each method while latencies are artificially
added to each single-intensification segment corresponding to the Experiment 2. The achieved
performance is significantly reduced for all methods. Y-axis shows letter identification
performance while X-axis shows the number of intensification sequences used to calculate
the ensemble average.

7.4 Conclusion

The usage of the Histogram of Gradient Orientations to implement a valid P300-Based BCI

Speller application is expounded. Additionally, its validity is, first, evaluated using a public

dataset of ALS patients and an own dataset of healthy subjects. Second, the method is

contrasted against other approaches based on a shared similar idea and results are presented.

Finally, the method is used on a public dataset of a BCI Competition.

It is verified that HIST has an improved performance at letter identification than

other methods that process the signals on a channel by channel strategy, and it even has

a comparable performance against other methods like SWLDA or SVM, which uses a
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Figure 7.12: Speller performance obtained for the Experiment 3 while the amplitudes of the
P3b component of the superimposed ERP are randomly reduced. Y-axis shows performances
for character recognition rates while X-axis shows the number of intensification sequences.

multichannel feature. Furthermore, this method has the advantage that shapes of waveforms

can be analyzed in an objective way. We observed that the shape of the P300 component is

more stable in occipital channels, where the performance for identifying letters is higher. We

additionally verified that ALS P300 signatures are stable in comparison to those of healthy

subjects.

We believe that the use of descriptors based on the histogram of gradient orientation,

presented in this work, can also be utilized for deriving a shape metric in the space of the

P300 signals which can complement other metrics based on time-domain as those defined

by [85]. It is important to notice that the analysis of these waveform shapes is usually

performed in a qualitative approach based on visual inspection [123], and a complementary

methodology which offer a quantitative metric will be beneficial to these routinely analysis



91

Table 7.5: Dataset III: Speller classification performance obtained for all the waveform-
based algorithms: MP Matching Pursuit, HIST Histogram of Gradient Orientation, PE
Permutation Entropy and SHCC Slope Horizontal Code Chain. Additionally, the control
algorithm SVM Support Vector Machines is included for comparison. All the methods
process the signal on a channel-by-channel basis, hence the best performing channel is also
shown. In this case with absence of null-signals, it can be interpreted as the channel that
adds less noise to the ERP template. All the methods used 10 intensification sequences to
coherently average the trials to obtain the averaged signal.

Method bpc Performance
Experiment 1 Experiment 2 Experiment 3

MP 1 PO8 67% 15% 50%
MP 2 PO7 24% 6% 10%
HIST PO8 91% 18% 66%
PE Cz 61% 9% 32%

SHCC P4 98% 31% 80%
SVM PO8 78% 7% 53%

Table 7.6: Speller classification performance obtained for Dataset IV, the dataset IIb of
the BCI Competition II (2003), for each one of the algorithms using 15 repetitions of
intensification sequences. The first 42 trials are used for training to build the template
dictionary and the remaining 31 for testing. The channel where the best performance is
attained, is also shown.

Method bpc Performance

MP 1 FC2 50%
MP 2 CPz 22%
HIST Cz 67%
PE PO8 22%

SHCC Cz 61%
SVM C1 32%

of the waveform of ERPs.

Considering other methods inspired on the same idea, we verified that similar performance

results are obtained for the methods SHCC, HIST and MP-1 and that it is also possible

to obtain discriminating information from the underlying signal based exclusively on an

automated method of processing the waveforms.

The goal of this Chapter is to answer the question if a P300 component could be solely

determined by inspecting automatically their waveforms. We conclude affirmatively, though

two very important issues still remain:

First, a correct alignment of the segments used on the averaging procedure is crucial: a
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Figure 7.13: Speller performance obtained for the Dataset IV (Dataset IIb of the BCI
Competition II 2003) for each one of the algorithms. An offline BCI Simulation is performed
using the first 42 trials as training and the remaining 31 as testing. The horizontal axis show
the number of intensification sequences, from 0 to 15 for this dataset, while the vertical axis
show the performance rate.

preliminary approach was tested to assess if the waveform shape of the P300 of the averaged

signal can be improved (i.e. more visually similar between different trials) by applying

different alignments of the stacked segments (see Figure 7.2) and it was verified that there is

a better performance when a correct segment alignment regularize the averaged waveform.

We applied Dynamic Time Warping (DTW) [25] to automate the alignment procedure but

we were unable to find a substantial improvement. Further work to study the alignment of

segments on averaging procedures, should be addressed.

The second problem is the amplitude variation of the P300. Standardizing the averaged

signal, as described in Equation 3.9 has the effect of normalizing the peak-to-peak amplitude,

moderating its variation. It has also the advantage of reducing noise that was not reduced by

the averaging procedure. It is important to remark that the averaged signal variance depends

on the number of segments used to compute it [143]. The standardizing process converts the

variance of this averaged signal to unit variance which makes it independent of the number

segments used to compute the average. Although this is initially an advantageous approach,

this standardizing process also reduces the amplitude of any significant P300 complex wave,

diminishing its automatic interpretation capability.



Chapter 8

Epilogue

In the first Chapter, the following question was posed: is it possible to analyze and discrimi-

nate electroencephalographic signals by automatic processing the shape of the waveforms

using the Histogram of Gradient Orientations ?

We conclude affirmatively, and remark the following points:

• EEG Waveforms can be analyzed by this method.

• EEG Oscillatory processes can be studied by the shape of the plots.

• The stability of ERP components can be studied objectively with the proposed method.

At the conclusion of this work, we think that there are many potential benefits from the

application of this technique and that there are several areas that could be improved from

this work and extensions.

8.1 Conclusions

In this Thesis, a method to analyze EEG signals based on the waveform characterization, is

presented. The proposed procedure transforms the signal into an image, plots the signal on

it, and analyzes their local structure using the Histogram of Gradient Orientations. Aiming

to offer a BCI implementation, this technique is adapted to perform a feature extraction

procedure. Finally a classification scheme is outlined.

This method is verified on EEG oscillatory processes. An experiment with ten subjects

and using a commercial-grade device, is conducted. The application of the method effectively

detects Alpha Waves from signals, differentiating two mental states. It is also proved on a
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public dataset. The prevalence of these signals in occipital areas is determined by a higher

accuracy obtained for those brain regions.

Oscillatory EEG signals for BCI Motor Imagery paradigms are also analyzed. A scheme

to detect right hand movement imagery is implemented where the characterization of the

shape of the µ signals is identified by using the proposed methodology. The procedure is

tested on a public dataset of fourteen subjects.

The applicability of the method is extended to study transient signals, particularly the

P300 ERP, due to the their importance, and widespread adoption in BCI. The method

to extract the ERP waveform is expounded and used to recognize it from EEG signals by

analyzing their waveform shape. An additional experiment on eight healthy subjects is

performed but using a research-grade EEG device, specifically designed for this discipline.

The procedure is tested against the produced dataset and a usable level of accuracy, is

obtained. A BCI simulation is also implemented against a public dataset of ALS patients

where it is verified that the waveform of the P300 is stable regardless of the health condition,

offering an alternative method to study waveform stability. A pseudo-real dataset is created

to test for regular issues with ERP extraction procedures and the method proposed here is

additionally contrasted against a set of other four alternative methods which are inspired in

analyzing EEG waveforms. It is found that this method achieved higher or equal performance

values than the other methods.

This technique has the following benefits:

1. Universal applicability,

2. Objective waveform metric,

3. Foster clinical collaboration,

4. Clinical-tool making,

5. Intelligible property and BCI reliability.

Universal applicability: The Histogram of Gradient Orientation method has a poten-

tial universal applicability in BCI, because the same basic methodology can be applied to

detect different patterns in EEG signals. The search for meaningfull or cognitive waveforms,

or cognemes is a very important issue in BCI, neuroscience research and neurophysiology.

Automatic classification of patterns in EEG that are specifically identified by their shapes
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like K-Complex, Vertex Waves, Positive Occipital Sharp Transient [129] are a prospect future

work to be considered.

Objective waveform metric: Descriptors are a direct representation of the shape of

signal waveforms. Hence, they can be used to build databases of quantitative descriptions of

known waveforms and improve atlases, which are currently based on qualitative descriptions

of signal shapes.

Foster clinical collaboration: In our opinion, the best benefit of the presented method

is that a closer collaboration of the field of BCI with physicians can be fostered, since this

procedure intent to imitate human visual observation. After all, analyzing waveforms by

their waveform shapes is a established procedure of the clinical EEG community. One of

the main goals of the BCI discipline is to provide assistance to patients and to provide

alternative tools to be used in diagnostics and rehabilitation procedure. This requires a

clinical focus which is often neglected in BCI research.

Clinical tool-making: The method presented in this Thesis offers the ability to

identify waveforms shapes in an exhaustive manner. This can eventually provide assistance

to physicians to localize EEG patterns, specially in long recordings periods, frequent in

clinical sleep studies or neonatal ICU. Additionally, it can be used for artifact removal which

is performed on many occasions by visually inspecting signals.

Intelligible property and BCI reliability: BCI reliability is yet an unfulfilled goal

in this discipline [153]. The convenience of analyzing or including metrics about the shape

of the EEG, is that clinical EEG diagnosis may support a vast set of already understood

knowledge which is based on identifying EEG patterns by their shape and that can steer

towards a more robust implementation of BCI devices.

Moreover, this conventional clinical method of observing the waveform is understood

to be subjective and laborious because results depend on the technicians’ experience and

expertise. At the same time, it is a subjective time-consuming task, with long-learning

curves, requires specialized personnel, and it has significant error rates [138]. These problems

has pushed for the development of quantitative EEG, to automate the decoding of brain

signals [135]. In spite of this, the clinical conventional practice has not been replaced and it

is still widespread: the gold standard in clinical EEG is still Eye Ball.

We believe that the adoption of a hybrid methodology which can process the signal

automatically, but at the same time, maintains an inherent intelligible property [19] that

can be mapped to existing procedures, and above all, can maintain the clinician trust on
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the system behavior, is beneficial to Clinical Practice, Neuroscience and BCI research.

8.2 Future Work

There are potential areas that could be improved upon the presented methodology:

1. Multichannel extension,

2. Scale space analysis on EEG for keypoint localization,

3. Neuroimaging,

4. Ensemble classifiers,

5. Computer vision interdisciplinary work,

6. Extension to other disciplines.

Multichannel extension: The methods described in section 2.9.3 and the one proposed

here analyze the waveform on single channels. Indeed, the nature of the proposal is to

analyze the shape of single waveforms obtained from just one channel. However, for

automatic interpretation of the signal it is known that multichannel extension is convenient.

Hence, a multichannel extension should likely be beneficial to the usage of the proposed

methodology [51].

Scale space analysis of EEG for keypoint localization: This Thesis emphasizes

waveform representation but another important area is waveform detection. The theory of

Scale Space developed for the SIFT Detector is an important area for future study that has

not been explored thoughtfully in the EEG or BCI literature.

Neuroimaging: Many tools for Computer Vision are being used in neuroscience to

devise methods to understand brain function. The Histogram of Gradient Orientations can

be explored from this same perspective due to their visually relevant nature.

Ensemble classifiers: Compound classifiers or ensemble of features can be further

explored to improve accuracies. Successful approaches in Computer Vision or Pattern

Recognition in other areas, use them [34] with a significant enhancement of the classification

performances [52].

Computer Vision interdisciplinary work: The extensive body of research from

Computer Vision on SIFT provides a fruitful path to explore in order to achieve faster and
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improved algorithms to automatically detect EEG characteristics. Other image processing

feature extraction methods like SURF, GLOH, RANSAC could also be considered.

Extensions to other disciplines: The method of Histogram of Gradient Orientations,

after all, is solely based on analyzing waveforms. Hence, it can be extended into other

disciplines where the structure or shape of the waveform is of relevance. Analyzing signals by

their waveforms is relative common in chemical analysis [128], seismic analysis in geology [101],

and quantitative financial analysis. Electrocardiogram EKG, on the other hand, has been

extensively processed and studied analyzing the waveform structure [131].
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Appendix A

Implementation Details

A.1 Open Source Software

The software produced for this Thesis can be found in the following public repositories:

1. https://bitbucket.org/itba/hist

2. https://github.com/faturita/BciVisualToolbox

3. https://github.com/faturita/vlfeat

4. https://github.com/faturita/GuessMe

Repository 1 contains an integrated version of the whole set of utilities. It is available

under GPL license.

A.2 BCI and EEG Utilities

Signal Processing, EEG processing routines and BCI utilities have been made publicly

available in the Repository 2. This package is a set of tools for MATLAB (Mathworks Inc.,

Natick, MA, USA). It is compatible with MATLAB V2014a and has been tested successfully

on 2015b and 2017a, on Windows 7 and Mac OS X High Sierra.

A.3 VLFeat

In order to process the image, extract the patch, obtain the gradient image and the SIFT

Descriptor, the Histogram of Gradient Orientations the VLFeat [148] library is used. This

library was modified to adapt it to process signal plots and the code has been made available

at the public Repository 3.

99

https://bitbucket.org/itba/hist
https://github.com/faturita/BciVisualToolbox
https://github.com/faturita/vlfeat
https://github.com/faturita/GuessMe


100

The implemented changes are subtle modifications of the standard SIFT Descriptor [113],

and modifications on the particular implementation provided by this library. The following

sections describe each one of these changes.

A.3.1 SIFT Detector and Custom Patch

The SIFT Detector is not being used in this implementation. Hence, the keypoint location

and patch parameters are directly provided to the VLFeat library to calculate the SIFT

Descriptor. The frame is a data structure composed of keypoint center location (xkp, ykp),

patch scale S and patch orientation θ: (xkp, ykp, S, θ). These parameters are the output of

the SIFT Detector. The code provided in Repository 2 calculates these frames based on the

provided parameters and on the structure of the EEG signal.

A.3.2 Patch Scale

Whereas in the standard SIFT implementation the patch is a squared region and there

is only one SIFT scale parameter, in this implementation the scale is divided in two: St

and Sv. This is a very important modification because otherwise signal plots, which may

extend only on the horizontal direction, would not have been able to be mapped. Using a

rectangular frame there isn’t any constraint on its size and it can be adjusted at will to map

any waveform.

This modification forces the frame to be also altered to incorporate one extra parameter,

the extra scale. The frame is thus composed of: (xkp, ykp, St, Sv, θ).

A.3.3 Patch Orientation

The value θ is the patch orientation which does not provide any extra utility so far for

the extraction of characteristics from plots. The orientation of the patch is fixed to zero

(vertical, pointing upwards or towards the horizontal axis of the image coordinate system in

Figure 3.2).

A.3.4 Patch Size in Pixels

The nominal size of a patch in many SIFT implementations is 4×m× S, with m being the

magnification factor and S being the SIFT scale. However due to the trilinear interpolation,

pixels that are located outside the nominal patch size are also considered to calculate the
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histogram, and the patch boundary is loosely defined between implementations. In this case,

the waveform must be accurately delimited, hence the effective size of the patch must to be

considered. This size is indeed based on the unit-scale constant and it is ∆s =
√

2 m 5. The

magnification factor m is set as 3 and 5 is the result of using 4 blocks on each direction plus

half a block on each side. For a unit scale on vertical and horizontal direction, this gives an

effective patch size of 22 pixels on both directions.

The VLFeat libraries in Repository 3 for Matlab that show the patch superimposed on

the images are modified to account for this effective patch size.

A.3.5 Octave Selection

A gradient image is used to calculate the oriented gradients and reckon the histogram of

gradient orientations. SIFT calculates different octaves downsampling the original image and

applying a Gaussian smoothing operation increasing the sigma parameter of the Gaussian

window step by step. SIFT calls octave to each downsampling level [83, 113]. VLFeat

estimates the octave to use on the gradient image based on the image size and patch

parameters. This is modified in this implementation to use only the zero octave which means

that the gradient image has the same size as the original patch, without downsampling.

A.3.6 First Octave Smoothing

Additionally, the VLFeat implementation performs a Gaussian blurring on the gradient

image regardless of the octave. This is disabled in this implementation.

A.3.7 Rotations

SIFT was designed to allow affine invariance, i.e. to be robust to rotations and scale

modifications. It was not found, so far, of any utility to rotate the patch to capture the

signal waveform. Nevertheless, this feature has not been disabled in this implementation,

due to the fact that it can be avoided by using a patch orientation equals to 0. This the

reason why the
√

2 constant is kept in Equations 4.5 and 4.6.

A.3.8 Gaussian Smoothing

A Gaussian smoothing is performed on the SIFT patch to increase the importance of the

gradients from pixels closer to the center of the patch. In this case, this is found to be in
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detriment of the waveform characterization and is disabled in this implementation.

A.3.9 SIFT Descriptor Values

The SIFT descriptor d is a 128-dimension feature vector, as described in Section 4.2.

Histogram values are double-precision floating point numbers, all positive, and they are

accumulated on each coordinate. Once the gradients are calculated, the following operations

are performed:

• The descriptor is `-2 normalized (i.e all the values are divided by the euclidean norm

of the descriptor).

• Each value is clamped to 0.2. This means that any value above 0.2 is set to 0.2.

• The descriptor is `-2 re-normalized again [113].

This generate a 128-vector of double precision floating point numbers, between
[
0 · · · 1

]
.

The implementation was modified to allow the following representations [9]:

• Discrete: The vector is rescaled to
[
0 · · · 511

]
and clamped at 255. Output values are

cast to integer representations in 8-bit precision. This yields an effective 128-vector of

integer values between
[
0 · · · 255

]
.

• Euclidean: The vector is rescaled to
[
0 · · · 511

]
. Output values are cast to single-

precision floating point numbers (i.e. floats). This yields an effective 128-vector of

floats between
[
0 · · · 255

]
.

• Cosine: The vector is rescaled to
[
− 1 · · · 1

]
. Output values are cast to single-precision

floating point numbers (i.e. floats). This yields an effective 128-vector of floats between[
− 1 · · · 1

]
.

• Hellinger: The vector is rescaled to
[
0 · · · 1

]
. A `-1 normalization is applied (i.e. each

vector values are divided by the absolute value of the summation of all the values).

The square-root on each coordinate is applied. This yields an effective 128-vector of

floats between
[
0 · · · 1

]
.
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A.4 Published Datasets

• P300-Dataset https://www.kaggle.com/rramele/p300samplingdataset, Registered

as public scientific resource in the public Database SciCrunch, RRID: SCR 015977.

• P300 Template (routput.mat) and P300-null signal subject (P300-Subject-21.mat) at

the Code Ocean Repository https://goo.gl/MzNNkn.

A.5 Blog and Online Resources

• The following BCI blog was maintained during the development of this Thesis: http:

//monostuff.logdown.com/.

A.6 Reproducible Research Online Platform

A working and executable cloud repository has been set up for this Thesis containing all

the code in an online repository at the Code Ocean platform under the name EEGWave:

https://goo.gl/MzNNkn. For the sake of reproducibility, this repository contains a working

version of the code that can be executed online and obtained results can be verified.

A.7 Online P300-Based BCI Speller Application

An online P300 Speller was implemented in Repository 4. This repository contains a set of

OpenVibe [112] Designer programs that can be used to perform experiments to calibrate

and run a P300-Based BCI Speller application. The code in this repository offers all the

utilities to stream EEG data using the LSL platform [133], to capture P300 waveforms in

template dictionaries and to implement running speller applications.

A.8 Keypoint Localization Details

This section provides results while analyzing the importance of keypoint localization:

• Effective Waveform matching is lost when the keypoint location is shifted Sx
2 on the

horizontal axis.

https://www.kaggle.com/rramele/p300samplingdataset
https://goo.gl/MzNNkn
http://monostuff.logdown.com/
http://monostuff.logdown.com/
https://goo.gl/MzNNkn
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• Effective Waveform matching is lost when the keypoint location is shifted
Sy

4 on the

vertical axis.

• Effective Waveform matching is lost when a 5db additive white noise signal is super-

imposed on the EEG stream.

• Effective Waveform matching is lost when a 5µV signal of 10Hz is superimposed on

the EEG stream (e.g. α-wave noise).

• Effective Waveform finding is lost when a 8µV signal of 20Hz is superimposed on the

EEG stream (e.g. β-wave noise).
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Mattia, Felip Miralles, Anton Nijholt, and Begonya Otal, BNCI Horizon 2020 –
Towards a Roadmap for Brain / Neural Computer Interaction, Lecture Notes in
Computer Science 8513 (2014), no. 1, 475–486.



107
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[123] Eric W Sellers, Andrea Kübler, and Emanuel Donchin, Brain-computer interface
research at the University of South Florida cognitive psychophysiology laboratory: The
P300 speller, IEEE Transactions on Neural Systems and Rehabilitation Engineering
14 (2006), no. 2, 221–224.



115

[124] Nidhi Agrawal Shah and Courtney Jane Wusthoff, How to use: Amplitude-integrated
EEG (aEEG), Archives of Disease in Childhood: Education and Practice Edition 100
(2015), no. 2, 75–81.

[125] Shibasaki and Hallett, What is the Bereitschaftspotential?, Clinical Neurophysiology
117 (2006), no. 11, 2341–2356.

[126] J. Shin, J. Kwon, J. Choi, and C. Im, Ternary near-infrared spectroscopy brain-computer
interface with increased information transfer rate using prefrontal hemodynamic changes
during mental arithmetic, breath-holding, and idle state, IEEE Access 6 (2018), 19491–
19498.

[127] Samantha Simons, Analysis of brain signals with advanced signal processing techniques
to help in the diagnosis of Alzheimer’s disease, PQDT - Global (2016), 1–8.

[128] Douglas A Skoog, Donald M West, F James Holler, and Stanley R Crouch, Analytical
chemistry: an introduction, Saunders College Publishing, 2000.

[129] J Stern and J Engel Jr, Atlas of EEG Patterns, Wolters Kluwer, 2005.

[130] David Steyrl, Reinhold Scherer, Josef Faller, and Gernot R Müller-Putz, Random
forests in non-invasive sensorimotor rhythm brain-computer interfaces: a practical
and convenient non-linear classifier., Biomedizinische Technik. Biomedical engineering
(2015), 77–86.

[131] G. Stockman, L Kanal, and M.C. Kyle, Structural pattern recognition of carotid pulse
waves using a general waveform parsing system, Communications of the ACM 19
(1976), no. 12, 688–695.

[132] Arkadiusz Stopczynski, Carsten Stahlhut, Jakob Eg Larsen, Michael Kai Petersen, and
Lars Kai Hansen, The smartphone brain scanner: a portable real-time neuroimaging
system., PloS one 9 (2014), no. 2, 10.

[133] UCSD Swartz Center for Computational Neuroscience, Lab streaming layer (lsl), 2018
(accessed October 10, 2018), https://github.com/sccn/labstreaminglayer.

[134] Richard Szeliski, Computer Vision: Algorithms and Applications, vol. 24, Springer,
2010.

[135] N. V. Thakor and S. Tong, Advances in Quantitative Electroencephalogram Analysis
Methods, Annual Review of Biomedical Engineering 6 (2004), no. 1, 453–495.

[136] N.V. Thakor, Quantitative EEG analysis methods and clinical applications, Artech
House Series Engineering in Medicine and Biology, 2009.

[137] Roni Tibon and Daniel A. Levy, Striking a balance: Analyzing unbalanced event-related
potential data, Frontiers in Psychology 6 (2015), no. 5, 15.

[138] Marleen C. Tjepkema-Cloostermans, Rafael C.V. de Carvalho, and Michel J.A.M. van
Putten, Deep learning for detection of focal epileptiform discharges from scalp EEG
recordings, Clinical Neurophysiology 129 (2018), no. 10, 2191–2196.

https://github.com/sccn/labstreaminglayer


116

[139] Sunao Uchida, Irwin Feinberg, Jonathan D. March, Yoshikata Atsumi, and Tom
Maloney, A comparison of period amplitude analysis and FFT power spectral analysis
of all-night human sleep EEG, Physiology and Behavior 67 (1999), no. 1, 121–131.

[140] Sunao Uchida, Masato Matsuura, Shigeki Ogata, Takuji Yamamoto, and Naoyuki
Aikawa, Computerization of Fujimori’s method of waveform recognition a review and
methodological considerations for its application to all-night sleep EEG, Journal of
Neuroscience Methods 64 (1996), no. 1, 1–12.

[141] Valentina Unakafova and Karsten Keller, Efficiently Measuring Complexity on the
Basis of Real-World Data, Entropy 15 (2013), no. 10, 4392–4415.

[142] Robert A. van den Berg, Huub C J Hoefsloot, Johan A. Westerhuis, Age K. Smilde,
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