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ABSTRACT
We have recently introduced a new modeling equation for the propagation of pulses
in optical waveguides, the photon-conserving Nonlinear Schrödinger Equation (pc-
NLSE) which, unlike the canonical NLSE, guarantees strict conservation of both the
energy and the number of photons for any arbitrary frequency-dependent nonlinear-
ity. In this paper we analyze some properties of this new equation in the familiar case
where the nonlinear coefficient of the waveguide does not change sign. We show that
the pcNLSE effectively adds a correction term to the NLSE proportional to the de-
viation of the self-steepening (SS) parameter from the photon-conserving condition
in the NLSE. Furthermore, we describe the role of the self-steepening parameter in
the context of the conservation of the number of photons, and derive an analytical
expression for the relation of the SS parameter with the time delay experienced by
pulses upon propagation. Finally, we put forth soliton-like solutions of the pcNLSE
that, unlike NLSE solitons, conserve the number of photons for any arbitrary SS
parameter.

KEYWORDS
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1. Introduction

The nonlinear Schrödinger equation (NLSE) is widespread used to model propagation
of light pulses in nonlinear Kerr media, such as nonlinear optical fibers and waveguides.
Derived as an approximation based on the Maxwell equations [1], it has proven to be
accurate in a wide variety of cases. It also has been extended to include other nonlinear
effects such as the stimulated Raman scattering. Nonetheless, the NLSE and some of
its generalizations may well reach the limits of their validity in various scenarios as,
for instance, in few-cycle pulses [2–9].

Modifications of the NLSE are also needed in the case of waveguides with a
frequency-dependent nonlinearity [10–16]. Interest on this type of waveguides has in-
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creased with the introduction of new kinds of materials, such as nanoparticle-doped
glasses [17–28], silicon photonic nanowires [29,30], and other metamaterials [13,14,31–
34]. The nonlinear refractive index in these media is strongly frequency dependent,
giving rise to unusual phenomena such as solitons and modulation instability in the
normal-dispersion regime, the existence of a zero-nonlinearity wavelength, and even
a controllable self-steepening (SS) parameter [13,27]. Although the NLSE can be
straightforwardly modified to account for a wavelength dependence in the nonlinear
coefficient, it is a well-established fact that, in general, this approach does not preserve
neither the energy nor the photon number [15,35,36].

By means of quantum mechanical considerations and a generalized Miller’s rule [37],
we have recently introduced a photon-conserving nonlinear Schrödinger equation (pc-
NLSE) [38] that accounts for the frequency dependence of the nonlinearity without
the perils of producing unphysical results, such as an increase in the number of pho-
tons along propagation. We have shown that this new equation can be used to model
modulation instability in materials exhibiting zero-nonlinearity wavelengths [39,40]
and two-photon absorption [41]. We also have further extended this new modeling
equation to incorporate stimulated Raman scattering [42].

In this work, we focus on applications of the pcNLSE to the usual case where the
nonlinear coefficient of the medium does not change sign. In particular, we explore
the propagation of certain types of pulses, including a first step into the existence
analysis of soliton-like waves. This study not only enlightens our understanding of this
new equation, but it also opens up the path to experimental applications such as the
measurement of the frequency-dependent nonlinearity. The remaining of the paper is
organized as follows. In Section 2 we review the pcNLSE, develop an approximation
for narrowband pulses that gives a deeper insight into this new equation, and derive an
expression for the relation between the pulse delay experienced along propagation and
the self-steepening parameter which may be used to measure this important waveg-
uide parameter. Section 3 is devoted to soliton-like pulses under the pcNLSE, where
we first present a simple type of solitons for a particular value of the self-steepening
parameter, and then extend results to other values of this parameter focusing on nar-
rowband pulses. Finally, we summarize our results and discuss lines of future research
in Section 4.

2. Photon-conserving NLSE

For the sake of reference, let us describe the nonlinear Schrödinger equation which
is customarily used to model the propagation of pulses in optical waveguides. In the
frequency domain, the NLSE can be written as [1]

∂Ã(z,Ω)

∂z
= iβ̃(Ω)Ã+ iγ(Ω)F

{
A(z, t)|A(z, t)|2

}
, (1)

where Ã(z,Ω) is the Fourier transform of the pulse complex envelope A(z, t) and Ω
is the deviation from a conveniently chosen reference frequency ω0. β̃(Ω) and γ̃(Ω)
model the linear dispersion and the nonlinearity of the waveguide, respectively. It is
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usual to work with the series expansions

β̃(Ω) =
1

2
β2Ω2 +

1

3!
β3Ω3 + · · · , (2)

γ̃(Ω) = γ0 + γ1Ω +
1

2
γ2Ω2 + · · · (3)

Given that we are interested in lossless/gainless waveguides, we assume that βk, γk ∈ R.
It must be noted that we do not include β1 in the expansion of β̃(Ω) as we assume, as
it is customary, that time in Eq. (1) is measured with respect to a moving frame with
velocity β−1

1 .
In many real applications it is sufficient to use only first order expansions of

γ̃(Ω) [43], and we focus on this case in this paper. Oftentimes, the following linear
relation is used

γ̃(Ω) = γ0 +
γ0

ω0
Ω. (4)

As it is explained in Ref. [36], this is the only frequency dependence of the nonlinearity
that preserves the number of photons in the NLSE. However, it has been observed that
this relation cannot adequately account for pulse propagation in every circumstance,
even in cases where γ̃(Ω) does not change sign in the spectral region of interest [44].
Since we want to depart from this situation, in the remaining of this work we assume
that

γ̃(Ω) = γ0 + s
γ0

ω0
Ω, (5)

where s ∈ R can be either positive or negative depending on the particular propagation
medium being considered, and is a measure of the deviation from the NLSE photon-
conserving scenario.

As already mentioned, we have recently introduced a photon-conserving nonlinear
Schrödinger equation which, based on a simple quantum-mechanical picture of four-
wave-mixing interactions and a generalized Miller’s rule [38], allows for the modeling
of arbitrary frequency-dependent nonlinear profiles. The pcNLSE in the frequency
domain reads

∂Ã

∂z
= iβ̃(Ω)Ã+ iΓ(Ω)F

(
C∗B2

)
+ iΓ∗(Ω)F

(
B∗C2

)
, (6)

where

B̃(z,Ω) = 4

√
γ̃(Ω)

ω0 + Ω
Ã(z,Ω), (7)

C̃(z,Ω) =

 4

√
γ̃(Ω)

ω0 + Ω

∗ Ã(z,Ω), (8)

Γ(Ω) =
1

2
4
√
γ̃(Ω)(ω0 + Ω)3, (9)

where M∗ is the complex conjugate of M . As it may be expected, the pcNLSE agrees
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with the NLSE in the case where the latter conserves the number of photons, i.e., when
s = 1. In spite of its apparent complexity, the pcNLSE can be efficiently solved by the
same numerical tools as the NLSE, such as the Split-Step Fourier algorithm [1]. It has
been shown that this new equation can model the modulation instability phenomenon
in materials exhibiting zero-nonlinearity wavelengths (ZNWs), where the NLSE fails
to conserve such a basic physical quantity as the photon number. Reference [39]
shows that the NLSE and the pcNLSE predict very different modulation-instability
gain profiles, especially when the spectral region of interest includes a ZNW. The
pcNLSE has also been successfully applied to the analysis of waveguides doped
with metal nanoparticles [40], and a modified pcNLSE has been used to model
two-photon absorption [41] and stimulated Raman scattering [42]. This latter ex-
tension has enabled methods to analyze higher-order nonlinearities in waveguides, [45].

In the particular case where γ̃(Ω) does not change sign, Eq. (6) can be simplified.
For the sake of simplicity, we assume that γ0 > 0, although results can be easily
generalized. Under this scenario, B̃ = C̃ and Γ(Ω) ∈ R. The pcNLSE can thus be
written as

∂Ã

∂z
= iβ̃(Ω)Ã+ i 4

√
(ω0 + Ω)γ̃(Ω)F

{
B|B|2

}
. (10)

Furthermore, we may express this equation in terms only of B(z, t):

∂B̃

∂z
= iβ̃(Ω)B̃ + i

√
(ω0 + Ω)γ̃(Ω)F

{
B|B|2

}
. (11)

Note that this equation is formally equivalent to Eq. (1). This observation allows us
to use results present in the large body of literature on the NLSE, a trick we resort to
in Section 3. Moreover, this similarity between the NLSE and the pcNLSE in terms
of the pulse envelope A and the B field, respectively, may help researchers in the area
to better understand the implications of this new modeling equation.

2.1. Approximation for spectrally narrow wavepackets

The self-steepening parameter s is related to the shock-wave formation in optical pulses
under the NLSE [1], and this is also the case for the photon-conserving NLSE. In this
section, we describe the role of the SS parameter in the pcNLSE with the aid of an
approximation for narrowband pulses.

Let us assume that the frequency content of the propagating wave is narrow such
that |Ã(Ω)| is negligible unless |Ω| � ω0. In this case, introducing Eq. (5) in Eq. (11)
and using a Taylor expansion to a first order in Ω/ω0, we may approximate the pcNLSE
as

∂A

∂z
≈ iβ̂A+ iγ0

(
1 + i

1

ω0

∂

∂t

)(
A|A|2

)
− γ0

(
s− 1

ω0

)
|A|2∂A

∂t
, (12)

where β̂ is the operator in the time domain corresponding to β̃(Ω) (details of these
calculations can be found in Appendix A.) As expected, Eq. (12) gives back the NLSE
when s = 1, i.e., the only case where the NLSE conserves the number of photons.
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Moreover, Eq. (12) allows us to regard the pcNLSE, for spectrally narrow wavepackets,
as introducing a correction to the NLSE given by the last term.

Equation (12) also helps us comprehend the role of the self-steepening parameter s.
We take a first step in this understanding by analyzing the important case of s = −2.
For the sake of simplicity, let us assume that there is no linear dispersion, i.e., β̃(Ω) = 0.
Some simple calculations (see Appendix B) show that Eq. (12) reduces to

∂A(z, t)

∂z
= iγ0A|A|2 +

γ0

ω0
A

(
A∗
∂A

∂t
−A∂A

∗

∂t

)
, (13)

where we have changed the approximation for an equality. It is interesting to observe
that the factor in parenthesis in the second term is proportional to the squared am-
plitude times the instantaneous frequency of A(z, t). Furthermore, it can be easily
shown that ∂z|A|2 = 0 (see Appendix B). Remarkably, this implies that solutions to
Eq. (13) do not exhibit the effect of self-steepening which might be expected from the
introduction of the linear dependence of γ(Ω) in Eq. (5) (see Chapter 4 in Ref. [1])
and that pulse shape is preserved along propagation.

Although these conclusions were derived under an approximation to the pcNLSE
for narrowband pulses, simulation results show their predictions to be correct. Indeed,
Fig. 1 shows simulation results using Eq. (6), assuming no approximations, for the
propagation of a 100-fs Gaussian pulse with peak power P0 = 10 kW and central
wavelength λ0 = 1550 nm. The pulse is propagated 1.5 km along a waveguide with
γ0 = 1 W−1 km−1 and no linear dispersion, i.e., βk = 0. As it can be observed,
there is evidence of the formation of an optical shock for values of s 6= −2. However,
for s = −2 there is no significant change in the pulse shape even after such a long
propagated distance.

2.2. Nonlinearity-dependent time delay

A deeper understanding of the role of the self-steepening in the pcNLSE can be gained
by turning to quasi-analytical solutions of Eq. (12). The method of moments (see, e.g.,
Refs. [46,47]) is a powerful tool to find this type of solutions. Let us write

A(z, t) =
√
P0ρ

(
t− T
T0

)
exp

(
−iCp

(t− T )2

2T 2
0

)
, (14)

where ρ(τ) is the pulse shape, P0 is the pulse power, T the time delay, Cp the pulse
chirp, and we have assumed that the pulse width T0 does not change significantly
along propagation.

Let us focus on the time delay, which may be calculated as the weighted average

T (z) =
1

E

+∞∫
−∞

t|A(t, z)|2dt, (15)

where E is the pulse energy defined by

E =

+∞∫
−∞

|A(t, z)|2dt. (16)
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Figure 1. Pulse propagation for s = −5 (dashed line), s = −2 (dotted line), and s = 1 (dash-dotted line).

The input pulse is shown with a solid line. No shock-wave formation is observed for s = −2. Input pulse:

P0 = 10 kW, λ0 = 1550. The pulse is propagated 1.5 km along a waveguide with γ0 = 1 W−1 km−1 and no
linear dispersion.

Since we are dealing with lossless waveguides the pulse energy does not depend on z.
It can be shown that, in the context of Eq. (12) and for even functions ρ(τ), the delay
is governed by the equation (see Appendix C)

∂T

∂z
=

γ0

2ω0
(s+ 2)Peff(z), (17)

where we have introduced

Peff(z) =

+∞∫
−∞
|A(t, z)|4dt

+∞∫
−∞
|A(t, z)|2dt

. (18)

Observe that this result agrees with the prediction in the previous section that there
is no delay in the case of s = −2. Assuming that Peff(z) does not change significantly
with z, then

T (z) = (s+ 2)
γ0Peff

2ω0
z. (19)
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As an example, in the case of sech pulses the delay is given by

T (z) =
(s+ 2)

3

γ0P0

ω0
z. (20)

This equation can be used to estimate the value of s by measuring the time delay
experienced by an adequate pulse launched into an optical waveguide. Details of this
idea were developed in Ref. [48], although the preceding calculations were omitted
there. Figure 2 shows and excellent agreement between Eq. (20) and simulation results.
These results correspond to the propagation of a 100-fs sech-shaped pulse with peak
power P0 = 2 kW and central wavelength λ0 = 1550 nm. The waveguide is 500-m-long
with parameters γ0 = 1 W−1 km−1, β2 = −20 ps2 km−1, compatible with those of a
standard single-mode optical fiber. As it is discussed in Ref. [48], we are not aware of
any direct measurement techniques of the self-steepening parameter in the literature;
as such, this is an important result developed on the basis of the pcNLSE.

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

s

T
[p

s]

Simulation results
Analytical prediction

Figure 2. Delay experienced by the pulse as a function of the self-steepening parameter s. There is an
excellent agreement between the theoretical prediction (dashed line) and simulation results (squares). A 100-fs

sech-shaped pulse with P0 = 2 kW and λ0 = 1550 nm was propagated along a 500-m-long fiber with γ0 = 1
W−1 km−1 and β2 = −20 ps2 km−1.

3. Soliton-like pulses

Solitons in optical waveguides have been studied for several decades (see, e.g., [49–53]
and references therein.) In particular, solitons for the nonlinear Schrödinger equation
(NLSE), with βk = 0 for k ≥ 3 and γ1 = 0, were originally found by Zakharov and
Shabat [54] by means of the inverse scattering method. For the sake of reference, let
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us write the NLSE in this case as

i
∂u

∂ζ
+
∂2u

∂τ2
+ u|u|2 = 0, (21)

where we have assumed that β2 < 0 and used a common normalization of the variables

u = N
A√
P0
, τ =

t

T0
, ζ =

z

LD
, LD =

T 2
0

|β2|
, N2 =

γ0P0T
2
0

|β2|
, (22)

with T0 and P0 two convenient constants related to the pulse width and power, respec-
tively. Soliton solutions can be found for the case u(τ, 0) = Nsech(τ), with integer N ,
as explained in Satsuma and Yajima [55]. In these cases, N is called the soliton order.

Although it is a well-known fact that solutions of the NLSE do not preserve the
number of photons in general [36], it may come as a surprise that solitonic solutions
suffer from the same shortcoming. This fact has already been treated by Zheltikov [56].
Figure 3 shows the evolution of solitons of order N = 3. A 690-W peak-power pulse
at a central wavelength λ0 = 780 nm was propagated in a fiber with properties com-
mensurate to those of a commercial photonic crystal fiber [57], that is, β2 = −3.2
ps2 km−1 and γ0 = 105 1/W/km. As it can be readily seen on the bottom left panel,
NLSE solitons are unphysical in the sense that the mean number of photons changes
as they propagate.

There are also many soliton solutions in the literature for the NLSE with γ1 6= 0 [58–
64]. However, in general these solutions do not necessarily conserve the number of
photons. The question now becomes whether the photon-conserving NLSE can sustain
soliton-like propagation. Instead of looking for soliton solutions from scratch, by using
tools such as the inverse scattering method, we try to find new solitons from old. An
immediate example is given by the solitons of the NLSE for the case s = 1 where both
equations coincide. In the remaining of the paper, we focus on two more interesting
examples.

3.1. A special type of nonlinearity

The first example is based on a special form of the frequency dependence of the
nonlinearity. Let us assume that γ(ω) = γ0ω0/ω, with γ0 > 0. It is simple to show
that in this case the pcNLSE reduces to

∂B

∂z
= −iβ2

2

∂2B

∂t2
+ i
√
γ0ω0|B|2B, (23)

where we have assumed that βk = 0 for k ≥ 3 for the sake of simplicity. Since this
equation is formally equivalent to the NLSE with γ1 = 0, we can resort to the well-
known soliton solutions of the NLSE [51,55] to find B-solitons. Solitons in terms of
the electric field envelope A can then be computed from Eq. (7). In Fig. 3 we show
the propagation of solitons of order N = 3. As it can be observed in the bottom right
panel the photon number is conserved, a fact guaranteed by the use of the pcNLSE. It
also must be noted that, unlike the standard NLSE solitons, the newly found solitons
display an asymmetric shape. This fact is put in evidence in the bottom panels in
Fig. 4, were we show the difference between the (squared) amplitudes of NLSE and
pcNLSE solitons.
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Figure 3. One-period propagation of N = 3 solitons for the NLSE (left column) and the pcNLSE (right
column). Pulse characteristics: 690-W peak power at λ0 = 780 nm. Fiber characteristics for the NLSE soliton:

β2 = −3.2 ps2 km−1 and γ0 = 105 1/W/km. For the pcNLSE soliton we used γ(ω) = γ0ω0/ω. The top row

shows the power spectral evolution (darkest is -80 dB with respect to brightest), and the bottom row shows
the evolution of the photon number.

Although the frequency profile of the nonlinearity in this example may appear too
contrived, to first order in the frequency deviation it can be approximated by γ(ω) =
γ0(1− Ω/ω0). In Fig. 5 we show the evolution of a second-order pcNLSE soliton in a
fiber with this type of nonlinearity. This solution preserves the mean photon number,
as it is obtained with the pcNLSE, and displays typical higher-order soliton dynamics.

3.2. Approximate Solitons of the B-field

In this section we develop approximate soliton solutions of the pcNLSE for any arbi-
trary value of the self-steepening parameter. For this purpose, we turn once again to
the formal similarity between Eqs. (1) and (11).

Expansion of
√

(ω0 + Ω)γ̃(Ω) up to a first order in Ω/ω0 leads to

∂B̃

∂z
= iβ̃(Ω)B̃ + i

√
γ0ω0

(
1 +

s+ 1

2

Ω

ω0

)
F
{
B|B|2

}
. (24)

In the simple case where β̃(Ω) = β2Ω2/2, we may rewrite this equation in the time
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Figure 4. Pulse shape at z = π/6LD and z = π/4LD for an N = 3 soliton, and for the NLSE and the
pcNLSE (top row). (Botton row) Power difference for the respective top panel. Simulation parameters are the

same as in Fig. 3.

domain as

∂B

∂z
= −iβ2

2

∂2B

∂t2
+ i
√
γ0ω0

(
1 + i

s+ 1

2ω0

∂

∂t

)(
B|B|2

)
. (25)

Let us assume that β2 < 0 and use the following normalization (cf. Eq. (22))

u =
NB√
Q0

, Q0 =

√
γ0

ω0
P0, τ =

t

T0
, ζ =

z

LD
, LD =

T 2
0

|β2|2
, N2 =

γ0P0T
2
0

|β2|
. (26)

Then, we may rewrite Eq. (25) as

i
∂u

∂ζ
+
∂2u

∂τ2
+

(
1 + i

s+ 1

2T0ω0

∂

∂τ

)(
u|u|2

)
= 0. (27)

Soliton solutions to this equation were provided by Zhong et al. [64]:

u(ζ, τ) = V
e−θ +W ∗e+θ

(e−θ +We+θ)
2 e
−κτ+ (κ2−µ2)

2
ζ , (28)
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Figure 5. Evolution of a second-order pcNLSE soliton of 1- kW peak power in a fiber with the same param-
eters as in Fig. 3 but with a nonlinear profile given by γ(Ω) = γ0(1− Ω/ω0).

where

|V |2 =
4µ2√

(1 + κS)2 + (µS)2
, W =

1 + kS + iµS√
(1 + κS)2 + (µS)2

, (29)

θ = µ · (τ + κζ), S =
s+ 1

2T0ω0
. (30)

and κ and µ are two real-valued parameters.
These equations provide soliton solutions for the approximation to the pcNLSE in

Eq. (25). Nonetheless, Fig. 6 shows that these approximate solutions agree well with
simulation results with the full pcNLSE even after a propagation length of 10LD.
Parameters for the fiber are γ0 = 1 W−1 km−1, s = 2, and β2 = −25 ps2 km−1.
The pulse central wavelength is λ0 = 1550 nm, T0 = 100 fs, and P0 = 10 kW. For
Eqs. (28)-(30) we set κ = 2 and µ = 0.

4. Conclusions

We have recently introduced a new modeling equation for the propagation of pulses in
optical waveguides, the pcNLSE. This equation, unlike the canonical NLSE, guaran-
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Figure 6. Solitons for s = 2: Analytical approximation based on Eq. (24) (black dashed line) and simulation
results based on Eq. (11) (solid gray line). A 100-fs pulse with P0 = 10 kW and λ0 = 1550 nm was propagated

along a 10LD-long fiber with γ0 = 1 W−1 km−1 and β2 = −25 ps2 km−1.

tees strict conservation of both the energy and the photon number for any frequency-
dependent nonlinearity. However, there is still much to be learned about the predictions
of this new equation and how they differ from those of the NLSE. In this paper, we
tackled this problem by looking at the more familiar case where the sign of the non-
linearity does not change in the wavelength range of interest. Moreover, we focused on
a usual linear approximation to the frequency dependence of the nonlinear coefficient.

We showed that, within the approximation of narrowband pulses, the pcNLSE adds
a correction term to the NLSE proportional to the squared amplitude and the time
derivative of the pulse envelope. Further, the strength of this term is proportional to
the deviation of the self-steepening parameter from the photon-conserving condition
in the NLSE (see Eq. (12)).

We also described the role of the self-steepening parameter s in two other ways. First,
we proved that for s = −2 there is no shock-wave formation. Second, we showed that
the self-steepening parameter introduces a delay in the propagated pulse. This relation
between between the SS parameter and the delay is most relevant as it provides a way
to estimate the former from careful measurements of the latter. We must emphasize
that this is only possible in the context of the pcNLSE, as the NLSE fails to adequately
model the propagation of pulses when s 6= 1. Thus, the analytical development in
Section 2 provides the basis for a measurement method of the SS parameter which is
explored in Ref. [48].

In order to deepen the understanding of the photon-conserving NLSE, we intro-
duced several soliton-like solutions in Section 3. It must be stressed that, unlike NLSE
solitons, the solutions put forth in this paper strictly conserve the number of photons.

Finally, although there is much work to be done towards a better understanding of
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the pcNLSE, we believe that analyses presented in this paper contribute to gain phys-
ical insight into the nonlinear propagation of pulses in waveguides with an arbitrary
frequency-dependent nonlinearity.

Appendix A. Approximation for spectrally narrow wavepackets

By expanding the factor multiplying Ã(z,Ω) in Eq. (7) in powers of Ω/ω0, we obtain

B̃(z,Ω) = 4

√
γ0

ω0

(
1 +

s− 1

4

Ω

ω0

)
Ã(z,Ω).

From the convolution theorem for Fourier transforms and the fact that F{x∗(t)} =
x̃∗(−Ω),

F
{
B∗B2

}
=

1

(2π)2

∫∫
B̃∗(−ω1)× B̃(ω2)× B̃(Ω− ω1 − ω2)dω1dω2

≈ 4

√
γ3

0

ω3
0

(
1 +

s− 1

4

Ω

ω0

)
F
{
A|A|2

}
− i 4

√
γ3

0

ω3
0

(
s− 1

2

1

ω0

)
F
{
A2∂A

∗

∂t

}
,

where we have kept only terms up to the first order in Ω/ω0, ω1/ω0 and ω2/ω0. Let
us assume that |Ã(Ω)| is significant only when |Ω| � ω0. In this case,

F
{
B∗B2

}
≈ 4

√
γ3

0

ω3
0

[(
1 +

s− 1

4

Ω

ω0

)
F
{
A|A|2

}
− i
(
s− 1

2

1

ω0

)
F
{
A2∂A

∗

∂t

}]
.

(A1)

Moreover, we have

4
√

(ω0 + Ω)3γ̃(Ω) ≈ 4

√
ω3

0γ0

(
1 +

s+ 3

4

Ω

ω0

)
. (A2)

We introduce Eqs. (A1)-(A2) in Eq. (10) and keep terms up to the first order in
Ω/ω0 to obtain

∂Ã

∂z
≈iβ̃(Ω)Ã+ iγ0

(
1 +

s+ 1

2

Ω

ω0

)
F
{
A|A|2

}
+ γ0

(
s− 1

2

1

ω0

)(
1 +

s+ 3

4

Ω

ω0

)
F
{
A2∂A

∗

∂t

}
.

Neglecting the Ω/ω2
0 term, we have

∂Ã

∂z
≈ iβ̃(Ω)Ã+ iγ0

(
1 +

s+ 1

2

Ω

ω0

)
F
{
A|A|2

}
+ γ0

(
s− 1

2

1

ω0

)
F
{
A2∂A

∗

∂t

}
.
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In the time domain this equation reads

∂A

∂z
≈ iβ̂A+ iγ0

(
1 + i

s+ 1

2

1

ω0

∂

∂t

)(
A|A|2

)
+ γ0

(
s− 1

2

1

ω0

)
A2∂A

∗

∂t
. (A3)

Eq. (12) follows by using the fact that

A2∂A
∗

∂t
=

∂

∂t
(|A|2A)− 2|A|2∂A

∂t
.

Appendix B. The s = −2 case

If s = −2, Eq. (A3) simplifies to

∂A

∂z
≈ iβ̂A+ iγ0A|A|2 +

γ0

2ω0

∂

∂t

(
A|A|2

)
− 3γ0

2ω0
A2∂A

∗

∂t
.

For the sake of simplicity, we assume that there is no linear dispersion, i.e., β̂ = 0. We
arrive at Eq. (13) by using the fact that

∂

∂t
(|A|2A) = A2∂A

∗

∂t
+ 2|A|2∂A

∂t
.

In order to prove that the pulse shape does not change, let us return to Eq. (13) to
find

A∗
∂A

∂z
= +iγ0|A|4 +

γ0

ω0
|A|2

(
A∗
∂A

∂t
−A∂A

∗

∂t

)
,

A
∂A∗

∂z
= −iγ0|A|4 +

γ0

ω0
|A|2

(
A
∂A∗

∂t
−A∗∂A

∂t

)
.

These equations lead us to

∂|A|2

∂z
= A∗

∂A

∂z
+A

∂A∗

∂z
= 0.

Appendix C. Time delay

In order to find ∂zT , we need to compute ∂z|A|2. Using Eq. (12),

∂|A|2

∂z
=
∂A

∂z
A∗ +

∂A∗

∂z
A

= i
(
A∗β̂A−Aβ̂∗A∗

)
− γ0

ω0

[
A∗
∂A|A|2

∂t
+A

∂A∗|A|2

∂t

]
− γ0

ω0
(s− 1)|A|2

[
A∗
∂A

∂t
+A

∂A∗

∂t

]
,

14



∂|A|2

∂z
= i
(
A∗β̂A−Aβ̂∗A∗

)
− γ0

ω0
(s+ 2)|A|2∂|A|

2

∂t

= i
(
A∗β̂A−Aβ̂∗A∗

)
− γ0

2ω0
(s+ 2)

∂|A|4

∂t
,

where we have used the following simple-to-show relations

A∗
∂A|A|2

∂t
+A

∂A∗|A|2

∂t
= 3|A|2∂|A|

2

∂t
,

∂|A|4

∂t
= 2|A|2∂|A|

2

∂t
.

For the sake of simplicity, let us assume that βk = 0 for k ≥ 3. In this case, we have

∂|A|2

∂z
= β2Im

(
A∗
∂2A

∂t2

)
− γ0

2ω0
(s+ 2)

∂|A|4

∂t
.

Using this result together with Eq. (15) we obtain

∂T

∂z
=

1

E

+∞∫
−∞

t
∂|A(t, z)|2

∂z
dt =

1

E

+∞∫
−∞

t

[
β2Im

(
A∗
∂2A

∂t2

)
− γ0

2ω0
(s+ 2)

∂|A|4

∂t

]
dt. (C1)

In order to compute the right-hand side of Eq. (C1), we write the pulse envelope as

A(z, t) =

√
P0T0

Tp
ρ

(
t− T
Tp

)
exp

(
−iCp

(t− T )2

2T 2
p

)
,

where T is the time delay, Tp the pulse width, and Cp the chirp. We have omitted,
without any loss of generality, an initial phase. Furthermore, we have assumed that∫
ρ2(τ)dτ = 1 and hence the pulse energy is conserved and equal to E = P0T0, where

T0 is the initial pulse width. Moreover, let us assume that ρ(τ) is an even function.
After some algebra, it can be shown that

Im

(
A∗
∂2A

∂t2

)
= −CpP0T0

T 3
p

[
(t− T )

∂

∂t
ρ2

(
t− T
Tp

)
+ ρ2

(
t− T
Tp

)]
.

Observe that Im
(
A∗∂2

ttA
)

is even in (t− T ). For this reason, we have

+∞∫
−∞

t Im

(
A∗
∂2A

∂t2

)
dt =

+∞∫
−∞

(t− T + T ) Im

(
A∗
∂2A

∂t2

)
dt

= −β2CpP0T0T

T 3
p

 +∞∫
−∞

(t− T )
∂

∂t
ρ2

(
t− T
Tp

)
dt+

+∞∫
−∞

ρ2

(
t− T
Tp

)
dt

 .
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We can integrate by parts the first integral on the second line of this equation:

+∞∫
−∞

(t− T )
∂

∂t
ρ2

(
t− T
Tp

)
dt = −

+∞∫
−∞

ρ2

(
t− T
Tp

)
dt.

Thus, we finally have

+∞∫
−∞

t Im

(
A∗
∂2A

∂t2

)
dt = 0. (C2)

Integrating by parts the second term of Eq. (C1), it can be shown that

+∞∫
−∞

t
∂|A|4

∂t
dt = −

+∞∫
−∞

|A|4dt. (C3)

Introducing Eqs. (C2)-(C3) into Eq. (C1),

∂T

∂z
=

γ0

2ω0
(s+ 2)Peff . (C4)

It is easy to show that

Peff = αρ
P0T0

Tp
, (C5)

where αρ depends on the shape of ρ(τ). In particular, it is 2/3 for ρ(τ) = sech(τ) and

1/
√

(2) for ρ(τ) = exp(−τ2/2). Eq. (19) follows by assuming that Tp does not change
significantly with z.
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