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Abstract—In this work, a low-order model designed
for glucose regulation in Type 1 Diabetes Mellitus
(T1DM) is obtained from the UVA/Padova metabolic
simulator. It captures not only the nonlinear be-
havior of the glucose-insulin system, but also intra-
patient variations related to daily insulin sensitivity
(SI) changes. To overcome the large inter-subject vari-
ability, the model can also be personalized based on a
priori patient information. The structure is amenable
for linear parameter varying (LPV) controller design,
and represents the dynamics from the subcutaneous
insulin input to the subcutaneous glucose output. The
efficacy of this model is evaluated in comparison with
a previous control-oriented model which in turn is
an improvement of previous models. Both models are
compared in terms of their open- and closed-loop dif-
ferences with respect to the UVA/Padova model. The
proposed model outperforms previous T1DM control-
oriented models, which could potentially lead to more
robust and reliable controllers for glycemia regulation.

Index Terms—Intra-patient variations, LPV model,
Type 1 diabetes, Control-oriented model, Artificial
pancreas

I. Introduction

TYPE 1 Diabetes Mellitus (T1DM) is a chronic dis-
ease characterized by an absolute insulin deficit, and

therefore, patients rely on exogenous insulin dosage to
achieve glucose regulations and avoid complications such
as hypo- or hyperglycemia and their long-time adverse
effects.

The Artificial Pancreas (AP) is a system conceived
to automate the exogenous insulin supply by usually
connecting a Continuous Glucose Monitoring (CGM)
sensor with a subcutaneous insulin pump through a
control algorithm. The core of the AP is the control
algorithm, which estimates the amount of insulin to be
administered to the patient. The main challenge to achieve
good Blood Glucose (BG) control is that each patient can
be characterized by nonlinear dynamics with time-varying
parameters and responses that change not only from
one person to another (inter-subject variability), but
also from day to day for the same person (intra-subject
variability). Therefore, the control algorithm must be

designed with robustness and time-varying properties to
make closed-loop control reliable and safe [1]–[3].

Inter-patient variations are mostly related to differ-
ences in Insulin Sensitivity (SI), requirements and ab-
sorption/action times [1], [4]. These variations are larger
than in healthy individuals [5] and preclude the possibility
of obtaining a unique control algorithm that works for
everyone. In consequence, most recent research efforts
are focused on model personalization [1], [2], [6]–[14]. To
avoid model identification, these approaches use patient-
specific clinical variables like Total Daily Insulin (TDI),
Insulin-to-Carbohydrate Ratio (CR) or body weight to
individualize the controller’s gain. Model Predictive Con-
trol (MPC) algorithms are individualized by using patient-
specific model parameters or personalizing the MPC cost
function weights [15], [16]. Adaptive algorithms (like run-
to-run control) that adjust and individualize controller
parameters have also been proposed [17]–[25]. It is worth
remarking that in the aforementioned control-oriented
models no intra-patient variability was embedded into the
model structure.

Intra-subject variability is an additional important chal-
lenge for the AP. Subject’s insulin requirements to con-
trol glycemia vary across the daytime [26], attributed to
circadian changes in Glucose Tolerance (GT), i.e., the
relative amount of glucose taken up by peripheral tissue
[27], and SI [28], which corresponds to the ability of
insulin to stimulate glucose utilization and inhibit its
production [29], regulating how sensitive is the body to
the effects of insulin. This subject-specific variability is
influenced by many factors like meals, stress, sleep ar-
chitecture, physical activity, rhythms of counterregulatory
hormones, and quality of BG control [3], [8], [30]–[32].
Given that such factors ultimately may be reflected on the
patient’s SI, intra-patient variability can be described by
suitable modeling of circadian SI variation [26]–[28], [31].
In this regard, intra-patient variations were included in the
UVA/Padova metabolic simulator [33]–[35] by associating
each in-silico subject with one of seven possible variability
classes, assigned to a specific time-varying SI profile [5],
[36]. These profiles were created by modulating Vmx, which
governs the insulin-dependent glucose utilization, and kp3,



which regulates the insulin action on the liver, as time-
varying parameters. Similar approches were followed in
[22], [37], where sinusoidal deviations of 20% amplitude
over the nominal values related to insulin sensitivity and
absorption were added for controller testing. In this way,
the observed SI variation of ±30% is included [28], but
there is no consensus yet on how to model these variations.

Although SI variations have been generally considered
to test glucose controllers through extensive simulations,
better closed-loop performance may be obtained if these
variations were included in the controller synthesis stage.
Several approaches have been considered in this matter. In
[1], [9], the in-silico subjects of the UVA/Padova simulator
are sorted in four groups according to the average value
of their daily CR profile (related to each subject’s SI),
with a personalized Linear Time Invariant (LTI) model
associated with each group. This model is then used as
a one-step ahead prediction model to synthesize a cus-
tomized MPC. However, since LTI models are used, there
is a significant loss of information regarding the patient’s
dynamics, considering its time-varying characteristics.

On a different approach, adaptive control systems
consider intra-patient variations by embedding the model
in the controller and adjusting controller parameters as
experimental data reflects a time-variation in the model
dynamics. Other adaptive control systems update the
parameters of the model recursively as new data are
collected from the system, and use the latest model in
the controller [21], [24], or run-to-run control strategies to
adapt basal insulin patterns [20], [23], [25], insulin boluses
[7], [18], [19], [22], [38], or MPC cost functions [2]. Of
these, the works of [18], [19] considered subject’s SI for
assessing the controller’s gain, but this SI was determined
using only some outputs, and therefore, does not
characterize the insulin sensitivity of the virtual patient
in the traditional sense [19]. On [23], [25] the algorithm
is able to adjust intra- and inter-day SI variations, by
updating CR and basal insulin patterns according to
perfomance indexes computed at the end of each day.

Another approach to cope with intra-patient variability
is to compute tight-solution bounds on prediction models.
In [32], [39], parametric variations over a glucose-insulin
model are used to compute a solution envelope that is
used as a prediction model in control structures like MPC.
Instead, in [40], a Linear Parameter Varying (LPV) model
set was obtained to cover both, SI variations and dynamic
uncertainties, for each patient. From a control design view-
point, to “cover” intra-patient variations with bounded
uncertainty is more conservative than to explicitly include
them in the model. The latter embeds these time-varying
dynamics in the controller, which could in theory [41], [42],
lead to better performance.

SI parametric variations embedded in the patient’s
model are considered in [43], where the Medtronic Virtual
Patient (MVP) model is identified for ten different
subjects based on closed-loop glucose-insulin data and the
oral minimal model [44]. Intra-day variations in SI related
parameters were structured to change during three time-

windows inside a 24-hour time period, assuming one value
during the first and last time-windows and a different
value during the second one. SI variations were identified
in six of the ten subjects of the study, presenting different
starting times and segment duration among them.

Note that these approaches consider a specific SI varia-
tion profile [43] or average daily SI value [1], [4]. Consider-
ing that for some subjects parameters can present substan-
tial differences over time, these models would not be able
to follow or include such changes. Real-time parametric
identification can help improve closed-loop performance.
However, the ability of real-time identification algorithms
to track time-varying parameters needs to be carefully
assessed before their implementation for controller design.

A good control-oriented model should have a structure
that allows a well-known, reliable, and numerically robust
control synthesis technique to produce a controller that
can be implemented in real-time. Considering the time-
varying characteristics of the glucose regulation problem,
LPV models are good candidates, and can result in LPV
or switched LPV (or LTI) control strategies, that can yield
better performance for the AP, as presented in [14], [45],
[46]. In this regard, in [14], we presented a third-order LPV
model that reflects the time-varying and non-linear nature
of the glucose regulation problem by an average (over all
subjects) structure, including a parameter dependent on
the glucose level, which is measured in real-time.

Therefore, this work focuses on developing a model that
reflects time-varying SI variations within the model, while
maintaining a simple structure that allows reliable and
robust control synthesis techniques to be used. For this, an
extension of [14] that includes SI variations is developed,
by introducing a second time-varying parameter to its low-
order LPV structure. The model now includes intra- and
inter-patient variations, and still preserves the possibility
of personalizing it based on the 1800-rule, through a
procedure that can be carried out in real patients in a
non-invasive way.

The paper is organized as follows. In Section II the
baseline LPV model [14] is described. Section III presents
the procedure to obtain the LPV model with intra-patient
variations. Section IV presents the open- and closed- loop
evaluation of the model efficiency. Finally, conclusions are
discussed in Section V.

II. Materials and methods

The baseline control-oriented LPV model used in this
work is the one developed in [14], [46] that is based on
the UVA/Padova metabolic simulator [33]. It has a low-
order structure akin to the one presented in [6], where the
input corresponds to the subcutaneous insulin infusion (in
pmol/min) and the output is the glucose concentration
deviation (in mg/dl):

G(s) = k
s+ z

(s+ p1)(s+ p2)(s+ p3)
e−15s. (1)

An average model was first identified at a glucose con-
centration g = 235 mg/dl, where the 1800-rule is rendered



correct for the nonlinear model [14], [46]. Then, its domain
of validity was extended by allowing parameter p1 to vary
with g in order to fit the average Bandwith (BW) of
the linearized models at different glucose values, keeping
all other parameters fixed (z = 0.1501, p2 = 0.0138
and p3 = 0.0143). Pole p1(g) was approximated by the
following piecewise-polynomial function:

p1(g) = qi g
3 + ri g

2 + si g + ti

with i =



1 if g ≥ 300

2 if 110 ≥ g < 300

3 if 65 ≥ g < 110

4 if 59 ≥ g < 65

5 if g < 59

(2)

and with coefficient values given in Table I.

TABLE I: Parameter values of p1(g) from (2).

i qi ri si ti
1 0 0 −3.4321× 10−6 4.4706× 10−3

2 0 9.0580× 10−8 −5.3562× 10−5 1.1357× 10−2

3 −4.2382× 10−8 1.1402× 10−5 −9.1676× 10−4 2.5849× 10−2

4 0 1.7321× 10−4 −2.3080× 10−2 7.7121× 10−1

5 0 0 −2.8336× 10−5 1.4083× 10−2

In this way, a simple manner of replicating changes in
the model’s gain according to the glucose value was ob-
tained, since the BW and Low-Frequency Gain (DC Gain)
of the model are related by the time-varying parameter p1.

The average glucose-dependent model (1) can then
be tuned to a specific subject by adjusting parameter k
with his/her TDI as follows. For each subject #j, the
LPV model at 235 mg/dl is excited with a 1 U insulin
bolus and the value of kj is determined so that the
glucose drop matches the one predicted by the 1800-rule
(1800/TDIj). Here, it is worth remarking that parameter
kj is time-invariant, but specific to each subject.

A state-space representation of the personalized LPV
model (defined as LPVg model) is given by:

ẋ(t) = A(p1)x(t) +Bu(t− τ)

y(t) = Cx(t)
(3)

with τ = 15 min, u and y the insulin delivery and glucose
signals, and

A(p1) =

0 1 0
0 0 1
0 −p2p3 −(p2 + p3)


+ p1

 0 0 0
0 0 0

−p2p3 −(p2 + p3) −1

 ,
B =

[
0 0 1

]T
, C = kj

[
z 1 0

]
.

(4)

Note that the LPVg model is affine in parameter p1,
which is an advantageous characteristic for the design of
LPV controllers [47]. Moreover, LPVg was compared to
the UVA/Padova simulator in terms of the Root Mean
Square Error (RMSE) and the ν-gap metric [48], [49],
achieving better performance than control-oriented models
presented previously in this field [3], [6], [45]. It is worth

noting that this model was used for controller-design in a
recent clinical trial, achieving promising results [50], [51].

III. Proposed LPV model

A. Inclusion of intra-patient variations

In this section, an extension of model (4) that includes
intra-patient variability is developed — the LPVi model.
The proposed structure is identified from linearizations of
the UVA/Padova metabolic model around several operat-
ing points defined by steady-state glucose concentrations
achieved by only accommodating the insulin infusion rate.

Glucose concentrations in the range [40, 400] mg/dl
were considered to span the usual measurement range of
CGM sensors, within a non-uniform grid. Since an average
structure was pursued instead of specific SI values, an
Insulin Sensitivity Variation Factor (SI,VF) was defined as
SI,VF = SI/SI,nom, where SI,nom could be considered as
its average daily or basal [52] value. SI,VF was selected
in the range [0.4, 1.7] over a uniform grid with a step of
0.1, to cover the previously observed variations of [40, 60]%
around the nominal subject-specific SI [5], [22], [53].

For each subject, the operating points (gop, SIV F,op)
were defined over each pair (g, SIV F ) on the grid. The
insulin infusion rate was adjusted accordingly to achieve
steady-state conditions at the glucose level gop when pa-
rameters Vmx and kp3 were modulated by SIV F,op. Then,
as in [14], linearizations of the UVA/Padova model were
obtained for each in-silico adult of the distribution version
of the simulator.

Figure 1 shows the average variation of the BW and
DC Gain for LPVg and all in-silico adults linearized at
different g and SI,VF values. Note that both BW and
DC Gain coincide exactly at SI,VF = 1.

Fig. 1: BW (top) and DC Gain (bottom) of LPVg (smooth

surface) for all in-silico adults from the UVA/Padova simulator

linearized at different g and SI values (gridded surface). The red

dotted line indicates the BW at nominal SI.

Given that the DC Gain of model (1) is kz
p1p2p3

, and that
the BW is independent of k, the LPVg model is expanded



by making parameter k dependent on g and SI,VF as
depicted in Figure 2. Following this approach, variations
of the model’s gain due to SI changes (see Figure 1) can
be reproduced, without affecting the previous BW fitting.

SI,V F (t)
k(g, SI,V F )

p1(g)

G

t

g(t)

g(t)

u(t)

LPVi

Fig. 2: Average LPVi model structure.

In this way, k is used to compensate both inter-patient
variations through the 1800-rule and intra-patient varia-
tions by making k change according to a suitable SI profile.
The latter could be a general profile (such as those in [22],
[36], [37]) or a profile obtained from clinical data using the
pump/CGM index in [54], or through an estimation based
on real-time measurements [55]. This grants flexibility to
the selected model structure, so it can be used together
with the SI profile that best suits subject-specific circadian
variations in SI, or even considering other factors that
influence SI such as physical exercise or stress [28], [30],
[31], [56]–[58].

In order to characterize the dependence of parameter k
on g and SI,VF, the definition of the DC Gain of model
(1) is used. Here, the observed values for the DC Gain of
the linearized models at each (g,SI,VF) pairs (defined as
DCGNL(g,SI,VF)), together with the constant parameters
p2, p3 and p1(g) from (2), are used to compute an average
value for parameter k, defined as kavg:

kavg(g,SI,VF) =
p2p3
z

p1(g)DCGNL(g,SI,VF) (5)

Then, the result was fitted using a piecewise polynomial
function as indicated in the Appendix, and presented in
Figure 3.

Fig. 3: Parameter kavg for different values of g and SI,VF (grid-
ded surface) and piecewise polinomial function kavg(g,SI,VF)
(smooth surface).

Note that as shown in Figure 1, there is an abrupt
change at 60 mg/dl. The reason for this discontinuity
is that the insulin-dependent glucose utilization in the
UVA/Padova simulator is associated with a risk function

that increases when glucose decreases below the subject’s
basal glucose concentration and saturates when glucose
reaches 60 mg/dl. To avoid translating this artifact dis-
continuity to the glucose output, a smooth surface was
fitted instead.

In this way, the state-space representation of the average
LPVi model is similar to (4), but now with the output
matrix:

C = kavg(g,SI,VF)
[
z 1 0

]
. (6)

B. Model personalization

In Section III, it was shown how k can be used to tackle
intra-patient variability. In this Section, k is further tuned
to reduce inter-patient uncertainty. This model personal-
ization is carried out in a similar way as the one described
in [14], i.e., by adjusting model’s k using the 1800-rule.

In this case, a suitable gain k? is computed as the gain
that makes the LPVi model achieve the same glucose drop
as the one predicted by the 1800-rule when excited with
a 1 U insulin bolus at g = 235 mg/dl and SI,VF = 1. This
point was selected since it was the one at which the 1800-
rule was satisfied on average for all the in-silico adults [14].
A simple Proportional-Integral (PI) control loop, which
modified k of the LPVi model until the model’s glucose
drop matched the one predicted by the 1800-rule, was used
to obtain k? for each adult.

Considering that for each subject the DC gain of the
model at g = 235 mg/dl and SI,VF = 1 should be
k?, a subject-specific scaling factor kj is computed as
kj = k?/kavg(235, 1), where kavg(235, 1) = −1.822× 10−5.
Then, a parameter ks(g, SI,VF) is defined as ks = kjkavg,
with kj given in Table II and kavg the same fitted-surface
of 3. Model personalization is thus achieved by replacing
kavg in (6) with parameter ks(g, SI,VF). Note that this
corresponds to a vertical shifting of the fitted kavg surface.

TABLE II: Scaling factor kj for each in-silico adult.

Adult TDI [U/day] k? × 10−5 kj
1 42 -1.7888 0.9818
2 43 -1.7451 0.9578
3 52 -1.4343 0.7872
4 35 -2.1396 1.1743
5 40 -1.8650 1.0236
6 72 -1.0343 0.5677
8 52 -1.4379 0.7892
9 34 -2.2024 1.2088
10 47 -1.5919 0.8737
11 39.9 -1.8864 1.0354

Variations of ks(g, SI,VF) for the average in-silico
subject, and the most and least sensitive subjects are
presented in Figure 4. Note that the most sensitive subject
(Adult #009), whose TDI is the lowest, is associated with
the highest scaling factor kj , and therefore, higher values
of ks (in module).

IV. Results and Discussion

A good simulation model, i.e., one that fits properly
the experimental data, is not necessarily a good candidate
to design controllers [59]. Therefore, in this section, a



Fig. 4: kavg (gray surface) and personalized ks for the average
subject (yellow surface), Adult #006 (blue surface) and Adult
#009 (green surface).

comparison of both LPVg and LPVi with respect to the
UVA/Padova model is carried out not only for simulation
(open-loop) purposes, but also for controller synthesis
(closed-loop). No other models are considered here, since
in [14] LPVg already showed lower closed- and open-loop
errors than previous control-oriented models [3], [6], [45].

A. Open-loop comparison

Considering that SI varies mostly during the day, the
simulations are performed incorporating the time-varying
profiles determined in [36]. First, the class 1 profile is
analyzed, by maintaining the same SI value during the
day, but changing it’s nominal value in the simulator.
For each of the 10 in-silico subjects of the distribution
version of the UVA/Padova simulator, an insulin bolus of
1 U was applied at different operating points to test the
personalized LPVi and LPVg models in comparison with
the UVA/Padova nonlinear simulator. Next, the other six
profiles were considered.

1) Fixed SI values (class 1): Figure 5 presents the time-
responses for Adult #009 (most sensitive subject) to a 1
U insulin bolus for multiple SI,VF values at basal glucose
concentrations of 120, 180, and 240 mg/dl. Parameters p1
and ks variations for the LPVg and LPVi models are also
depicted. Note that a better fit is achieved with LPVi than
with LPVg for most SI,VF values. The reason is that only
LPVi adjusts its gain to reflect changes in SI. In addition,
it is worth clarifying that despite the LPVi model is an
extension of the LPVg model, its behavior for nominal
insulin sensitivity (SI,nom) is the same only at 235 mg/dl as
an operating point, i.e., the glucose concentration at which
they were both identified. For other glucose concentra-
tions, the gain adjustment through variation of parameter
ks(g,SI,VF) generates the differences between both models.

The RMSE between the time-responses of each LPV
(yp) and the UVA/Padova model (y), for each subject at
each operating point on the (g,SI,VF) grid, was computed
according to the following equation:

RMSE =
‖yp − y‖2√

nt
(7)

where ‖·‖2 represents the 2-norm, and nt the number of
points. In order to capture the complete glucose variation
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Fig. 5: Responses to a 1 U insulin bolus starting from 120
mg/dl, 180 mg/dl and 240 mg/dl for Adult #009 at different
SI,VF values for models LPVg (dotted black line), LPVi (dashed
lines) and the UVA/Padova nonlinear model (solid lines). Top:
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at each point, nt = 1200 points with a sampling time of
1 minute, were selected. In Figure 6, average values of
the RMSE for all 10 in-silico adults at different g and
SI,VF values are shown. Note that a lower RMSE can be
obtained with LPVi than with LPVg for most glucose
concentrations.

Considering SI variations, for the least sensitive case
(SI,VF = 0.4), LPVi outperforms LPVg for the whole
glucose range. For SI,nom (SI,VF = 1), both LPV models
have approximately the same RMSE, except for glucose
concentrations around 90-180 mg/dl, where the increased
sensitivity of the UVA/Padova model is further adjusted
by the variation of the ks parameter in LPVi . For a
glucose concentration of 235 mg/dl, similar errors are ob-
served since, as discussed before, at this point both models
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are equivalent. For the most sensitive case (SI,VF = 1.7),
LPVi has a similar RMSE as LPVg for g < 140 mg/dl, but
at higher g values the difference in the DC Gain between
both models becomes larger and LPVi provides a better
fit.

2) Time-varying SI profiles (classes 2-7): Figures 7
to 9 present the time responses for Adult #009 to three
insulin boluses in the set {0.5, 1, 1.5} U, applied at 7,
14, and 21 hours, respectively, for different profiles of SI

variation with a glucose operation point of 120 mg/dl.
For these scenarios, the basal insulin infusion rates were
accommodated to maintain steady-state conditions after
SI changes, as performed in [60]. In these cases, the LPVi

model is able to reflect the SI variation regardless of the SI

profile or the applied bolus, better than the LPVg model.
In this way, the LPVi model obtains a more accurate
representation of the UVA/Padova model, adapted to
the subject’s individual SI profile. Additionally, the same
scenario was tested at glucose operating points in the set
{90, 180, 240, 300} mg/dl, obtaining the same results as
for 120 mg/dl. These values were selected in order to span
the complete glycemic range with the simulated glucose
traces, bearing in mind that only insulin was considered
as input.
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120 mg/dl for Adult #009 with different SI profiles for models
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The average RMSE between the time-responses of both
LPVi and LPVg models and the UVA/Padova model is
shown in Figure 10. Note that for all SI variation classes,
a lower RMSE was obtained with the LPVi model than
with the LPVg model.

B. Closed-loop comparison

In this case, the ν-gap distance [48], [49] between each
personalized LPV model and the UVA/Padova model
linearized at different points of the (g,SI,VF) grid is com-
puted. This metric considers the distance (δν) between
two models regarding their achievable closed-loop perfor-
mance, without having to design the controllers for each
loop.
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LPVg (dotted violet line), LPVi (solid blue lines) and the
UVA/Padova nonlinear model (dotted black lines).
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Fig. 9: Responses to three 1.5 U insulin boluses starting at
120 mg/dl for Adult #009 with different SI profiles for models
LPVg (dotted violet line), LPVi (solid blue lines) and the
UVA/Padova nonlinear model (dotted black lines).
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For LTI models, given a controller K and a model P1,
with K and P1 transfer matrices, a performance mea-
sure/stability margin for the (stable) closed-loop system
(P1,K) is defined in [48], [49] as:

bP1,K =

∥∥∥∥[P1

I

]
(1−KP1)

−1 [−K I
]∥∥∥∥−1
∞

(8)

where ‖·‖∞ indicates the H∞-norm. Here, larger values of
bP1,K correspond to better performance of the feedback
system comprising P1 and K. The difference between the
performances of the nominal model and a perturbed one
P2 for the same controller K can be quantified through
the ν-gap , i.e. δν(P1, P2), with bP2,K ≥ bP1,K−δν(P1, P2).
This indicates that the smaller δν(P1, P2) the closer their
closed loop perfomances. Considering that if P1 and
P2 represent alternate models of the same system (the
UVA/Padova model and the LPVg or LPVi for example),
a small δν(P1, P2) indicates that the differences between
both models are negligible from a feedback perspective.
Note that for its computation (see [48], [49]), only the
plant models are required, and therefore their closed-loop
performances can be compared without having to design
the controller and compare on a one-by-one basis.

Figure 11 presents the average ν-gap for all 10 adults
for three different SI,VF values, obtaining lower values with
LPVi , similar to the analysis presented in Section IV-A.
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Fig. 11: Median ν-gap (δν) between the linearizations of
the UVA/Padova nonlinear model and models LPVg (violet
dashed lines) and LPVi (blue solid lines) for different SI,VF

values. Top: most resistant case (SI,VF=0.4), middle: nominal
case (SI,VF=1), bottom: most sensitive case (SI,VF=1.7). The
vertical bars are limited by the 25th and 75th percentiles.

C. Overall comparison

The difference between the RMSE and ν-gap obtained
with both LPV models was computed for all (g,SI,VF)
points considered in Section IV-A1, and all 10 in-silico
adults, according to:

δν,d = δν,LPVi − δν,LPVg (9)

RMSEd = RMSEi − RMSEg (10)

In this way, negative values of δν,d or RMSEd indicate
points where LPVi outperforms LPVg .

A two-sampled t-test was carried out for each in-silico
adult, to determine if the average RMSE obtained with
LPVi is lower than the one obtained with LPVg at all
(g,SI,VF) points and for all the time-varying SI profiles
considered. The same analysis was performed for the ν-
gap to determine if including the SI variation in the
controller design stage could lead to a better closed-
loop performance. Test results for each adult and the
whole population (row ‘All’) are presented in Table III,
along with the percentage of (g,SI,VF) points in which
an improvement over LPVg is obtained, both in open-
and closed-loop. According to these results, both open-
loop and closed-loop metrics show an overall improvement
using LPVi above 73.8%. It should be taken into account
that the comparison measures were computed based on a
simulated population and has an average significance. A
better and more personalized result could be obtained by
using clinical data from the SI variations for a particular
subject.

TABLE III: Percentage of cases of model improvement in
terms of the RMSE (%RMSE) and ν-gap (%ν-gap). hRMSE or
hν-gap equal to one indicate a significant reduction on the
average RMSE or ν-gap obtained with LPVi , considering a
5% significance. Time-varying SI,VF values correspond to all
SI,VF profiles that were considered.

Adult # j
Constant SI,VF Time-varying SI,VF %ν-gap hν-gap

%RMSE hRMSE %RMSE hRMSE

1 73.47 1 44.4 0 79.88 1
2 80.92 0 100.0 1 76.32 1
3 74.4 1 55.6 0 74.4 1
4 71.74 1 100 1 63.9 1
5 71.19 1 88.9 1 61.17 1
6 79.5 1 83.3 1 79.81 1
8 80.81 1 100.0 1 71.29 1
9 78.38 1 100.0 1 79.78 1
10 77.94 1 100.0 1 76.63 1
11 84.05 1 100.0 1 79.75 1

All 77.17 1 87.22 1 73.82 1

To recap, the main result here is the computation of
an LPV structure, amenable to controller design. The
procedure allows to include both inter- and intra-patient
variations maintaining the time-varying characteristics of
the system with a control-oriented focus based on real-time
measurements and clinical data in a non-invasive way.

The model is able to accommodate variations in SI,
which are the main cause of this variability. Therefore,
the next step would be to couple the model with a SI

estimator from real-time measurements to include, for
instance, exercise or stress influence on SI. Alternatively,
this variability can be also represented as uncertainty
bounds through an invalidation procedure, as the one
carried out in [40], using field collected data.

V. Conclusions

In this work, a low-order control-oriented model that
includes intra-patient variations and generalizes previous
works was proposed. This model depends on two parame-
ters, p1(g) and kavg(g,SI,VF), which in turn are functions



of the glucose concentration and insulin sensitivity factors.
These parameters can be computed in real-time and allow
representing the nonlinear dynamics and the intra-patient
variations. In addition, the model can also be easily per-
sonalized to reduce the inter-patient uncertainty by means
of the well-known 1800-rule.

The use of SI,VF allowed obtaining a general average
structure that is not dependent on a particular model
that describes changes in SI, i.e., it could be used in com-
bination with any real-time SI estimator (block SI,VF(t)
on Figure 2). In this way, other factors influencing the
subject’s SI like stress, exercise, meal size and composition,
etc., could be considered in real time to obtain more robust
and reliable controllers.

The proposed LPVi was compared to the LPVg model
without the intra-patient variations in terms of its open-
and closed-loop characteristics, by means of the RMSE
and ν-gap, respectively. The proposed LPVi showed better
performance with smaller errors, highlighting the advan-
tages of including SI variations in the model’s structure.

Appendix

The piecewise polynomial function kavg(g,SI,VF) is fit-
ted as follows:

kavg(g, SI,VF) = λ1,n + λ2,n g + λ3,n SI,VF + λ4,n g SI,VF

+ λ5,n g
2 + λ6,n SI,VF

2 + λ8,n g SI,VF
2 + λ7,n g

2 SI,VF

+ λ9,n g
2 SI,VF

2 + λ10,n g
3 + λ11,n SI,VF

3

+ λ12,n g
3 SI,VF + λ13,n g SI,VF

3 + λ14,n g
4

with n =


1 if g ≥ 300

2 if 120 ≤ g < 300

3 if 45 ≤ g < 120

4 if g < 45
(11)

with parameters values presented in Table IV.

TABLE IV: Parameter values for kavg(g,SI,VF) from (11).

n 1 2 3 4
λ1,n −7.641 × 10−03 5.514 × 10−05 8.356 × 10−05 −2.011 × 10−05

λ2,n 9.024 × 10−05 −1.186 × 10−06 −2.645 × 10−06 2.942 × 10−06

λ3,n 4.785 × 10−04 3.262 × 10−05 −5.145 × 10−05 −1.352 × 10−04

λ4,n −4.296 × 10−06 −6.907 × 10−07 8.635 × 10−07 7.641 × 10−06

λ5,n −3.971 × 10−07 9.342 × 10−09 2.470 × 10−08 −1.323 × 10−07

λ6,n −4.243 × 10−05 3.838 × 10−06 5.062 × 10−06 8.139 × 10−05

λ7,n 1.225 × 10−08 3.270 × 10−09 −4.359 × 10−09 −1.399 × 10−07

λ8,n 1.885 × 10−07 −3.542 × 10−08 −5.847 × 10−08 −3.266 × 10−06

λ9,n −1.966 × 10−10 6.014 × 10−11 0 2.696 × 10−08

λ10,n 7.718 × 10−10 −3.175 × 10−11 −7.066 × 10−11 2.400 × 10−09

λ11,n 5.622 × 10−06 −2.428 × 10−06 0 −1.458 × 10−05

λ12,n −1.153 × 10−11 −5.211 × 10−12 0 8.254 × 10−10

λ13,n −1.546 × 10−08 8.127 × 10−09 0 3.713 × 10−07

λ14,n −5.588 × 10−13 3.937 × 10−14 0 −1.575 × 10−11
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