
Predictive Accuracy of
Machine Learning Algorithms in

Recommender Systems

Marcos Dumón

A Work Submitted for the Degree of Data Science Specialist at
Instituto Tenológico de Buenos Aires

2019

Supervisor: Ph.D. Leticia Gómez.
Director: Ph.D. Alejandro Vaisman.

Typeset using LATEX
© 2019 Marcos Dumón, unless otherwise noted.

▶ To cite this version:

Marcos Dumón. Predictive Accuracy of Machine Learning Algorithms in Recommender
Systems. Artificial Intelligence. Instituto Tecnológico de Buenos Aires - Buenos Aires,
2019. Final Specialization Project. English.

Predictive Accuracy of Machine Learning Algorithms in
Recommender Systems

Abstract

This work presents a systematic literature review on the application of Machine Learning
algorithms in the development of effective movie recommender systems. With the increas-
ing popularity of movie recommender systems in the entertainment industry, selecting
appropriate algorithms has become crucial for delivering personalized and accurate recom-
mendations to users. Through an extensive literature search and rigorous methodology,
this work identifies and analyzes commonly used Machine Learning algorithms for movie
recommendation. The accuracy and performance of these algorithms are evaluated using
established evaluation methods and metrics on movie datasets of different sizes. The
evaluation takes into account factors such as prediction accuracy, scalability, and robust-
ness. The comparative analysis provides valuable insights into the effectiveness of various
Machine Learning algorithms in the context of movie recommendation. The findings
contribute to the understanding of algorithmic performance, enabling researchers and
practitioners to make informed decisions when developing movie recommender systems.
Additionally, the work explores the impact of different hyperparameters and optimization
techniques on algorithm performance. The results of this work aim to improve the quality
of movie recommendations and enhance user satisfaction. By providing guidelines and
recommendations for algorithm selection and optimization, this work contributes to the
advancement of movie recommender systems and the overall movie-watching experience.

Keywords: Artificial Intelligence - Machine Learning - Recommender Systems - Al-
gorithms - Performance - Collaborative Filtering - Neighbor Based Methods - Matrix
Factorization - Supervised Learning - Optimization.

In loving memory of my grandmother María Elena,
who always put the extra into ordinary.

It is not knowledge, but the act of learning,
not possession but the act of getting there,

which grants the greatest enjoyment.

Carl Friedrich Gauss

Contents

Abstract ii

List of Figures x

List of Tables xii

Abbreviations xiii

Symbols xiv

1 Introduction 1
1.1 Origins and general overview of RS . 1
1.2 Goal of this work . 3

1.2.1 Research objective . 3
1.2.2 Specific research objectives . 3
1.2.3 Research methodology . 4
1.2.4 Limitations . 4
1.2.5 Project outline . 4

2 State of the Art 5
2.1 Artificial Intelligence . 5
2.2 Machine Learning . 8

2.2.1 Supervised learning framework . 10
2.2.1.1 Datasets, feature selection and extraction 10
2.2.1.2 An overview of learning theory 11
2.2.1.3 Problem formalization 12
2.2.1.4 Central assumption of statistical learning theory 13
2.2.1.5 Loss functions, true risk and empirical risk 13
2.2.1.6 Empirical Risk Minimization 14
2.2.1.7 Optimization . 15
2.2.1.8 Model selection . 17
2.2.1.9 Complexity, overfitting and underfitting 18

2.3 Recommender systems . 20
2.3.1 Machine Learning in RS . 20
2.3.2 Taxonomy of RS . 21

vi

2.3.2.1 Content-based RS . 22
2.3.2.2 Collaborative filtering 22
2.3.2.3 Knowledge-based RS . 23

2.3.3 Challenges and limitations . 23
2.3.3.1 Cold start . 24
2.3.3.2 Data sparsity . 24
2.3.3.3 Scalability . 24
2.3.3.4 Limitations of IID assumptions in traditional recommen-

dation approaches . 25
2.3.4 Recommendation as risk minimization 25

2.3.4.1 Problem formalization and notation 25
2.3.4.2 The two phases of RS: Prediction and ranking 30
2.3.4.3 Toy example . 31

2.3.5 The complexity of predicting user preferences: Moving beyond tra-
ditional classification and regression algorithms in RS 31
2.3.5.1 Understanding the significance and variation of movie rat-

ings on a 1 to 5 scale . 32
2.3.5.2 Collaborative filtering as a generalization of classification

and regression . 33

3 Recommendation Algorithms 35
3.1 Baseline Predictor . 35

3.1.1 Optimization through Stochastic Gradient Descent 37
3.2 Collaborative filtering: Taxonomy . 40
3.3 Memory-based collaborative filtering . 41

3.3.1 User-based approach: k-NNusers 42
3.3.1.1 Generation of recommendations 43
3.3.1.2 Metrics for quantifying users’ similarity 43
3.3.1.3 PCCBaseline metric . 45
3.3.1.4 User-based CF with Baseline Predictor: k-NN⋆

users 46
3.3.2 Item-based approach: k-NN⋆

items 48
3.3.2.1 Metrics for quantifying items’ similarity 49
3.3.2.2 Item-based CF with Baseline Predictor: k-NN⋆

items 51
3.4 Model-based collaborative filtering . 52

3.4.1 Matrix factorization . 54
3.4.2 Singular value decomposition . 54
3.4.3 Basic matrix factorization . 55
3.4.4 Unbiased matrix factorization: SVDunbiased 56

3.4.4.1 Optimization through Stochastic Gradient Descent . . . 58
3.4.5 Biased matrix factorization: SVDbiased 61

3.4.5.1 Optimization through Stochastic Gradient Descent . . . 61
3.5 Evaluation of recommendation algorithms 65

3.5.1 Metrics for prediction accuracy 66

3.5.2 Metrics for classification accuracy 67
3.5.2.1 Confusion matrix . 67

3.5.3 Metrics for ranking accuracy . 69

4 Hyperparameter Optimization 72
4.1 Introduction . 72
4.2 Parameters vs. hyperparameters . 73
4.3 Hyperparameter optimization: An overview 74
4.4 Standard techniques . 75

4.4.1 Grid search . 76
4.4.2 Random search . 77

4.5 Bayesian optimization . 77
4.5.1 Problem formalization . 78
4.5.2 Surrogate model . 79

4.5.2.1 Gaussian Processes . 79
4.5.2.2 Covariance of the Gaussian Process 80

4.5.3 Acquisition function . 81
4.5.3.1 Probability of improvement 82
4.5.3.2 Expected improvement 82
4.5.3.3 Lower confidence bound 83

4.5.4 Bayesian optimization algorithm 84

5 Experiments and Discussion 87
5.1 System configuration . 87
5.2 Datasets . 88

5.2.1 Description of the variables involved 89
5.3 Exploratory data analysis . 89

5.3.1 Long tail . 89
5.3.2 Distribution of ratings . 91

5.4 Dataset splitting . 91
5.5 Experiments . 92

5.5.1 Hyperparameter impact analysis in RS 92
5.5.2 Comparative performance of hyperparameter optimization techniques 92
5.5.3 Investigating the effects of data sparsity on recommendation algo-

rithms . 94
5.6 Results . 95

5.6.1 Experiment 1 . 96
5.6.1.1 Baseline Predictor . 96
5.6.1.2 k-NN⋆

users . 97
5.6.1.3 k-NN⋆

items . 99
5.6.1.4 SVDunbiased . 100
5.6.1.5 SVDbiased . 103

5.6.2 Experiment 2 . 105
5.6.2.1 Performance comparison 105

5.6.2.2 Improved hyperparameter optimization using Bayesian op-
timization . 108

5.6.2.3 RMSE analysis . 109
5.6.2.4 MAP and F-Score . 110

5.6.3 Experiment 3 . 111

6 Conclusions and Future Work 113
6.1 Summary . 113

A MAP Performance 115
A.1 MAP performance for ML 100K and 1M datasets 115

B Definitions and Technical Details 116
B.1 Linear regression . 116
B.2 Logistic regression . 118

B.2.1 Parameter estimation . 121
B.3 Source of prediction errors . 123
B.4 The bias-variance trade-off . 123
B.5 Differentiation . 126

B.5.1 Differentiation of ∂
∂ pu

[
λ
2∥pu∥2

]
. 126

B.5.2 Differentiation of ∂
∂ qi

[
λ
2∥qi∥2

]
. 129

C Numerical Examples 131
C.1 Baseline Predictor . 131
C.2 k-NN⋆

items . 133
C.3 k-NN⋆

users . 135
C.4 Precision, Recall and MAP . 138
C.5 Simon Funk’s SVD algorithm . 143
C.6 Ranking algorithm . 146

D Model Selection Illustration 150

Bibliography 152

List of Figures

1.1 Concept of a RS. 2

2.1 Turing Test (Imitation Game). 6
2.2 Example of Iris dataset for two features. Color of points indicate the plant

specie. 11
2.3 Illustration of the overfitting and underfitting phenomena. 19
2.4 Graph depicting the trade-off between true and empirical risk as a function

of model complexity. 19
2.5 High-level architecture of a RS. 21
2.6 RS approaches with an emphasis on collaborative filtering methods. . . . 22
2.7 Representation of users’ ratings for all items as the rating matrix. 26
2.8 Rating matrix where unobserved ratings must be estimated. 32

3.1 The two approaches used in the memory-based method. 41
3.2 User-user correlation vs. movie-movie correlation (Reference:[Chi12]). . . 44
3.3 Decomposition of R into two lower-ranking matrices P and Q. 56
3.4 5-folds CV procedure for model evaluation (Reference:[Ras20]). 66
3.5 Confusion matrix for RS. 67

4.1 Example of a GP with an EI acquisition function. 86
4.2 Example of a GP with an EI acquisition function. 86

5.1 Popularity of items in decreasing order. 90
5.2 Ratings as a function of percentage. 91
5.3 RMSE under different values of Γ and n. 96
5.4 Comparison of rmse with different similarity metrics and sizes of L. . . . 97
5.5 Evolution of precision (rmse) for ML 100K according to matrix density. 98
5.6 Comparison of rmse with different similarity metrics and sizes of L. . . . 99
5.7 Evolution of precision (rmse) for ML 100K according to matrix density. 100
5.8 Trend of rmse under different values of K. 101
5.9 RMSE for different numbers of epochs. 102
5.10 RMSE under different values of Λ and K. 102
5.11 Trend of RMSE under different values of K. 103
5.12 RMSE for different number of epochs. 104
5.13 RMSE under different values of Λ and K. 104

x

5.14 Test error of memory-based and model-based methods with respect to the
number of trained models in ML 100K. 106

5.15 Test error of memory-based and model-based methods with respect to the
number of trained models in ML 100K. 107

5.16 Test error of memory-based and model-based methods with respect to the
number of models trained on ML 1M. 109

5.17 MAP@K performance of each recommendation algorithm. 110
5.18 Evolution of precision for ML 100K and ML 1M according to matrix density.111

B.1 Relationships between generalization error, bias and variance. 125

C.1 User-movie ratings matrix. 131
C.2 Rating matrix estimated by the Baseline Predictor. 132
C.3 Matrix of estimated ratings centered with the Baseline Predictors. . . . 133
C.4 Similarity matrix between movies. 134
C.5 Rating matrix estimated by k-NN⋆

items. 135
C.6 Matrix of estimated ratings centered with the Baseline Predictors. . . . 136
C.7 Similarity matrix between users. 136
C.8 Rating matrix estimated by k-NN⋆

users. 137

D.1 k-fold cross-validation for model selection. (Reference:[Ras20]) 151

List of Tables

5.1 Dataset statistics. 88
5.2 Hyperparameter space explored by the two methods. 106
5.3 Optimal values of hyperparameters for each model in ML 100K. 107
5.4 Unbiased test error in Dtest for ML 100K. 108
5.5 Optimal values of hyperparameters for each model in ML 1M. 108
5.6 Unbiased test error in Dtest for ML 1M. 110

A.1 Values of MAP@K for different K in Dtest for ML 100K. 115
A.2 Values of MAP@K for different K in Dtest for ML 1M. 115

C.1 Toy example. 138
C.2 Sorting the list Bu(k) in descending order. 139
C.3 User-movie matrix R. 143
C.4 Matrix of latent factors U . 143
C.5 Matrix of latent factors V⊤. 143
C.6 Rankings of items for users 1 and 2. 147

xii

Abbreviations

AI Artificial Intelligence

ML Machine Learning

RS Recommender Systems or Recomender System

CF Collaborative Filtering

ML 100K Movielens 100K Dataset

ML 1M Movielens 1M Dataset

SGD Stochastic Gradient Descent

SVD Singular Value Decomposition

K-NN k-Nearest Neighborss

GP Gaussian Process

ERM Empirical Risk Minimization

xiii

Symbols

r̄ Average rating of all users and items

bu The u-th user bias, i.e. the u-th element of bu

bi The i-th item bias, i.e. the i-th element of bi

rui The rating of user u on item i

r̂ui The prediction of rui

duv Similarity between users

dij Similarity between items

L Number of neighbors

Lu Set of neighbors (for user u)

Li Set of neighbors (for item i)

U Number of users

I Number of items

R The matrix of rui values, i.e. the matrix of ratings

D The set of (u, i) indices of R where a rating is provided

xiv

D Similarity matrix

P The user feature matrix

Q The item feature matrix

xi The i-th example (input) from a dataset

yi , yi The target associated with xi for supervised learning

X The m× n matrix with input examples xi in row Xi

bu The user biases

bi The item biases

ru Vector containing the ratings provided by users

ri Vector containing the ratings that items have received

pu The user feature vector

qi The item biases

u, v ∈ {1, . . . , U} Indices for users

i, j ∈ {1, . . . , I} Indices for items

R i,j Element i, j of matrix R

R i,: Row i of R

R :,i Column i of R

A A set

a ∈ A Element a in the set A

A \ B Complement of set A in the set B

A ⊂ B The set A is a subset of the set B

A ∩ B Intersection of sets A and B

A ∪ B Union of sets A and B

|A| Number of elements in the set A

R Set of real numbers

R+ Set of non-negative real numbers

Rn Set of real-valued n-dimensional vectors

Rn×m Set of real value matrices of n×m-dimensions

N Set of natural numbers, i.e., {0, 1, . . . }

{0, 1, . . . , n} The set of all integers between 0 and n

[a, b] Closed interval between a and b

{a, b, c} Set that contains elements a, b and c

∇Θf(Θ) = ∂f(Θ)
∂ Θ ∈ Rn Gradient of scalar field f(Θ) : Rn → R w.r.t. vector Θ

∂f(Θ)
∂Θ Partial derivative of scalar field f(Θ) : Rn → R w.r.t. the scalar Θ

R⊤ Transpose of matrix R

A−1 Inverse of matrix A

N (x, µ, σ) Gaussian distribution over x with mean µ and covariance σ

z ∼ D z is sampled according to D

P,E Probability and expectation of a random variable

X Instances domain (a set)

Y Labels domain (a set)

f : X → Y Function f with domain X and range Y

argmax
∆

f(x|∆) The argument ∆ for which f has its maximum value

argmin
∆

f(x|∆) The argument ∆ for which f has its minimum value

∥R∥F =
√

m∑
u=1

n∑
i=1
|rui|2 Frobenius norm

xi, vi, wi The ith element of a vector

a · b Dot product between two vectors

∀x Universal quantifier: for all x

a =: b b is defined as a

∃x Existential quantifier: exists x

| Such that

∥x∥2 =
√

d∑
i=1

x2
i The L2 norm of x

∇f(Θ) The gradient of a function f : Rd → R at Θ

1[boolean expression] Indicator function (equals 1 if expression is true and 0 otherwise)

Chapter 1

Introduction

In this chapter, we will explore the origins of recommender systems in Section 1.1. The
primary objective of this work is defined in Section 1.2, followed by a presentation of the
research method employed in this study in Section 1.2.3. Lastly, the limitations of this
work will be discussed in Section 1.2.4.

1.1 Origins and general overview of RS

Recommender systems (RS) play a significant role in enhancing our online experiences by
leveraging data analysis to deliver personalized suggestions. These systems are particularly
crucial in the current digital landscape, where users are confronted with an abundance of
choices. According to [BOHG13]:

A recommender system can be defined as a set of programs that attempt to
recommend the most suitable items to particular users by predicting a user’s
interest in an item based on the information about the items, the users and
the interactions between items and users.

Companies in various industries such as e-commerce, news, video-on-demand, profes-
sional networking and music streaming, use RS to increase sales, engagement and user
experience. The RS field can be traced back to the mid-1990s with the development of
Tapestry [GNOT92], the first collaborative filtering manual mail system, at Xerox Palo

1

Alto Research Center1. The goal of RS is to filter and predict vital information from large
volumes of data on user preferences and behavior. Learning algorithms take historical
data to infer rules, correlations and preferences. This information is then used to select
and suggest various items, including songs, books, news, movies, clothes, or restaurants,
tailored to the preferences of individual users. Historical data can be heterogeneous, such
as specific user information like age and occupation or item characteristics like genre,
year and actors. Users’ explicit comments, indicating their feelings, or implicit comments;
collected through their interactions with items, can also be interpreted as signs of interest.

Figure 1.1 depicts the fundamental concept of a RS. The system takes in a data stream
and filters it to deliver the most pertinent recommendations to users. The filtering rules,
which depend on the ratings provided, are subject to continuous change due to new data
inputs. The users who give the ratings may or may not be the same users who receive the
recommendations, as collaborative filtering systems use data from various users or items
to make recommendations. The system combines these ratings with various Machine
Learning algorithms to construct a model that generates recommendations based on a
user’s rating history. As users receive recommendations, they continue to provide feedback,
and the model is updated and fine-tuned to enhance the accuracy of the recommendations.

recommender
system

model

ratings

recommendations

Figure 1.1: Concept of a RS.

To illustrate this point, we will examine the recommendation problem from the perspective
of Amazon Inc.2, a United States-based e-commerce company. Amazon’s platform provides
users with the ability to purchase and sell goods or services. Customers typically come to
Amazon with the intention of purchasing a specific item, such as a smartphone. Prior to
making a purchase, they may assess their budget and estimated delivery date. Initially,
users engage with Amazon’s platform by searching for the product by name or category.
This generates a list of different products that Amazon offers, sorted or categorized by
relevance. By default, products are ordered by relevance, but users have the option to
sort them by other factors such as customer reviews, price or product condition (new or

1https://www.parc.com
2https://www.amazon.com

2

https://www.parc.com
https://www.amazon.com

used). These results are not directly related to the RS but rather are generated by a
sorting, search or classification algorithm. Users interact with the RS when they select a
product from the list provided by any of the algorithms mentioned above. When users
click on the item of interest, they are shown the product details along with additional
product groups that are directly related to the item. Below are the additional groups,
which represent the direct output of the recommendation algorithm:

“People who liked this product also liked”,
“Often bought together”,

“Based on your current browsing history, you may also be interested in”.

1.2 Goal of this work

1.2.1 Research objective

This work aims to examine the issue of offline computational accuracy in recommendation
algorithms and assess the scalability of their predictions in relation to dataset size. The
primary objective is to identify the optimal conditions under which a recommendation
algorithm exhibits the highest efficiency as the volume of data increases. While this
research does not provide a conclusive solution regarding the selection of a specific algo-
rithm, external factors such as dataset structure and preferred prediction types must be
taken into account. Nonetheless, it is anticipated to offer valuable guidelines for algorithm
selection based on dataset properties and size.

1.2.2 Specific research objectives

To achieve the central objective we compare memory-based methods with model-based
methods using the ML 100K and ML 1M datasets. We use multiple error metrics for
collaborative filtering, as their efficiency depends on the specific case being analyzed. We
evaluate how hyperparameters such as regularization, number of epochs, learning rate,
etc., impact model-based methods, while assessing the number of neighbors and similar-
ity metrics for memory-based methods. We also analyze the performance of Bayesian
optimization in hyperparameter optimization and compare it with random search. Fi-
nally, we evaluate the robustness of the algorithms under different levels of sparsity in
the rating matrix. Additionally, we aim to provide evidence supporting the superiority of

3

model-based methods over memory-based methods in the datasets analyzed in this work,
utilizing the aforementioned error metrics.

1.2.3 Research methodology

The primary research methodology employed in this work is experimental, conducted in a
controlled environment and quantitative in nature; as the results are evaluated numerically.
We test multiple algorithms using collaborative filtering and other techniques to enable
comparison of their accuracy and speed. Once the algorithms are run on the datasets, we
employ metrics to evaluate their performance.

1.2.4 Limitations

The field of RS encompasses a broad range of topics such as Machine Learning, data
extraction and more. As such, the number of methods and theories is extensive, and
the scope of this work is limited to the two methods mentioned above. While there are
various aspects to RS performance, including accuracy, scalability, memory and time
consumption, this work focuses primarily on the precision of each algorithm.

1.2.5 Project outline

The present work is structured into several chapters, each addressing to specific aspects of
RS. Chapter 2 provides a comprehensive literature review, examining AI, Machine Learn-
ing, as well as collaborative filtering, content-based RS and knowledge-based RS. These
three approaches represent widely adopted methodologies in constructing RS. Chapter 3
delves into the methodologies commonly employed in collaborative filtering, encompassing
both memory-based and model-based methods. Evaluation metrics for assessing their
performance are also discussed. In Chapter 4, hyperparameter optimization is defined
and explored, covering various techniques such as manual tuning, grid search, random
search and Bayesian optimization. Chapter 5 details the experimental setup, including
data analysis, dataset partitioning, and training, validation and testing techniques. The
chapter also encompasses the reporting, analysis, and evaluation of experimental results.
Finally, Chapter 6 presents the key conclusions derived from the conducted research and
proposes potential directions for future investigation.

4

Chapter 2

State of the Art

In this chapter, we present a brief overview of key concepts relevant to this work. First,
in Section 2.1, we introduce the topics of Artificial Intelligence and Machine Learning and
their relationship to RS. Next, in Section 2.3.2, we provide a taxonomy of the current
research in the field of RS. We also highlight the challenges and limitations in RS in
Section 2.3.3. Furthermore, we formally define the specific recommendation problem that
we aim to address in this work in Section 2.3.4. Finally, in Section 2.3.5, we compare the
traditional classification problem with collaborative filtering.

2.1 Artificial Intelligence

The quest to replicate human intelligence in machines has been a central goal of the field
of Artificial Intelligence (AI) since its inception. AI aims to design machines capable
of performing tasks that require reasoning, learning, problem-solving, planning, and
perception. According to computer scientist John McCarthy [McC98, McC07], AI is:

The science and engineering of making intelligent machines, especially in-
telligent computer programs. It is related to the similar task of using computers
to understand human intelligence, but AI does not have to confine itself to
methods that are biologically observable.

5

The concept of intelligence itself has been subject to much debate in the field of AI.
According to [Got97], “intelligence is a very general mental capability that, among other
things, involves the ability to reason, plan, solve problems, think abstractly, comprehend
complex ideas, learn quickly and learn from experience”. Various types and degrees
of intelligence are observed in humans, animals, and some machines. Intelligence is a
fundamental characteristic that allows living organisms to adapt and flourish in their
surroundings. The goal of AI is to replicate this characteristic in machines, creating
intelligent machines capable of performing a broad range of tasks. Determining whether
a machine is intelligent is a fundamental question in AI. Alan Turing addressed this
question in his article “Computational Machinery and Intelligence”, published in the
philosophy journal Mind in 1950 [Tur50]. He proposed the Turing Test, also known as
“The Imitation Game”, which assesses a machine’s intelligence and its ability to “think”.
He writes:

If there is a machine behind a curtain and a human is interacting with it
(by any means, for example, audio or writing, etc.) and if the human feels
that he is interacting with another human, then the machine is artificially
intelligent.

To pass the test, a machine must sufficiently impersonate a human in a written conversa-
tion with an interrogator in real-time such that the interrogator cannot reliably distinguish
between the machine and a real human. In Figure 2.1 we can see the interrogator, a
human (user) and a machine.

closed room

MD

interrogator

user

supercomputer

computer running an
intelligent program

T3

car

T2

motorcycle

T1

T1 - T2 - T3: dumb terminals

Figure 2.1: Turing Test (Imitation Game).

6

The interrogator is in a room separated from the other human and the machine. The
interrogator is not able to see or speak directly to any of the other two, and does not
know which entity is a machine, and communicates to these two solely by textual devices
like a dumb terminal. The goal of the game is for the interrogator to determine which
of the other two is the human and which is the machine [OD19]. To determine it, the
interrogator is supposed to distinguish the machine from the human solely based on the
answers received for the questions asked over the dumb terminal. After having asked
the number of questions, if the interrogator is not able to distinguish the machine from
the human, then, as per the argument of Alan Turing, the machine can be considered
intelligent.

The birth of AI as a discipline can be traced back to the Dartmouth Conference of 1956,
where McCarthy, along with Marvin Minsky, Nathan Rochester, and Claude Shannon
organized a conference to bring together leading experts to explore the study of intelligent
machines [MMRS06]. During the conference, the participants discussed the premise that:

Every aspect of learning or any other feature of intelligence can be so
precisely described that a machine can be made to simulate it.

Following the conference, the field of AI grew into a multidisciplinary field that encom-
passes computer science, engineering, psychology, philosophy, ethics and more. One of
the primary goals of AI is to design technology to accomplish highly specialized functions,
such as computer vision, speech processing, pattern analysis and prediction in data. This
focus on specific intelligent tasks is referred to as “Weak” AI [Vel12]. For example, IBM’s
Deep Blue chess-playing system that beat the world chess champion, Garry Kasparov, in
1997, is an example of a Weak AI machine. Instead of simulating how a human would play
chess, Deep Blue used brute force techniques to calculate probabilities to determine its
offensive and defensive moves. In contrast, the term “Strong AI”, introduced by philoso-
pher John Searle in 1980, refers to the goal of building machines with Artificial General
Intelligence, which has intellectual ability indistinguishable from that of human beings
[Sea80, CP04]. AI technology can take on many forms, including standalone hardware or
software, distributed across computer networks or embodied in a robot. AI can also be in
the form of intelligent autonomous agents, such as virtual or robotic entities capable of
interacting with their environment and making decisions on their own. Furthermore, AI
technology can also be coupled with biological processes, such as brain-computer interfaces
(BCIs), made of biological materials (biological AI), or as small as molecular structures
(nanotechnology).

7

2.2 Machine Learning

Before discussing Machine Learning (ML), it is crucial to have a clear understanding of
“learning”, in human terms. Learning is the process by which we acquire new knowledge,
skills, or behaviors through study or experience. Learning provides us with the flexibility to
adapt to new circumstances and learn new strategies, regardless of our age. Generalization
is the most important aspect of learning, which involves recognizing similarities between
different situations to apply what we have learned in one context to another. For instance,
let us consider the acquisition of mathematical skills. While adding natural numbers may
be simple for computers, they cannot rely on memorization as each term in the sum has
infinitely many values. It would be impossible to store the triple (x, y, x + y) for every
combination of the two values x and y. So, how do humans learn mathematics? A teacher
explains the process and students practice on examples until they can apply what they
have learned to new ones without making mistakes. After approximately 30 examples, a
student should understand addition. This means that after only 30 examples the student
can apply what they have learned to infinitely many new examples, which they have not
encountered before. This is what makes learning useful since it allows us to extrapolate
our knowledge to different situations. To be considered intelligent, a system that operates
in a changing environment must have the ability to learn. If the system can learn and
adapt to changes, the system designer does not need to anticipate and provide solutions
for all possible scenarios [MRT12].

The concept of human learning differs from that of learning in the context of ML, which
involves the use of learning algorithms. A learning algorithm is an algorithm that is able
to learn from data. Arthur Samuel coined the term “Machine Learning” in 1959, in his
article “Some Studies in Machine Learning Using Checkers” [Sam59]. Samuel defined
ML as a subfield of AI that seeks to enable computers to learn without explicitly being
programmed. But what does it mean for a machine to learn? Mitchell [Mit97] offers a
widely accepted definition, as shown in Definition 2.1:

Definition 2.1. A computer program learns from experience E, with respect to a class of
tasks T and performance measure P, if its performance at tasks in T improves as measured
by P, with experience E.

One practical application of Definition 2.1 is the development of a RS. Here, the task is
not the learning process itself, but rather the ability to perform accurate and relevant
recommendations to users based on their preferences or past behavior. Learning, in this
case, serves as the means to enable the computer to make better recommendations. For

8

example, a ML algorithm could be trained on a dataset of user preferences and past
behavior, such as movies or products, to learn how to make recommendations that the
user is likely to enjoy or find useful. The goal is to improve the algorithm’s ability to make
accurate and relevant recommendations over time. Many kinds of tasks can be solved
with ML, and RS are just one example. Other common ML tasks include classification
of objects into two or more classes, or regression, which involves predicting a continuous
value.

To evaluate the effectiveness of a ML algorithm, it is essential to have a quantitative
measure that can assess its performance. This measure, denoted as P, is, or should be,
designed specifically for the task T that the system is performing. By customizing the
performance measure to the task at hand, we can obtain a more accurate assessment
of the algorithm’s capabilities. It is typically crucial to assess the performance of a ML
algorithm on unseen data to determine its efficacy in practical applications. To achieve
this, we evaluate its performance metrics using a distinct test dataset that is separate
from the one used for training the system. This allows us to predict its performance in
real-world scenarios accurately.

Lastly, it is worth noting that experience E refers to the data that the ML algorithm is
trained on. It is the input that the algorithm uses to learn and improve its performance.
The nature of this experience can significantly impact the learning process, as it can be
either labeled or unlabeled. In supervised learning, the algorithm is trained on labeled
data, where each example has an associated label that tells the algorithm what the correct
output should be. The labeled data provides the algorithm with experience, which it uses
to learn the mapping between the input and the output.

On the other hand, unsupervised learning involves training the algorithm on unlabeled
data, which does not have any associated labels. Here, the algorithm is left to find patterns
or structure in the data on its own, which makes it well-suited for tasks such as clustering
or anomaly detection, where the goal is to find interesting patterns or anomalies in the
data. Thus, the type of experience that a ML algorithm receives can have a significant
impact on its ability to learn and perform well on various tasks [GBC16].

The term “learning” in this work refers to finding an algorithm that meets the conditions
set forth in Definition 2.1 and can be executed by a computer. From now on, when
referring to learning, we specifically mean finding an algorithm that meets the criteria
outlined in Definition 2.1 and can be executed by a computer.

9

2.2.1 Supervised learning framework

This section introduces two primary frameworks in supervised learning: classification
and regression. We provide a comprehensive discussion of the essential concepts and
algorithms within each framework, which will be essential to our work going forward. By
delving into these frameworks, we aim to establish a solid foundation for our subsequent
analyses and investigations. This section’s presentation intends to lay the groundwork for
introducing RS, which constitute the principal application task considered in this work.

2.2.1.1 Datasets, feature selection and extraction

A dataset comprises numerous examples, which are sometimes referred to as data points.
Among the earliest datasets analyzed by statisticians and ML researchers is the Iris dataset,
which was introduced by Fisher [Fis36]. The dataset comprises measurements of various
parts of 150 iris plants, with each plant corresponding to one example. The features of
each example consist of the measurements of each part of the plant, such as the sepal
length, sepal width, petal length, and petal width. Additionally, the dataset includes the
species to which each plant belonged, with three distinct species being represented.

The majority of ML algorithms are designed to process datasets, which consist of collections
of examples, each containing a set of features. A dataset can be described in various ways,
one of which is by using a matrix of features or a design matrix. This type of matrix
contains one example per row, with each column representing a specific feature. The
Iris Dataset1, for instance, comprises 150 examples, each consisting of four features. To
represent this dataset as a matrix of features, we can use X ∈ R150×4, where Xi,1 denotes
the sepal length of plant i, Xi,2 represents the sepal width of plant i. In many cases, while
dealing with a dataset that contains a matrix of features, denoted as X, it is also common
to provide a vector of labels, represented by y, where each yi corresponds to the label for
a specific example i.

In ML, it is often necessary to perform a pre-processing step to extract or select fea-
tures that are needed to accurately classify or cluster data. Features refer to individual
measurements or characteristics that describe the data. For instance, in Figure 2.2, the
Sepal width and Sepal length are physical features that were taken from a real, existing
plant, allowing for the accurate discrimination of the three species. The need for feature

1https://archive.ics.uci.edu/ml/datasets/iris

10

https://archive.ics.uci.edu/ml/datasets/iris

extraction or selection arises due to the complexity and noise often present in raw data,
which can make processing it without such steps difficult.

sepal length

se
pa

l
w
id
t
h

Setosa

Versicolor

Virginica

Figure 2.2: Example of Iris dataset for two features. Color of points indicate the
plant specie.

Feature selection involves reducing the number of features by eliminating noisy ones and
retaining those that best satisfy a selection criterion. On the other hand, feature extraction
is a form of dimensionality reduction that involves transforming the raw data into derived
values or features that are better suited for modeling purposes.

2.2.1.2 An overview of learning theory

In ML, a supervised learning algorithm is used to learn a predictive model from a set
of examples, known as a training set. Each example in the this set comprises a pair
(observation, response). The objective of the learning process is to find a predictive model
that can accurately predict the outputs for new examples that are not part of the training
set. To measure the performance of the predictive model, a loss function is used to
quantify the disagreement between the predicted and desired output, also known as a
label. The goal of the learning algorithm is to select the predictive model that minimizes
the average error on the training set, referred to as the empirical risk. This approach,
known as Empirical Risk Minimization (ERM), aims to minimize the empirical risk in
the hope that the resulting predictive model will have a low generalization error on new
examples. The assumption underlying ERM is that the new examples share similarities
with the training examples used to learn the predictive model. In the subsequent sections
we will provide a detailed description of these concepts.

11

2.2.1.3 Problem formalization

In supervised learning problems we assume that we have access to a domain T representing
the space Z = X × Y, equipped with the probability distribution PT . In this context,
X ⊆ Rd denotes the example space, while Y refers to the label space. Our goal is to
discover the correct relationship between examples in X and their corresponding labels
in Y. Specifically, we use a supervised learning algorithm A to learn the relationship
between input and output variables. When provided with a training dataset, namely,
a finite-sized sample of data D = {zi = (xi, yi)}n

i=1, the learning algorithm produces a
model or hypothesis h : X → Y from a set of possible hypotheses H that can associate
each example in X with its corresponding value in Y. Thus, the goal of learning is to
identify the hypothesis h ∈ H that best matches the observed data. This hypothesis is
denoted as h⋆ and is selected from the set of all possible hypotheses, H.

It is important to note that the distribution PT is unknown in ML. The dataset D is
assumed to be representative of the true distribution. Therefore, the main goal of ML
is to use D to learn a model or hypothesis h that can generalize well to new examples
drawn from PT . To introduce the concept of generalization, we first need to define two
notions of risk associated with a hypothesis. However, before doing so, we must address
the problem of assessing the performance of a hypothesis on a given example.

Assessing the performance of a model for a given problem is essential, and measuring its
error is a widely used approach. However, the concept of error may vary across different
problems. For instance, consider a scenario where zi = (xi, y) and the problems of
classification and regression need to be solved. In the classification setting, yi ∈ {1, . . . , C}
belongs to a finite set of categorical variables. The objective is to accurately classify an
object, and therefore, an error is the prediction of an incorrect class, i.e., h(x) ̸= y. For
example, in the case of email messages Y = {spam,not spam} could be the categorical
labels, and the objective could be to predict whether a new email is spam or not. If C = 2,
the task is referred to as binary classification, whereas for C > 2 it is known as multi-class
classification. Another example of multi-class classification is recognizing handwritten
digits, where the labels could be the digits 0− 9. On the other hand, in regression, the
label space Y is continuous, i.e., Y = R and the goal is to predict the correct value for an
example. In this case, an error is the prediction of a value significantly different from the
ground truth, i.e., h(x)≪ y or h(x)≫ y. In the regression setting, yi is a real number,
such as the price of a house or the amount of rainfall in a region during a given period.
The goal of regression is to predict the price of a new house based on its features or to
forecast the amount of rainfall for the next month using historical data.

12

2.2.1.4 Central assumption of statistical learning theory

When dividing a dataset into training, validation and testing subsets, the principle of
independence and identical distribution is implicitly assumed. Failure to satisfy this
assumption due to sampling dependencies or distributional differences may lead to sub-
optimal generalization performance of a ML model in real-world scenarios. Statistical
learning theory assumes that all examples in a dataset are independently and identically
distributed (i.i.d.) according to an unknown probability distribution PT . This assump-
tion is essential for generalizing from the training to the validation set and validating a
statistical model. In other words, the i.i.d. assumption implies that any set of examples
(xi, yi) ∈ D is generated i.i.d. according to PT , namely, that examples are independent of
each other and identically distributed from the same probability distribution. Thus, D
can be considered an i.i.d. sample that follows PT .

2.2.1.5 Loss functions, true risk and empirical risk

Loss functions are a critical component of ML, serving to measure the level of error or
risk. In the context of a hypothesis function h, it is necessary to evaluate the extent to
which the predicted output h(x) matches the desired output y, for a given pair (x, y).
Specifically, we consider a loss function ℓ : H×Z → R+, which, given a hypothesis h ∈ H
and an example z = (x, y) ∼ PT , returns a positive real value in R+. This value serves as
a numerical representation of the error committed by the hypothesis on the example. A
loss function, such as ℓ(h, z), essentially quantifies the discrepancy between the predicted
and desired output. Typically, the loss function is defined as a distance metric over the
set of possible outputs Y. In the context of classification, we can employ the 0/1 loss,
which can be defined as follows:

ℓ(h, z) =

0 if h(x) = y,

1 otherwise.
(2.1)

On the other hand, in regression, we can use the absolute loss function, which can be
defined as:

ℓ(h, z) = |h(x)− y| (2.2)

13

The error associated with a prediction hypothesis h on all examples (x, y) from (Y × Y)
is known as true risk. For classification, the true risk error is defined in Definition 2.2.

Definition 2.2. True risk (Generalization error). Given a loss function ℓ : H×Z → R+

and a distribution PT , the true risk RT (h) of a hypothesis h is defined as:

RT (h) = E
z∼PT

ℓ(h, z) =
∫

X ×Y
ℓ(h, z)dPT (x, y) (2.3)

where E is the expected value, ℓ is the loss function and PT represents the probability
distribution. The ultimate goal is to find the hypothesis h that makes the fewest prediction
errors on new examples, thereby minimizing the generalization error. However, as the
probability distribution PT is typically unknown, direct estimation of the generalization
error is not feasible. To overcome this challenge, [Vap00] proposed a method to search
for the optimal hypothesis h by optimizing its empirical risk on a training set D. The
empirical risk is an unbiased estimator of the true risk and is commonly referred to as
the empirical risk of h on D, defined in Definition 2.3.

Definition 2.3. Empirical risk (training error). Given a loss function ℓ : H×Z → R+

and a set of examples D, the empirical risk R̂D(h) of a hypothesis h is defined as:

R̂D(h) = 1
n

+
∑

z∈D
ℓ(h, z) (2.4)

2.2.1.6 Empirical Risk Minimization

As stated earlier, a learning algorithm A is provided with a training set D, which is
sampled from an unknown distribution PT . The algorithm’s objective is to produce a
model or hypothesis h : X → Y that minimizes the error when compared to the unknown
PT . Given the algorithm’s lack of knowledge regarding PT , the true risk in Equation (2.3)
remains inaccessible to A. Hence, the concept underlying Empirical Risk Minimization
involves the selection of the optimal hypothesis h⋆ by minimizing the empirical risk
computed on the training set D. This objective entails solving the following optimization
problem:

h⋆ = argmin
h∈H

R̂D(h) (2.5)

14

h⋆ = argmin
h∈H

1
n

+
n∑

i=1
ℓ(h, (xi, yi)) (2.6)

Equation (2.6) presents the procedure for determining the optimal hypothesis, denoted
as h⋆, within the hypothesis space H. Solving the optimization problem in Equation (2.6)
provides two key outcomes. Firstly, the optimal hypothesis, h⋆, serves as a hypothesis
that performs optimally on the training set D. Secondly, the corresponding empirical
risk R̂D(h), or training error, can be utilized to estimate the true risk or expected loss
associated with h⋆. However, it is important to acknowledge that the training error R̂D(h)
obtained for D may significantly differ from the expected loss of h⋆ when applied to new
datapoints not included in D. The assumption of independent and identically distributed
data implies that the training error R̂D(h) only provides a noisy approximation of the true
risk RT (h). Thus, even if the hypothesis h⋆ derived through ERM has a small training
error, it may still possess an unacceptably large true risk RT (h). In the pursuit of a model
with minimal true risk, it is crucial to address the risks of overfitting and underfitting.
Overfitting arises when the function class H is excessively large, causing the empirical risk
minimizer (e.g., an optimization algorithm like SGD) to capture irrelevant patterns in the
training data. Although this may yield low empirical risk, it often leads to poor accuracy
when dealing with new examples, resulting in high true risk. Conversely, underfitting
occurs when H is too small, causing all models within H to underperform on the training
data and leading to high empirical risk [BHMM19]. Both overfitting and underfitting are
undesirable outcomes as we strive for a model with minimal true risk. In Section 2.2.1.9,
we will delve into a detailed exploration of these challenges.

2.2.1.7 Optimization

In ML, when utilizing a parameterized hypothesis denoted by hΘ(x), where Θ are the
model parameters that are learned from D, the optimization problem in Equation (2.6)
can be reformulated as an optimization of the model parameters, symbolized as Θ̂:

Θ̂ = argmin
Θ∈Rn

h(Θ) with h(Θ) := 1
n

+
n∑

i=1
ℓ(hΘ, (xi, yi)) (2.7)

The function h(Θ) given in Equation (2.7) represents the empirical risk R̂D(hΘ) acquired
from applying the hypothesis hΘ to the datapoints in the dataset D. The optimization
problems stated in Equations (2.7) and (2.6) are completely equivalent. By obtaining

15

the optimal parameter vector Θ̂ that solves Equation (2.7), the hypothesis hΘ effectively
solves Equation (2.6). The Stochastic Gradient Descent (SGD) algorithm [BB08], is
utilized to find the optimal parameters Θ̂ that minimize the empirical risk function. This
iterative optimization method is effective in minimizing a function by evaluating its partial
derivatives at different points. To illustrate the method, we begin with the context of
a scalar function that depends on a parameter vector denoted by Θ. Let us consider a
scenario where the function h(Θ) depends on a parameter vector Θ. In this case, the
partial derivative or gradient of h(Θ) with respect to Θ, denoted as ∇h(Θ), provides
crucial information about the slope of the function at a given point in the parameter space.
Just as the slope guides us in descending a hill, the gradient guides us towards the optimal
point Θ̂ that minimizes h(Θ). The gradient is formally defined as the vector comprising
the partial derivatives of h(Θ) with respect to all components Θi of the parameter vector
Θ:

∇Θh(Θ) ≜ ∂h(Θ)
∂Θ =

∂h(Θ)
∂Θ1

∂h(Θ)
∂Θ2

...
∂h(Θ)
∂Θm

(2.8)

By following the gradient, we can adjust each component of the parameter vector to
approach the minimum of the function. The SGD algorithm, in its simplest form, starts
with a random initial parameter vector Θ0. It then iteratively adjusts the parameter
vector Θ by moving in the opposite direction of the gradient, scaled by a learning rate,
towards the minimum of the function. Each iteration brings us closer to the optimal set
of parameters Θ̂ that minimizes the empirical risk function R̂D(hΘ). To visualize this,
le us imagine being blindfolded on a multidimensional terrain. The gradient represents
the direction of the steepest descent, indicating the safest path towards the lowest point
in the landscape. By following the negative gradient, we update each component of
the parameter vector in a way that reduces the loss function and brings us closer to
the optimal solution. The function δ in Algorithm 1 represents the composite function
that combines the loss function ℓ and the parameterized hypothesis hΘ. The composite
function is denoted as δ = R̂D(hΘ). By utilizing this composite function, the algorithm
emphasizes its dependence on the empirical risk minimization problem, as discussed in
the work by Bottou [BCN18].

To start the algorithm, we input the training data D, which comprises n sample pairs
(xi, yi). Additionally, we specify the learning rate γ, which determines the step size for

16

Algorithm 1: Stochastic Gradient Descent
Input: Training data D = {zi = (xi, yi)}n

i=1, learning rate γ, and the number of
iterations K.

Output: Optimal parameter vector Θ̂.
Initialize Θ0 randomly
for k = 0, 1, 2, . . . , K − 1 do

Randomly choose an index ik from {1, . . . , n}
Compute the gradient ∇δik

(Θk) on the training instance (xik
, yik

)
Update the parameter vector Θk+1 ← Θk − γk∇δik

(Θk)
end for
Θ̂← ΘK

updating the parameter vector, and the number of iterations K, that the algorithm will
perform. Next, we initialize the parameter vector Θ0 with random values. This initial
vector serves as the starting point for the optimization process. The algorithm then enters
a loop where it iterates from 0 to K−1. In each iteration, the index ik is chosen randomly
from {1, . . . , n}. This random selection ensures that each sample has an equal chance of
being selected, introducing stochasticity in the algorithm. Using the randomly selected
index ik, the algorithm computes the gradient ∇δik

(Θk) of the loss function with respect
to the current parameter vector Θk. This gradient represents the direction of steepest
descent in the loss function space, indicating how the loss function changes with respect
to each parameter. The parameter vector is then updated by subtracting the learning
rate multiplied by the gradient from the current parameter vector. This update step,
Θk+1 ← Θk − γk∇δik

(Θk), moves the parameter vector in the direction that reduces
the loss. By iteratively adjusting the parameters based on the gradients, the algorithm
aims to find the optimal set of parameters that minimize the empirical risk on the given
training data. Finally, after completing all iterations, the algorithm returns the final
parameter vector Θ̂, which represents the solution obtained by the SGD algorithm. This
vector represents the optimal set of parameters that minimize the loss function based on
the given training data and learning rate.

2.2.1.8 Model selection

It is essential to note that relying solely on the ERM is inadequate for model selection.
To obtain a more precise estimation of the true risk of a learning algorithm’s model, we
often require additional steps. One of these steps is to use a portion of the training data
as a validation set to evaluate the algorithm’s success. This process is referred to as

17

validation. Sampling an additional set of examples independent of the training set is the
simplest way to estimate the true risk of the model [SSBD14]. By doing so, we can use
the empirical risk on this validation set as our estimator. To formalize this approach, let
us consider a set of new examples Dval = (x1, y1), . . . , (xnval, ynval) sampled according to
PT (independently of the n examples of the training set D). The validation process can
aid in model selection by training various algorithms, or the same algorithm with different
parameters, on the given training set. Let H = h1, . . . , hr be the collection of all output
models generated by the different algorithms.

To illustrate this, let us consider a polynomial regression model of degree 1, which is
equivalent to a linear regression model represented as ŷ = wx + b. We can extend this
model to include x2 as an additional feature to learn a quadratic function of x, which
can be represented as ŷ = b+w1x+w2x

2. Although this quadratic model incorporates a
quadratic feature (x2), the output value still depends linearly on the model parameters
(w1, w2 and b). In other words, the model is still a linear combination of the input features
and their powers, with the parameters determining the weights of each feature. Thus,
we can train this model in closed form2 using the normal equations. To obtain an even
more complex polynomial model of degree 10, we can add additional powers of x as extra
features. In this scenario, each hr would represent the output of polynomial regression
of degree r. Then, we select a single model from H that minimizes the error over the
validation set using ERM.

2.2.1.9 Complexity, overfitting and underfitting

The effectiveness of a ML algorithm hinges on two critical factors: its complexity to
minimize the empirical risk and narrowing the gap between empirical and true risk,
namely, R̂D(h)−RT (h), should be small over all h ∈ H [GBC16]. These factors are the
two fundamental challenges in ML known as underfitting and overfitting. In the case of
underfitting, it occurs when the model fails to achieve a sufficiently low error value on the
training set, while overfitting arises when the difference between empirical risk and true
risk is too large. The complexity of a model can determine the likelihood of underfitting
or overfitting, which refers to its capability to fit a broad range of functions. Models with
low complexity may struggle to fit the training set, while models with high complexity can
overfit by memorizing characteristics of the training set that are not representative of the
validation set. Controlling the complexity of a learning algorithm is possible by selecting

2A closed-form solution is one where a mathematical formula can be directly computed to obtain the
solution without the need for iterative or numerical methods.

18

its hypothesis space H. This relates to the set of functions that the learning algorithm
can choose as a solution. As an example, the hypothesis space of the linear regression
algorithm includes all linear functions of its input. However, this can be extended by
incorporating polynomials into the hypothesis space to enhance the model’s complexity.
This approach enables the learning algorithm to capture more complex relationships
between the input and output variables. The performance of ML algorithms depends
on their ability to capture the complexity of a task, as well as the size of the training
dataset. If the model’s complexity is too low, it will struggle to solve complex problems,
while a model that is too complex may overfit the data. To illustrate this point, let us
consider the plot in Figure 2.3, which shows the results of fitting a quadratic function using
three different models: a linear model, a quadratic model, and a model with degree-10
polynomial basis functions.

underfitting right fit overfitting

Figure 2.3: Illustration of the overfitting and underfitting phenomena.

pr
ed

ic
ti

on
er

ro
r

complexity

empirical risk

true risk

optimum
high bias and low variance

underfitting

low bias and high variance

overfitting

Figure 2.4: Graph depicting the trade-off between true and empirical risk as a function
of model complexity.

The linear model is too simple to capture the curvature of the underlying quadratic
function, resulting in underfitting. The model with degree-10 polynomial basis functions
can perfectly fit the training data but may overfit by capturing noise or patterns that
do not generalize to new data. In contrast, the quadratic model achieves an appropriate

19

balance by accurately representing the true structure of the task and generalizing well
to new data. The model-selection curve, depicted in Figure 2.4, displays the typical
trend of the true risk and empirical risk as the model complexity varies. As the gap
continues to grow, it surpasses the decrease in empirical risk, and we transition into
the overfitting phase, where complexity exceeds the optimal level. The optimal model
complexity balances the trade-off between overfitting and underfitting, ensuring better
generalization and accurate predictions [SSBD14]. The interested reader may refer to
Appendix B.1 for regression and Appendix B.2 for classification to further explore these
topics. Furthermore, to provide technical insights on the origin of prediction error and
the bias-variance trade-off, we present detailed information in Appendix B.3 and B.4,
respectively.

2.3 Recommender systems

2.3.1 Machine Learning in RS

In the recommendation problem, the ML system acquires knowledge by improving its
ability to suggest relevant products or services to users. It does this by learning from
users’ historical interactions, specifically, their past ratings of items. The goal is to predict
missing user-item preferences, namely, the user’s preference for items they have not yet
rated, based on observed user-item preferences. We approach this prediction problem as
a supervised ML problem. Our objective is to minimize the expected loss (see Equation
2.13) of our preference prediction model by fitting previously observed ratings using a
suitable error or loss function [KB11].

Upon applying Definition 2.1 to our example, we can identify that task T refers to
recommending items. Performance metric P, which represents the accuracy of the system’s
recommendations, is defined as the ratio of correctly recommended items to the total
number of recommendations. The experience E, on the other hand, refers to historical
data on user item preferences, including information on highly rated items, purchases and
searches. It is essential for the ML system to learn effectively that experience E must
be both: relevant to task T and of high quality. To present users with relevant items,
a data-driven approach is required to determine item relevance in each context. This
involves several phases, starting with data collection, followed by model development and
ending with prediction and recommendation. Figure 2.5 illustrates the flowchart of these
three phases.

20

database

model
training

predictive
model

recommender system

user

user feedbacks
(clicks, ratings, browsing)

new items
recommended

items

user’s
history

Figure 2.5: High-level architecture of a RS.

In the data collection phase, user interactions with the system and items are collected
to build the RS. The system automatically infers user preferences by monitoring their
actions, such as purchase and browsing history, time spent on web pages, email content
and button clicks. These actions provide explicit or implicit feedback on user tastes,
with explicit feedback being explicitly specified by users and implicit feedback assigned
automatically based on user-item interaction. The model development phase involves
using ML algorithms, such as collaborative filtering, content-based filtering and hybrid
techniques, to filter out and use user characteristics from the feedback collected in the pre-
vious phase. The objective is to develop a model that accurately predicts user preferences.
Finally, in the prediction and recommendation phase, the model is used to recommend
relevant items to users. The recommendation algorithm employs the user’s model to
predict the likelihood of an item being relevant to the user. The recommendation can
be in the form of a ranked list, a set of suggested items or personalized content. User
interaction with the recommended items provides feedback, which is used to improve the
model and enhance the accuracy of future recommendations.

2.3.2 Taxonomy of RS

This section presents a taxonomy of RS based on three main filtering techniques: content-
based filtering, collaborative filtering and knowledge-based filtering. The taxonomy ex-
amines the features and limitations of each method and provides practical guidance for
selecting the appropriate technique for different applications. The goal is to provide
the reader with a clear understanding of the various filtering methods, as well as their

21

strengths and limitations. Figure 2.6 provides an overview of the different approaches
used in RS.

Model based
Latent factor

Matrix factorization
Clustering

Memory based
Item based
User based

Knowledge
Based

Content
Based

Hybrid

Collaborative
Filtering

Hybrid

Hybrid

Hybrid

Figure 2.6: RS approaches with an emphasis on collaborative filtering methods.

2.3.2.1 Content-based RS

Content-based filtering is a technique used to recommend items based on their content.
This method, introduced by [PB07] and further explored by [LDS11], discriminates relevant
items by analyzing their characteristics. The approach recommends similar items to
those that the user has shown interest in the past. Although many of these approaches
concentrate on textual content, any set of features can be considered. This means that
new items can be recommended based on their characteristics, even if they have not been
previously rated. However, this early filtering approach has certain limitations as it tends
to keep the user within their historical data, limiting the recommendation of items that
are too different from their usual preferences.

2.3.2.2 Collaborative filtering

Collaborative filtering is a technique that infers the preferences of a user by analyzing
the ratings they give to different items. It models the social environment of users to
make recommendations based on the behavior of their peers. Formally, given a user

22

A, collaborative filtering identifies other users who exhibit similar rating behavior and
computes the score of an item B for user A utilizing the average score given to B by similar
users. This approach predicts user preferences based solely on the ratings given to items
in the past. We view user ratings of items as a collaborative process, in which users help
each other to discover interesting items, even if they are not consciously collaborating.
Thus, the approach is known as collaborative filtering [AC16].

Collaborative filtering involves two-dimensional data in matrix form, with one dimension
representing the list of users and the other representing the items they like. The most com-
mon approach is to model this environment utilizing historical transactions stored in the
system, such as user movie ratings. Users are considered peers if their ratings are similar.
If users A and B have similar ratings for a certain number of movies, and if A has not seen
a movie that B has liked, then the system recommends it to A. Collaborative filtering is
content-independent, as it does not require any knowledge about the items themselves.
Additionally, these techniques are serendipitous in nature, as recommendations are based
solely on user behavior and do not require knowledge of item characteristics or explicit
input from users. However, collaborative filtering suffers from the cold start problem (see
Section 2.3.3).

2.3.2.3 Knowledge-based RS

Knowledge-based RS are a type of RS that focuses on addressing the limitations of data
availability and customization challenges in certain domains. Unlike collaborative and
content-based systems, knowledge-based systems allow users to explicitly specify their
requirements for items. They leverage interactive feedback and knowledge bases to provide
personalized recommendations. These systems are well-suited for domains where users
actively express their preferences and where historical data may be scarce or inadequate.
By incorporating domain-specific knowledge and facilitating user exploration of complex
product spaces, knowledge-based RS offer greater control and customization, resulting in
more tailored recommendations [Agg16].

2.3.3 Challenges and limitations

The field of RS has progressed significantly with technological advancements in recent
years. However, despite this progress, there remain several challenges and limitations that
must be addressed. In this section, we describe the primary limitations of collaborative
filtering based systems in RS.

23

2.3.3.1 Cold start

RS encounter the cold start problem when a new user or item lacks sufficient ratings,
rendering it difficult for the system to provide reliable recommendations. This problem
can be divided into two categories: the cold start of new users and the cold start of new
items. The former arises when a new user requests recommendations before expressing
any preferences on any item. The latter arises when a new item is added to the catalog,
but none of the users have rated it yet [KEK18].

2.3.3.2 Data sparsity

A significant quantity to consider is the density of the m× n matrix R (see Figure 2.7).
This density can be measured by:

density(R) = |D|
mn

or equivalently, by its complement 1 − density(R), which represents the sparsity. The
higher the number of missing entries, the greater the sparsity, making it more challenging to
learn user preferences. Since users tend to rate only a few items, the matrix R is generally
very sparse. Consequently, it becomes essential to prevent overfitting, which refers to
achieving good performance on past training data but failing to generalize to unobserved
data. However, due to computational complexity considerations, most prediction methods
are incapable of handling large dense matrices. Exploiting the sparsity, particularly with
methods that scale efficiently with |D| ≪ mn becomes advantageous computationally.
Here, D represents the dataset of ratings, as defined in Equation (2.9).

2.3.3.3 Scalability

The growth rate of k-nearest neighbors algorithms shows a linear relationship with the
number of items and users. Consequently, as the number of users and items increases,
the system requires more resources to provide accurate recommendations [KAU16]. The
identification of users and items with similar attributes and preferences consumes a signif-
icant portion of these resources. Hence, using recommendation algorithms that can scale
effectively with the increasing data volume is essential for improving the performance of
the system.

24

2.3.3.4 Limitations of IID assumptions in traditional recommendation ap-
proaches

The current state of the art in recommendation research is based on the assumption that
users, items and ratings are independently and identically distributed (i.i.d.), resulting in
the development of i.i.d. models and methods. However, this approach overlooks low-level
non-i.i.d. information about individual users and items that can significantly impact the
driving forces of ratings. This oversight is a critical factor contributing to the poor per-
formance of existing RS [Cao16]. Current RS focus solely, as an example, on the rating
information provided in Figure 2.8 and fail to consider the underlying reasons behind
specific user preferences. Memory based and model based methods assume that users and
items are i.i.d., neglecting connections between users and items, as well as influence and
heterogeneity between them. Memory-based methods assume that users rate all items
independently, ignoring the relationship between the ratings of different items or the
connections between users and their ratings. In contrast, model-based methods, such as
matrix factorization, assume that the rating dynamics are driven solely by the user and
item latent factors, and do not consider user and item properties. However, these assump-
tions limit the ability of both approaches to provide personalized recommendations that
address individual preferences. Therefore, developing more sophisticated recommendation
algorithms that consider the driving factors of user and item attributes is necessary to
provide more accurate and personalized recommendations.

2.3.4 Recommendation as risk minimization

To tackle the recommendation task, we view it as a function regression problem guided
by the ERM principle, as outlined in Section 2.2.1.5. This approach emphasizes the need
to minimize the discrepancy between the predicted and actual output, which can lead to
improved accuracy in the recommended outcomes.

2.3.4.1 Problem formalization and notation

To provide a formal definition of the recommendation task, we introduce the following
notation. Let U represent the set of users and I denote the set of items. An individual
user is denoted by u ∈ U , an individual item is denoted by i ∈ I and a specific rating,
given by user u for item i, is denoted as rui. It should be noted that the ratings are treated
as ordinal values and are not necessarily numerical in nature. We assume the existence of

25

a total order among the possible rating values, where the ratings can encompass a range
from 1 star (indicating low interest) to 5 stars (indicating high interest), for instance.
To capture the number of distinct rating values, denoted by R, we represent the ratings
themselves as 1, 2, . . . ,R. The rating matrix R ∈ R|U |×|I|, depicted in Figure 2.7, is a
sparse matrix where each element rui corresponds to the rating given by user u to item i.
This matrix can potentially have |U |× |I| ratings, where |U | and |I| represent the number
of users and items, respectively. We denote ri as the vector that contains the ratings given
to item i by different users, and ru represents the vector containing the ratings provided
by user u for different items.

r11 r1i r1n

ru1 rui run

rm1 rmi rmn

1 i n

1

u

m

I

ru

U ri

items

users

Figure 2.7: Representation of users’ ratings for all items as the rating matrix.

The subset of items that user u has rated with r ̸= ∅ is named Iu ⊂ I and Iuv
def= Iu∩ Iv is

the subset of items that have been rated by users u and v. The subset of users who have
rated item i is named Ui ⊂ U and Uij

def= Ui ∩ Uj is the subset of users who have rated to
the items i and j. The set of all observed user-item pairs with ratings, denoted by D, is
defined as the set of all pairs (u, i) for which rui is observed in the rating matrix. Thus,
D represents the observed historical ratings in the system. Formally, we define D as:

D = {(u, i) | rui ∈ R} (2.9)

Then, the recommendation phase can be summarized as follows: utilizing a designated
recommendation algorithm, denoted as A, the objective is to estimate the ratings rui that
are initially unknown (i.e., rui /∈ D). This estimation, denoted as r̂ui, is derived from

26

the application of A(u, i). In a broader context, it can be stated that the RS computes
an R̂ ∈ R|U |×|I| matrix, which encompasses predictions of r̂ui ratings for all possible
combinations of users and items. Building upon this notation, Definition (2.4) formally
defines a RS:

Definition 2.4. (Recommender system) [AT05]. Let f be a function that evaluates the
utility of the item i for the user u, i.e.

f : U × I → R (2.10)

where R is a totally ordered set such as a 5-star rating scale or a range of real numbers.
Hence, a RS is defined as a system that selects a set of top-k items, denoted as i′ ∈ I,
with the objective of maximizing the utility for a given user u ∈ U , i.e.

∀u ∈ U, i′ = argmax
i∈I

f(u, i) (2.11)

where i′ ∈ I \ I+
u , and I+

u is the set of positive items already seen by user u.

One of the primary challenges in RS lies in the fact that the utility value of each item i ∈ I
is often unknown. This information is only available for items that the user has previously
rated in their history. Consequently, the objective of a RS is to predict the utility function
value for unknown data. Once the utility function parameters are learned, the system can
generate predicted scores for items that the user has not yet rated. This learned utility
function, denoted as f , utilizes a set of training examples from D to recommend items i
to a user u. To evaluate the accuracy of f , a validation set is used, which is a subset of
D that is disjoint from the training set. The root-mean-square error (RMSE), defined in
Equation (2.12), is a popular and widely used measure for assessing the accuracy of f on
a set D of ratings:

RMSE(f | D) =
√√√√ 1
|D|

∑

rui∈D
(rui − r̂ui)2 (2.12)

where |D| represents the number of items rated by user u in the training set. To compute
the RMSE, we sum over all user-item pairs (u, i) for which rui ∈ D. Minimizing the RMSE
is a common approach for learning f , as it can be justified by the inductive principle of
ERM. We can describe the problem of learning a utility function assuming that:

27

• The user-item pairs (u, i) are drawn from an unknown probability distribution
P(u, i).

• Rating scores rui ∈ R are provided for each user-item pair (u, i) according to an
unknown conditional probability distribution P(rui | u, i).

• The class F represents the set of utility functions.

The probability distribution P(u, i) represents the likelihood that a user u will rate an item
i, while the conditional probability distribution P(rui | u, i) represents the probability
that a given user u will rate a given item i with a rating score of rui. The class F refers
to the set of functions from which we choose our function f for recommending items. The
objective of acquiring a utility function is to identify a function f ∈ F that can minimize
the true risk function:

R(f) =
∑

u,i,rui

P(u, i, rui)(f(u, i)− rui)2 (2.13)

The goal is to learn the optimal utility function, denoted as f ⋆, for a given set of users U ,
items I and rating scale R. This involves finding the function that minimizes R(f), where
the sum runs over all possible triples (u, i, rui) ∈ U×I×R, and P(u, i, rui) = P(u, i)P(rui |
u, i) is the joint probability [SB18]. However, the distribution P(u, i, rui) is unknown,
which makes it impossible to compute f ⋆ directly. Instead, we aim to approximate f ⋆ by
minimizing the empirical risk as shown in Equation (2.14).

f ⋆ = argmin
f∈F

R̂D(f)

f ⋆ = argmin
f∈F

1
|D|

∑

rui∈D
(f(u, i)− rui)2 (2.14)

The empirical risk can be minimized by minimizing the RMSE. This principle states that
the empirical risk provides an unbiased estimate of the true risk, under the assumption
that user ratings from D are i.i.d. Furthermore, given that the user and item sets are finite,
we can apply the Law of Large Numbers by considering D as a set of ratings obtained by
randomly selecting triples (u, i, rui) based on their joint distribution.

As discussed earlier in Section 2.2.1.7, methods that use a parameterized model or function
f , typically involve an optimization process to determine the optimal values of the param-
eters. In model-based RS the primary objective is to learn the unknown parameters Θ

28

for a prediction function fΘ(u, i) capable of accurately generalizing predictions to future
instances. Consequently, the optimization problem in Equation (2.14) can be redefined
as the task of optimizing the parameter vector Θ̂:

Θ̂ = argmin
Θ

fΘ(u, i) (2.15)

The function fΘ(u, i) in Equation (2.15) represents the empirical risk, denoted as R̂D(fΘ),
which is the loss incurred by the model fΘ(u, i) when applied to the ratings in the dataset
D. It is worth noting that the optimization problems presented in Equations (2.14) and
(2.15) are completely equivalent. In other words, the optimal weight vector Θ̂ that solves
Equation (2.15) also leads to the solution of Equation (2.14) through the model fΘ̂(u, i).

Two primary approaches, memory-based methods and model-based methods, constitute the
field of RS. Memory-based methods, also referred to as neighborhood-based methods,
directly exploit similarities among users or items in the rating matrix to generate accurate
predictions. Conversely, model-based methods employ an offline process to extract and
aggregate information from the rating matrix, constructing a model that is subsequently
utilized to generate relevant predictions. In memory-based methods, the model is a
function f(u, i) that relies on the complete set of observed data, represented by u and
i. Conversely, model-based methods employ a parameterized model fΘ(u, i) with an
unknown parameter vector Θ. These two main approaches will be extensively explored
in Chapter 3.

Following Mitchell’s Definition (2.1), we can now redefine the three characteristics for RS
incorporating the mathematical formal notation used previously:

• Task T : Predict a rating within the range of R for user u and item i ∈ I.

• Performance P: Calculate the percentage of correctly predicted ratings for items
i ∈ Iu by user u.

• Experience E : User u’s item rating vector ri and the set of items Iu.

Thus, the primary task assigned to the model is to infer the rating r ∈ R corresponding
to the item i ∈ I. Consequently, the goal is to identify the function f from the class F ,
encompassing all potential functions that yields the most precise prediction for the rating
rui associated with item i by user u. The effectiveness of the function f is evaluated
using a performance measure to determine the optimal function f ⋆. The performance

29

of f relies on several factors, including the selection of the class F , which is determined
by the discretion of the human designer, as well as the accumulated experience and the
number of ratings provided by user u.

2.3.4.2 The two phases of RS: Prediction and ranking

The recommendation task can typically be defined in two different ways. The first is the
rating prediction task, which aims to estimate item ratings for a user. The second
is learning to rank, which involves recommending a shortlist of top-k items to users.
These two tasks have different optimization goals. The rating prediction task seeks to
maximize prediction accuracy, while the learning to rank task is focused on generating
the best list to present to the user. Although ratings are important in both tasks, there
is a significant difference between them. In a rating prediction task, the value associated
with the user-item pair is an estimate of the rating. Conversely, in a top-k task, the same
value is only used to sort the recommendation list, ordered from the most relevant to
the least relevant. Essentially, this value is an estimation of a value associated with the
position of the item and has no direct relation to the corresponding rating. The algorithm
for the ranking task is presented in Algorithm 2.

Algorithm 2: Ranking task
Input: Set of users U , set of items I, function f(u, i) which predicts the utility score of

item i for user u, and the number of recommended items k.
Output: Top-k recommendation list for each user.
foreach user u ∈ U do

foreach not-interacted item i ∈ I \ I+
u do

n← 0 // Reset the counter for each item
r̂ui ← f(u, i) // Compute the utility score of item i for user u

foreach not-interacted item j ∈ I \ I+
u do

r̂uj ← f(u, j) // Compute the utility score of item j for user u

if r̂uj ≥ r̂ui then
n← n + 1 // Increment counter

end if
end foreach
Oui ← n + 1 // Assign rank to item i

end foreach
Sort the items in I \ I+

u in descending order of their rank Oui

Select the top-k items from the sorted list to recommend to user u
end foreach

30

Given the set of users U , set of items I, a function f(u, i) that predicts the utility score of
item i for user u and the number of recommended items k, Algorithm 2 aims to generate
a top-k recommendation list for each user. For each user u in the set of users U , the
algorithm iterates over the not-interacted items i in the set I \ I+

u (items that the user has
not interacted with). For each not-interacted item i, the algorithm initializes a counter
n to 0. It computes the utility score r̂ui of item i for user u using f(u, i). Then, the
algorithm iterates over the not-interacted items j in I \ I+

u and computes the utility score
r̂uj of item j for user u using the same function f(u, j). If r̂uj is greater than or equal to
r̂ui, the counter n is incremented. After processing all not-interacted items the algorithm
assigns the rank Oui to item i as n+ 1. The rank represents the relative position of item
i in terms of utility score compared to other not-interacted items. Next, the algorithm
sorts the not-interacted items in I \ I+

u in descending order based on their ranks Oui.
Finally, the algorithm selects the top-k items from the sorted list as the recommendation
list for user u. By applying this algorithm to each user in U we can generate personalized
top-k recommendation lists based on their utility scores for the not-interacted items. A
complete numerical example demonstrating the application of the algorithm can be found
in Appendix C.6.

2.3.4.3 Toy example

Let us elaborate on the above concepts with a simple example consisting of a matrix of
six users and eight movies, as shown in Figure 2.8. This matrix captures users’ ratings
for each movie, where each column represents a movie (or item) and each row represents
a user. The number in each entry denotes the rating, measured on a scale of 1 to 5 stars,
given by the user for that movie. Although the matrix is large, it is sparse as only a few
users rated certain movies. The goal of the recommendation problem is to predict the
unobserved entries, indicated by question marks in rows 1, 2, 4, 5 and 6, as accurately as
possible to construct a high-quality RS [LT15].

2.3.5 The complexity of predicting user preferences: Moving
beyond traditional classification and regression algorithms
in RS

In this section, we will differentiate the classical classification and regression approaches
from collaborative filtering in the context of RS. We will explore the distinct characteristics
of each approach and highlight how they offer alternative perspectives for addressing

31

R =

A B C D E F G H

1 − 5 − 2 3 − ? 1

2 4 − 3 1 − ? 3 −
3 − 5 2 − 4 − 4 −
4 ? 5 − − − 1 1 2

5 3 − ? − ? 3 − −
6 − ? − 4 − − ? −

Figure 2.8: Rating matrix where unobserved ratings must be estimated.

recommendation challenges. By understanding the differences between these techniques,
we can gain insights into their suitability and applicability in different recommendation
scenarios.

2.3.5.1 Understanding the significance and variation of movie ratings on a 1
to 5 scale

When we assign ratings to movies on a scale of 1 to 5, those numbers carry more meaning
than just arbitrary labels. The ratings have a specific order that represents the level of
liking or preference a user has for a particular movie. Let us delve into this in greater
detail:

• Order of ratings: The ratings 1, 2, 3, 4, and 5 have a natural order from lowest
to highest, indicating varying degrees of liking or enjoyment. A rating of 1 typically
suggests that the movie was disliked or received the lowest level of appreciation
from the user. On the other hand, a rating of 5 indicates that the movie was highly
enjoyed or received the highest level of appreciation from the user.

• Level of liking or preference: Each rating value represents a different level of
liking or preference. As the rating increases, it generally implies a greater degree
of positive sentiment towards the movie. For example, a rating of 1 implies a low
level of liking or a negative sentiment towards the movie. Conversely, a rating of 5
indicates a high level of liking or a very positive sentiment towards the movie.

• Differences between ratings: The differences between consecutive rating values
may not be equal. The distinction between a 1-star movie and a 2-star movie may
not be the same as the difference between a 1-star movie and a 4-star movie. This

32

implies that the intervals between ratings are not necessarily uniform in terms of
user perception. In other words, the gap between two rating values might not reflect
an equal change in the user’s level of liking or preference. To illustrate this further,
consider the following examples:

– A 1-star movie might be one that the user found boring or poorly made.

– A 2-star movie could be slightly better than a 1-star movie, but still lacking
in certain aspects.

– A 3-star movie might be viewed as average or decent, but not exceptional.

– A 4-star movie could be highly enjoyable, with the user having a strong positive
opinion about it.

– A 5-star movie might be considered outstanding, with the user loving every
aspect of it.

Therefore, the ratings 1, 2, 3, 4, and 5 hold a specific order and represent different levels
of liking or preference for a movie. Each rating carries a distinct meaning, indicating
varying degrees of positive or negative sentiment. The differences between consecutive
ratings are not necessarily uniform, and the magnitude of change in liking or preference
may differ between rating values.

2.3.5.2 Collaborative filtering as a generalization of classification and regres-
sion

Classification algorithms are designed to work with target variables that consist of distinct,
separate categories. These categories are treated as independent and unordered. In the
context of movie ratings, if we were to use classification, we would have to assign fixed
categories to represent different levels of liking (e.g., “low liking”, “medium liking”, “high
liking”). However, the inherent limitations of treating ratings as unordered categories
become evident when we consider the scenario where a user assigns ratings of 2 and
5 to two different movies, indicating their respective degrees of liking. If we were to
erroneously treat these ratings as unordered categories, an arbitrary dichotomy might
be imposed to delineate them as “Low Liking” and “High Liking” based on an artificial
threshold. Consequently, the movie receiving a rating of 2 could be classified under
“Low Liking”, whereas the one with a rating of 5 might be designated as “High Liking”.
Nonetheless, this approach of treating the ratings hides the real differences in how much
the user likes the two movies. It fails to acknowledge the subtle differences in their

33

preferences by simply adhering to the assigned categories. In reality, the numerical
ratings of 2 and 5 provide crucial insight into the hierarchical and quantitative aspects
of the individual’s liking. The rating of 2 denotes a comparatively moderate level of
satisfaction or enjoyment, whereas the rating of 5 signifies a substantially heightened
degree of appreciation. By disregarding the inherent order and magnitude of the ratings
when treating them as unordered categories, we overlook the fundamental distinction
in the individual’s preferences. Such an oversimplified treatment negates the fact that
the movie rated 5 evoked a significantly greater liking compared to the one rated 2. To
enhance the accuracy of personalized movie recommendations that genuinely align with
the individual’s preferences, it becomes imperative to meticulously consider the ordinal
nature and magnitudes associated with the ratings. By paying attention to the differences
in how much the individual likes different movies, the RS can offer personalized suggestions
that really understand their specific preferences. In summary, when we treat ratings as
unordered categories, we oversimplify the task and do not fully understand the differences
in how much someone likes different movies. But by considering the order and magnitude
of the ratings, we can gain better insights into their preferences and make more accurate
personalized movie recommendations.

Hence, applying classification directly to movie ratings requires assigning fixed categories,
oversimplifying the continuous and ordinal nature of the ratings. This approach fails to
consider the specific order and magnitude of the ratings, leading to a loss of information
and a lack of precision in capturing the subtleties of user preferences. Regression models,
on the other hand, are better suited for modeling movie ratings as they can handle the
continuous and ordinal nature of the target variable, allowing for more accurate predictions.
Nevertheless, in classification or regression tasks, it is crucial to note that all instances
reside in the same space and share identical features. However, this premise does not hold
in the context of recommendation problems. If we were to designate users as instances
and consider the items as their feature space, we would encounter a significant limitation:
the instances would remain partially characterized due to the absence of ratings for
the complete set of items. The point we want to emphasize is that the traditional ML
framework is not well-suited to address the unique challenges posed by RS. These systems
represent a distinct problem domain, requiring specialized approaches. One effective way
to conceptualize the prediction task within RS is through the concept of matrix completion.
The dataset D can be envisioned as a R ∈ R|U |×|I| sparse matrix, with users represented
as rows and items as columns. The objective is to accurately predict the missing entries
of this matrix, thereby completing the recommendation task. This perspective offers a
comprehensive understanding of the underlying structure and intrinsic nature inherent in
RS problems.

34

Chapter 3

Recommendation Algorithms

This chapter provides an overview of the diverse techniques employed in RS. In Section
3.1, we introduce the Baseline Predictor, a straightforward yet highly effective baseline
for RS algorithms. In Section 3.2, we delve into commonly utilized algorithms in RS,
with a specific focus on collaborative filtering (CF) methods. Next, Section 3.3 elucidates
memory-based CF algorithms, which rely on item or user similarity to generate recommen-
dations. Conversely, Section 3.4 encompasses model-based CF algorithms, which leverage
a user-item rating matrix model to generate recommendations. Lastly, in Section 3.5, we
discuss the metrics employed to evaluate the performance of these algorithms.

3.1 Baseline Predictor

To provide a comprehensive analysis of CF techniques, we will first introduce the Baseline
Predictor. This simple approach is used to predict ratings and, while it is rarely the
primary prediction algorithm for a RS, it is valuable in certain situations. Due to its
straightforward implementation, it is typically more reliable in extreme conditions than
more complex algorithms. As a result, its predictions often serve as a backup in cases
where a more advanced algorithm fails. We will use this basic algorithm as a reference
point for comparing the performance of two CF techniques in subsequent sections.

Let us suppose that we choose not to examine the user-item interactions in the matrix R,
shown in Figure 2.8. Instead, we simply calculate the average rating of the entire system,

35

denoted as r̄, and use it as the predictor for all r̂ui ratings. This approach is inherently
inaccurate. To improve upon it, we can incorporate two new vectors: bi ∈ RI×1 to model
the quality of each movie i relative to the overall average r̄, and bu ∈ RU×1 to model the
bias of each user u relative to r̄. Here, bu is the u-th component of bu, and bi is the i-th
component of bi. The baseline prediction for an unknown item i by u is then:

r̂ui = r̄ + bu + bi (3.1)

Equation (3.1) combines three variables to capture the differences between users and
items in a simplistic manner. However, it still serves as a useful starting point for RS.
For example, in the matrix represented in Figure 2.8, movie C may have a baseline rating
of bi = 1.2, but if user 5 is known to be a harsh critic with a baseline rating of bu = −0.5,
we can predict that user 5 would rate movie C with 3.6 + 1.2 − 0.5 = 4.3 stars, where
r̄ = 3.6 is the global average rating. The goal of this simple algorithm is to find the
biases bu and bi in a way that produces predictions that are as close as possible to the
actual ratings. The biases are calculated by solving a regularized least squares problem,
as shown in Equation (3.2). This optimization technique balances the accuracy of the
predictions with a penalty term that discourages overfitting to the training data.

S(bu, bi) =
∑

∀(u,i)∈D
(rui − r̂ui)2 =

∑

(u,i)∈D
[rui − (r̄ + bu + bi)]2 (3.2)

Equation (3.2) can be efficiently solved using the SGD technique as we will discuss it
in Section 3.1.1. Here, S, denotes our loss function. For the set of model parameters
Θ = (bu,bi), where bu is the vector containing the user biases and bi the item biases, we
obtain the optimal values Θ̂ = (b∗

u,b∗
i) such that:

Θ̂ = min
Θ

S(bu, bi) (3.3)

Θ̂ = min
(bu,bi)

∑

(u,i)∈D
[rui − (r̄ + bu + bi)]2 + λ(b2

u + b2
i) (3.4)

The optimization problem in Equation (3.4) is solved using the observed ratings in the
matrix. However, since only a subset of the ratings is available, the model may be
susceptible to overfitting. To address this issue, regularization is introduced in the form of
the term λ. This term constrains the magnitudes of the biases bu and bi, preventing them

36

from becoming too large and improving generalization performance. The regularization
term λ helps the system avoid overfitting the training data and encourages the learned
parameters, bu and bi, to be small. This penalty on the magnitudes of the biases is
important for better generalization to unseen data. By regularizing the learned parameters,
the model can learn to make accurate predictions on new data, even when the training
set is limited. Therefore, to prevent overfitting and improve generalization, the system
regularizes the biases bu and bi using the regularization term λ.

3.1.1 Optimization through Stochastic Gradient Descent

The Stochastic Gradient Descent technique, described in Section 2.2.1.7, can be applied
to minimize Equation (3.4). To compute the partial derivatives of the function S(bu, bi)
with respect to bu and bi, we differentiate each term in the function with respect to the
corresponding variable while treating other variables as constants. Let us go through the
calculation step by step:

S(bu, bi) = 1
2

∑

(u,i)∈D

[rui − (r̄ + bu + bi)]2 + λ

2
(
b2

u + b2
i

)
(3.5)

To find ∂S(bu,bi)
∂bu

, we differentiate each term separately. Differentiating the first term:

∂

∂bu

[1
2 [rui − (r̄ + bu + bi)]2

]
= − [rui − (r̄ + bu + bi)] (3.6)

Differentiating the second term:

∂

∂bu

[
λ

2 b
2
u

]
= λbu (3.7)

Now, summing up the derivatives of each term, we have:

∂S(bu, bi)
∂bu

= − [rui − (r̄ + bu + bi)] + λbu = −errui + λbu (3.8)

Similarly, to find ∂S(bu,bi)
∂bi

, we differentiate each term with respect to bi. Differentiating
the first term:

37

∂

∂bi

[1
2 [rui − (r̄ + bu + bi)]2

]
= − [rui − (r̄ + bu + bi)] (3.9)

Differentiating the second term:

∂

∂bi

[
λ

2 b
2
i

]
= λbi (3.10)

Now, summing up the derivatives of each term, we have:

∂S(bu, bi)
∂bi

= − [rui − (r̄ + bu + bi)] + λbi = −errui + λbi (3.11)

These expressions represent the partial derivatives of S(bu, bi) with respect to bu and bi,
respectively. Finally, we update the values of bu and bi using the rule:

Θ← Θ− γ ∂S (fΘ(u, i), rui)
∂Θ

Subsequently, we obtain the updates for the parameters bu and bi

bu ← bu + γ(errui − λbu) (3.12)

bi ← bi + γ(errui − λbi) (3.13)

Algorithm 3 outlines the widely used Stochastic Gradient Descent technique. The algo-
rithm takes into account the rating matrix R, model parameters Θ, a prediction function
fΘ(u, i), a convex differentiable loss function S(fΘ(u, i), rui) and a learning rate γ. Its
objective is to minimize the chosen loss function by iteratively adjusting the model pa-
rameters to find the optimal values denoted as Θ̂. The algorithm initiates the model
parameters Θ by assigning random values drawn from a standard normal distribution.
It then proceeds with a fixed number of iterations, referred to as epochs, to update the
parameters. During each epoch, a random training example rui is selected from the set of
ratings. For every parameter Θ ∈ Θ the algorithm performs an update by subtracting the
gradient of the loss function with respect to that specific parameter, scaled by the learning
rate γ. This update step aims to adjust the parameters in a direction that reduces the
loss function. The process of randomly selecting training examples and updating the
parameters continues until the specified number of epochs is reached. At the end of the

38

algorithm, the resulting learned model parameters Θ̂ reflect the optimized values that
provide the best fit to the observed ratings.

Algorithm 3: Stochastic Gradient Descent
Input: Matrix R, set of ratings D, model parameters Θ, prediction function fΘ(u, i),

loss function S(fΘ(u, i), rui), learning rate γ and a number of iterations n.
Output: Learned model parameters Θ̂.
Initialize model parameters Θ with random values drawn from N (0, 1)
for iteration ∈ [1, n] do

Draw random training example rui from D
foreach parameter Θ ∈ Θ do

Θ← Θ− γ ∂S(fΘ(u, i), rui)
∂Θ

end foreach
end for

Algorithm 4 presents the complete training algorithm for the Baseline Predictor. Its
main loop centers around the epochs, which represent complete iterations through the
training data. Within each epoch, the algorithm randomly shuffles the observed ratings
in the training set to introduce randomness and prevent bias in the learning process.
By considering the ratings in a shuffled order, the algorithm ensures that all user-item
pairs have an equal chance of being processed. For each rating rui in the shuffled order,
the algorithm computes the predicted rating r̂ui and then calculates the prediction error
errui. To update the user and item biases, the algorithm utilizes Equations (3.8) and
(3.11). These updates aim to minimize the overall prediction error by adjusting the biases
associated with each user and item. The learning rate controls the step size during the
parameter updates, allowing the algorithm to find the optimal values gradually. After
processing all ratings in the training set for a given epoch, the algorithm evaluates the
performance on the validation set by computing the RMSE. If the RMSE on the validation
set improves compared to any previous epoch, indicating a better predictive performance,
the algorithm updates the optimized user biases b∗

u and item biases b∗
i accordingly. The

algorithm terminates if the RMSE on the validation set does not decrease over consecutive
epochs, indicating a stable point or limited potential for further improvements. The learned
biases b∗

u and b∗
i at the best performing epoch, along with the optimal number of epochs

n∗, are then returned as the final output. A detailed numerical example of the Baseline
Predictor algorithm can be found in Appendix C.1.

39

Algorithm 4: Baseline Predictor
Input: Matrix R, set of ratings D, regularization penalty λ, number of epochs n,

and the learning rate γ.
Output: b∗

u, b∗
i and the optimal number of epochs n∗.

Construct a training set Dtrain

Construct a validation set Dval

Initialize r̄ ← global mean of ratings
Initialize b∗

u and b∗
i randomly

n← 0
loop until the terminal condition is met. One epoch:

n← n+ 1
Randomly shuffle observed ratings in Dtrain

foreach (u, i) ∈ Dtrain in shuffled order do
r̂ui = r̄ + bu + bi

errui = rui − r̂ui

/* Update variables according to Equations (3.8) and (3.11) */
bu = bu + γ(errui − λbu)
bi = bi + γ(errui − λbi)

end foreach
Compute the RMSE on Dval using Equation (2.12)
if the RMSE on Dval was better than in any previous epoch:

b∗
u ← bu, b∗

i ← bi, n∗ ← n
end
Terminal condition: RMSE on Dval does not decrease.

end

3.2 Collaborative filtering: Taxonomy

In the context of CF algorithms, a widely used taxonomy categorizes them into two main
groups: model-based and memory-based algorithms [BHK98]. Memory-based algorithms
are data-driven and make rating predictions based on past data. These algorithms mem-
orize the entire rating matrix with existing ratings and utilize nearest neighbor (k-NN)
methods to predict unobserved ratings. Due to their reliance on past data, memory-based
algorithms do not function without sufficient data. Additionally, as they require all rat-
ings, users and items to be stored in memory, they do not have a learning phase. In
contrast, model-based algorithms are knowledge-driven and assume a structural relation-
ship between users and their interests. During the learning phase, a model is constructed
by adjusting observed ratings and, during the recommendation phase, the model is used
to generate recommendations. As such, model-based algorithms are able to generate rec-
ommendations even when no past data is available. However, compared to memory-based
algorithms, they require a longer learning phase. A more comprehensive analysis and

40

comparison of memory-based and model-based methods will be presented in Section 3.4,
specifically when introducing the model-based method. A third algorithm category is the
hybrid algorithm, which combines the strengths of both memory-based and model-based
algorithms. In practice, most RS go through various stages of operation where rating
data is unavailable, and only user profiles are available. In such cases, memory-based algo-
rithms cannot operate effectively. Therefore, hybrid algorithms are designed to start with
a model-based approach and then combine the advantages of memory-based algorithms
in later stages. By doing so, hybrid algorithms can overcome the limitations of both
model-based and memory-based algorithms and provide more accurate recommendations.

3.3 Memory-based collaborative filtering

Memory-based CF is a technique that can be classified into two types: user-based and
item-based. The former focuses on the similarities among users, while the latter focuses on
the similarities between items [RIS+94, SKKR01]. We provide a toy example in Figure
3.1a and 3.1b to illustrate these approaches.

Carol

Alice

MD

Bob

Charlie

r
Terminator

r
Avatar

r
Matrix

r
Star Wars

rui = 2

rui = 5

?

(a) User-based approach

Carol

MD

Bob

Alice

r
The Equalizer

r
Terminator

r
John Wick

r
Matrix

?

(b) Item-based approach

Figure 3.1: The two approaches used in the memory-based method.

The user-based approach involves calculating similarities between the target user and other
users, selecting the closest neighbors based on these similarities and using the ratings of
the neighbors on a specific item to compute a weighted average. The resulting weighted
average is the predicted rating for the target user, with the similarities serving as weights.
The diagram in Figure 3.1a illustrates the correlation strength between users, namely
Carol, Alice, Bob and Charlie, based on their previous ratings. The thickness of the
black lines connecting them indicates the strength of the correlation, with thicker lines

41

signifying stronger correlations and thinner lines indicating weaker ones. The objective of
this scenario is to predict the rating that Charlie will give to Avatar. An impersonalized
approach would involve calculating the average rating from all users. However, to person-
alize Avatar’s rating for Charlie, the algorithm selects the k most similar users and weighs
their ratings based on their correlation with Charlie. Thus, a weighted average based on
the most similar users replaces the impersonalized average across all users. This weighted
average is the predicted rating for Avatar for Charlie. This approach may face scalability
issues, particularly when dealing with large datasets such as those found in online video
streaming sites with millions of registered users. As a result, it is more suitable for systems
where the number of items is greater than the number of users, and where the existing
group in the system does not change frequently [YWZ+16].

In contrast, the item-based approach focuses on similarities between items. The system
first calculates similarities between items, selects the closest neighbors based on these
similarities and computes a weighted average of their ratings. This weighted average is
used as the predicted rating for the item. The similarities between movies are illustrated
in Figure 3.1b, with black lines representing these similarities. To predict Bob’s rating
for The Equalizer, we select the L most similar movies to The Equalizer that Bob has
previously rated and compute a weighted average based on their most similar ratings.
The most similar movie to The Equalizer is John Wick, and we can recommend it to
Bob since the system predicts that he will rate it similarly to John Wick. Similar to the
user-based approach, the item-based approach is more suitable for systems with a large
number of users compared to the number of items and where the items do not frequently
change. By exploiting the similarities between items, the item-based approach provides a
complementary perspective to the user-based approach in personalized recommendations.

3.3.1 User-based approach: k-NNusers

This method predicts the rating rui of a user u for a new item i using the ratings given
to i by the L users most similar to u. Let us suppose that we have for each user v ̸= u

a value duv that represents the similarity between u and v. Later, in Section 3.3.1.2, we
will discuss how we can compute this similarity. The L closest neighbors of u, denoted
by L(u), are the L users v with the greatest similarity duv to u. However, only users who
have rated the i item can be used in the prediction of rui and instead we consider the L
users most similar to u who have rated i. That is, the similarities u and v are computed
based on the set of items that both users have rated Iuv = Iu ∩ Iv. To compute the rating
prediction rui of user u for the item i we must select the L most similar users LL

i (u) who

42

rated the item i, i.e., LL
i (u) is the set of the L closest users to u that have interacted with

the same item i. This set of similar users is a subset of all users LL
i (u) ⊂ Ui who have

rated item i.

3.3.1.1 Generation of recommendations

The process of generating recommendations involves predicting a rating, a numerical value
that reflects the anticipated opinion of the user for an unseen item. To ensure consistency
with existing ratings in the original dataset, this value must be within the same numerical
scale R. Consequently, a prediction score is calculated using Equation (3.14).

r̂ui = 1
|LL

i (u)|
∑

v∈LL
i (u)

rvi (3.14)

One issue with Equation (3.14) is that it disregards the possibility that neighbors may have
varying degrees of similarity. To address this problem, a frequently employed approach is
to incorporate the contribution of each neighbor according to their similarity with user u.
Nonetheless, if these weights do not sum up to 1, the predicted ratings may fall outside
the allowable range. As such, it is a standard practice to normalize these weights to
ensure that the rating prediction conforms to the following expression:

r̂ui =

∑
v∈LL

i (u)
duv · rvi

∑
v∈LL

i (u)
|duv|

(3.15)

Figure 3.2 illustrates this concept. Suppose we want to predict the rating of movie B for
user 2. We can exploit the similarity between the users 1 and 2 and r1B. The rating rui

can be estimated as the average rating given to i by these neighbors.

3.3.1.2 Metrics for quantifying users’ similarity

The use of similarity weights in recommendation methods based on nearest neighbors
serves a dual purpose: (i) selecting trustworthy neighbors whose scores contribute to
prediction and (ii), assigning varying levels of importance to these neighbors during
prediction. The accuracy and performance of a nearest neighbor-based RS heavily depend
on the computation of similarity weights [DK11]. To this end, we compute similarities

43

A B

1 r1A r1B

2 r2A r2B

Movies

Users

dAB

d12

Figure 3.2: User-user correlation vs. movie-movie correlation (Reference:[Chi12]).

(duv) between the target user and other users in the rating matrix’s rows, but only for
items that have been jointly rated. Below, we describe commonly used metrics for this
approach.

Definition 3.1. (Cosine similarity). The cosine similarity between two users’ u and v

is defined as:

dCosine
uv

def=

∑
i∈Iuv

rui · rvi

√ ∑
i∈Iu

r2
ui ·

∑
i∈Iv

r2
vi

(3.16)

where Iuv is the set of items rated by users u and v, Iu is the set of all items rated by
user u, and Iv is the set of all items rated by the user v. One problem with this metric is
that it does not consider the differences in the mean and variance of user ratings u and v.
One metric that compares ratings where the effects of the mean and variance have been
eliminated is the Pearson similarity, which can be viewed as a mean-centered version of
cosine similarity.

Definition 3.2. (Pearson similarity). The Pearson similarity between two users u and
v is defined as:

dP CC
uv

def=

∑
i∈Iuv

(rui − r̄u) · (rvi − r̄v)
√ ∑

i∈Iu

(rui − r̄u)2 ·
√∑

i∈Iv

(rvi − r̄v)2
(3.17)

where r̄u and r̄v are the average rating of users u and v, respectively.

44

Definition 3.3. (Pearson similarity centered with the Baseline Predictor). The Pearson
similarity centered on the Baseline Predictor between two users u and v is defined
as:

β̂uv
def=

∑
i∈Iuv

r̃ui · r̃vi

√ ∑
i∈Iu

r̃2
ui ·

√∑
i∈Iv

r̃2
vi

=

∑
i∈Iuv

(rui − bui) · (rvi − bvi)
√ ∑

i∈Iu

(rui − bui)2 ·
√∑

i∈Iv

(rvi − bvi)2
(3.18)

To maintain consistency with our previous analysis outlined in Section 3.1.1, we compute
the baselines bui and bvi using the SGD technique, although Alternating Least Squares
[BK07b], can also be utilized for this purpose. The k-NNusers approach is shown in
Algorithm 5.

Algorithm 5: k-NNusers

Input: Matrix R, set of ratings D.
Output: R̂ an estimation of R.
Training phase:
forall (u, v) ∈ U2 do

Compute duv

end forall
Prediction phase:
num ← 0, denom ← 0
U s

i ← Sorted(Ui) // Sort by value of similarity with u, in decreasing order
forall v ∈ U s

i [: L] do
I.e. for the first L users in U s

i

num ← num + rvi · duv

denum ← denum + duv

end forall
r̂ui ←

num
denom

3.3.1.3 PCCBaseline metric

Since most ratings are unobserved, it is common for users to have few items in common.
Therefore, the Pearson similarity calculation, which only considers shared items between
two users, is more reliable when the number of shared items is higher. However, when
few items are shared, overfitting can occur. To address this issue, we employ a modified
version of the correlation coefficient, denoted as PCCBaseline, which is based on a
reduced correlation coefficient that appears in Equation (3.18).

45

dP CCBaseline
uv = |Iuv| − 1

|Iuv| − 1 + ξ
· β̂uv (3.19)

where |Iuv| is the number of items rated by users u and v. We call ξ as the shrinkage
coefficient [KB11]. Once computed, all the similarities {duv} between users are stored in
a D matrix of U × U . Then for a given user u we rank all other users, indexed by v, in
descending order of similarity |duv| and select the top L users to serve as neighbors for
inclusion in the neighborhood modeling process. The value of L is an integer between 1
and U − 1. Algorithm 6 shows how to compute this metric in practical terms.

Algorithm 6: Computation of the PCCBaseline similarity
Input: Matrix R, set of ratings D.
Output: Similarity matrix D.
Initialization (n is defined as the number of users):
d = empty_array[n][n]
sum_prod = empty_array[n][n]
sum_cuadu = empty_array[n][n]
sum_cuadv = empty_array[n][n]
forall i ∈ I do

forall u ∈ Ui do
forall v ∈ Ui do

sum_prod(u, v) + = sum_prod(u, v) + (rui − bui) · (rvi − bvi)
sum_cuadu(u, v) + = sum_cuadu(u, v) + (rui − bui)2

sum_cuadv(u, v) + = sum_cuadv(u, v) + (rvi − bvi)2

end forall
end forall

end forall
forall u ∈ Ui do

forall v ∈ Ui do

d(u, v) = sum_prod(u, v)√
sum_cuadu(u, v) · sum_cuadv(u, v)

end forall
end forall

3.3.1.4 User-based CF with Baseline Predictor: k-NN⋆
users

Recently, more sophisticated k-NN methods have been developed. As an example, during
the Netflix competition a more robust similarity metric was proposed by [BK07a]. In their
work, the authors have redefined the standard prediction formula (see Equation (3.15))
to create a new one, as can be seen in Equation (3.20).

46

r̂ui = bui +

∑
v∈LL

i (u)
duv · r̃vi

∑
v∈LL

i (u)
|duv|

= (r̄ + bu + bi) +

∑
v∈LL

i (u)
duv · (rvi − bvi)
∑

v∈LL
i (u)
|duv|

(3.20)

The three terms enclosed within the parentheses, namely (r̄ + bu + bi), from the above
formula denote the estimation that is made prior to exploiting the similarities of users.
Secondly, the dividend term constitutes a weighted summation of the knowledge we have
gathered from collaborative filtering. The predicted rating can be expressed as the Baseline
Predictor plus a weighted sum of the ratings from the neighboring users, which are then
normalized by the corresponding weights. Equation (3.20) employs the PCCBaseline
similarity. This metric, similar to the Pearson similarity, centers the ratings using the
Baseline Predictors instead of their averages. The whole process is shown in Algorithm 7.

Algorithm 7: k-NN⋆
users

Input: Matrix R, set of ratings D, regularization penalty λ, number of epochs n,
learning rate γ and the number of neighbors L.

Output: R̂ an estimation of R.
Training phase:
Initialize r̄ ← global mean of ratings
Initialize bu and bi randomly
for epoch ∈ [1, n] do

forall rui ∈ D: do
errui = rui − (r̄ + bu + bi)
bu = bu + γ(errui − λbu)
bi = bi + γ(errui − λbi)

end forall
end for
forall (u, v) ∈ U2 do

Compute duv // Run Algorithm 6 to obtain the similarity matrix
end forall
Prediction phase:
U s

i ← Sorted(Ui) // Sort by value of similarity with u, in decreasing order
forall v ∈ U s

i [: L] do
I.e. for the first L users in U s

i

num← num + duv · (rvi − bvi)
denom← denom + duv

end forall
r̂ui ← bui + num

denom

47

Algorithm 7 accepts a rating matrix R as input and proceeds with multiple steps to
produce predictions for user-item pairs. Firstly, it employs Algorithm 4 to train the
Baseline Predictor, resulting in the prediction matrix R̂ comprising predicted ratings bui

for each user-item pair (u, i). Subsequently, it normalizes the rating matrix by subtracting
R̂ from R yielding the normalized matrix R̃, thereby ensuring unbiased ratings with a
shared reference point.

The algorithm then proceeds to compute the user-user similarity matrix D by evaluating
the similarity between users using Equation (3.19). For each user u in the system, it
identifies the L nearest neighbors based on the similarity matrix D. Subsequently, for
every item i that user u has not rated, a prediction is generated by combining the Baseline
Predictor with the nearest neighbors formula, as illustrated in Equation (3.20). We shall
refer to the proposed algorithm as k-NN⋆

users, which is distinct from k-NNusers (refer to
Algorithm 5). A detailed numerical example of k-NN⋆

users is provided in Appendix C.3.

3.3.2 Item-based approach: k-NN⋆
items

Unlike the user-based approach, only the role of rows and columns is swapped here. To
determine the rating of the item i by the user u, the system looks for neighbors of the
item i instead of the user u. By calculating the similarity between i and all other items,
we can select the L items most similar to i, just as we did with users in the user-based
method.

Where LL
u (i) ⊂ Iu, is the set of items most similar to item i that were rated by user u. The

similarity between two items, i and j, is measured using some of the metrics described in
Section 3.3.2.1, which are defined in the subset of ratings of users who rated both items
Uij = Ui ∩ Uj. The u rating prediction for i is obtained as the weighted average of the
ratings given by u to the items of LL

u(i):

r̂ui =

∑
j∈LL

u (i)
dij · ruj

∑
j∈LL

u (i)
|dij|

(3.21)

Let us suppose now that we want to predict the rating of movie B for user 2 as shown in
Figure 3.2. We can exploit the similarity between movies A and B and r2A. The complete
process for the item-based approach is depicted in Algorithm 8.

48

Algorithm 8: k-NNitems

Input: Matrix R, set of ratings D.
Output: r̂ui, the prediction of rui.
Training phase:
forall (i, j) ∈ I2 do

Compute dij.
end forall
Prediction phase:
num ← 0, denom ← 0
Is

u ← Sorted(Iu) // Sort by value of similarity with j, in decreasing order.
forall j ∈ Is

u [: L] do
I.e for the first L items in Is

u

num ← num + r̃uj · dij

denum ← denum + dij

end forall
r̂ui ←

num
denom

3.3.2.1 Metrics for quantifying items’ similarity

We now define the metrics that are commonly used to compute the similarity between
items. We can use the metrics described in (3.16) - (3.19) using the column vectors i and
j from the rating matrix instead of the row vectors.

Definition 3.4. (Cosine similarity). The cosine similarity between two items i and j

is defined as:

dCosine
ij

def=

∑
u∈Uij

rui · ruj

√ ∑
u∈Ui

r2
ui ·

∑
u∈Uj

r2
uj

(3.22)

where Ui is the set of all users who rate item and Uj is the set of all users who rate item
j. Finally, u ∈ Uij is the set of users u who rated the items i and j.

Definition 3.5. (Pearson similarity). The Pearson similarity between two items i and
j is defined as:

dP CC
ij

def=

∑
u∈Uij

(rui − r̄i) · (ruj − r̄j)
√ ∑

u∈Ui

(rui − r̄i)2 ·
√ ∑

u∈Uj

(ruj − r̄j)2
(3.23)

where r̄i and r̄j are the average grade of the items i and j, respectively.

49

Definition 3.6. (Pearson similarity centered on the Baseline Predictor). The Pearson
similarity centered on the Baseline Predictor between two items i and j is defined
as:

β̂ij
def=

∑
u∈Uij

r̃ui · r̃uj

√ ∑
u∈Ui

r̃2
ui ·

√ ∑
u∈Uj

r̃2
uj

=

∑
u∈Uij

(rui − bui) · (ruj − buj)
√ ∑

u∈Ui

(rui − bui)2 ·
√ ∑

u∈Uj

(ruj − buj)2
(3.24)

The reduced correlation coefficient, as represented in Equation (3.19), is incorporated into
Equation (3.24) to calculate the similarity metric PCCBaseline, as outlined in Equation
(3.25). The inclusion of this coefficient helps mitigate overfitting when there is a limited
number of common users. Here, |Uij| represents the count of users who have rated both
items i and j. The computation of this metric is described in Algorithm 9.

dP CCBaseline
ij = |Uij| − 1

|Uij| − 1 + ξ
· β̂ij (3.25)

Algorithm 9: Computation of the PCCBaseline similarity
Input: Matrix R, set of ratings D.
Output: Similarity d P CCBaseline

ij for all pairs of items.
Initialization (n is defined as the number of users):
d = empty_array[n][n]
sum_prod = empty_array[n][n]
sum_cuadi = empty_array[n][n]
sum_cuadj = empty_array[n][n]
forall u ∈ U do

forall i ∈ Iu do
forall j ∈ Iu do

sum_prod(i, j) + = sum_prod(i, j) + (rui − bui) · (ruj − buj)
sum_cuadi(i, j) + = sum_cuadi(i, j) + (rui − bui)2

sum_cuadj(i, j) + = sum_cuadj(i, j) + (ruj − buj)2

end forall
end forall

end forall
forall i ∈ Iu do

forall j ∈ Iu do

d(i, j) = sum_prod(i, j)√
sum_cuadu(i, j) · sum_cuadv(i, j)

end forall
end forall

50

3.3.2.2 Item-based CF with Baseline Predictor: k-NN⋆
items

The algorithm’s working principle is similar to Algorithm 7, with a focus on items, instead.
The prediction formula is given below:

r̂ui = bui +

∑
j∈LL

u (i)
dij · r̃uj

∑
j∈LL

u (i)
|dij|

= (r̄ + bu + bi) +

∑
j∈LL

u (i)
dij · (ruj − buj)
∑

j∈LL
u (i)
|dij|

(3.26)

Algorithm 10: k-NN⋆
items

Input: Matrix R, set of ratings D, regularization penalty λ, number of epochs n,
learning rate γ and the number of neighbors L.

Output: R̂ an estimation of R.
Training phase:
Initialize r̄ ← global mean of ratings
Initialize bu and bi randomly
for epoch ∈ [1, n] do

forall rui ∈ D: do
errui = rui − (r̄ + bu + bi)
bu = bu + γ(errui − λbu)
bi = bi + γ(errui − λbi)

end forall
end for
forall (i, j) ∈ I2 do

Compute dij // Run Algorithm 9 to obtain the similarity matrix
end forall
Prediction phase:
Is

u ← Sorted(Iu) // Sort by value of similarity with j, in decreasing order
forall j ∈ Is

u [: L] do
I.e. for the first L items in Is

u

num← num + dij · (ruj − buj)
denom← denom + dij

end forall

r̂ui ← bij + num
denom

The proposed algorithm, denoted as Algorithm 10, operates on a rating matrix R as
input. Initially, it trains the Baseline Predictor using Algorithm 4, yielding the matrix R̂
comprising predicted baseline values buj. Subsequently, it computes the normalized rating
matrix R̃ by subtracting R̂ from R to eliminate biases and establish a consistent reference
point for all ratings. Next, it determines the similarity between items utilizing Equation

51

(3.25), resulting in the item-item similarity matrix D. For each item j in the system, it
identifies the L nearest neighbors of i based on the similarity matrix D. Consequently,
employing Equation (3.26), it calculates the final prediction r̂ui for each user-item pair. To
distinguish this algorithm from the generic k-NNitems algorithm presented in Algorithm 8,
we refer to it as k-NN⋆

items. A comprehensive numerical example of the k-NN⋆
items algorithm

can be found in Appendix C.2.

3.4 Model-based collaborative filtering

In this section, we first start by examining and emphasizing the significant distinctions
between model-based methods and memory-based methods. By doing so, we will set the
stage for our subsequent exploration of model-based methods.

Model-based methods involve building a mathematical or statistical model that represents
the underlying relationship between the input variables and the output or target variable.
This model is trained on a dataset to learn the patterns and relationships within the
data. In contrast, memory-based methods, also known as instance-based or lazy learning
methods, rely on the observed ratings in the training dataset. These methods do not
explicitly build a model but use the training data directly to make predictions or perform
computations.

The learning process differs between the two approaches: model-based methods typically
involve a training phase where the model’s parameters or structure is learned from the
training data. This process involves optimization techniques such as SGD (see Section
2.2.1.7), Maximum Likelihood Estimation or other optimization algorithms. On the other
hand, memory-based methods do not require an explicit training phase. Instead, they
store the training data in memory and use them directly for prediction or computation.
The learning process primarily involves the storage and retrieval of the training data.
Another distinction lies in the generalization capability of the methods. Model-based
methods aim to generalize from the training data by capturing the underlying patterns
and relationships. Once the model is trained, it can make predictions on new, unseen
data by applying the learned patterns. In contrast, memory-based methods directly use
the observed ratings from the training data for making predictions. These methods do
not explicitly generalize beyond the training data, which means they may have limited
performance on unseen or out-of-distribution data.

52

Scalability is another factor to consider. Model-based methods can handle large datasets
efficiently, as they rely on a compact representation of the learned patterns or relationships.
Once the model is trained, making predictions on new data can be computationally
efficient. On the other hand, memory-based methods can be memory-intensive, especially
when dealing with large training datasets. As they rely on storing the training data, the
memory requirements can increase with the size of the dataset.

Furthermore, interpretability differs between the two approaches. Model-based methods
often provide interpretability, as the learned model can reveal insights into the relationships
between input variables and the output. The parameters and structure of the model can
be analyzed and understood. In contrast, memory-based methods are generally less
interpretable since the predictions are based on direct comparisons or computations using
the observed ratings. The decision-making process may be harder to interpret or explain.

Model-based CF algorithms leverage ML to address the aforementioned challenges. These
algorithms operate under the assumption of a parameterized model denoted as fΘ(u, i),
where Θ represents an unknown parameter vector. To make predictions, the model
undergoes training using available data, aiming to estimate the parameter vector that
minimizes the loss function S, as shown in Equation (3.27).

Θ̂ = argmin
Θ

S(fΘ(u, i), rui) (3.27)

The loss function quantifies the fitting error by measuring the difference between the
model’s prediction fΘ(u, i) and the actual rating rui based on historical data (R). It can
also include a regularization term to discourage excessive model complexity associated
with the parameter vector Θ. By optimizing the loss function, the model strives to
achieve accurate predictions while balancing the trade-off between fitting the data and
maintaining a manageable level of complexity to prevent overfitting. Once the parameter
vector Θ̂ is estimated, the model can predict ratings for any user-item pair (u, i) using
Equation (3.28).

r̂ui = fΘ̂(u, i) (3.28)

Model-based methods include clustering models [UFA+98], regression-based models [LM05]
and many others. A recent class of model-based collaborative filtering is latent factor
[Hof04].

53

3.4.1 Matrix factorization

Latent factor models represent a cutting-edge method in the field of RS. These models
rely on established dimensionality reduction techniques to address the problem of missing
entries in the rating matrix. Specifically, matrix factorization is a sub-type of latent
factor models that gained prominence during the Netflix Prize contest. The technique
was inspired by singular value decomposition and proved to be more effective than the
original item-based collaborative filtering approach utilized by Netflix, which is detailed
in Algorithm 8. In fact, matrix factorization resulted in a 4% performance improvement
compared to the collaborative item-based filtering approach initially employed by Netflix.

3.4.2 Singular value decomposition

Let us consider the case in which the rating matrix is fully dense, that is, it does not have
unobserved ratings. We can factorize R using singular value decomposition. Proposition
3.7 illustrates this concept.

Proposition 3.7. Any (fully dense) real-valued matrix R ∈ Rm×n can be decomposed as
the product of three lower-ranked matrices:

R = UΣV⊤

where U is a m × m matrix with columns containing the m orthonormal eigenvectors
of RR⊤. The matrix V is a n × n matrix with columns containing the n orthonormal
eigenvectors of R⊤R. Σ is a m×n diagonal matrix in which only the diagonal entries are
nonzero and contain the square root of the nonzero eigenvalues of R⊤R. This factorization
is called Singular Value Decomposition (SVD) of R.

We can also roughly factorize the rating matrix R using Truncated SVD of rank
k ≪ min{m,n}:

R ≈ UkΣkV⊤
k (3.29)

where Uk ∈ Rm×k, Σk ∈ Rk×k and V⊤
k ∈ Rn×k. Matrices Uk and Vk contain, respectively,

the largest k eigenvectors of RR⊤ and R⊤R, while Σk (diagonal) contains the square

54

roots (not negative) of the k largest eigenvalues of any of the matrices along its diagonal
[Agg16].

The diagonal matrix Σk can be absorbed into the user factors Uk or the factors Vk of
items. By convention, user and item factors are defined as follows:

P = Uk

Q = ΣkVk

In this way, the factorization of the rating matrix leaves us with R = PQ⊤. Thus, the
goal of the factoring process is to find the matrices P and Q with orthogonal columns.

min S = ∥R − R̂∥2
F = ∥R −PQ⊤∥2

F (3.30)

Subject to:
The columns of P are mutually orthogonal
The columns of Q are mutually orthogonal

The major challenge associated with this approach is that the rating matrix is frequently
not fully dense, which is typical in RS. For instance, the ML 100K and 1M datasets
contain merely about 6% and 4% observed ratings, respectively. One approach to address
the sparsity issue is to fill in the missing values with some imputed values such as the
average rating of the users or items. However, this technique can distort the data and lead
to an undefined factorization [Kor08, KY05, SKKR00]. Alternatively, the formulation can
be reformulated as an optimization problem in which the squared error of the factorization
is optimized only over the observed ratings of the matrix. Simon Funk introduced this
idea in his blog post [Fun06] for the Netflix Prize.

3.4.3 Basic matrix factorization

The basic model of matrix factorization involves decomposing the rating matrix R ∈ Rm×n

of rank k ≪ min{m,n} into a matrix P ∈ Rm×k and another matrix Q ∈ Rn×k, as
demonstrated in Equation (3.31).

55

R ≈ PQ⊤ (3.31)

Therefore, P and Q represent the users and items’ latent factor matrices, respectively. The
parameter k represents the predetermined number of latent factors. A row of P, denoted
as pu ∈ Rk, represents a user, while a column of Q, denoted as qi ∈ Rk, represents an
item. Thus, each user u and item i has an associated vector pu and qi, respectively. The
latent factors represent the inferred characteristics of the rating patterns, and each value
in the vectors pu and qi indicates the affinity of each user and item to each of the k
factors.

Figure 3.3 provides an illustration of a basic matrix factorization model, in which users
and items (movies) are projected into a joint latent space. A missing rating (i.e., a shaded
cell in the figure) is predicted by computing the inner product of the user’s learned factors
and the corresponding item.

g 4 2 3

g 4

g 4 ? 3 5

g 1 2

g 3 4

g 4 1 2

R

g

g

g

g

g

g

k

P

k

Q

Figure 3.3: Decomposition of R into two lower-ranking matrices P and Q.

3.4.4 Unbiased matrix factorization: SVDunbiased

The unconstrained case is the most fundamental form of matrix factorization, where the
factor matrices P and Q have no restrictions. For a fully dense matrix with observed
ratings, we seek the factor matrices P and Q that approximately reconstruct the original
matrix R. This can be achieved by solving the following optimization problem:

min S = 1
2∥R − R̂∥2

F = 1
2∥R −PQ⊤∥2

F (3.32)

Subject to:

56

No restrictions on P and Q

In the case of a matrix with missing entries, only a subset of the entries of matrix R are
observed. Consequently, the loss function in Equation (3.32), becomes undefined. It is
not possible to compute the Frobenius norm of a matrix that contains missing entries.
Therefore, it is necessary to rewrite the loss function solely based on the observed entries,
allowing the learning of latent factor matrices P and Q. The advantage of this process is
that once the latent factor matrices P and Q have been learned, the entire ratings matrix
can be reconstructed efficiently as PQ⊤, in a single step.

To achieve the factorization of the incomplete matrix R into the approximate product
PQ⊤, where P and Q are fully specified matrices, it becomes possible to predict all the
entries in R. More specifically, the prediction of the (u, i)-th entry of matrix R can be
determined as follows:

r̂ui = pu · q⊤
i =

K∑

k=1
puk · qik (3.33)

Then, the modified loss function S, which works with incomplete matrices, is computed
only over the observed ratings in D as shown in Equation (3.34).

S(P,Q) =
∑

(u,i)∈D
(rui − pu · q⊤

i)2 (3.34)

We can avoid overfitting by adding a λ parameter to our loss function:

S(P,Q) =
∑

(u,i)∈D
(rui − pu · q⊤

i)2 + λ(∥p2
u∥+ ∥q2

i ∥) (3.35)

The new parameter λ is used to control the magnitudes of vectors pu and qi. In particular,
it reduces the size of possible large number values in a vector.

The subsequent phase of the approach involves determining the means to acquire matrices
P and Q. One approach to address this challenge entails initializing the two matrices
with random values and evaluating the dissimilarity between their product and R. Sub-
sequently, an iterative process is employed to minimize this dissimilarity. This numerical
approximation is the SGD technique, mentioned in Section 2.2.1.7, which strives to iden-
tify a local minimum for the dissimilarity. Specifically, the dissimilarity corresponds to

57

the error between the actual rating and the predicted rating, and it can be computed for
each user-item pair using Equation (3.36).

errui = (rui − r̂ui)2 = (rui −
K∑

k=1
puk · qik)2 (3.36)

3.4.4.1 Optimization through Stochastic Gradient Descent

For the set of parameters Θ = (P,Q) of the model we obtain the optimal values Θ̂ =
(P∗,Q∗) such that:

Θ̂ = min
Θ

S(P,Q) (3.37)

Θ̂ = min
(P,Q)

1
2

∑

(u,i)∈D

[
rui −

(
pu · q⊤

i

)]2
+ λ

2
(
∥pu∥2 + ∥qi∥2

)
(3.38)

To minimize the loss function given in Equation (3.38), the partial derivatives of S(P,Q)
with respect to pu and qi are calculated. To find ∂ S(P,Q)

∂ pu
, we differentiate each term with

respect to pu. Differentiating the first term:

∂

∂pu

[1
2
[
rui −

(
pu · q⊤

i

)]2]
= −

[
rui −

(
pu · q⊤

i

)]
qi

Differentiating the second term1:

∂

∂pu

[
λ

2∥pu∥2
]

= λpu (3.39)

Now, summing up the derivatives of each term, we have:

∂S(P,Q)
∂pu

= −
[
rui −

(
pu · q⊤

i

)]
qi + λpu = −errui · qi + λpu (3.40)

To find ∂ S(P,Q)
∂ qi

, we differentiate each term with respect to qi. Differentiating the first
term:

1Refer to Appendix B.5 for a detailed calculation of Equations (3.39) and (3.41).

58

∂

∂qi

[1
2
(
pu · q⊤

i

)2
]

= −
[
rui −

(
pu · q⊤

i

)]
pu

Differentiating the second term:

∂

∂qi

[
λ

2∥qi∥2
]

= λqi (3.41)

Now, summing up the derivatives of each term, we have:

∂S(P,Q)
∂qi

= −
[
rui −

(
pu · q⊤

i

)]
pu + λqi = −errui · pu + λqi (3.42)

As described in Section 2.2.1.7, in order to minimize a loss function, we can adapt the
general update equation Θk+1 ← Θk − γk∇δik

(Θk) for each parameter Θ belonging to Θ:

Θ← Θ− γ ∂S(fΘ(u, i), rui)
∂Θ

By computing the gradient of the loss function with respect to the parameters Θ, we can
determine the direction of steepest ascent. To apply this, we perform separate updates
for each parameter:

pu ← pu + γ(errui · qi − λpu) (3.43)

qi ← qi + γ(errui · pu − λqi) (3.44)

In these equations, γ represents the learning rate, errui is the prediction error for the
user-item pair (u, i) and λ is the regularization parameter. These updates are performed
iteratively during the training process to minimize the cost function and improve the
accuracy of the model.

To initiate the rating prediction process, we begin by randomly initializing the matrices
P and Q. These matrices are utilized to compute the predicted ratings matrix R̂ through
dot product computation. The error between the predicted ratings and the actual ratings
is then calculated employing Equation (3.36). Subsequently, we iterate through each
rating rui in the training set, predicting r̂ui and calculating the corresponding error errui.
The user and item feature vectors pu and qi are updated based on the prediction error,

59

employing a learning rate γ. This iterative process of prediction and updating continues
until a satisfactory approximation of the original ratings matrix R is attained. Upon
completion of the training phase, the model enables the prediction of ratings for any user-
item pair, even in the absence of original ratings (missing data positions). This prediction
is accomplished using Equation (3.33). As a result, the model offers a comprehensive
depiction of how any user would rate any item, based on their past ratings and those of
similar users. Algorithm 11 provides a detailed description of this process.

Algorithm 11: SVDunbiased

Input: Matrix R, set of ratings D, regularization penalty λ, number of epochs n,
learning rate γ and the number of latent factors K.

Output: P∗, Q∗, the user and item feature matrices, respectively and the optimal
number of epochs n∗.

Construct a training set Dtrain

Construct a validation set Dval

Randomly initialize P and Q.
n← 0
loop until the terminal condition is met. One epoch:

n← n+ 1
Randomly shuffle observed ratings in Dtrain

foreach (u, i) ∈ Dtrain in shuffled order do

r̂ui =
K∑

k=1
qik · puk

errui = rui − r̂ui

/* Update variables according to Equations (3.40) and (3.42) */
foreach k ∈ {1, . . . , K} do

p+
uk = puk + γ(errui · qik − λpuk)
q+

ik = qik + γ(errui · puk − λqik)
puk = p+

uk

qik = q+
ik

end foreach
end foreach
Compute the RMSE on Dval using Equation (2.12)
if the RMSE on Dval was better than in any previous epoch:

P∗ = P, Q∗ = Q, n∗ = n
end
Terminal condition: RMSE on Dval does not decrease.

end

60

3.4.5 Biased matrix factorization: SVDbiased

Matrix factorization has been widely used in model-based RS, and researchers have
proposed several adaptations of this technique. One significant adaptation, introduced
by [Pat07], involves an optimized version of Simon Funk’s algorithm. This adaptation
incorporates the Baseline Predictor bui into the prediction function r̂ui. The prediction
function combines the global mean rating, user bias and item bias with the dot product
of the user and item latent factor vectors:

r̂ui = r̄ + bu + bi + pu · q⊤
i (3.45)

Subsequently, our loss function is defined as:

S(bu, bi,P,Q) = 1
2

∑

(u,i)∈D

[
rui −

(
r̄ + bu + bi + pu · q⊤

i

)]2
+ λ

2
(
b2

u + b2
i + ∥pu∥2 + ∥qi∥2

)

(3.46)

The error between the actual rating and the predicted rating can be computed for each
user-item pair using Equation (3.47).

errui = (rui − r̂ui)2 = [rui − (r̄ + bu + bi +
K∑

k=1
puk · qik)]2 (3.47)

3.4.5.1 Optimization through Stochastic Gradient Descent

To determine the optimal values of the model’s parameters Θ = (bu, bi,P,Q), we aim to
find the corresponding values Θ̂ = (b∗

u, b
∗
i ,P∗,Q∗). This can be achieved by solving the

following minimization problem:

Θ̂ = min
(bu,bi,P,Q)

1
2

∑

(u,i)∈D

[
rui −

(
r̄ + bu + bi + pu · q⊤

i

)]2
+ λ

2
(
b2

u + b2
i + ∥pu∥2 + ∥qi∥2

)

(3.48)

61

To minimize the loss function given in Equation (3.48), the partial derivatives of S(bu, bi,P,Q)
with respect to bu, bi,pu and qi are calculated. To find ∂ S(bu,bi,P,Q)

∂ bu
, we differentiate each

term separately. Differentiating the first term:

∂

∂bu

[1
2
[
rui −

(
r̄ + bu + bi + pu · q⊤

i

)]2]
= −

[
rui −

(
r̄ + bu + bi + pu · q⊤

i

)]

Differentiating the second term:

∂

∂bu

[
λ

2 b
2
u

]
= λbu

Now, summing up the derivatives of each term, we have:

∂S(bu, bi,P,Q)
∂bu

= −
[
rui −

(
r̄ + bu + bi + pu · q⊤

i

)]
+ λbu = −errui + λbu (3.49)

Similarly, to find ∂ S(bu,bi,P,Q)
∂ bi

, we differentiate each term with respect to bi. Differentiating
the first term:

∂

∂bi

[1
2
[
rui −

(
r̄ + bu + bi + pu · q⊤

i

)]2]
= −

[
rui −

(
r̄ + bu + bi + pu · q⊤

i

)]

Differentiating the second term:

∂

∂bi

[
λ

2 b
2
i

]
= λbi

Now, summing up the derivatives of each term, we have:

∂S(bu, bi,P,Q)
∂bi

= −
[
rui −

(
r̄ + bu + bi + pu · q⊤

i

)]
+ λbi = −errui + λbi (3.50)

To find ∂ S(bu,bi,P,Q)
∂ qi

, we differentiate each term with respect to qi. Differentiating the first
term:

∂

∂qi

[1
2
[
rui −

(
r̄ + bu + bi + pu · q⊤

i

)]2]
= −

[
rui −

(
r̄ + bu + bi + pu · q⊤

i

)]
pu

62

Differentiating the second term:

∂

∂qi

[
λ

2∥qi∥2
]

= λqi

Now, summing up the derivatives of each term, we have:

∂S(bu, bi,P,Q)
∂qi

= −
[
rui −

(
r̄ + bu + bi + pu · q⊤

i

)]
pu + λqi = −errui · pu + λqi (3.51)

To find ∂ S(bu,bi,P,Q)
∂ pu

, we differentiate each term with respect to pu. Differentiating the first
term:

∂

∂pu

[1
2
[
rui −

(
r̄ + bu + bi + pu · q⊤

i

)]2]
= −

[
rui −

(
r̄ + bu + bi + pu · q⊤

i

)]
qi

Differentiating the second term:

∂

∂pu

[
λ

2∥pu∥2
]

= λpu

Now, summing up the derivatives of each term, we have:

∂S(bu, bi,P,Q)
∂pu

= −
[
rui −

(
r̄ + bu + bi + pu · q⊤

i

)]
qi + λpu = −errui · qi + λpu (3.52)

To ascertain the direction of steepest ascent, we compute the gradient ∂ S(Θ)
∂ Θ of the loss

function with respect to the parameters Θ. To implement this, we execute individual
updates for each parameter:

bu ← bu + γ(errui − λbu) (3.53)

bi ← bi + γ(errui − λbi) (3.54)

qi ← qi + γ(errui · pu − λqi) (3.55)

pu ← pu + γ(errui · qi − λpu) (3.56)

63

See Algorithm 12 for the training algorithm.

Algorithm 12: SVDbiased

Input: Matrix R, set of ratings D, regularization penalty λ, number of epochs n,
learning rate γ and the number of latent factors K.

Output: P∗, Q∗, b∗
u, b∗

i , the user and item feature matrices and biases, respectively
and the optimal number of epochs n∗.

Construct a training set Dtrain

Construct a validation set Dval

Randomly initialize P, Q, bu, bi

Initialize r̄ ← global mean of ratings
n← 0
loop until the terminal condition is met. One epoch:

n← n+ 1
Randomly shuffle observed ratings in Dtrain

foreach (u, i) ∈ Dtrain in shuffled order do

r̂ui = r̄ + bu + bi +
K∑

k=1
qik · puk

errui = rui − r̂ui

/* Update variables according to Equations (3.49), (3.50), (3.51) and (3.52) */
foreach k ∈ {1, . . . , K} do

p+
uk = puk + γ(errui · qik − λpuk)
q+

ik = qik + γ(errui · puk − λqik)
puk = p+

uk

qik = q+
ik

end foreach
bu = bu + γ(errui − λbu)
bi = bi + γ(errui − λbi)

end foreach
Compute the RMSE on Dval using Equation (2.12)
if the RMSE on Dval was better than in any previous epoch:

P∗ = P, Q∗ = Q, b∗
u = bu, b∗

i = bi, n∗ = n
end
Terminal condition: RMSE on Dval does not decrease.

end

64

3.5 Evaluation of recommendation algorithms

Evaluation of a RS can be done in three primary configurations. The first involves
conducting an in-person assessment with multiple users, where they interact directly
with the system by providing ratings or comments. This approach provides the most
precise evaluation, as it directly captures the explicit needs of the users. However, it can
be costly and time-consuming for users.

The second configuration, which we will use in this work, is offline evaluation. Here,
we have a dataset of past interactions, such as all the ratings that users have given to
items, stored in a matrix. We use this data to train predictive models that simulate user
behavior and compute different metrics. This process is carried out offline, before users
use the system. The models are periodically updated to incorporate information from
new users and items, as well as the ratings that users give to them.

The third configuration involves online evaluation. In this case, recommendations are
made to users by verifying the models trained in the offline process. This part is carried
out when users request a recommendation, online. The process differs for new and old
users, as new users have not rated any item, and their preferences are unknown to the
system. The choice of evaluation configuration depends on factors such as precision, cost
and availability of user data. Each approach has its advantages and disadvantages and
the most appropriate approach should be selected based on the specific requirements of
the recommendation system and the available resources. The evaluation process is an
essential component of any RS, as it helps to ensure that the system is effective, efficient
and meets the needs of its users [GSB+16].

In the context of RS, we often split the dataset of all ratings D into k2 non-overlapping
subsets. In each round of the k-fold cross validation process, one fold is used for validation,
denoted as Dval, while the remaining k − 1 folds are merged to form a training set Dtrain.
This process is repeated k times, with each fold being used once for validation. As shown
in Figure 3.4, which illustrates the 5-fold process, the training set is used to fit a model
using a learning algorithm A with fixed hyperparameters λ. Next, the model is evaluated
using the validation set. The procedure is repeated k times, resulting in k models that are
trained on distinct yet partly overlapping training sets and evaluated on non-overlapping
validation sets. Finally, to estimate the performance of the model, the performance
estimates from each of the k validation sets are averaged. This provides an unbiased
estimate of the model’s performance on new data.

2In this context, the symbol k is used to represent the number of folds.

65

1st performance1

2nd performance2

3rd performance3

4th performance4

5th performance5

training
fold

validation
fold

k
it

er
at

io
ns

(k
-f

ol
ds

)

performance

= 1
5

5∑
i=1

performancei

training

entries

hyperparameter
values

Learning
Algorithm

model

validation
entries

predicted
entries

validation
entries

performance
model

Figure 3.4: 5-folds CV procedure for model evaluation (Reference:[Ras20]).

3.5.1 Metrics for prediction accuracy

When our primary objective involves predicting ratings for unrated items, it is essential to
assess the accuracy of these predictions. This quantifiable measure evaluates the proximity
between the predicted ratings for recommended items, which are computed using a training
subset of a dataset and the actual ratings of the items within the remaining validation
subset of the same dataset. To further illustrate its significance, we revisit this metric,
previously introduced as Equation (2.12):

RMSE(f | D) =
√√√√ 1
|D|

∑

rui∈D
(rui − r̂ui)2

This metric fails to sufficiently capture the user interaction within a RS [JRTZ16]. Ar-
guably, the key aspect of a RS lies in its ability to effectively rank diverse items for a
specific user based on their preferences. In order to more accurately depict the user-
system interaction, alternative precision-oriented metrics are occasionally employed to

66

offer a more insightful perspective. In the following section, we will explore these metrics
in detail.

3.5.2 Metrics for classification accuracy

Classification accuracy metrics evaluate the recommendation capabilities of a RS, con-
trasting with rating prediction metrics that assess the accuracy of predicted ratings. These
metrics compare the system’s recommended item list to the user’s true preferences, which
are defined differently based on the available rating data. Implicit rating systems, which
utilize user actions like clicks as preference indicators, consider an item relevant if the user
clicks on it. Conversely, explicit rating systems, where users provide ratings, deem an item
relevant if the user’s rating exceeds a predefined threshold. In this context, each rating
is classified as either relevant or irrelevant, with the aim of exclusively recommending
relevant items and avoiding irrelevant ones. Once the relevant item set is determined
and recommendations are generated, the subsequent step involves computing a confu-
sion matrix for each user. The matrix, presented as a two-by-two table, quantifies the
recommended and non-recommended relevant items, as well as the recommended and
non-recommended irrelevant items. This confusion matrix serves as a valuable tool for
evaluating RS performance and identifying areas for improvement. Through analysis
of the matrix, various classification metrics such as Precision, Recall and F1-score can
be calculated. These metrics offer insights into the accuracy and completeness of the
recommendations, and they are extensively employed for RS evaluation. Furthermore,
they can be customized to suit the specific requirements of a given application.

3.5.2.1 Confusion matrix

Relevant Irrelevant

Recommended TP FP

Not Recommended FN TN

Figure 3.5: Confusion matrix for RS.

• Precision: tp
tp+fp

- percentage of items that are relevant.

• Recall: tp
tp+fn

- percentage of relevant items that are recommended.

• False positive rate: fp
fp+tn

- percentage of irrelevant items that are recommended.

67

• Specificity: tp
tp+fn

- percentage of irrelevant items that are not recommended.

Since the algorithm recommends k3 items, we denote by Bu(k) the set of items recom-
mended for the user u. Next, Cu as the set of relevant items among all the items for the
user u and, by Du, the set of users that have interactions in the set Dval. Precision is
defined as the fraction of recommended items that are relevant to users or the fraction of
recommended relevant items in the list. Recall is defined as the fraction of recommended
items that are relevant over all relevant items. In other words, it measures what fraction
of the relevant items have been retrieved in the set of recommendations:

Precision@k def= 1
|Du|

∑

u∈Du

Precisionu@k = 1
|Du|

∑

u∈Du

|Bu(k) ∩ Cu|
|Bu(k)| (3.57)

Recall@k def= 1
|Du|

∑

u∈Du

Recallu@k = 1
|Du|

∑

u∈Du

|Bu(k) ∩ Cu|
|Cu|

(3.58)

Let us consider a user u with a set of relevant items consisting of 5 items: C(u) =
{i1, i3, i4, i6, i8}. If the list is of size k = 3, we recommend B(3) = {i1, i2, i3} to this user,
then the Precision score is:

|{i1, i2, i3} ∩ {i1, i3, i4, i9, i6}
|{i1, i2, i3}|

= 2
3

And Recall is:

|{i1, i3, i4, i9, i6} ∩ {i1, i2, i3}|
|{i1, i3, i4, i9, i6}

= 2
5

Commonly, precision is expressed as precision in k where k is the length of the list of
recommended items, for example, Precision@1 = 1 would indicate that an item was
recommended, and the item was considered a true recommendation, that is, relevant.
Then, Precision@2 = 0.5 would indicate that two items were recommended and one of
them was considered a true positive, etc. Precision and Recall are always defined in the
range [0, 1].

3In this context, the symbol k is used to represent the number of items or recommendations that are
considered or evaluated for the calculation of the respective metric. Within model-based methods, the
symbol k is employed to represent the number of latent factors considered.

68

Precision and Recall are typically reported and analyzed together, as they tend to have an
inverse relationship. Specifically, Precision refers to the proportion of recommended items
that are actually relevant to a user, while Recall is the proportion of relevant items that
are correctly recommended. These metrics are obtained by averaging the values across all
users in the system. An algorithm can optimize Precision by recommending only a few
items, but this would likely result in a low Recall, as many relevant items would not be
recommended. Conversely, an algorithm can achieve a high Recall by recommending many
items, but this would likely lead to a low Precision, as many irrelevant items would also
be recommended. Therefore, an ideal algorithm aims to strike a balance between these
two properties, recommending predominantly good items while also capturing almost all
relevant items [KEK18]. To facilitate finding this balance, researchers often look at the
F-Score, which is the harmonic mean between Precision and Recall.

F@k def= 1
|Du|

∑

u∈Du

2 · Precisionu@k · Recallu@k
Precisionu@k + Recallu@k (3.59)

The F-Score takes into account both, Precision and Recall, with greater weight given to
whichever metric has a lower value. As such, it is a useful summary measure for evaluating
the overall performance of a RS. The higher these three metrics (Precision, Recall, and
F-Score), the better the RS.

3.5.3 Metrics for ranking accuracy

In RS the user generally receives a predicted, ordered and classified list of recommendations
that contains the top-k items. In the best case, the list should have the most preferred
items at the top. Therefore, recommendations can be studied as a ranking problem
[CKT10]. One drawback that arises with the Precision metric is that while it rewards the
algorithm for recommending relevant items, it does not take into account where they are
on the recommendation.

In general, we want the relevant items to appear first in the list. To evaluate this, we can
use the average mean precision metric, which is the mean of the average precision over
each user. By taking the mean average precision we give more importance to the first
items in the list than to the last ones, since the first item is used in all the Precision@k
calculations, while the last is only used in one. Average precision takes the average of the
Precision@k in each of the relevant items in the recommendation.

69

Mean average precision

The Mean Average Precision at K (MAP@K) is a crucial metric for evaluating the ranking
quality in RS. It measures the mean value across Q profiles within the test set. Each
profile represents a specific user or query for which recommendations are generated. Q
is used as a variable to denote the total number of profiles in the dataset. MAP@K
quantifies the precision at each rank, ranging from 1 to K, considering the fraction of
correctly predicted items among the top k recommendations. Its sensitivity to the order of
correct results makes it a more dependable measure of ranking performance. To compute
the Average Precision (AP@K) at position k in the ordered list of recommendations, the
following equation is used:

AP@K =

K∑
k=1

(Precision@k × rel(k))

relevant in K
(3.60)

Here, Precision@k is the precision calculated at position k of the ordered list, and rel@k is
a binary function with a value of 1 if the item at position k is relevant. The MAP@K for
a set of users receiving recommendations is the average of the individual average precision
(AP@k) values for each user’s recommendation. It is represented as:

MAP@K = 1
Q

Q∑

q=1

(
1
K

K∑

k=1
precisionq(k)

)
(3.61)

For each user in the recommendation set, a classification of items is generated based
on their interactions. The MAP@k is computed by considering different cutoff points k,
and its value always falls within the range [0, 1]. This comprehensive metric captures
the overall performance of the RS, providing valuable insights into its effectiveness in
generating relevant recommendations for various users or queries.

We now provide a the step-by-step procedure to compute MAP@K.

• Set a range threshold k

• Compute the relevant percentage in the top-k

• Ignore items classified below k

• Query 1:

70

– Precision@1: 1
1

– Precision@3: 2
3

– Precision@6: 3
6

– AP@6 = 1
3 × (1

1 + 2
3 + 3

6) = 0.72

• Query 2:

– Precision@1: 1
1

– Precision@2: 2
2

– Precision@4: 3
4

– AP@4 = 1
3 × (1

1 + 2
2 + 3

4) = 0.917

In this way:

MAP@K = 1
2(0.72 + 917) = 0.8185 (3.62)

For a detailed step-by-step procedure to compute this metric, please refer to Annex C.4.

71

Chapter 4

Hyperparameter Optimization

The chapter is organized as follows. First, we provide a definition of the hyperparameter
optimization problem in Section 4.1. In Section 4.4, we describe manual, grid, and random
search techniques. Finally, Section 4.5 covers Bayesian optimization in detail.

4.1 Introduction

When faced with a ML problem, such as rating prediction, practitioners need to make
various decisions, including selecting a suitable algorithm and its corresponding hyperpa-
rameters. This task of algorithm selection aims to identify the algorithm or a group of
algorithms that are more likely to achieve superior performance on specific datasets and
evaluation measures. These algorithms typically have two types of parameters: ordinary
parameters and hyperparameters, which need to be manually set before initiating the
model training process. Existing automated methods for adjusting hyperparameters are
valuable when there are numerous hyperparameters, and it is challenging to adjust them
manually due to a lack of understanding of their effects. This problem is exacerbated
when hyperparameters are not independent and must be optimized together. In this sec-
tion, we present diverse methods for autonomously identifying the optimal combination
of algorithms and configurations. Our objective is to provide a comprehensive overview
of contemporary hyperparameter optimization techniques, encompassing traditional grid
search, random search, and advanced Bayesian optimization (BO). This comprehensive
approach establishes the foundation for our experiments in Chapter 5.

72

4.2 Parameters vs. hyperparameters

Algorithm A is characterized by two main components: a vector Θ of model parameters
and a vector λ, of hyperparameters. The model parameters, represented by Θ, are learned
directly from data during the training phase. Meanwhile, the hyperparameters, denoted
by λ, influence how the algorithm learns the values for Θ. These hyperparameters can be
manually specified or optimized during the validation phase. To illustrate this concept, we
will examine the case of matrix factorization, as depicted in Algorithm 11. In this context,
the model parameters Θ correspond to the latent factors that capture user preferences and
item characteristics. By factorizing the rating matrix R, the algorithm learns the latent
factors that best represent the underlying patterns in the data. The hyperparameters λ in
this case can include the number of latent factors to be considered, the regularization term
λ1, and the learning rate γ. These hyperparameters affect how the matrix factorization
algorithm learns the latent factors and influences the accuracy and generalization of the
resulting RS. During the training phase, the goal is to estimate the optimal value of Θ,
denoted as Θ̂, which minimizes the given loss function defined in Equation (4.1).

Θ̂ = min
(P,Q)

1
2

∑

(u,i)∈D

[
rui −

(
pu · q⊤

i

)]2
+ λ

2
(
∥pu∥2 + ∥qi∥2

)
(4.1)

Once the model is trained, it needs to be validated using a separate validation dataset
or through techniques like cross-validation (see Algorithm 15). The corresponding loss
function on the validation dataset provides an evaluation of the model’s performance on
unseen data. It is important to note that during the validation phase, the estimated
Θ̂ remains unchanged for each fold or validation set. It is worth mentioning that the
hyperparameters λ are not estimated during the training phase but rather need to be
specified before starting the training process. The choice of appropriate hyperparameter
values greatly impacts the performance and effectiveness of the RS. In some cases, the loss
function in matrix factorization can be formulated analytically, allowing for the estimation
of Θ̂ using gradient-based optimization methods, as discussed in Section 2.2.1.7. However,
the optimization of the black box loss function, which depends on the hyperparameters λ,
may require derivative-free global optimization approaches, such as Bayesian optimization,
to find the optimal hyperparameter values that maximize the performance on the validation
dataset [AC19].

1In this context, the symbol λ is specifically used to denote the regularization term, whereas λ is
employed to represent the hyperparameters.

73

4.3 Hyperparameter optimization: An overview

In the context of hyperparameter optimization, where we have n hyperparameters denoted
as λ1, . . . ,λn, each with a domain range of 1 to n, the hyperparameter space can be
defined as a subset of the Cartesian product of these domains, denoted as Λ1 × · · · ×Λn.
It is important to note that this subset relation exists because certain settings of one
hyperparameter can render other hyperparameters inactive. For instance, in the case of an
artificial neural network (ANN), the parameters related to the specifics of the third layer
become irrelevant if the network depth is set to one or two. Similarly, in the context of a
support vector machine (SVM) with a polynomial kernel, the hyperparameters associated
with the polynomial kernel become irrelevant if we decide to use a different kernel [AC19].
To formally express this relationship, we define a hyperparameter λo as being conditional
on another hyperparameter λc. In other words, λo is active only if hyperparameter λc

takes values from a specific set Vo(c) ⊃ c. In this case, we refer to λc as the parent of λo.

Let us formally define the hyperparameter optimization task. A typical learning algo-
rithm A incorporates adjustable hyperparameters λ ∈ Λ, which govern its behavior. By
employing this learning algorithm, we can generate a model using the training data Dtrain

as shown in Equation (4.2).

fλ = A(λ,Dtrain) (4.2)

Hereafter, we denote by fλ a model trained using hyperparameters λ, where fλ : Rd → Y .
The process of hyperparameter optimization aims to discover the optimal hyperparameters
for the learning algorithm A. By establishing the aforementioned S : Λ → R+ loss
function, that assigns a numerical score to each possible configuration λ ∈ Λ, the objective
of hyperparameter optimization is to identify the optimal configuration λ⋆ that minimizes
R(f):

λ⋆ = argmin
λ∈Λ

R(f) (4.3)

λ⋆ = argmin
λ∈Λ

E
(x,y)∼PT

S(fλ(u, i), rui) (4.4)

Since the distribution PT is unknown, it is not feasible to find an exact solution for
Equation (4.4). Thus, it is necessary to rely on empirical risk to estimate the true

74

risk (generalization error). In this context, the objective function can be defined as the
empirical risk error on a validation dataset:

R̂Dval(fλ | S) = 1
|Dval|

∑

(x,y)∈Dval

S(fλ(u, i), rui) (4.5)

In our case, S represents the RMSE calculated through k-fold cross-validation. Then, the
optimization problem can be expressed as follows:

λ⋆ = argmin
λ∈Λ

R̂Dval(fλ, | S) (4.6)

When dealing with a fixed dataset D ∼ D, the expectation can be approximated by
averaging the function S over various training-validation splits of D. In the case of
extremely large datasets, a single training-validation split may be adequate. Consequently,
the optimization process aims to minimize the validation loss S across the hyperparameter
space Λ, denoted as R̂Dval(fλ | S), where λ represents the hyperparameters. For model-
based methods employing a parameterized model fΘ(u, i) with an unknown parameter
vector Θ, Equation (4.6) can be reformulated as follows:

λ⋆ = argmin
λ∈Λ

R̂Dval(fλ
Θ, | S) (4.7)

4.4 Standard techniques

Hyperparameter optimization methods can be broadly categorized into two categories:
manual and automatic search. In manual search, sets of hyperparameters are tested
by hand, which depends on the intuition and experience of expert users to identify
hyperparameters that will have the greatest impact on the results. However, manual
search requires a high level of expertise and practical experience, making it challenging
to handle a large number of hyperparameters and a wide range of values. As the number
of hyperparameters and the range of values increases, it becomes increasingly challenging
for humans to handle high-dimensional data. The primary issue with hyperparameter
optimization is that evaluating the objective function to find the best performance is
computationally expensive. In automatic search methods, different hyperparameters are
tested and evaluated iteratively, and the results are used to determine the next set of

75

hyperparameters to test. This process can be automated and can save a considerable
amount of time and effort. However, evaluating the objective function for each set of
hyperparameters can be time-consuming, especially for complex models like deep neural
networks. With a large number of hyperparameters, the optimization process becomes
even more challenging. Therefore, there is a need for efficient and effective methods for
hyperparameter optimization that can automate the process and reduce the computational
cost.

4.4.1 Grid search

Manual search can be time-consuming and impractical, especially when dealing with
complex models that require the tuning of multiple hyperparameters. To address this
issue, automatic search algorithms such as grid search have been proposed. This approach
involves an exhaustive search of all possible combinations of discrete hyperparameter values
in the training set, with subsequent evaluation of performance against a predefined metric
in a validation set. The best performing combination of hyperparameters is then returned.
While grid search has been effective in optimizing hyperparameters for many ML models,
its use in the context of RS has been limited due to the large number of hyperparameters
involved. This can lead to a combinatorial explosion of possible configurations, making
it computationally expensive to evaluate each one. Therefore, researchers have explored
alternative approaches such as Bayesian optimization and random search that are more
efficient and effective for finding optimal hyperparameters in the context of RS.

To illustrate the grid search procedure, let n represent the number of hyperparameters.
The grid search technique encompasses the following steps:

• For each hyperparameter zi(i ∈ {1, 2, . . . , n}) define a list of all the values that can
be assigned to zi, let li be the list.

• For each n-tuple (v1, . . . , vn) where ∀i ∈ {1, 2, . . . , n}, vi ∈ li:

– Fit the model by assigning vi to zi for each i ∈ {1, 2, . . . , n} and evaluate its
performance.

• Choose the hyperparameter values that throw the best performance.

The number of times the model is fitted and tested is |
n∏

i=1
li|. As a result, it suffers from the

Hughes effect [OMT+08] because the number of joint values (tuples) grows exponentially
with the number of hyperparameters.

76

4.4.2 Random search

One major limitation of grid search is that its search order is heavily dependent on the
implementation and it always selects the same limited set of values for each hyperparameter.
To address this issue, the random search technique has been introduced. It extracts the
value of each hyperparameter from a uniform distribution, allowing a much wider range of
explored values. In terms of implementation cost, random search only requires the ability
to uniformly extract from a range or list, making it computationally similar to grid search.
The gain in performance from random search often offsets any increased implementation
cost, as demonstrated by [BB12]. Let us now see an example of the random optimization
of hyperparameters:

• For k times:

– Fit the model by randomly assigning values to the hyperparameters and then
evaluate its performance.

• Choose the hyperparameter values that lead to the best performance.

We cannot assume that the assigned values are the most appropriate. However, this
technique can be faster than grid search.

4.5 Bayesian optimization

Neither grid search nor random search leverage the information obtained from previous
steps during the search for the optimal solution. To address this issue, Bayesian optimiza-
tion [JSW98] can be employed. To illustrate this method let us consider a pharmaceutical
company that is developing a new drug for a specific medical condition. The design space
in this context comprises various parameters, including the chemical composition, dosage
form, administration route and other factors that can impact the drug’s efficacy and safety.
Each proposed formulation can be synthesized and subjected to rigorous testing to assess
its performance. The optimization problem in this scenario involves finding the optimal
combination of parameters that minimizes the desired outcome, such as minimizing side
effects or maximizing therapeutic effectiveness. This can be expressed as:

x⋆ = argmin
x∈X

f(x) (4.8)

77

Here, x represents a vector that captures the parameters defining the drug formulation,
and f(x) denotes an objective function that quantifies the desired outcome based on the
chosen parameters. Bayesian optimization is as a method to tackle optimization problems
with specific challenges. In particular, it addresses problems characterized by the following
properties:

• Black-box: The objective function f can only be evaluated point-wise, without
access to its derivatives. Although differentiability may be assumed, derivative
information is not available.

• The evaluation of f(x): For any given x, is resource-intensive, often requiring time-
consuming experiments or simulations to determine the objective function’s value
for a given set of parameters.

• Noisy evaluations: When evaluating the objective function f , the observed values
may be subject to noise or uncertainty, requiring careful handling and statistical
analysis.

• Global and non-convex: The goal is to find the global minimum of a non-convex
function within a bounded domain X .

By addressing these challenging properties, Bayesian optimization provides a powerful
framework to navigate the complex parameter space and efficiently search for optimal
drug formulations that meet specific therapeutic goals while considering limitations such
as expensive and noisy evaluations.

4.5.1 Problem formalization

In typical scenarios, our objective is to determine the minimum of an unknown function
f(x), with f : X → R:

x⋆ = argmin
x∈X

f(x) (4.9)

In the specific context discussed in Section 4.3, x takes the form of λ i.e., x = λ, repre-
senting the hyperparameters targeted for optimization in Equation (4.6). By employing
the Bayesian optimization framework, we can effectively tackle optimization problems

78

and adapt the approach based on the specific scenario at hand, i.e., hyperparameter
optimization.

Bayesian optimization is an iterative approach that aims to solve the aforementioned
problem by leveraging all previously observed values of the unknown function f(λ). This
is achieved by constructing a surrogate model of f(λ) that guides the selection of the next
evaluation point λ′, while considering both exploration and exploitation criteria. The
fundamental principle of Bayesian optimization lies in effectively utilizing all available
information to inform the optimization process at each iteration. To accomplish this, a
history of observed points, denoted as D = {λi, f(λi)}n

i=1, is accumulated. This historical
information plays a crucial role in guiding the exploration and optimization of the target
function. In contrast, gradient descent can be viewed as an exploitative strategy that
relies solely on local information, such as the current position λn and the local curvature.

4.5.2 Surrogate model

A surrogate model is a regression model using an algorithm A′ (different from A whose
hyperparameters need to be optimized) to approximate the objective function S. The
data points used for training are already evaluated configurations. The surrogate model
provides a posterior probability distribution that describes the potential values of S(λ)
in a candidate λ configuration. The idea here is that every time we look at S at a new
point λ, we update this posterior distribution. Various models have been proposed as a
surrogate model. A popular option is Gaussian Processes (GP).

4.5.2.1 Gaussian Processes

A GP is a supervised learning model used primarily for regression problems. It is a
distribution over functions, namely, from a set of data points the GP offers possible
functions that fit these points, weighted by their probability [Ber19]. The shape and
properties of the possible functions are defined by a covariance function. When predicting
the value of an invisible point, the GP returns a normal distribution; the variance being
an estimate of the uncertainty of the model at this point. The multi-point prediction
will result in a joint Gaussian distribution. The GP is completely specified by a mean
function µ(λ) : Λ→ R and a defined positive covariance function also called the kernel,
k(λ,λ′) : Λ2 → R:

79

S(λ) ∼ GP(µ(λ); k(λ,λ′)) (4.10)

The most common choice for the GP kernel is the Square Exponential Kernel. The
algorithm starts with an initial set of k configurations {λi}k

i=1 and their associated function
values {yi}k

i=1, with yi = S(λi). In each iteration n ∈ {k + 1, . . . , N} we update the GP
model using Bayes’ rule to obtain a posterior distribution conditional on the current
training set Dn = {(λ, yi)}n

i=1 containing the configurations and observations evaluated in
the past. For any potentially unexamined configuration λ ∈ Λ the posterior mean µn(λ)
and the posterior variance σ2

n(λ) of the GP, conditioned by Dk, are known in closed form:

µn(λ) = k(λ)⊤(K + τ 2I)−1y (4.11)

σ2
n(λ) = k(λ,λ)− k(λ)⊤(K + τ 2I)−1k(λ) (4.12)

where K is the n× n matrix whose entries are Ki,j = k(λi,λj), k(λ) is the vector n× 1
of the covariance terms between λ and {λi}n

i=1, y is the vector n× 1 whose ith entry is
yi, and τ 2 is the noise variance.

When a new point is selected and evaluated, λn+1 provides a new observation yn+1 =
S(λn+1), so we can add the new pair {(λn+1, yn+1)} to the actual training set Dn, getting
a new training set for the next iteration Dn+1 = Dn ∪ (λn+1, yn+1)

λn+1 = argmax
λ∈Λ

an(λ,Dn) (4.13)

where an is the acquisition function to maximize.

4.5.2.2 Covariance of the Gaussian Process

As mentioned above, the covariance function is one of the components that defines a GP.
This describes the properties of the model, such as smoothness, noise, periodicity, etc. It is
determined by a function called kernel k(λ,λ′) that measures the similarity between two
points in the input space and a noise variation that is taken as normally distributed with
the variance σ2

n and is independent for each variable. The kernel function is somewhat
more complex. Different types of kernel have been designed. We must pay attention

80

when choosing the right one. The Matérn kernels [RW05], are a widely used option in the
literature for hyperparameter optimization. They are parametric functions parameterized
by a smoothness parameter ν > 0. A special case is the square exponential kernel
(RBF) with ν →∞ which is given by:

kRBF(λ,λ′) = σ2
f exp

(
− 1

2l2 ∥λ− λ′∥2
)

(4.14)

With this kernel, the influence of a point on the value of another point decays exponen-
tially with its relative distance. This implies that the Gaussian friction quickly returns
to its previous one in areas without observed points. The parameter “l” represents a
characteristic length scale that determines the proximity between points and their mutual
influence. In simpler terms, it quantifies the extent to which points affect each other. The
parameter σ2

f = ν is a signal variance. It tells us how much the function changes. If it is
large the function has high frequency. Popular choices for the smoothness parameter are
ν = 1.5 and ν = 2.5.

4.5.3 Acquisition function

In Bayesian optimization, the goal is to find the set of hyperparameters that will lead
to the best performance of a model. The GP is a useful tool in this context because it
provides an estimate of the performance of a model for each set of hyperparameters, as
well as the uncertainty of the estimate. However, the question remains of how to choose
which model to train. One approach is to choose the model that is slightly better than
the current best model, where the GP generates little uncertainty. Another approach is
to choose a model with high uncertainty but potentially high performance. This creates
a trade-off between exploration and exploitation, where exploitation focuses on improving
the current best model, while exploration focuses on searching for potentially better models.
To determine which model to train, an acquisition function, denoted by “a”, is used.
Most acquisition functions focus on models that return the (Gaussian) distribution over f ,
which represents the function that maps the hyperparameters to the performance of the
model. Three commonly used acquisition functions are the Probability of Improvement
(PI), Expected Improvement (EI), and Lower Confidence Bound (LCB).

The PI function selects the hyperparameters that have the highest probability of improving
the current best model. It is defined as the probability that the performance of a new model
will be better than the current best model. The EI function selects the hyperparameters

81

that have the highest expected improvement over the current best model. It is defined
as the expected value of the improvement of a new model over the current best model.
The LCB function selects the hyperparameters that have the lowest predicted value of
the function f , plus a term that increases with the uncertainty of the estimate. This
encourages exploration of new hyperparameters that could potentially lead to better
performance. Overall, the choice of acquisition function depends on the trade-off between
exploration and exploitation that is desired for a given problem. The PI function is more
exploitative, while the EI and LCB functions are more exploratory. The optimal choice of
acquisition function will depend on the specific problem and the goals of the optimization
process. Below, we formally introduce these acquisition functions.

4.5.3.1 Probability of improvement

The Probability of Improvement [Kus64], measures the probability that the value of a
function at a point λ is less than a threshold τ :

aPI(λ,Dn) = Ef1(f < τ) = pDn
(f < τ) (4.15)

where 1 is an indicator function of (f < τ). The distribution pDn
(f < τ) is given by the

surrogate model that comes from the posterior distribution of f at a point λ.

A common distribution is the Gaussian for which PI has:

aPI(λ,Dn) = Φ
(
τ − µ(λ)
σ(λ)

)
(4.16)

where Φ is the cumulative distribution function of the standard Gaussian distribution.
λ represents a given set of hyperparameters and τ is the minimum error encountered so
far. The functions µ(λ) and σ(λ) are the mean and variance of the posterior predictive
distribution, respectively.

4.5.3.2 Expected improvement

Expected Improvement [SSW+16], is the most prominent option for hyperparameter
optimization and it is also the acquisition function that we will use in our work. Formally,
the improvement for a λ hyperparameter setting is defined as:

82

I(λ) = max{Smin − Y, 0} (4.17)

where Smin is currently the best function value and Y is a random variable that models
our knowledge of the value of the S function for the hyperparameter setting λ, which
depends on Dn. The hyperparameter setting with the greatest expected improvement:

E [I(λ)] = E
[
max

{
Smin − Y, 0

}
| Dn

]
(4.18)

is chosen for the next evaluation. Supposing that Y ∼ N (µ(Dn+1(λ), σ2(Dn(λ)))), the
expected improvement can be formulated in closed form as:

aEI(λ,Dn) = E [I(λ)] =

σ(Dn+1(λ))(Z · Φ(Z) + ϕ(Z)), if σ(Dn+1(λ)) > 0,

0 otherwise.
(4.19)

where:

Z = Smin − µ(Dn+1(λ))
σ(Dn+1(λ)) (4.20)

where ϕ(·) and Φ(·) denote the standard normal density and the distribution function,
and µ(Dn+1(λ)) and σ(Dn+1(λ)) are the expected value and standard deviation of the
prediction Dn+1(λ).

4.5.3.3 Lower confidence bound

Lower Confidence Bound (or upper confidence bound for maximization problems) assumes
the function has the lower bound value [SKKS10]. Therefore, in the face of uncertainty,
it is optimistic and assumes the best of cases. The value is calculated as:

aLCB(λ,Dn) = µ(λ)− κσ(λ) (4.21)

where the parameter κ ≥ 0 is set by the user. As with the other functions described, κ
should be adjusted to balance exploitation and exploration. Algorithm 13 describes the
steps of a generic Bayesian optimization.

83

4.5.4 Bayesian optimization algorithm

Algorithm 13: BO of a learning algorithm’s hyperparameters
Input: Dtrain and Dval, learning algorithm A, loss function S and the number of

evaluations N .
Output: Returns the best model and hyperparameters based on the observations

made up to the current iteration n in the loop argmin(f,λ)∈Dn
R̂f

H0 ← ∅
for n = 1, . . . , N do

µn(λ), σ2
n(λ)← GP(Dn−1) // Fit GP, get mean and variance functions

λn ← argmax
λ

a(λ | µn(λ), σ2
n(λ)) // Choose next hyperparameters

fλn ← A(λn,Dtrain) // Train the model
R̂λn ← R̂Dval(fλ | S) // Compute validation loss
Dn ← Dn−1 ∪ (λn, Sλn) // Update observations

end for
return argmin(f,λ)∈Dn

R̂f

Algorithm 13 shows a step-by-step procedure for Bayesian optimization of hyperparam-
eters. In iteration n we approximate fλn using our GP surrogate model based on the
observation history Dn, i.e., the set of all the hyperparameter settings and performances
that have been evaluated so far. The surrogate model is an approximation of fλn with
the property that it can be quickly evaluated. Based on the GP predictions and the cor-
responding uncertainties about them, the acquisition function finds a trade-off between
exploitation and exploration and determines the hyperparameter setting to test next. This
setting is then evaluated and the new observation is added to the observation history.
After N evaluations, the best performing hyperparameter settings are returned i.e., the
model and hyperparameters with the lowest validation loss up to the current iteration n

in the loop. We can also train and validate the model with a cross-validation loop (see
Algorithm 16). This helps limit overfitting in the hyperparameters selection.

We now provide Algorithm 14, specifically tailored to the context of RS. The algorithm
takes three inputs: the hyperparameter space denoted as Λ, the target score function
S(fλ

Θ(u, i), rui) that evaluates the performance of a hyperparameter configuration, and
the maximum number of evaluations denoted as N . The algorithm starts by selecting an
initial hyperparameter configuration λ0 from the hyperparameter space Λ and evaluates its
initial score y0 = S(fλ0

Θ (u, i), rui). Several variables are initialized, including λ⋆ set to λ0,
y⋆ set to y0, D0 initialized with (λ0, y0), and ϵ⋆ initialized with y0. The main optimization
loop then iterates from 1 to N , selecting a new hyperparameter configuration λn based on

84

an acquisition function an(λ,Dn). Then, the score function S(fλn
Θ (u, i), rui) is evaluated

with λn to obtain a new score yn, which is added to the dataset Dn. The surrogate model,
representing the relationship between hyperparameters and scores, is updated using Dn.
If yn is lower than ϵ⋆, then λn becomes the new best configuration λ⋆, and yn becomes
the new best score y⋆. After completing all iterations, the algorithm returns the best
hyperparameter configuration λ⋆ and its corresponding best score y⋆.

Algorithm 14: BO of a recommendation algorithm’s hyperparameters
Input: Hyperparameter space Λ, loss function S(fλ

Θ(u, i), rui), number of evaluations
N .

Output: λ⋆ and y⋆.
Select an initial configuration: λ0 ∈ Λ
Evaluate the initial score y0 = S(fλ0

Θ (u, i), rui)
λ⋆ ← λ0
y⋆ ← S(fλ0

Θ (u, i), rui)
D0 ← {λ0, y0}
ϵ⋆ ← y0 // Initialize the threshold ϵ⋆ with the initial score
for n = 1, . . . , N do

Select a new hyperparameter configuration λn ∈ Λ by optimizing an:
λn = argmax

λ∈Λ
an(λ,Dn)

Evaluate S in λn to obtain a new numeric score yn = S(fλn
Θ (u, i), rui)

Increase the data Dn = Dn−1 ∪ (λn, yn)
Update the surrogate model
if yn < ϵ⋆ then

λ⋆ ← λn

y⋆ ← yn

end if
end for

In summary, Bayesian optimization operates by leveraging a set of explored combinations
and their corresponding models’ performance. Through fitting a Gaussian Process to
this set, the algorithm is able to make predictions about the performance of untested
combinations. These predictions are then utilized by an acquisition function to determine
the most promising combination for further testing. The selected combination is evaluated,
incorporated into the set of explored combinations, and the process continues until resource
constraints are reached. This iterative approach allows for efficient exploration of the
hyperparameter space while maximizing the utilization of available resources. Illustrations
in both Figure 4.1 and 4.2 depict Bayesian optimization in seven iterations, utilizing
Gaussian Processes as a surrogate model and Expected Improvement as the acquisition
function. At the top of the figure, the objective function to be minimized and its posterior

85

model are displayed. Below, the acquisition function for maximizing, obtained from the
posterior distribution, is shown. The dashed line represents the true function, while the
black diamonds represent the observed samples of the function. The blue line and the
envelope indicate the posterior mean and variance functions of the GP. The primary
objective is to minimize an objective function a, with an input hyperparameter λ.

−2 −1 0 1 2 3 4 5 6 7 8 9 10
0.2

0.4

0.6

0.8

1

1.2

1.4

λ

f
(λ

)

95 % confidence interval

Objective

y = f(λ) + ε

f(λ)

−2 −1 0 1 2 3 4 5 6 7 8 9 100

0.5

1

λ

A
cq

ui
sit

io
n

aEI

Next best estimate.

(a) n = 2 evaluations.

−2 −1 0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

λ

f
(λ

)

95 % confidence interval

Objective

y = f(λ) + ε

f(λ)

−2 −1 0 1 2 3 4 5 6 7 8 9 100

0.5

1

λ

A
cq

ui
sit

io
n

aEI

Next best estimate

(b) n = 4 evaluations.

Figure 4.1: Example of a GP with an EI acquisition function.

The algorithm develops a surrogate model that approximates the objective function based
on observations, with the graph showing the predicted distribution over a through the
mean value and the 95% confidence interval, employing a probabilistic model of the
objective function. The acquisition function assigns a utility value for each point for
evaluation, balancing exploitation, given by the mean value, and exploration, given by the
uncertainty of the prediction. The point with the maximum utility is evaluated. In the
subsequent iteration, the surrogate model is reconstructed to adapt to a new observation.
We observe that after a few iterations, the algorithm can approach the true maximum
closely.

−2 −1 0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

λ

f
(λ

)

95 % confidence interval

Objective

y = f(λ) + ε

f(λ)

−2 −1 0 1 2 3 4 5 6 7 8 9 100

0.5

1

1.5

λ

A
cq

ui
sit

io
n

aEI

Next best estimate

(a) n = 6 evaluations.

−2 −1 0 1 2 3 4 5 6 7 8 9 10
0.2

0.4

0.6

0.8

1

1.2

1.4

λ

f
(λ

)

95 % confidence interval

Objective

y = f(λ) + ε

f(λ)

−2 −1 0 1 2 3 4 5 6 7 8 9 100

0.5

1

1.5

λ

A
cq

ui
sit

io
n

aEI

Next best estimate

(b) n = 7 evaluations.

Figure 4.2: Example of a GP with an EI acquisition function.

86

Chapter 5

Experiments and Discussion

This chapter is structured as follows: Section 5.1 describes the hardware and software em-
ployed in our experiments and outlines how the datasets were constructed. Next, Section
5.3 presents an exploratory analysis of the two datasets, followed by Section 5.4 which
details the methods used for their division and the techniques employed for training, vali-
dation and testing. In Section 5.6.1, we examine the impact of each hyperparameter on the
prediction algorithms. In Section 5.6.2, we fine-tune the hyperparameters of the proposed
algorithms using the techniques described in Chapter 4. We run multiple experiments,
report the results and analyze them. Lastly, in Section 5.6.3, we evaluate the performance
of the algorithms under different training proportions and provide commentary on the
results.

5.1 System configuration

Tests were run on a 4-core Intel Xeon CPU, clocked at 2.8 GHz, equipped with 32GB of
RAM and running on the Ubuntu operating system. All algorithms have been implemented
in Python 3.6. Our experiments were carried out using Predictive Accuracy, an open
source Python recommendation engine that we developed for the occasion. The main
characteristics of our library are the following:

• Easy handling of datasets. Not only can the built-in Movielens datasets be used,
but custom datasets can be used as well.

87

• The algorithms mentioned in this work are ready to be used and do not require any
prior adjustment.

• The parameters of the proposed algorithms are easily modifiable.

To implement Bayesian optimization (4.5) with PI (4.16), EI (4.19), LBC (4.21) and
Gaussian Processes, we used the Scikit-Optimize package [PVG+12].

According to [Bjo19], an essential element of the scientific method is reproducibility. This
means that the findings of a research study should be replicable by anyone who has access
to the original data, mathematical derivations or programming code. In other words, for a
research work to contribute to the advancement of the field, it must undergo scrutiny and
replication by other researchers. To encourage a greater level of research reproducibility,
we have included the simulation code alongside this work. The interested reader can
access it through the following link:

simulation code

5.2 Datasets

The MovieLens dataset [HK15], managed by GroupLens Research at the University of
Minnesota, comprises movie ratings obtained through the MovieLens project. Ratings
were obtained exclusively via the MovieLens website, excluding users with less than 20
ratings. To evaluate the proposal presented in this work, we selected the ML 100K and
ML 1M datasets, which respectively include 100000 ratings from 943 users for 1682 movies
and 1000000 ratings from 6040 users for 3952 movies (Table 5.1).

|U | |I| |R| Density Rating

ML 100K 943 1682 100000 6.30 % 1:5 (5)
ML 1M 6040 3952 1000000 4.47% 1:5 (5)

Table 5.1: Dataset statistics.

The dataset contains ratings that follow the format below:

(user_id, movie_id, rating, timestamp)

88

https://mdumon@bitbucket.org/mdumon/final-work-simulation-code.git

In this format, user_id and movie_id serve as unique identifiers for users and movies,
respectively. The rating ranges from 1 (worst) to 5 (best), represented as an integer.
The timestamp is a UNIX timestamp represented as an integer indicating the time of the
rating in seconds since 1-1-1970.

5.2.1 Description of the variables involved

• Quantitative variables

– user_id: discrete. It ranges from 1 to 943 for ML 100K, and between 1 and
6040 for ML 1M.

– movie_id: discrete. It ranges between 1 and 1682 for ML 100K, and between
1 and 3952 for ML 1M.

– timestamp: discrete. Date and time the rating was given, represented in
seconds.

• System prediction

– rating: discrete. Between 1 and 5 stars.

Since the ratings are drawn from the set {1, 2, 3, 4, 5}, it is tempting to use a categorical
rating model. However, this does not reflect the fact that ratings are ordered.

5.3 Exploratory data analysis

In this section, we present an analysis of the Movielens dataset 100K and 1M, providing
a comprehensive overview of the dataset, the distribution of user ratings and the long-tail
phenomenon.

5.3.1 Long tail

Let

fi =
n∑

u=1
1u,i∈D

89

represent the frequency of item i in D. This frequency is equivalent to the number of
users who have rated item i or the number of entries in the i-th column of matrix R.
Popularity of an item is measured by its frequency. In most datasets, items follow a
long tail distribution, where only a few items are highly popular, while the majority have
few ratings. This phenomenon aligns with the Pareto principle, commonly known as the
80/20 rule. To illustrate this, let us say there is a website where people can rate movies
on a scale from 1 to 5 stars. Let us imagine that there are 100 different movies on the
website, ranging from old classics to new releases. When we look at the data, we can see
that typically only a small number of movies, maybe around 20, receive a lot of ratings
from users.

0 200 400 600 800 1000 1200 1400 16000

100

200

300

400

500

600

Movies

R
at

in
gs

(a) Item ratings: ML 100K.

0 100 200 300 400 500 600 700 800 9000

100

200

300

400

500

600

700

Users

R
at

in
gs

(b) User ratings: ML 100K

0 500 1000 1500 2000 2500 3000 35000

500

1000

1500

2000

2500

3000

3500

Movies

R
at

in
gs

(c) Item ratings: ML 1M.

0 1000 2000 3000 4000 5000 60000

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

Users

R
at

in
gs

(d) User ratings: ML 1M

Figure 5.1: Popularity of items in decreasing order.

These popular movies account for 80% of all the ratings on the website. On the other hand,
the remaining 80 movies receive fewer ratings overall, representing only 20% of the total
ratings (see Figure 5.1) In other words, some movies are rated much more frequently than
others, and this can make it challenging to recommend movies that are not as popular.
This is an important consideration for websites that offer movie recommendations, as they
need to ensure they are not just recommending the most popular movies, but also providing
options that users may not have considered before. RS face a significant challenge of

90

compensating for this imbalance by generating reliable predictions for long-tail items to
avoid recommending only the popular items and increase novelty [And04].

5.3.2 Distribution of ratings

The presented histogram, as depicted in Figure 5.2, reveals that the predominant ratings
for both datasets fall within the range of 3 to 5 stars. This observation suggests that
users are more inclined to assign ratings of 3 and 4 stars, which hold a greater impact
on the final predictive model derived from the entire set of training ratings. Notably,
negative ratings (1 or 2 stars) account for a mere 17.48% of the overall ratings, whereas
the remaining 82.52% tend to be relatively positive, as can be seen in both Figure 5.2a
and Figure 5.2b. Additionally, the 4-star rating is the most frequent rating given, with
left-skewed distributions. These outcomes hold consistently across both datasets.

1 2 3 4 5

6.11%

11.37%

27.15%

34.17%

21.2%

Rating

Po
rc

en
ta

ge
(%

)

(a) ML 100K

1 2 3 4 5

5.62%

10.75%

27.15%

34.89%

22.63%

Rating

Pe
rc

en
ta

ge
(%

)

(b) ML 1M

Figure 5.2: Ratings as a function of percentage.

5.4 Dataset splitting

Datasets are created so that each of the subsets is separate from the other two, and the
three subsets combined contain all the ratings. Then, D is divided into three disjoint sets
(Dtrain ∩ Dval) ∪ (Dtrain ∩ Dtest) ∪ (Dval ∩ Dtest) = ∅, the training set Dtrain, the validation
set Dval, and the test set Dtest. Such that Dtrain ∪ Dval ∪ Dtest = D. We also denote
(Dtrain ∩ Dval) = ∅ as Dtrainval.

91

5.5 Experiments

The section follows a structured format, beginning with Experiment 1 (Section 5.5.1):
Hyperparameter impact analysis in RS, where the focus is on analyzing the influence of
hyperparameters on the performance of ML models applied to RS. Experiment 2 (Section
5.5.2): Comparative performance of hyperparameter optimization techniques provides
a detailed comparison between random search and Bayesian optimization techniques in
identifying optimal hyperparameters for RS models. Experiment 3 (Section 5.5.3): Inves-
tigating the effects of data sparsity on recommendation algorithms delves into studying
the impact of varying levels of sparsity in the rating matrix on algorithm performance
and accuracy.

5.5.1 Hyperparameter impact analysis in RS

Here, we aim to analyze the impact of hyperparameters on the performance of ML
algorithms applied to RS. The objective of this experiment is to investigate various hyper-
parameters and their effects on model accuracy and convergence speed. By conducting
a comprehensive analysis, we aim to identify the optimal hyperparameters that enhance
the overall performance of the RS. The findings from this experiment provide valuable
insights into the significance of hyperparameters and their impact on the effectiveness of
ML models in the context of RS.

The experiment utilizes a 5-fold cross-validation method, as presented in Algorithm 15,
to estimate the validation error. The average validation error across k trials gives an
estimation of the validation error. During trial i, the i-th subset of data is used as the
validation set, and the remaining data is utilized as the training set. It is noteworthy
that the errors will yield a biased estimate of the true generalization error. Nonetheless,
this should not be a concern, as the experiment’s objective is to evaluate the impact of
hyperparameters. In the subsequent experiment, we will concentrate on obtaining an
unbiased estimation of the generalization errors.

5.5.2 Comparative performance of hyperparameter optimiza-
tion techniques

In this experiment, we compare the performance of two distinct hyperparameter optimiza-
tion techniques: random search and Bayesian optimization. Our objective is to evaluate

92

Algorithm 15: k-fold cross-validation
Input: Model f , a set of ratings D, the number of folds k.
Output: Learnt model f ⋆, average training error Etrain, average validation error Eval.
Randomly shuffle the ratings in D
Divide D into k folds D1, . . . ,Dk

for fold index i = 1, . . . , k do
Use i-th fold as the validation set Dval = Di

Use the rest as the training set Dtrain = D \ Di

Learn function f ⋆ via ERM on the training set:

f ⋆
i = argmin

f∈F
R̂Dtrain(f) (5.1)

Compute the training error :

Ei
train = R̂Dtrain(f ⋆) =

√√√√ 1
|Dtrain|

∑

rui∈Dtrain

(rui − r̂ui)2 (5.2)

Compute the validation error :

Ei
val = R̂Dval(f ⋆) =

√√√√ 1
|Dval|

∑

rui∈Dval

(rui − r̂ui)2 (5.3)

end for
Compute average training and validation errors:

Etrain = 1
k

k∑

i=1
Ei

train, Eval = 1
k

k∑

i=1
Ei

val (5.4)

Pick a learnt model f ⋆ = f ⋆
i for some i ∈ {1, ..., k}

the efficiency and effectiveness of each approach in identifying optimal hyperparameters
for RS algorithms. Through a thorough analysis, we gain valuable insights into the
strengths and weaknesses of both techniques. By examining the factors influencing their
effectiveness, this experiment provides a comprehensive comparison of random search and
Bayesian optimization.

The experiment utilizes Algorithm 16, which offers a straightforward and efficient method
for selecting the best candidate model among a set of models, f1, f2, . . . , fM . The pro-
cess involves learning and validating a model f ⋆

i for each model fi using Algorithm 15.
Specifically, for each model fi, we employ the ERM (Equation (2.14)) approach to learn
the model f ⋆

i and determine its validation error, Ei
val, as outlined in Equations (5.2)

and (5.3), respectively. We then select the model f ⋆
î

with the smallest validation error,
Ei

val = mini=1,...,ME
i
val, from the model set F̂î that achieved the lowest validation error.

93

Algorithm 16: k-Fold cross validation for model selection
Input: List of candidates models f1, . . . , fM , a set of ratings D, number of folds k.
Output: Model f⋆, training error E î

train, validation error E î
val, test error Etest.

Randomly shuffle the ratings in D
Construct a training set and a validation set Dtrainval

Construct a test set Dtest

for model index i = 1, . . . , M do
Run Algorithm 15 using f = fi, dataset D = Dtrainval and k folds
Algorithm 15 delivers model f⋆ and validation error Eval

Store learnt model f⋆
i = f⋆ and validation error Ei

val = Eval

end for
Pick model fî with minimum validation error E î

val = mini=1,...,M Ei
val

Define optimal model f⋆ = f⋆
î

Compute the test error:

Etest = R̂Dtest(f⋆) =
√√√√ 1
|Dtest|

∑

rui∈Dtest

(rui − r̂ui)2 (5.5)

Algorithm 16 follows a similar workflow to ERM, which involves selecting the best model
from a pool of candidate models. However, in Algorithm 16, we choose the optimal model
space from a collection of candidate model spaces. We measure the quality of each model
space using its validation error, which we compute by training the model f ⋆ ∈ F via
ERM on the training set, and then measuring its average loss on the validation set.

For each configuration, we train the model on the sub-training set and evaluate it on
the validation set using 5-fold cross-validation, in this phase we experiment with vari-
ous hyperparameter configurations using Bayesian optimization (see Section 4.5). To
accurately estimate the performance of the selected model f ⋆, it is essential to test it on
an independent set of ratings that were not employed for training (Equation (5.2)) or
validation (Equation (5.3)). We construct this test set and calculate the test error, which
is the average loss of the final model on the test set, as shown in Equation (5.5). For a
detailed illustration of the proposed procedure, see Appendix D.1.

5.5.3 Investigating the effects of data sparsity on recommenda-
tion algorithms

Here, we focus on investigating the effects of data sparsity on recommendation algorithms.
Our objective is to explore how varying levels of sparsity in the rating matrix impact
algorithm performance and accuracy. By studying the behavior of RS under different

94

sparsity conditions, we provide valuable insights into the robustness and adaptability of
these algorithms in real-world scenarios. The findings from this experiment contribute
to a better understanding of the challenges posed by data sparsity and offer guidance for
developing more effective recommendation algorithms.

Algorithm 17: Hold-out validation
Input: Model f , a set of ratings D.
Output: Learnt model f ⋆, training error Etrain, validation error Eval.
Randomly shuffle the ratings in D
Create the training set Dtrain

Create the validation set Dval

Learn model f ⋆ via ERM on the training set:

f ⋆ = argmin
f∈F

R̂Dtrain(f) (5.6)

Compute the training error:

Etrain = R̂Dtrain(f ⋆) =
√√√√ 1
|Dtrain|

∑

rui∈Dtrain

(rui − r̂ui)2 (5.7)

Compute the validation error:

Eval = R̂Dval(f ⋆) =
√√√√ 1
|Dval|

∑

rui∈Dval

(rui − r̂ui)2 (5.8)

This experiment employs the classical hold-out approach, as presented in Algorithm 17.
The dataset is initially split into two subsets: the training set (80% of the data) and the
validation set (20% of the data). We choose a suitable learning algorithm and train it to
create a model. Next, we use the validation set to predict ratings, providing an estimation
of the model’s performance on unseen data. Furthermore, we provide a comprehensive
explanation of how the training set is utilized.

5.6 Results

This section presents the findings of Experiments 1 (5.5.1), 2 (5.5.2), and 3 (5.5.3), which
are detailed in Sections 5.6.1, 5.6.2, and 5.6.3, respectively.

95

5.6.1 Experiment 1

5.6.1.1 Baseline Predictor

To obtain biases bu and bi, we used Algorithm 4. The hyperparameters we needed to
adjust were: learning rate γ, regularization rate λ and the number of epochs n. The
learning rate γ needed constant readjustment to avoid a value that was too high or too
low. If it was too high, it could delay convergence, and if it was too low, the iteration
would likely gradually enter a divergence that surrounded the minimum instead of the
expected direction.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

·10−2

0.94

0.942

0.944

0.946

0.948

0.95

0.952

γ

R
M
S
E

30 epochs

50 epochs

100 epochs

150 epochs

(a) Validation error ML 100K.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·10−2

0.9075

0.908

0.9085

0.909

0.9095

0.91

0.9105

0.911

0.9115

γ

R
M
S
E

30 epochs

50 epochs

100 epochs

150 epochs

(b) Validation error ML 1M.

Figure 5.3: RMSE under different values of Γ and n.

The value of γ was closely related to the number of epochs. For a very low value of γ, a
higher number of epochs n was required, as the algorithm learned at a much slower pace.
However, the number of epochs should not be too high as this would cause the model to
overfit the training data, which could worsen performance on the validation set. We kept
the regularization rate λ fixed at 0.01 and varied γ and n. Since the learning rate and the
required number of epochs can influence each other, they must be varied simultaneously
to optimize both values. In Figure 5.10a, we see that high values of the learning rate
lead to overfitting, especially as the number of epochs increases. The error also increases
rapidly when γ is set to low values and the number of epochs decreases. The minimum
seems to occur around γ = 0.005 and n = 50 for ML 100K and γ = 0.001 and n = 100
for ML 1M. We considered 100 training epochs instead of 150 for ML 1M because 50
extra epochs consume more time and computational resources to obtain an insignificant
improvement.

96

5.6.1.2 k-NN⋆
users

To enhance the performance of the k-nearest neighbors method, we incorporated the
Baseline Predictor, bui. Without any interaction between two users, the prediction function
would output a rating prediction of rui = 0. However, including the Baseline Predictor
in our prediction function allowed us to obtain a rating prediction even when there is no
interaction between users. This improved the algorithm’s performance significantly.

20 40 60 80 100 120 140 160 180 200

0.931

0.932

0.932

0.933

0.934

0.935

0.936

0.937

0.938

0.939

0.940

0.941

0.941

L

R
M
S
E

Cosine
Pearson
PCCBaseline

(a) ML 100K

100 200 300 400 500 600 700 800 900 1000

0.880

0.883

0.885

0.888

0.890

0.893

0.895

0.898

0.900

0.903

0.905

L

R
M
S
E

Cosine
Pearson
PCCBaseline

(b) ML 1M

Figure 5.4: Comparison of rmse with different similarity metrics and sizes of L.

To minimize Equation (3.3) and obtain the biases of users and movies, we fixed the
hyperparameter values at λ = 0.02, n = 50 and γ = 0.005 for both datasets. Next,
we computed the similarity between users using the metrics described in Section 3.3.1.2,
and selected the L nearest neighbors for each user. We varied the value of L from 20
to 200 for ML 100K, and from 100 to 1000 for ML 1M during the experiment. Finally,
we predicted the target user’s rating for an unrated item by combining the ratings of
the selected neighbors using Equation (3.20). Figures 5.4a and 5.4b illustrate that using
the Pearson similarity based on the Baseline Predictor (Equation (3.19)) results in the
lowest rmse and thus achieves the highest level of prediction accuracy. It turns out
that subtracting bui from the user provides better predictions compared to other metrics.
Figure 5.4a indicates that for cosine similarity, the error is minimized to 0.9370 when
L = 60 but increases as L exceeds 60. In contrast, for Pearson similarity, the error initially
increases but reaches its minimum of 0.9327 at L = 60 and hits a plateau when L > 160.
Additionally, centered Pearson similarity on the Baseline Predictor demonstrates an initial
decrease, then stabilizes and attains a minimum error of 0.9306 when L = 60 and ξ = 1.
Upon analyzing the curves, it is apparent that cosine similarity yields the lowest accuracy
because it only considers the angle between vectors, disregarding the correlation between

97

the ratings and the average ratings. For instance, considering three ratings r1, r2, and r3,
represented by the vectors (5, 5, 5), (1, 1, 1), and (4, 5, 5), respectively, it is evident that r1

and r3 are more similar, although according to the similarity metric, r1 and r2 are more
similar.

As demonstrated in Figure 5.4b, cosine similarity produces a minimum error of 0.8961 at
L = 100. For 100 < L < 900, the error increases as L increases, eventually stabilizing
for L ≥ 1000. This phenomenon occurs because many users do not possess a high degree
of similarity within their neighborhood set Lu when L is large, resulting in a higher
error in the predicted rating. In contrast, Pearson similarity initially decreases the error
before increasing it, attaining a minimum of 0.8895 for L = 100. As L rises between
100 < L < 700, the error increases before stabilizing for L > 700. When Pearson similarity
is centered on the Baseline Predictor, it first decreases to a minimum error of 0.8795 at
L = 100 and ξ = 1, then increases between 100 < L < 400 and hits a plateau for L > 500.

The proposed algorithm was evaluated on the ML 100K dataset with varying degrees of
sparsity to determine its effectiveness in handling sparse data. Pearson similarity centered
on the Baseline Predictor was used as the metric, with a fixed regularization rate of
λ = 0.02, learning rate of γ = 0.005, number of epochs of n = 20 and ξ = 1. The number
L of neighbors was varied from 100 to 800 in increments of 100, as recommended by
[KB11] for the Netflix dataset, which has been shown to be effective for our experiments.

100 200 300 400 500 600 700 800

0.920

0.930

0.940

0.950

0.960

0.970

L

R
M
S
E

Sparsity: 60%

Sparsity: 40%

Sparsity: 20%

Figure 5.5: Evolution of precision (rmse) for ML 100K according to matrix density.

The relationship between the sparsity degree of ratings and the error value is depicted in
Figure 5.5. As the degree of sparsity increases, the error value also increases gradually.
The figure showcases three sparsity degree levels: 60%, 40%, and 20%, which correspond to
data densities of 40%, 60%, and 80%, respectively. A higher number of ratings in the rating

98

matrix results in a lower sparsity degree. This reduction in sparsity provides more rating
information, leading to more accurate similarity calculations and reducing the discrepancy
between predicted and actual ratings. On the other hand, as the sparsity degree of ratings
increases, the time required to reach the minimum error value also increases gradually.
This is because a higher degree of sparsity necessitates more abundant rating data for the
calculation of user similarity, which in turn leads to an expanded neighborhood set Lu.

5.6.1.3 k-NN⋆
items

The proposed algorithm incorporates bij into the k-nearest neighbors method to enhance its
performance. In order to minimize Equation (3.3), we utilize the identical hyperparameter
values as those employed in the k-NN⋆

users algorithm discussed in Section 5.6.1.2. Next,
we employ three similarity metrics mentioned in Section 3.3.2.1 to compute the similarity
between movies, selecting L nearest neighbors for each item. We explore the range of L
values from 20 to 200 for ML 100K and 100 to 1000 for ML 1M. Ultimately, we estimate
the target user rating for an unrated item by using Equation (3.26) to combine the ratings
of the selected neighbors. As illustrated in Figure 5.6a, the error is minimized at 0.9351
when L = 80 using cosine similarity. The error subsequently increases with the increase
in L for 60 < L < 100. With Pearson similarity, the error initially increases but then
decreases, reaching a minimum of 0.9303 at L = 120. When L > 120, the error hits
a plateau. For centered Pearson similarity based on the Baseline Predictor, the error
initially decreases and then hits a plateau, reaching a minimum of 0.9289 at L = 120 and
ξ = 1.

20 40 60 80 100 120 140 160 180 200
0.925

0.928

0.930

0.933

0.935

0.938

0.940

0.943

0.945

0.948

0.950

L

R
M
S
E

Cosine
Pearson
PCCBaseline

(a) ML 100K

100 200 300 400 500 600 700 800 900 1000
0.875

0.878

0.880

0.883

0.885

0.888

0.890

0.893

0.895

0.898

0.900

0.903

0.905

0.908

0.910

L

R
M
S
E

Cosine
Pearson
PCCBaseline

(b) ML 1M

Figure 5.6: Comparison of rmse with different similarity metrics and sizes of L.

99

The curve in Figure 5.6b depicts the error trend for three similarity metrics: cosine,
Pearson, and centered Pearson similarity based on the Baseline Predictor. For cosine
similarity, the error reaches its minimum value of 0.8951 when L = 100, and then increases
for 100 < L < 700 due to a larger number of movies with low similarity in the neighbor
set Li at larger values of L, leading to higher errors in predicted ratings. Finally, the
error tends to stabilize for L > 700. In contrast, the error for Pearson similarity first
decreases and then increases, with a minimum of 0.8855 for L = 100, followed by an
increase for 100 < L < 500, and hits a plateau for L > 500. Centered Pearson similarity
based on the Baseline Predictor follows a similar pattern, with a minimum error of 0.8770
for L = 100 and ξ = 1, followed by stabilization. We also evaluated the performance of
these metrics on the ML 100K dataset, with varying levels of sparsity, using the same
evaluation protocol as described in Section 5.6.1.2. In this evaluation, we focused on
items.

100 200 300 400 500 600 700 800

0.920

0.930

0.940

0.950

0.960

0.970

0.980

L

R
M
S
E

Sparsity: 60%

Sparsity: 40%

Sparsity: 20%

Figure 5.7: Evolution of precision (rmse) for ML 100K according to matrix density.

The findings depicted in Figure 5.7 reveal a noticeable upward trend in error as the degree
of sparsity of ratings in the matrix increases. Notably, the algorithm exhibits similar
behavior to the user-based approach; however, the error rate obtained for all three degrees
of sparsity is comparatively lower in this method. It is worth noting that as the degree
of sparsity increases, less rating information is available to compute movie similarity,
resulting in a smaller neighborhood Li.

5.6.1.4 SVDunbiased

In this algorithm, we investigate the impact of the number of latent factors in P and Q on
calculation precision. SVDunbiased employs four parameters, specifically the learning rate γ,

100

the number of latent factors k, the regularization rate λ and the number of epochs n, as
presented in Algorithm 11. We set γ = 0.005, n = 50 for both datasets, and λ = 0.01 for
ML 100K and λ = 0.05 for ML 1M. We varied the number of latent factors k within the
range of 10 to 200 with intervals of 20, i.e., k ∈ {10, 30, 50, 70, 90, 110, 130, 150, 170, 190}
and studied their effect on the calculation precision.

20 40 60 80 100 120 140 160 180 200

0.92

0.92

0.92

0.92

0.92

0.92

0.93

0.93

0.93

0.93

k

R
M
S
E

λ = 0.1 γ = 0.005 n = 50

(a) Validation error ML 100K.

20 40 60 80 100 120 140 160 180 200

0.85

0.85

0.85

0.86

0.86

0.86

0.86

0.86

k

R
M
S
E

λ = 0.05 γ = 0.005 n = 50

(b) Validation error ML 1M.

Figure 5.8: Trend of rmse under different values of K.

The experimental results for ML 100K and ML 1M are presented in Figure 5.8a and
Figure 5.8b, respectively. With k = 70 latent factors, ML 100K achieved an rmse of
0.9192, while ML 1M achieved an rmse of 0.8532 with k = 150 latent factors. The
recommendation precision slightly decreases as k increases in both datasets. The increase
in rmse could be due to the addition of the regularization term λ, which helps prevent
overfitting. However, to improve the model’s precision, λ must be appropriately adjusted
as the number of latent factors increases. We will later discuss how to obtain the optimal
value of λ. Additionally, we analyzed the correlation between algorithm precision and the
number of epochs. Let us recall that the number of epochs represents the total number
of iterations required to reach the local minimum of the loss function S (Equation(3.36))
using the SGD technique. We tested different values of n ∈ {10, 30, 50, 100, 150} while
fixing γ = 0.005, k = 70 and λ = 0.01 for ML 100K and γ = 0.005, k = 150 and λ = 0.05
for ML 1M.

After examining Figures 5.9a and 5.9b, it becomes apparent that increasing the value of n
results in a decrease in the rmse value, followed by some fluctuation, ultimately reaching
gradual stability. For the ML 100K dataset, we obtained an rmse of 0.9142 with n = 100
epochs, while for the ML 1M dataset, the rmse was 0.8541 with n = 50 epochs, as shown

101

20 40 60 80 100 120 140

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

n

R
M
S
E

λ = 0.1 γ = 0.005 k = 70

(a) Validation error ML 100K.

20 40 60 80 100 120 140
0.85

0.85

0.86

0.86

0.87

0.87

0.88

0.88

0.89

0.89

0.9

n

R
M
S
E

λ = 0.05 γ = 0.005 k = 150

(b) Validation error ML 1M.

Figure 5.9: RMSE for different numbers of epochs.

in Figure 5.8b. It is important to note that increasing the number of epochs beyond the
local minimum point can lead to a decline in model performance.

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

λ

R
M
S
E

20 factors
40 factors
60 factors
100 factors
150 factors
200 factors

(a) Validation error ML 100K.

0.01 0.03 0.05 0.07 0.09 0.11 0.13 0.15 0.17 0.19 0.21

0.86

0.88

0.9

0.92

0.94

0.96

λ

R
M
S
E

20 factors
40 factors
60 factors
100 factors
150 factors
200 factors

(b) Validation error ML 1M.

Figure 5.10: RMSE under different values of Λ and K.

To address the issue of data sparsity and overfitting caused by data noise, we evaluated
the optimal value of the regularization rate λ. We set the learning rate γ to 0.005 for
both datasets and we varied the number of latent factors k, in matrices P and Q, to
k ∈ {20, 40, 60, 100, 150, 200}. We tested the regularization parameter λ for each value of
k using λ ∈ {0.01, 0.02, 0.03, 0.05, 0.09, 0.1, 0.2}.

The results demonstrate a non-linear relationship between λ and the accuracy of the
RS, as evidenced in Figure 5.10a. Initially, increasing λ improves accuracy, but further
increments lead to a decline. Consequently, selecting an appropriate λ value becomes
crucial for attaining optimal accuracy. The experiment, utilizing a fixed learning rate at

102

γ = 0.005 and 100 epochs, highlights the importance of avoiding excessively small or large
λ values. For example, in the ML 100K dataset, the minimum RMSE of 0.9149 occurred
at λ = 0.1 and k = 100. Conversely, in the ML 1M dataset, the minimum RMSE of
0.8532 was observed at λ = 0.05, k = 200, n = 50, and γ = 0.005, as depicted in Figure
5.10b.

5.6.1.5 SVDbiased

We extend the approach presented in Section 5.6.1.4 by including the global average, user
bias and movie bias in the model, represented by r̄, bu, and bi, respectively.

20 40 60 80 100 120 140 160 180 200

0.914

0.916

0.918

0.92

0.922

0.924

k

R
M
S
E

λ = 0.1 γ = 0.005 n = 50

(a) Validation error ML 100K.

20 40 60 80 100 120 140 160 180 200

0.852

0.853

0.854

0.855

0.856

0.857

0.858

k

R
M
S
E

λ = 0.05 γ = 0.005 n = 50

(b) Validation error ML 1M.

Figure 5.11: Trend of RMSE under different values of K.

Initially, we assess the impact of latent factors by varying their number k over a range
of values: k ∈ {10, 30, 50, 70, 90, 120, 150, 200}. The ML 100K dataset employs λ = 0.01,
while the ML 1M dataset uses λ = 0.05. Both datasets share a fixed learning rate,
γ = 0.005, and consist of 50 epochs. In the ML 100K dataset, the optimal rmse value of
0.9134 emerges when k = 200, as illustrated in Figure 5.11a.

Similarly, the ML 1M dataset achieves its best rmse value of 0.8520 with k = 200, as shown
in Figure 5.11b. Subsequently, we explore the algorithm’s behavior with different epoch
numbers. For both datasets, we maintain γ = 0.005 and k = 200, while setting λ = 0.1 for
ML 100K and λ = 0.05 for ML 1M. We conduct experiments with n ∈ {10, 30, 50, 100, 150}
epochs.

We achieved an rmse of 0.9093 for ML 100K with n = 100 epochs. Figure 5.12a shows
that the error remains stable beyond epoch 100. Similarly, for ML 1M, we obtained an

103

20 40 60 80 100 120 140

0.91

0.915

0.92

0.925

0.93

0.935

0.94

0.945

0.95

n

R
M
S
E

λ = 0.1 γ = 0.005 k = 200

(a) Validation error ML 100K.

20 40 60 80 100 120 140

0.85

0.855

0.86

0.865

0.87

0.875

0.88

0.885

0.89

0.895

n

R
M
S
E

λ = 0.05 γ = 0.005 k = 200

(b) Validation error ML 1M.

Figure 5.12: RMSE for different number of epochs.

rmse of 0.8525 with n = 50 epochs. Figure 5.12b illustrates that the model starts to
overfit after 50 epochs.

Furthermore, we explored the impact of the regularization rate λ on bu, bi, pu and qi while
keeping the learning rate γ fixed at 0.005 for all parameters. We conducted experiments
with n = 50 epochs and considered different numbers of latent factors k in the P and Q
matrices, specifically k ∈ {20, 30, 50, 100, 150, 200}.

We evaluated λ for each k value across the range λ ∈ {0.01, 0.02, 0.03, 0.05, 0.09, 0.1, 0.2}.
Figure 5.13 demonstrates a similar behavior to that observed in Algorithm 11 when
employing the hyperparameter values selected in Section 5.6.1.4.

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

λ

R
M
S
E

20 factors

40 factors

60 factors

100 factors

150 factors

200 factors

(a) Validation error ML 100K.

0.01 0.03 0.05 0.07 0.09 0.11 0.13 0.15 0.17 0.19

0.86

0.88

0.9

0.92

0.94

0.96

λ

R
M
S
E

20 factors

40 factors

60 factors

100 factors

150 factors

200 factors

(b) Validation error ML 1M.

Figure 5.13: RMSE under different values of Λ and K.

104

5.6.2 Experiment 2

5.6.2.1 Performance comparison

In this experiment’s initial phase, we compared the effectiveness of random search and
Bayesian optimization (Algorithm 14) techniques. Our hyperparameter space comprised
300 models, trained on the ML 100K dataset, with the optimization algorithms set to
default values, except for the number of evaluations and the acquisition function. We set
the number of evaluations to 50.

We implemented Bayesian optimization by utilizing the gp_minimize function from the
Scikit-Optimize package. This function employs a Gaussian Process as a surrogate model,
specifically utilizing a Matern kernel with a parameter of ν = 2.5. Within the gp_minimize
function, we selected the gp_hedge parameter to enable probabilistic selection of one of
the three acquisition functions at each iteration. The inclusion of gp_hedge introduces a
randomized approach, assigning probabilities to the three acquisition functions: PI (4.16),
EI (4.19), and LBC (4.21). These probabilities determine the likelihood of selecting a
specific acquisition function during each iteration. Initially, equal probabilities are as-
signed to all acquisition functions. As the optimization progresses, the performance of
the acquisition functions is evaluated based on their past performance and their ability
to guide the search towards promising regions within the search space. The probabilities
assigned to the acquisition functions are dynamically updated using “multi-armed bandit”
algorithms, which strive to strike a balance between exploration (trying different acqui-
sition functions) and exploitation (focusing on the function that has exhibited superior
performance). By adaptively adjusting the probabilities, the algorithm allocates more
evaluations to acquisition functions that have demonstrated better performance, while
still allowing for a degree of exploration. This iterative process enhances the efficiency
of the optimization by directing the search towards more promising regions. The inte-
gration of the gp_hedge parameter within the gp_minimize function facilitates Bayesian
optimization by probabilistically selecting acquisition functions, dynamically updating
probabilities based on performance, and effectively balancing exploration and exploitation
to guide the search towards optimal solutions.

The training process involved three hyperparameters for the Baseline Predictor, resulting
in a total of 5733 potential configurations1. The memory-based methods used four hyper-
parameters resulting in a total of 178281 potential configurations, while the model-based
methods employed four hyperparameters with a total of 350811 potential configurations.

1Using the formula b− a + 1 with [a, b] = {x ∈ R| a ≤ x ≤ b}, we obtain 71× 9× 9 = 5733

105

Hyperparameter Range of values

Number of epochs n [30; 100]
Number of neighbors L [20; 50]
Number of factors k [40; 100]
Learning rate γ [10−3; 9 · 10−3]
Regularization penalty λ [10−2; 9 · 10−2]

Table 5.2: Hyperparameter space explored by the two methods.

The range of each hyperparameter is provided in Table 5.2. For memory-based methods,
the centered Pearson similarity metric was employed on the Baseline Predictor, with ξ = 0,
as illustrated in Equations (3.19) and (3.25). Four metrics are reported in this experiment:
RMSE, Precision, F-Score and MAP. Precision, F-Score and MAP are expressed as per-
centages. As outlined in Section 3.5.2, higher values for classification metrics reflect better
performance, whereas lower values for RMSE are preferred. RMSE is the only metric
that exclusively relies on the prediction algorithm A. Conversely, all other metrics are
dependent on the recommended items and are determined by a recommendation threshold,
namely, an item is recommended to a user if rui ≥ 4.

0 5 10 15 20 25 30 35 40 45 50

0.9420

0.9440

0.9460

0.9480

0.9500

0.9520

Evaluations

R
M

SE

Bayesian optimization
Random search

(a) Baseline Predictor.

0 5 10 15 20 25 30 35 40 45 50

0.9400

0.9405

0.9410

0.9415

0.9420

0.9425

0.9430

Evaluations

R
M

SE

Bayesian optimization
Random search

(b) k-NN⋆
users

0 5 10 15 20 25 30 35 40 45 50
0.9430

0.9435

0.9440

0.9445

0.9450

0.9455

0.9460

0.9465

0.9470

Evaluations

R
M

SE

Bayesian optimization
Random search

(c) k-NN⋆
items

Figure 5.14: Test error of memory-based and model-based methods with respect to
the number of trained models in ML 100K.

106

Figures 5.14a, 5.14b, 5.14c, 5.15a, and 5.15b depict the error (RMSE) as a function of the
number of evaluations. The random search method required an average of 25 evaluations
to find the best model, whereas Bayesian optimization consistently outperformed it in
every objective. Specifically, for the 5.14a model, it took 30 evaluations for Bayesian
optimization to identify the best model, while for 5.14b and 5.14c, it only required 2 and
25 evaluations, respectively. For the 5.15a and 5.15b models, it took 39 and 50 evaluations,
respectively.

0 5 10 15 20 25 30 35 40 45 50

0.9300

0.9400

0.9500

0.9600

0.9700

0.9800

Evaluations

R
M

SE

Bayesian optimization
Random search

(a) SVDunbiased

0 5 10 15 20 25 30 35 40 45 50
0.9200

0.9250

0.9300

0.9350

0.9400

0.9450

0.9500

Evaluations

R
M

SE

Bayesian optimization
Random search

(b) SVDbiased

Figure 5.15: Test error of memory-based and model-based methods with respect to
the number of trained models in ML 100K.

Remarkably, even the worst execution of Bayesian optimization surpassed the average
performance of random search. The curves reveal that Bayesian optimization yields
slightly superior results and converges much faster than random search. Nevertheless,
given the stochastic nature of these methods, more evaluations are needed to derive
definitive conclusions from this evaluation metric. Notably, random search proves to be
remarkably effective, although Bayesian optimization outperformed it in every algorithm
and metric (RMSE), thereby justifying its substantially higher implementation cost.

Dataset Algorithm Best hyperparameters

ML 100K

Baseline Predictor n = 50, γ = 0.003862, λ = 0.010161

k-NN⋆
users n = 39,γ = 0.001229, λ = 0.034972, L = 39

k-NN⋆
items n = 50, γ = 0.009, λ = 0.01, L = 100

SVDunbiased n = 50, k = 43, γpu = 0.004815, γqi = 0.006103, λpu = 0.09, λqi = 0.09

SVDbiased n = 50, k = 10, γpu = 0.009, γqi = 0.009, γbu = 0.009, γbi = 0.009,
λpu = 0.09, λqi = 0.09, λbu = 0.01, λbi = 0.01

Table 5.3: Optimal values of hyperparameters for each model in ML 100K.

Expanding the hyperparameter space would provide insights into how Bayesian optimiza-
tion behaves in larger spaces. Currently, there is no theory on how to establish good

107

hyperparameter spaces. However, understanding the relationship between models, tasks
and model performance, would be practically useful for designing hyperparameter opti-
mization methods. Table 5.3 displays the best hyperparameter values obtained for ML
100K using Bayesian optimization, while Table 5.4 displays the test error.

Algorithm RMSE % Improvement F-Score

Baseline Predictor 0.9399 - 50
k-NN⋆

users 0.9381 0.19 % 54
k-NN⋆

items 0.9333 0.7 % 53
SVDunbiased 0.9159 2.56 % 46
SVDbiased 0.9083 3.39 % 63

Table 5.4: Unbiased test error in Dtest for ML 100K.

We evaluated the MAP performance of each recommendation algorithm across varying
values of k, as presented in Table A.1. The results revealed that matrix factorization
algorithms significantly outperformed the other methods.

5.6.2.2 Improved hyperparameter optimization using Bayesian optimization

In this part, we derived optimal hyperparameter values for the ML 1M dataset using
Bayesian optimization, a more effective method than random search as previously demon-
strated in the experiment. The similarity metric employed is consistent with the previous
section, and the number of evaluations has been limited to 30 to increase efficiency.

Dataset Algorithm Best hyperparameters

ML 1M

Baseline Predictor n = 39, γ = 0.002845, λ = 0.013167

k-NN⋆
users n = 22,γ = 0.002116, λ = 0.019989, L = 80

k-NN⋆
items n = 33, γ = 0.004111, λ = 0.01, L = 98

SVDunbiased n = 50, k = 40, γpu = 0.004815, γqi = 0.006103, λpu = 0.024944,
λqi = 0.09

SVDbiased n = 50, k = 40, γpu = 0.004475, γqi = 0.009, γbu = 0.019, γbi = 0.001,
λpu = 0.046606, λqi = 0.09, λbu = 0.01, λbi = 0.01

Table 5.5: Optimal values of hyperparameters for each model in ML 1M.

Table 5.5 displays the values of the best hyperparameters obtained for ML 1M through
Bayesian optimization. Subsequently, Tables 5.6 and A.2 demonstrate the test error and
MAP performance, respectively.

108

In Figures 5.16a, 5.16b, 5.16c, 5.16d, and 5.16e, we can see that the error has significantly
decreased in comparison to the ML 100K dataset. This indicates that by maintaining the
same complexity of the model and transitioning from a small dataset to a larger one, the
error decreases.

0 5 10 15 20 25 30

0.9096

0.9097

0.9098

0.9099

0.9100

0.9101

0.9102

Evaluations

R
M

SE

Test error

(a) Baseline Predictor.

0 5 10 15 20 25 30

0.8962

0.8963

0.8964

0.8965

0.8966

0.8967

0.8968

0.8969

Evaluations

R
M

SE

Test error

(b) k-NN⋆
users

0 5 10 15 20 25 30

0.8931

0.8932

0.8933

0.8934

0.8935

0.8936

Evaluations

R
M

SE
Test error

(c) k-NN⋆
items

0 5 10 15 20 25 30
0.8650

0.8700

0.8750

0.8800

0.8850

0.8900

0.8950

0.9000

0.9050

0.9100

0.9150

Evaluations

R
M

SE

Test error

(d) SVDunbiased

0 5 10 15 20 25 30

0.8650

0.8700

0.8750

0.8800

0.8850

0.8900

0.8950

0.9000

Evaluations

R
M

SE

Test error

(e) SVDbiased

Figure 5.16: Test error of memory-based and model-based methods with respect to
the number of models trained on ML 1M.

5.6.2.3 RMSE analysis

The SVDbiased algorithm outperforms all other evaluated algorithms. It achieves an RMSE
of 0.9083 for the ML 100K dataset and 0.8538 for the ML 1M dataset, as shown in

109

Algorithm RMSE % Improvement F-Score

Baseline Predictor 0.9095 - 54
k-NN⋆

users 0.8828 2.94 % 57
k-NN⋆

items 0.8798 3.28 % 58
SVDunbiased 0.8557 6.02 % 56
SVDbiased 0.8538 6.24 % 62

Table 5.6: Unbiased test error in Dtest for ML 1M.

Tables 5.4 and 5.6, respectively. It is important to note that the algorithm’s approach
differs from other nearest neighbor methods. Matrix factorization algorithms model
data structures at a higher level of abstraction to capture user tastes and preferences,
while k-NN techniques focus on more basic data features. Despite these differences,
matrix factorization algorithms are still an important competing models in performance
comparisons. It is worth noting the significant difference in improvement percentages
achieved between the two datasets, which may be attributed to their size.

5.6.2.4 MAP and F-Score

0 5 10 15 20 25 30 35 40 45 50

86

88

90

92

94

96

98

K

M
A

P@
K

(%
)

baseline predictor

k-NN⋆
items

k-NN⋆
users

SVDunbiased
SVDbiased

(a) ML 100K

0 5 10 15 20 25 30 35 40 45 50

87

88

89

90

91

92

93

94

95

K

M
A

P@
K

(%
)

baseline predictor

k-NN⋆
items

k-NN⋆
users

SVDunbiased
SVDbiased

(b) ML 1M

Figure 5.17: MAP@K performance of each recommendation algorithm.

In terms of F-Score, the SVDbiased algorithm outperforms all other evaluated algorithms,
indicating its potential for achieving a good trade-off between accuracy and scalability.
Although model-based methods achieve slightly better F-Scores than memory-based meth-
ods in both datasets, the results suggest that the SVDbiased algorithm is the most promising
candidate for achieving the best overall performance. Notably, the majority of users rated

110

only a few movies in both datasets, with a minimum of 20 ratings per user. This infor-
mation is crucial for interpreting the average MAP precision values reported in Tables
A.1 and A.2. Specifically, for K < 20, the MAP@K values are more reliable in reflecting
the algorithms’ true behavior. On the other hand, evaluating the behavior for values
where K > 20, as depicted in Figures 5.17a and 5.17b, is more complex. However, the
model-based methods exhibit superior MAP precision compared to the memory-based
methods in both datasets.

5.6.3 Experiment 3

The five algorithms were implemented successfully on the ML 100K and ML 1M datasets.
By examining Figures 5.18a and 5.18b, we analyzed the accuracy of these algorithms
while varying the percentage of data used for training purposes. It can be observed that
all algorithms demonstrate enhanced performance with an increasing percentage of data
allocated for training. This behavior aligns with our expectations, as a higher proportion
of data in the training set results in an augmented density of the rating matrix, thus
providing the algorithm with a greater quantity of information for accurate prediction
calculations.

10% 20% 30% 40% 50% 60% 70% 80% 90%
0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

density(R)

R
M
S
E

Baseline Predictor
Memory based
Model based

(a) ML 100K

10% 20% 30% 40% 50% 60% 70% 80% 90%

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

density(R)

R
M
S
E

Baseline Predictor
Memory based
Model based

(b) ML 1M

Figure 5.18: Evolution of precision for ML 100K and ML 1M according to matrix
density.

In our observations, we note that model-based methods exhibit superior performance
compared to memory-based methods across all levels of sparsity, while displaying reduced
sensitivity to variations in the sparsity level within the rating matrix. However, for
low-density conditions, the Baseline Predictor is the most robust.

111

Memory-based methods exhibit a noteworthy pattern: as density increases, results demon-
strate rapid improvement. These algorithms excel in scenarios characterized by relatively
high density, yet their accuracy significantly declines when confronted with sparsity. This
decline can be attributed to their reliance on a limited subset of available information,
specifically, the interaction between items and users. Consequently, as matrix density
decreases, the computation of these interactions becomes increasingly challenging, lead-
ing to a notable deterioration in overall performance. Furthermore, the memory-based
methods encounter a prominent issue known as the “cold start” problem, elaborated upon
in Section 2.3.3. Reducing the size of the training set is associated with a substantial
decrease in prediction accuracy.

In contrast, model-based methods demonstrate a greater resilience to density variations,
displaying a more gradual decline in accuracy. This characteristic can be attributed to
the construction phase of the model. During the construction phase of a model-based
method, certain details are inherently omitted or simplified. This omission of details
can lead to a decrease in accuracy compared to memory-based methods, which directly
utilize the available information. However, this trade-off allows model-based methods to
achieve scalability and computational efficiency, making them more suitable for handling
large datasets and complex recommendation scenarios. In other words, model-based
methods sacrifice some level of accuracy by abstracting or omitting certain specifics in
order to create a more efficient and scalable algorithm. By doing so, these methods
can process and analyze vast amounts of data more effectively, which is particularly
valuable in scenarios with dense datasets where memory-based approaches may become
computationally expensive or impractical. Therefore, the choice between model-based
and memory-based methods depends on the specific requirements of the recommendation
system, striking a balance between accuracy and efficiency.

112

Chapter 6

Conclusions and Future Work

This chapter provides a summary of the key findings from the previous chapters, followed
by a discussion of potential future directions for research.

6.1 Summary

In Chapter 2, we presented a comprehensive introduction to the domains of Artificial In-
telligence and Machine Learning. Our study focused specifically on recommender systems,
with an emphasis on collaborative filtering. Chapter 3 delved into two primary approaches
to collaborative filtering: nearest neighbor-based techniques and matrix factorization. In
Chapter 4, we highlighted the significance of hyperparameter optimization and conducted
a thorough review of state-of-the-art methods, with a particular focus on Bayesian opti-
mization. Lastly, Chapter 5 provided a detailed exposition of our experimental results
and a comprehensive analysis of their implications.

All experiments were conducted using two well-established datasets, specifically ML 100K
and ML 1M. The evaluation of various algorithms involved the application of metrics
such as RMSE, Precision, F-Score and MAP. The first experiment aimed to analyze the
influence of hyperparameters on the algorithms. It was demonstrated that the learning
rate plays a pivotal role in mitigating overfitting and enhancing prediction accuracy. Fur-
thermore, the use of Pearson similarity centered on the Baseline Predictor yielded superior
outcomes when compared to alternative similarity metrics. Employing this metric enabled

113

the consideration of a reduced number of neighbors, consequently decreasing both the
“learning” and prediction times associated with memory-based approaches. Notably, our
findings aligned with prior research [YWZ+16], highlighting the overall superiority of the
item-based approach over the user-based approach, particularly in datasets characterized
by a higher number of users than items.

In the second experiment, we conducted a comparative analysis between two prominent
techniques for hyperparameter optimization: random search and Bayesian optimization.
Our results unequivocally demonstrated the superiority of Bayesian optimization in terms
of both efficiency and effectiveness. We showcased the application of Bayesian optimization
in effectively fine-tuning the hyperparameters of recommender systems, emphasizing the
incorporation of three distinct acquisition functions. It is imperative to emphasize that
meticulous hyperparameter tuning assumes critical importance in collaborative filtering,
given the need to optimize a computationally demanding loss function, ultimately enabling
the attainment of optimal performance.

In the third experiment, our focus was on analyzing the influence of data sparsity on the
performance of collaborative filtering algorithms. By comparing the Baseline Predictor
with two collaborative filtering algorithms on identical datasets, we uncovered noteworthy
insights. Notably, the memory-based approach exhibited increased sensitivity to data
sparsity, whereas the model-based approach demonstrated superior robustness and overall
accuracy. Remarkably, the Baseline Predictor outperformed both approaches when dealing
with exceedingly sparse datasets. This highlights the significance of dataset density as
a pivotal factor that significantly impacts the scalability and accuracy of collaborative
filtering algorithms.

Our comprehensive findings indicate the pronounced superiority of the model-based ap-
proach, specifically the SVDbiased algorithm, over the memory-based approach in relation to
accuracy and scalability. This superiority is particularly evident when dealing with larger
and sparser datasets. Nevertheless, further rigorous testing is imperative to validate this
conclusion across a broader spectrum of datasets with diverse characteristics. Subsequent
research endeavors could concentrate on the development of more efficient techniques
for effectively managing substantial and sparse datasets. Additionally, evaluating the
performance of collaborative filtering algorithms across various domains and applications
would contribute valuable insights to the field.

114

Appendix A

MAP Performance

A.1 MAP performance for ML 100K and 1M datasets

Algorithm K=1 K=2 K=3 K=4 K=5 K=6 K=7 K=8 K=9 K=10

Baseline Predictor 89.69 89.56 89.41 89.26 89.13 89.02 88.92 88.84 88.76 88.69
k-NN⋆

users 90.13 89.52 89.00 88.90 88.71 88.58 88.47 88.39 88.31 88.24
k-NN⋆

items 89.37 88.81 88.50 88.31 88.14 88.01 87.89 87.78 87.68 87.59
SVDunbiased 95.33 94.615 94.14 93.98 93.70 93.52 93.33 93.25 93.16 93.06
SVDbiased 97.56 97.45 97.41 97.185 97.05 96.84 96.73 96.59 96.50 96.47

Table A.1: Values of MAP@K for different K in Dtest for ML 100K.

Algorithm K=1 K=2 K=3 K=4 K=5 K=6 K=7 K=8 K=9 K=10

Baseline Predictor 89.70 89.41 89.08 88.85 88.60 88.46 88.30 88.15 88.02 87.91
k-NN⋆

users 90.41 90.01 89.65 89.38 89.13 88.93 88.75 88.59 88.46 88.34
k-NN⋆

items 91.86 91.38 90.95 90.55 90.20 89.92 89.68 89.48 89.30 89.15
SVDunbiased 93.99 93.29 92.86 92.56 92.24 92.02 91.83 91.67 91.51 91.37
SVDbiased 95.86 95.335 94.92 94.64 94.39 94.19 93.98 93.81 93.67 93.53

Table A.2: Values of MAP@K for different K in Dtest for ML 1M.

115

Appendix B

Definitions and Technical Details

In order to enhance the readability of Chapter 2 and considering space limitations, we have
decided to include additional material in a separate appendix. While this appendix is not
essential for understanding the subsequent sections of this work, it serves two purposes.
Firstly, it presents detailed examples on linear and logistic regression in Sections B.1 and
B.2, respectively. Secondly, it provides details on the source of prediction errors, namely
the bias and variance trade-off, in Sections B.3 and B.4, respectively. Lastly, it provides
a step-by-step calculation of Equations (3.39) and (3.41) in Section B.5.

B.1 Linear regression

To illustrate Definition 2.1 further, we will provide an example of a straightforward ML
algorithm, namely linear regression. Essentially, the purpose of linear regression is to
develop a system capable of taking a vector x ∈ Rn as input and predicting a scalar y ∈ R
as its output. The term “linear” indicates that the output of this method is a linear
function of the input. In other words, we can express the output, denoted by ŷ = hw(x),
as the product of a weight vector w and the input vector x as shown in Equation (B.1).

ŷ = w⊤x (B.1)

where w ∈ Rn is a vector of parameters. Equation (B.1) represents the prediction that
our model makes for the value of y based on the input x. By solving for the weight vector

116

w, we can develop a linear regression model that optimally predicts the output y for any
given input w. Specifically, the coefficient wi represents the value that is multiplied by
the feature xi before being summed with the contributions from all other features. To
effectively perform our task T , we define it as the prediction of y from x using the output
ŷ. Measuring the model’s performance P can be accomplished by computing its mean
squared error (MSE) on the validation set:

MSEval = 1
n
∥(ŷ(val) − y(val))∥2

2 (B.2)

To create a ML algorithm, the initial step involves designing an algorithm that improves
the weights, represented by w, to decrease the MSE of the validation set MSEval. This can
be accomplished by enabling the algorithm to learn and acquire experience by observing
a training set, indicated by (X(train),y(train)). To attain this objective efficiently, a
recommended approach is to minimize the MSE of the training set MSEtrain. Specifically,
we can obtain the point at which the gradient of MSEtrain equals 0 to minimize the
MSEtrain.

∇wMSEtrain = 0

⇒ ∇w
1
n
∥ŷ(train) − y(train)∥2

2 = 0

⇒ 1
n
∇w∥X(train)w− y(train)∥2

2 = 0

⇒ ∇w
(
X(train)w− y(train)

)⊤ (
X(train)w− y(train)

)
= 0

⇒ ∇w
(
w⊤X(train)⊤X(train)w− 2w⊤X(train)⊤y(train) + y(train)⊤y(train)

)
= 0

⇒ 2X(train)⊤X(train)w− 2X(train)⊤y(train) = 0

⇒ ŵ =
(
X(train)⊤X(train)

)−1
X(train)⊤y(train) (B.3)

Equation (B.3) is usually called the normal equation of the OLS (Ordinary Least
Squares). It turns out that solving Equation (B.3) provides a straightforward learning
algorithm. Our prior approach assumed an implicit intercept value of zero, thereby con-
straining the regression line to pass through the origin. However, this may not always be
an appropriate model, and a more general approach would be to allow the model to learn
the intercept value as well. Consequently, the updated model can be formulated as shown
in Equation (B.4).

117

Algorithm 18: Linear regression
Input: Training set D = {(xi, yi)}n

i=1 containing feature vectors xi and labels yi.
Output: Optimal parameter vector ŵ.
Construct the matrix X and the vector y from the training set, where each x
includes x0 = 1 bias coordinate, as follows:

X =

x1,1 x1,2 . . . x1,n

x2,1 x2,2 . . . x2,n

...
xm,1 xm,2 . . . xm,n

m×n

y =

y1

y2
...
ym

m×1

if X⊤X is invertible then
Compute the pseudo-inverse X† of the matrix X:

X† = (X⊤X)−1X⊤ (B.5)

return Optimal parameter vector ŵ = X†y
end if
else

return No solution exists
end if

ŷ = hŵ(x) = w⊤x + b (B.4)

Compared to the SGD optimization algorithm employed in logistic regression (B.2), Algo-
rithm 18 does not demonstrate the conventional attributes of learning in the same manner.
This is because the vector ŵ is obtained through an analytic solution involving matrix
inversion and multiplications, as opposed to iterative learning steps typically associated
with the learning process. However, if the vector ŵ demonstrates a satisfactory validation
error, we can consider the learning process successful. Linear regression stands out as a
unique case wherein we possess an analytic formula for learning that can be easily evalu-
ated. This attribute contributes significantly to the widespread adoption and popularity
of this technique.

B.2 Logistic regression

The task of data classification involves determining the class membership y0 of an un-
known data item x0 based on a given dataset D consisting of data items xi with known

118

class memberships yi. For the purpose of this discussion, we will focus on dichotomous
classification problems where the class labels y are either 0 or 1. The xi typically repre-
sent m-dimensional vectors, with their components referred to as covariates, independent
variables (in statistics), or input variables (in machine learning). In most problem do-
mains, there is no specific functional relationship y = h(x) between y and x. Instead, the
relationship between x and y needs to be described more generally using a probability
distribution p(x, y). Under this framework, it is assumed that the dataset D consists of
independent samples drawn from this probability distribution.

According to statistical decision theory, the optimal decision for class membership is
to select the class label y that maximizes the posterior distribution p(y | x). There
are two distinct approaches to data classification. The first approach focuses solely on
a dichotomous distinction between the two classes and assigns class labels (0 or 1) to
unknown data items. The second approach aims to model p(y | x), providing not only a
class label for each data item but also a probability of class membership. Support vector
machines are prominent examples of the first approach. On the other hand, logistic
regression, artificial neural networks, k-nearest neighbors and decision trees belong to
the second approach, although they differ significantly in how they approximate p(y | x)
from the given data [DOM02]. A logistic regression loss measure is most appropriate in
situations where the desired output variable “y”, of the learning algorithm, is binary-valued
(e.g., y ∈ {0, 1}). Below, we formally introduce binary logistic regression.

Definition B.1. (Binary logistic regression). The objective is to approximate the hy-
pothesis ŷ ≈ hŵ(x) = y ∈ {0, 1}. To achieve this, we adopt the following form for
hŵ(x):

hŵ(x) = ŷ(x,w) = ψ(x,w)

= p(x,w) = 1
1 + exp(−ŷ(x,w)) (B.6)

The logistic function ψ squashes inputs from [−∞,∞] into the range [0, 1]. Equation
(B.6) defines the probability, denoted as p, that the response variable ŷ (which takes
binary values of 0 or 1) is equal to 1, given an input pattern x and a parameter vector
w in the context of logistic regression. In this equation, ŷ(x,w) represents the predicted
value of the logistic regression model for the input pattern x and parameter vector w.
It is obtained by performing a linear combination of the features in x weighted by the
elements of w.

119

The expression exp(−ŷ(x,w)) calculates the exponential of the negative of ŷ(x,w). The
negative sign is applied to invert the predicted value, making it negative if it was positive
and positive if it was negative. The term [1 + exp(−ŷ(x,w))]−1 is the inverse of the
quantity inside the brackets. This is done to ensure that the resulting value lies within
the range [0, 1], which is necessary for interpreting it as a probability. Therefore, the
equation computes the probability p(x,w) by taking the predicted value ŷ(x,w), applying
a transformation through the exponential function, and then normalizing it to the range
[0, 1] using the inverse operation. This probability represents the estimated likelihood of
the response variable y being equal to 1 given the input pattern x and the parameter vector
w in logistic regression. Next, ŷ(x,w) is defined as:

ŷ(x,w) = w⊤x = w⊤
[
x⊤ 1

]⊤
(B.7)

Equation (B.7) represents the predicted value, denoted as ŷ, in a logistic regression model
given an input pattern x and a parameter vector w. In this equation, w represents the
parameter vector of the logistic regression model, which contains the weights assigned
to each feature or input variable. The superscript “⊤” denotes the transpose operation,
converting a row vector into a column vector. The feature vector of the data point is
denoted by x.

The expression
[
x⊤ 1

]
is a concatenation of the transpose of x and the scalar value

1. It is a way to incorporate a bias term or intercept into the logistic regression model.
The bias term allows the model to account for the influence of the intercept or baseline
value. The dot product w⊤

[
x⊤ 1

]⊤
represents the linear combination of the features

and weights. It calculates the weighted sum of the elements in x, where each element is
multiplied by the corresponding weight in w. The bias term, represented by the appended
1, is also included in the calculation. The result is a single scalar value, which represents
the predicted value ŷ of the logistic regression model for the given input pattern x and
parameter vector w. The loss function S is chosen such that:

S(y, ŷ) = − [y log(p(x,w)) + (1− y) log(1− p(x,w))] (B.8)

Logistic regression employs the logistic loss function (Equation (B.8)) to evaluate the
effectiveness of a hypothesis hw ∈ Hn:

hw(x) = w⊤[x⊤1]⊤ (B.9)

120

This evaluation is based on a labeled training set D = {(xi, yi)}n
i=1. The logistic loss

function measures the discrepancy between the predicted output and the true label,
allowing for the assessment of the model’s performance. Logistic regression aims to
minimize the empirical risk by minimizing the average logistic loss:

R̂D(hw) = − 1
n

n∑

i=1
[yi log(p(xi,w)) + (1− yi) log(1− p(xi,w))] (B.10)

B.2.1 Parameter estimation

Logistic regression aims to learn a linear hypothesis, denoted as hŵ(x), by minimizing
the average logistic loss (Equation (B.10)). This loss is calculated for a given dataset D,
consisting of input feature vectors xi in a real-valued space Rn and binary labels yi that
can take values of either 0 or 1. The objective is to solve a smooth optimization problem
by minimizing the average logistic loss for the dataset D = {(xi, yi)}n

i=1, as shown in
Equation (B.11).

ŵ = argmin
w∈Rn

h(w) (B.11)

with

h(w) = − 1
n

n∑

i=1
[yi log(p(xi,w)) + (1− yi) log(1− p(xi,w))] (B.12)

The function h(w) in Equation (B.12) represents the empirical risk, denoted as R̂D(hw),
which is incurred by the hypothesis hw when applied to the datapoints in the dataset
D. After obtaining the optimal weight vector ŵ that minimizes Equation (B.10), the
classification of instances is determined based on their respective features x using the
following procedure:

ŷ =

1 if hŵ(x) ≥ 0.5,

0 if hŵ(x) < 0.5.
(B.13)

In order to predict a label ŷ ∈ {0, 1}, we compare the hypothesis value hŵ(x) with a
threshold, namely, if the value of the hypothesis hŵ(x) is greater than or equal to 0.5,

121

the instance is classified as ŷ = 1. Conversely, if hŵ(x) is less than 0.5, the instance is
classified as ŷ = 0.

To train logistic regression, our approach is similar to that of linear regression, where the
objective is to minimize the error function to zero:

∇wMSEtrain = 0 (B.14)

However, the gradient ∇wMSEtrain for logistic regression is not straightforward to manip-
ulate, which makes it impractical to obtain an analytical solution by setting it to zero. To
overcome this, we will use the SGD optimization technique, which iteratively approximates
the gradient to zero. The whole process can be seen in Algorithm 19.

Algorithm 19: Logistic regression with SGD
Input: Training set D = {(xi, yi)}n

i=1 containing feature vectors xi ∈ Rn, labels
yi ∈ {0, 1}, the learning rate γ > 0, maximum number of epochs E, and
convergence threshold ϵ.

Output: wr or wE, which approximates a solution ŵ.
begin

w1 ← 0
r ← 1 // Initialize iteration counter
converged← False // Convergence flag
while r ≤ E do

Randomly select an index îr from D
∇fîr

(wr)← − yîr

1+exp(yîr
w⊤

r xîr)xîr
// Compute the gradient approximation

wr+1 ← wr − γ∇fîr
(wr) // Update the weight vector

r ← r + 1 // Increase iteration counter
if ∥wr −wr−1∥ < ϵ then

converged← True // Check convergence
break

end if
end while
if converged then

return wr // Return the weight vector when converged
else

return wE // Return the weight vector at the maximum number of epochs
end if

end

122

B.3 Source of prediction errors

The accuracy of f̂ as a prediction for y depends on two quantities, which we will call the
reducible error and the irreducible error “ϵ”. In general, f̂ will not be a perfect estimate
for f , and this inaccuracy will introduce some error. This error is reducible because we
can potentially improve the accuracy of f̂ by using the most appropriate ML algorithm to
estimate f . However, even with a perfect estimate of f , y may not be predicted accurately
due to real-world factors such as inaccurate sensors or missing unmeasurable features.
This is because y is also a function of ϵ, which, by definition, cannot be predicted using x.
Therefore, variability associated with ϵ also affects the accuracy of our predictions. This
is known as the irreducible error, because no matter how well we estimate f , we cannot
reduce the error introduced by ϵ.

B.4 The bias-variance trade-off

A crucial tool for comprehending the generalization performance of algorithms is the
bias-variance decomposition, which breaks down the anticipated generalization error of
learning algorithms. Despite the training samples being drawn from the same distribution,
different training sets often yield varying learning outcomes. To illustrate this, let us
consider x as a testing sample, yD as the label of x in the data set D, y as the ground-truth
label of x and f(x; D) as the output of x predicted by the model f trained on D. In the
case of regression problems, the expected prediction of a learning algorithm is as follows:

f̂(x) = ED[f(x; D)] (B.15)

The variance of using different equal-sized training sets is:

var(x) = ED[(f(x; D)− f̂(x))2]. (B.16)

The noise is

ϵ2 = ED[(yD − y)2] (B.17)

123

The difference between the expected output and the ground-truth label is called bias, that
is:

bias2(x) = (f̂(x)− y)2 (B.18)

For the sake of clarity in our discussion, we make the assumption that the expected value
of noise is zero, represented as ED[(yD − y)] = 0. Through expanding and combining the
polynomial expressions, we can proceed to decompose the anticipated generalization error
in the following manner:

Error(f ; D) = ED[f(x; D)− yD)2]

= ED[(f(x; D)− f̂(x) + f̂(x)− yD)2]⇐

= ED[(f(x; D)− f̂(x))2] + ED[f̂(x)− yD)2]

+ED[2(f(x; D)− f̂(x))(f̂(x)− yD)]⇐

= ED[(f(x; D)− f̂(x))2] + ED[(f̂(x)− yD)2]⇐

= ED[(f(x; D)− f̂(x))2] + ED[(f̂(x)− y + y − yD)2]⇐

= ED[(f(x; D)− f̂(x))2] + ED[(f̂(x)− y)2]

+ED[(y − yD)2] + 2ED[(f̂(x)− y)(y − yD)]⇐

= ED[(f(x; D)− f̂(x))2] + (f̂(x)− y)2 + ED[(yD − y)2]⇐ (B.19)

The decomposition of the generalization error into bias, variance, and noise is expressed
as follows:

Error(f ; D) = bias2(x) + var(x) + ϵ2 (B.20)

which means the generalization error can be decomposed into the sum of bias, variance and
noise. This implies that the generalization error can be decomposed into the combined
components of bias, variance, and noise. Bias, as expressed in Equation (B.18), is
a metric that quantifies the dissimilarity between the expected prediction made by a
learning algorithm and the ground-truth label associated with the data. In other words,
it measures how well the algorithm can fit the training data. A low bias indicates that the
algorithm can closely approximate the true relationship between the input features and the

124

output labels. On the other hand, variance, as defined in Equation (B.16), captures the
variability in the performance of a learning algorithm when trained on different datasets of
the same size. It reflects how much the algorithm’s predictions fluctuate due to variations
in the training data. Higher variance implies that the algorithm is highly sensitive to
the specific instances in the training set, which can lead to overfitting or underfitting.
Additionally, noise, represented by Equation (B.17), refers to the inherent randomness or
irreducible error present in the data. It represents the minimum generalization error that
any learning algorithm would encounter for a given task, irrespective of its complexity.
Noise characterizes the intrinsic difficulty of the learning problem itself, which cannot be
eliminated by improving the algorithm or the quality of the data.

The bias-variance trade-off is a fundamental challenge in ML that involves a trade-off
between bias and variance. In order to understand this dilemma, let us consider Figure
B.1, which provides a visual representation of the concept.

er
ro

r

degree of training

generalization error

bias

variance

Figure B.1: Relationships between generalization error, bias and variance.

When we train a ML model, we have the ability to control the degree of training. If
we limit the degree of training, the model will be undertrained. This means that it has
limited capacity to capture the underlying patterns and relationships in the data. As a
result, the model’s predictions may deviate significantly from the true values, leading to a
high level of bias. In an undertrained model, bias dominates the generalization error. As
we increase the degree of training, the model’s fitting capacity improves. It starts to learn
from the data and adapt to its complexities. With more training, the model becomes more
flexible and can capture intricate patterns present in the data. However, this increased
flexibility comes at a cost; the model becomes more sensitive to variations and noise in
the training data, which leads to higher variability (variance) in its predictions. At a

125

certain point, with a substantial amount of training, the model’s fitting capability becomes
very strong. It can almost perfectly fit the training data, capturing even the smallest
fluctuations and peculiarities present in the data. However, this high level of sensitivity
to the training data comes at the expense of generalization to new, unseen data. Even
slight perturbations or variations in the training data can lead to significant changes in
the model’s predictions. In this case, the model becomes too specialized to the training
data and fails to generalize well to new data (overfitting).

B.5 Differentiation

In this section, we provide a step-by-step calculation of two important differentiations:
∂

∂ pu

[
λ
2∥pu∥2

]
and ∂

∂ qi

[
λ
2∥qi∥2

]
. By working through these examples, we aim to illustrate

the process of differentiation and provide a clear understanding of how to compute these
derivatives.

B.5.1 Differentiation of ∂
∂ pu

[
λ
2∥pu∥2]

To explain the outcome of this calculation step by step, let us break it down. Starting
with the expression:

∂

∂pu

[
λ

2∥pu∥2
]

(B.21)

Here, we are taking the partial derivative with respect to the vector pu. We can apply the
derivative to each component of the vector pu separately, assuming that pu is a row vector.
The expression λ

2∥pu∥2 can be expanded as λ
2 pup⊤

u , where p⊤
u represents the transpose

of the vector pu. Let us prove that the expression λ
2∥pu∥2 is equal to λ

2 pup⊤
u , we can go

through the following steps:

Let pu = [pu1, pu2, . . . , pun] be a 1-dimensional row vector of length n. The transpose of
pu is denoted as p⊤

u , resulting in a column vector:

126

p⊤
u =

pu1

pu2

...

pun

Now, let us compute the expressions λ
2∥pu∥2 and λ

2 pup⊤
u and compare them. Let us start

with the expression λ
2∥pu∥2. The Euclidean norm ∥pu∥ of a row vector is computed by

taking the square root of the sum of the squares of its elements. In this case, we have:

∥pu∥ =
√
p2

u1 + p2
u2 + . . .+ p2

un

Squaring this norm yields:

∥pu∥2 = p2
u1 + p2

u2 + . . .+ p2
un

Multiplying by λ
2 scales the result by a constant factor, the expression becomes: λ

2 pup⊤
u .

Multiplying the row vector pu with its column vector transpose p⊤
u gives us a matrix.

The entry at position (i, j) of this matrix is computed by multiplying the i-th element of
pu with the jth element of p⊤

u :

(
λ

2 pup⊤
u

)

ij

= pui · puj

Since pu is a row vector, pui and puj represent individual elements of the vector. We can
rewrite this matrix by expanding the multiplication as follows:

λ

2 pup⊤
u = λ

2

pu1

pu2
...

pun

[
pu1 pu2 . . . pun

]
= λ

2

p2
u1 pu1pu2 . . . pu1pun

pu2pu1 p2
u2 . . . pu2pun

...

punpu1 punpu2 . . . p2
un

If we focus on the diagonal elements of this matrix, we can see that they correspond to
the squares of the elements of the row vector pu:

127

(
λ

2 pup⊤
u

)

ii

= p2
ui (B.22)

The expression (λ
2 pup⊤

u)ii represents the i-th diagonal element of the matrix resulting from
the multiplication of pup⊤

u . Specifically, (λ
2 pup⊤

u)ii corresponds to the element at position
(i, i) in the matrix. On the right side of the equation p2

ui represents the square of the i-th
element of the row vector pu. This equation demonstrates that the diagonal elements of
λ
2 pup⊤

u are equal to the squares of the elements of pu. Equation (B.22) matches the result
we obtained in the first expression. Therefore, we can conclude that λ

2∥pu∥2 and λ
2 pup⊤

u

are equivalent expressions when pu is a row vector.

Let us now continue with the differentiation process. Taking the derivative of λ
2 pup⊤

u with
respect to pu is equivalent to taking the derivative of each component of pu separately.
Since the norm ∥pu∥2 is a scalar, its derivative with respect to pu will be zero. We can
now calculate the derivative of λ

2 pup⊤
u with respect to each component of pu:

∂

∂pu

[
λ

2 pup⊤
u

]
= λ

2
∂

∂pu

[
pup⊤

u

]
(B.23)

Applying the derivative to each component of pu:

∂

∂pu

[
pup⊤

u

]
=

∂
∂ pu[1]

[
pup⊤

u

]

∂
∂ pu[2]

[
pup⊤

u

]

...
∂

∂ pu[n]

[
pup⊤

u

]

(B.24)

where pu[i] denotes the i-th component of vector pu, and n is the total number of com-
ponents in pu. Taking the derivative of pup⊤

u with respect to each component of pu:

∂

∂pu[i]
[
pup⊤

u

]
= 2pu[i] (B.25)

This result comes from applying the chain rule of differentiation and recognizing that
each component of pu is independent of the others. Finally, substituting the derivative of
pup⊤

u back into the original expression:

128

∂

∂pu

[
λ

2 pup⊤
u

]
= λ

2

2pu[1]

2pu[2]
...

2pu[n]

= λpu (B.26)

The final result is λpu, where λ is a constant and pu is the vector with its components
multiplied by 2.

B.5.2 Differentiation of ∂
∂ qi

[
λ
2∥qi∥2]

To explain the outcome of this calculation step by step, let us break it down. Starting
with the expression:

∂

∂qi

[
λ

2∥qi∥2
]

(B.27)

Here, we are taking the partial derivative with respect to the vector qi. We can apply the
derivative to each component of the vector qi separately, assuming that qi is a column
vector. The expression λ

2∥qi∥2 can be expanded as λ
2 q⊤

i qi, where q⊤
i represents the

transpose of the vector qi.

Taking the derivative of λ
2 q⊤

i qi with respect to qi is equivalent to taking the derivative
of each component of qi separately. Since the norm ∥qi∥2 is a scalar, its derivative with
respect to qi will be zero. We can now calculate the derivative of λ

2 q⊤
i qi with respect to

each component of qi:

∂

∂qi

[
λ

2 q⊤
i qi

]
= λ

2
∂

∂qi

[
q⊤

i qi

]
(B.28)

Applying the derivative to each component of qi:

∂

∂qi

[
q⊤

i qi

]
=

∂
∂ qi[1]

[
q⊤

i qi

]

∂
∂ qi[2]

[
q⊤

i qi

]

...
∂

∂ qi[n]

[
q⊤

i qi

]

(B.29)

129

where qi[i] denotes the i-th component of vector qi and n is the total number of components
in qi. Taking the derivative of q⊤

i qi with respect to each component of qi:

∂

∂qi[i]
[
q⊤

i qi

]
= 2qi[i] (B.30)

This result comes from applying the chain rule of differentiation and recognizing that
each component of qi is independent of the others. Finally, substituting the derivative of
q⊤

i qi back into the original expression:

∂

∂qi

[
λ

2 q⊤
i qi

]
= λ

2

2qi[1]

2qi[2]
...

2qi[n]

= λqi (B.31)

The final result is λqi, where λ is a constant and qi is the vector with its components
multiplied by 2.

130

Appendix C

Numerical Examples

C.1 Baseline Predictor

To illustrate how the algorithm works, we present a toy example. The example uses a
matrix, denoted as R, that contains forty hypothetical ratings on five movies from ten
users. The matrix has five columns labeled A through E and ten rows labeled 1 through
10. The density of R is 80%. We randomly select thirty ratings as the training set, while
the remaining ten ratings, shown in boldface, form the test set. The missing ratings are
indicated by “-”.

R =

A B C D E

1 5 4 4 − 5
2 − 3 5 3 4
3 5 2 − 2 3
4 − 2 3 1 2
5 4 − 5 4 5
6 5 3 − 3 5
7 3 2 3 2 −
8 5 3 4 − 5
9 4 2 5 5 −

10 5 − 5 3 4

Figure C.1 User-movie ratings matrix.

131

The average rating of the training set is r̄ = 3.83. We assume that biases bu and bi were
already obtained using Algorithm 4. For the optimal biases of users we obtained,

b∗
u = [0.62 0.42 − 0.28 − 1.78 0.52 0.49 − 1.24 0.45 0.40 0.23] ,

for optimal biases of movies we got,

b∗
i = [0.72 − 1.20 0.60 − 0.60 0.33] .

These values quantify the intuition of what we observe from the training data. For
example:

• Users 1, 2, 5, 6, and 8 tend to give higher ratings.

• Users 4 and 7 tend to give lower ratings.

• Movies A and C tend to receive higher ratings.

• Movies B and D tend to receive lower ratings.

We clipped any predicted rating lower than 1 to 1 and any higher than 5 to 5. Let us
take r̂8E = r̄ + b8 + bE = 3.83 + 0.45 + 0.33 = 4.61. The rating matrix estimated by the
Baseline Predictor (after clipping) is as follows:

R̂ =

A B C D E

1 5 3.09 4.90 − 4.62
2 − 2.89 4.69 3.49 4.42
3 4.10 2.19 − 2.78 3.71
4 − 1.00 2.49 1.29 2.22
5 4.90 − 4.79 3.58 4.51
6 4.88 2.96 − 3.56 4.48
7 3.15 1.23 3.03 1.82 −
8 4.84 2.92 4.72 − 4.61
9 4.84 2.92 4.72 3.51 −

10 4.61 − 4.49 3.29 4.22

Figure C.2 Rating matrix estimated by the Baseline Predictor.

132

We calculated the rmse between R and R̂ using Equation (2.12) and obtained 0.5147 for
the training set and 0.5923 for the test set.

C.2 k-NN⋆
items

We will illustrate an example using the matrix R (C.1). Before computing the similarity
between the columns of the matrix, we center each row in R with the Baseline Predictor.
This creates a matrix R̃ that is also centered with the Baseline Predictor. To calculate
similarity, we use Equation (3.24) with ξ = 0. We use “?” to indicate test set entries and
“-” to denote unavailable ones (e.g., user 9 never rated movie E).

Once the ratings are centered with the Baseline Predictor, we use the same metric to
calculate the similarity between movies, represented in R̃, as the cosine in Equation (3.22).
For example, let us calculate the similarity between movie B and C. According to the
training data in R̃ shown in Figure C.3.

R̃ = R − R̂ =

A B C D E

1 0 0.91 −0.90 − ?
2 − 0.11 0.31 ? −0.42
3 0.90 −0.19 − ? −0.71
4 − ? 0.51 −0.29 −0.22
5 −0.90 − ? 0.42 0.49
6 ? 0.040 − −0.56 0.52
7 −0.15 ? −0.031 0.18 −
8 0.16 ? −0.72 − 0.39
9 ? −0.87 0.33 0.54 −

10 ? − 0.51 −0.29 −0.22

Figure C.3 Matrix of estimated ratings centered with the Baseline Predictors.

Users 1, 2, and 9 rated both movies. Thus, we have:

dBC = r̃1B r̃1C + r̃2B r̃2C + r̃9B r̃9C√
(r̃2

1B + r̃2
2B + r̃2

9B)(r̃2
1C + r̃2

2C + r̃2
9C)

(C.1)

= (0.91×−0.90) + (0.11× 0.31) + (−0.87× 0.33)√
(0.912 + 0.112 + 0.872)(0.902 + 0.312 + 0.332)

= −0.84. (C.2)

133

In the same way we can calculate the complete similarity matrix, symmetric of 5 × 5
(where the diagonal entries are not of interest since they refer to the same movie) as shown
in Figure C.4. With the movie-movie similarity values calculated in the D matrix, as
shown in Figure C.4, we can carry out the following procedure to calculate r̂ui.

D =

A B C D E

A − −0.20 −0.45 −0.97 −0.75
B −0.20 − −0.84 −0.73 0.51
C −0.45 −0.84 − −0.22 −0.93
D −0.97 −0.73 −0.22 − 0.068
E −0.75 0.51 −0.93 0.068 −

Figure C.4 Similarity matrix between movies.

1. We find L = 2 neighbors with the highest absolute similarity values |dik| and |dil|.

2. Check if user u has rated the movies k and l. If so, we use both, as in Equation
(C.3). If the user rated only one of them, we just use that movie. If the user did
not rate any of them, then we only use the Baseline Predictor.

3. We calculate the predicted rating:

r̂ui = r̄ + bu + bi + dikr̃uk + dilr̃ul

|dik|+ |dil|
(C.3)

For instance, we can calculate r̂3D. The two closest neighbors for movie D are A and B,
whose similarity coefficients are −0.97 and −0.73, respectively. User 3 has rated A and
B. Therefore:

r̂3D = r̄ + b3 + bD + dDAr̃3A + dDB r̃3B

|dDA|+ |dDB|
(C.4)

= 2.78 + (−0.97× 0.90) + (−0.73×−0.19)
0.97 + 0.73 = 2.35.

The predicted rating for the Baseline Predictor is r̂3D = 2.78. Similarly, the closest
neighbors for movie B are C and D. From the training set we know that user 2 only rated
movie C but not D. Thus,

134

r̂2B = (r̄ + b3 + bB) + dBC r̃2C

|dBC |
= 2.89 + −0.84× 0.31

0.84 = 2.58. (C.5)

Predictions returned by the method k-NN⋆
items(after clipping) are displayed in matrix C.5.

We compute the rmse between R and R̂ using Equation (2.12) and we get 0.3393 for the
training set and 0.5433 for the test set.

R̂ =

A B C D E

1 5 3.99 3.99 − 5
2 − 2.58 4.86 3.38 4.11
3 4.81 2.19 − 2.35 2.81
4 − 1.00 2.71 1.29 1.71
5 4.46 − 4.30 4.49 5.00
6 4.97 3.52 − 3.52 4.48
7 2.97 1.16 3.03 1.97 −
8 4.28 3.64 4.16 − 4.77
9 4.25 2.44 5.00 4.33 −

10 4.87 − 4.71 3.29 3.71

Figure C.5 Rating matrix estimated by k-NN⋆
items.

C.3 k-NN⋆
users

In this section, we present an an illustrative example utilizing the matrix R as introduced
in Section C.1. User similarities are computed using Equation (3.18) with ξ = 0. Ini-
tially, the matrix R is centered, as illustrated in Figure C.6, by subtracting the Baseline
Predictors obtained through the operation R − R̂.

Subsequently, the user-user similarity matrix D is computed, as depicted in Figure C.7,
employing Equation (3.18):

d12 = (r1B − r̃1)× (r2B − r̃2) + (r1C − r̃1)× (r2C − r̄2)√
(r1B − r̃1)2 + (r1C − r̃1)2 ·

√
(r2B − r̃2)2 + (r2C − r̃2)2

(C.6)

= (0.91× 0.11) + (−0.90× 0.31)√
(0.91)2 + (−0.90)2 ·

√
(0.11)2 + (0.31)2

= −0.42.

135

R̃ = R − R̂ =

A B C D E

1 0 0.91 −0.90 − ?
2 − 0.11 0.31 ? −0.42
3 0.90 −0.19 − ? −0.71
4 − ? 0.51 −0.29 −0.22
5 −0.90 − ? 0.42 0.49
6 ? 0.040 − −0.56 0.52
7 −0.15 ? −0.031 0.18 −
8 0.16 ? −0.72 − 0.39
9 ? −0.87 0.33 0.54 −

10 ? − 0.51 −0.29 −0.22

Figure C.6 Matrix of estimated ratings centered with the Baseline Predictors.

D =

1 2 3 4 5 6 7 8 9 10

1 − −0.42 0.20 −1 0 1 0.20 0.97 −0.91 −1
2 −0.42 − 0.86 0.86 −1 −0.94 −1 −0.90 0.02 0.86
3 0.20 0.86 − 1 −0.98 −0.98 −1 −0.27 1 1
4 −1 0.86 1 − −0.82 0.17 1 −0.99 0.03 1
5 0 −1 −0.98 −0.82 − 0.03 −1 0.10 1 −0.97
6 1 −0.94 −0.98 0.17 0.03 − −1 1 −0.58 0.99
7 0.20 −1 −1 1 −1 −1 − −0.01 0.75 −0.63
8 0.97 −0.90 −0.37 −0.99 0.10 1 −0.01 − −1 −0.99
9 −0.91 0.02 1 0.03 1 −0.58 0.75 −1 − 0.02

10 −1 0.86 1 1 −0.97 0.99 −0.63 −0.99 0.02 −

Figure C.7 Similarity matrix between users.

We utilize Equation (3.26) to compute r̂1E. The two closest neighbors, denoted as users
4 and 10 with similarity coefficients of −1 each, are identified for user 1. Upon referring
to the training set, we discover that user 2 rated movie B positively, while user 5 rated it
negatively. Consequently,

r̂1E = (r̄ + b1 + bE) + d14r̃4E + d10r̃10E

|d14|+ |d10|
(C.7)

= 4.62 + (−1×−0.22) + (−1×−0.22)
1 + 1 = 0.22 + 4.62 = 4.84.

136

The predictions generated by the k-NN⋆
users method (after clipping) are depicted in Figure

C.8.

R̂ =

A B C D E

1 5 3.57 3.24 − 4.84
2 − 2.26 4.34 3.97 4.23
3 4.28 2.45 − 2.92 2.25
4 − 1.00 2.71 1.29 1.71
5 4.46 − 4.30 4.49 5.00
6 4.97 3.52 − 3.52 4.48
7 2.97 1.16 3.03 1.97 −
8 4.28 3.64 4.16 − 4.77
9 4.25 2.44 5.00 4.33 −

10 4.87 − 4.71 3.29 3.71

Figure C.8 Rating matrix estimated by k-NN⋆
users.

We compute the rmse between R and R̂ using Equation (2.12), resulting in values of
0.4386 for the training set and 0.5932 for the test set.

137

C.4 Precision, Recall and MAP

We detail the step-by-step procedure for calculating MAP@K. We begin by calculating
Precision@K and Recall@K for a user:

• Set a classification threshold k.

• Calculate the % relevant in the top-k.

• Ignore items classified lower than the threshold.

To begin with, we will ignore all ratings “?” where the true value is unknown. Values
without a known true rating cannot be used. We set the threshold at 3.5 stars.

Movie Real rating Predicted rating

1 4 2.3
2 2 3.6
3 3 3.4
4 ? 4.3
5 5 4.5
6 ? 2.3
7 2 4.9
8 ? 4.3
9 ? 3.3

10 4 4.3

Table C.1: Toy example.

The relevant movies are already known in the dataset:

• Relevant movie: has a real rating ≥ 3.5

• Irrelevant movie: has a real rating < 3.5

The recommended movies are generated by a recommendation algorithm.

• Recommended movie: has a predicted rating ≥ 3.5

• Not recommended movie: has a predicted rating < 3.5

138

Movie Real rating Predicted rating
7 2 4.9
5 5 4.5

10 4 4.3
2 2 3.6
3 3 3.4
1 4 2.3

Table C.2: Sorting the list Bu(k) in descending order.

We classify the rest of the movies based on their predicted rating in descending order as
shown in Table C.2.

As mentioned in Section 3.5.2, Precision@k is the proportion of recommended movies
in the top-k set that are relevant, while Recall@k is the proportion of relevant movies
found in the top-k recommendations. Therefore, we have:

Precision@k = Number of relevant movies recommended@k
Number of movies recommended@k

Recall@k = Number of relevant movies recommended@k
Total number of relevant movies

Relevant movies

• Relevant movies are those with a real rating ≥ 3.5.

• Relevant movies: Movie 5, Movie 10, and Movie 1.

• Total number of relevant movies = 3.

Recommended movies@2

• The recommended movies in 2 are Movie 7 and Movie 5.

• Number of recommended movies = 2.

Recommended and relevant movies @2

• It is the intersection (|Bu(k) ∩ Su|) between Recommended@2 and Relevant@2.

139

• Recommended@2 intersection Relevant: Movie 5.

• Number of recommended movies that are relevant = 1

As mentioned in Section 3.5.2, Precision@k is the proportion of recommended movies
in the top-k set that are relevant, while Recall@k is the proportion of relevant movies
found in the top-k recommendations. Therefore, we have:

Precision@k = Number of relevant movies recommended@k
Number of movies recommended@k

Recall@k = Number of relevant movies recommended@k
Total number of relevant movies

Relevant movies

• Relevant movies are those with a real rating ≥ 3.5.

• Relevant movies: Movie 5, Movie 10, and Movie 1.

• Total number of relevant movies = 3.

Recommended movies@2

• The recommended movies in 2 are Movie 7 and Movie 5.

• Number of recommended movies = 2.

Recommended and relevant movies @2

• It is the intersection (|Bu(k) ∩ Su|) between Recommended@2 and Relevant@2.

• Recommended@2 intersection Relevant: Movie 5.

• Number of recommended movies that are relevant = 1.

Recommended movies@3

• The recommended movies in 3 are Movie 7, Movie 5, and Movie 10.

140

• Number of recommended movies = 3.

Recommended and relevant movies @3

• It is the intersection (|Bu(k) ∩ Su|) between Recommended@3 and Relevant@3.

• Recommended@3 intersection Relevant: Movie 5 and Movie 10.

• Number of recommended movies that are relevant = 2.

Precision@2 = Number of relevant movies recommended@2
Number of recommended movies@2 = 1

2 = 50

Recall@2 = Number of relevant movies recommended@2
Total number of relevant movies = 1

3 = 33.33

Precision@3 = Number of relevant movies recommended@3
Number of recommended movies@3 = 2

3 = 66.67

We can observe that the precision is 66.67%. Here, we can interpret that only 66.67% of the
recommendations are truly relevant. The following equation calculates the recall@3, which
is the percentage of relevant movies recommended in the top three list of recommended
movies:

Recall@3 = Number of relevant movies recommended@3
Total number of relevant movies = 2

3 = 66.67

This means that 66.67% of the relevant movies were recommended in the top three list.
Using the results obtained earlier, we can calculate the average precision@3 using the
following equation:

AP@k = 1
relevant in k

k∑

1
Precision@k · rel(i) (C.8)

We can calculate the precision@3 for each relevant movie, and then average them to obtain
the average precision@3:

AP@3 = 1
3 ∗ (Precision@1 + Precision@2 + Precision@3) (C.9)

141

The precision@1, precision@2, and precision@3 are calculated as follows:

AP@1 = 1
3 ∗ (1

1) = 0.33 (C.10)

AP@2 = 1
3 ∗ (1

1 + 1
2) = 0.50 (C.11)

AP@3 = 1
3 ∗ (1

1 + 1
2 + 2

3) = 0.72 (C.12)

Finally, we can calculate the mean average precision@3 (MAP@3) as the average of the
average precision@1, average precision@2, and average precision@3:

MAP@3 = 1
3 ∗ (AP@1 + AP@2 + AP@3) = 1.55 (C.13)

142

C.5 Simon Funk’s SVD algorithm

A real-life dataset for a recommendation system is often very sparse, resulting in rating
matrices R with a sparsity of over 95%. This is where Simon Funk’s technique comes in.
Funksvd ignores these missing values and finds a way to calculate latent factors using only
the known rating values. To achieve this matrix factorization approach with Funksvd, we
follow these steps:

1. We construct two matrices, U and V⊤, a matrix of users by the number of chosen
latent factors and a matrix of these same latent factors by movies, respectively. We
then fill these matrices with random numbers. At this point, we have three matrices:
R, U and V⊤.

Movie 1 Movie 2 Movie 3 Movie 4
User 1 - - 9 1
User 2 3 - 7 -
User 3 5 - - 10
User 4 - 2 - -

Table C.3: User-movie matrix R.

The matrix U (Users by latent factors filled with random values):

Factor 1 Factor 2 Factor 3
User 1 0.8 1.2 -0.2
User 2 0.2 1.8 0.4
User 3 0.8 3 0.1
User 4 1 0.8 2.4

Table C.4: Matrix of latent factors U

The matrix V⊤ (Movies by latent factors filled with random values):

Movie 1 Movie 2 Movie 3 Movie 4
Factor 1 -1.8 1 -0.2 1
Factor 2 0.5 1.2 0.1 5
Factor 3 1.4 4 0.14 2

Table C.5: Matrix of latent factors V⊤.

2. We search for an existing rating in matrix R for a user-movie pair. The first rating
we find in the matrix is 9, given by user 1 to movie 3. Therefore, 9 is our true value.

143

3. In matrix U, we take all the random values associated with user 1 (row). For this
user, we have [0.8,1.2,-0.2]. Recall that 9 was the rating that user 1 assigned to
movie 3. In matrix V⊤, we also take all the random values associated with movie 3.
For this movie, we have [-0.2,0.1, 0.14]⊤.

We then compute the dot product between the found row and column in order to
make the prediction: (0.8×−0.2) + (1.2× 0.1) + (−0.2× 0.14) = −0.07. Thus, we
have the real value r13 as 9 and the predicted value r̂13 as −0.07. Therefore, the
error is e = (9 + 0.07)2 = 82.26. Next, we minimize the error using SGD. The
formula is:

Ui + γ · 2(real− predicted)×Vi

Vi + γ · 2(real− predicted)×Ui

Here, Ui is a random value from the matrix U, Vi is a random value associated
with the transpose matrix V⊤, and γ is the learning rate. In summary, these are
the values taken from the matrices U and V.

Factor 1 Factor 2 Factor 3
From U 0.8 1.2 -0.2
From V -0.2 0.1 0.14

We update 0.8 using SGD with a learning rate of 0.1. Therefore, the new value is:

NewValue = 0.8 + 0.1× 2(9 + 0.07)×−0.2 = 0.44

NewValue = 1.2 + 0.1× 2(9 + 0.07)× 0.1 = 1.38

NewValue = −0.2 + 0.1× 2(9 + 0.07)× 0.14 = 0.053

By updating all values of U , we obtain 0.44, 1.38 and 0.053. Therefore, we now
have:

Factor 1 Factor 2 Factor 3
From U 0.44 1.38 0.053
From V -0.2 0.1 0.14

144

Then we can update the values of V. Note that the newly updated values of U are
already affecting the values we will calculate from V. Finally, we obtain:

Factor 1 Factor 2 Factor 3
From U 0.44 1.38 0.053
From V 0.6 2.60 0.24

We replace updated values in matrices U and V⊤

Factor 1 Factor 2 Factor 3
User 1 0.44 1.38 0.053
User 2 0.2 1.8 0.4
User 3 0.8 3 0.1
User 4 1 0.8 2.4

Movie 1 Movie 2 Movie 3 Movie 4
Factor 1 -1.8 1 0.6 1
Factor 2 0.5 1.2 2.60 5
Factor 3 1.4 4 0.24 2

We have now completed one iteration, meaning that n = 1.

145

C.6 Ranking algorithm

To illustrate how Algorithm 20 works, let us consider a small numerical example.

Algorithm 20: Ranking task
Input: Set of users U , set of items I, function f(u, i) which predicts the utility score

of item i for user u, and the number of recommended items k.
Output: Top-k recommendation list for each user.
foreach user u ∈ U do

foreach not-interacted item i ∈ I \ I+
u do

n← 0 // Reset the counter for each item
r̂ui ← f(u, i) // Compute the utility score of item i for user u
foreach not-interacted item j ∈ I \ I+

u do
r̂uj ← f(u, j) // Compute the utility score of item j for user u
if r̂uj ≥ r̂ui then

n← n+ 1 // Increment counter
end if

end foreach
Oui ← n+ 1 // Assign rank to item i

end foreach
Sort the items in I \ I+

u in descending order of their rank Oui

Select the top-k items from the sorted list to recommend to user u
end foreach

The inputs for the algorithm are as follows:

• The set of users is denoted as U = {1, 2, 3, 4}.

• The set of items is denoted as I = {a, b, c, d}.

• The function f(u, i) predicts the utility score of item i for user u.

• The number of recommended items is k = 2.

Let us assume the utility scores predicted by the function f(u, i) for each user-item pair
can be represented as a matrix:

146

R =

f(1, a) f(1, b) f(1, c) f(1, d)
f(2, a) f(2, b) f(2, c) f(2, d)
f(3, a) f(3, b) f(3, c) f(3, d)
f(4, a) f(4, b) f(4, c) f(4, d)

=

0.6 0.8 0.3 0.7
0.5 0.4 0.9 0.2
0.7 0.6 0.4 0.8
0.3 0.2 0.5 0.9

Each row represents a user, while each column represents an item. The values within
the matrix indicate the utility scores predicted by the function f(u, i). To gain a deeper
understanding of the algorithm, we will now proceed to analyze it step by step, referring
to Algorithms 21 and 22 for users 1 and 2, respectively.

Upon computing the utility scores r̂ui and ranks Oui for all items, encompassing a, b, c
and d, for both User 1 and User 2, we can proceed to summarize the outcomes of the
algorithm. The resulting summary is presented in Table C.6, showcasing the ranks (Oui)
assigned to each item and offering a comprehensive overview of the ranking assignments
for both users.

User 1 User 2

Item Rank (Oui) Item Rank (Oui)

a O1a = 3 a O2a = 2
b O1b = 1 b O2b = 3
c O1c = 4 c O2c = 1
d O1d = 2 d O2d = 4

Table C.6: Rankings of items for users 1 and 2.

Based on the ranks Oui, we sort the items in I \ I+
u (not-interacted items) in ascending

order for each user u. In this case, the sorted order for User 1 will be b, d, a and c. For
User 2, it will be c, a, b and d. Finally, we select the top-k items from the sorted list to
recommend to each user. Since k = 2, the top-2 items for User 1 will be b and d. The
top-2 items for User 2 will be c and a. Therefore, the top-2 recommendation list for User
1 will be b and d. The top-2 recommendation list for User 2 will be c and a.

147

Algorithm 21: Ranking task for User 1
for user u = 1 do

for item i = a do
Compute r̂ui = f(1, a) = 0.6
Compute r̂uj for all not-interacted items j:
for each not-interacted item j do

r̂uj: f(1, b) = 0.8, f(1, c) = 0.3, f(1, d) = 0.7
Increment n because r̂uj ≥ r̂ui for items b and d

end for
Assign rank Oui = n+ 1 = 3 for item a

end for
n← 0
for item i = b do

Compute r̂ui = f(1, b) = 0.8
Compute r̂uj for all not-interacted items j:
for each not-interacted item j do

r̂uj: f(1, a) = 0.6, f(1, c) = 0.3, f(1, d) = 0.7
No increment of n because r̂uj < r̂ui for all items

end for
Assign rank Oui = n+ 1 = 1 for item b

end for
n← 0
for item i = c do

Compute r̂ui = f(1, c) = 0.3
Compute r̂uj for all not-interacted items j:
for each not-interacted item j do

r̂uj: f(1, a) = 0.6, f(1, b) = 0.8, f(1, d) = 0.7
Increment n because r̂uj > r̂ui for items a, b, and d

end for
Assign rank Oui = n+ 1 = 4 for item c

end for
n← 0
for item i = d do

Compute r̂ui = f(1, d) = 0.7
Compute r̂uj for all not-interacted items j:
for each not-interacted item j do

r̂uj: f(1, a) = 0.6, f(1, b) = 0.8, f(1, c) = 0.3
Increment n because r̂uj ≥ r̂ui for item b

end for
Assign rank Oui = n+ 1 = 2 for item d

end for
end for

148

Algorithm 22: Ranking task for User 2
for item i = a do

Compute r̂ui = f(2, a) = 0.5
Compute r̂uj for all not-interacted items j:
for each not-interacted item j do

r̂uj: f(2, b) = 0.4, f(2, c) = 0.9, f(2, d) = 0.2
Increment n because r̂uj ≥ r̂ui for item c

end for
Assign rank Oui = n+ 1 = 2 for item a

end for
n← 0
for item i = b do

Compute r̂ui = f(2, b) = 0.4
Compute r̂uj for all not-interacted items j:
for each not-interacted item j do

r̂uj: f(2, a) = 0.5, f(2, c) = 0.9, f(2, d) = 0.2
Increment n because r̂uj ≥ r̂ui for items c and a

end for
Assign rank Oui = n+ 1 = 3 for item b

end for
n← 0
for item i = c do

Compute r̂ui = f(2, c) = 0.9
Compute r̂uj for all not-interacted items j:
for each not-interacted item j do

r̂uj: f(2, a) = 0.5, f(2, b) = 0.4, f(2, d) = 0.2
No increment of n because r̂uj < r̂ui for all items

end for
Assign rank Oui = n+ 1 = 1 for item c

end for
n← 0
for item i = d do

Compute r̂ui = f(2, d) = 0.2
Compute r̂uj for all not-interacted items j:
for each not-interacted item j do

r̂uj: f(2, a) = 0.5, f(2, b) = 0.4, f(2, c) = 0.9
Increment n because r̂uj ≥ r̂ui for all items

end for
Assign rank Oui = n+ 1 = 4 for item d

end for

149

Appendix D

Model Selection Illustration

150

1 original
dataset

training
entries

test
entries

2 training
entries

hyperparameter
values

hyperparameter
values

hyperparameter
values

Learning
Algorithm

performanceperformanceperformance

performanceperformanceperformance

performanceperformanceperformance

3 training
entries

best
hyperparameter

values

Learning
Algorithm

model

4

test
entries prediction

test
entries

performance
model

5 original
dataset

best
hyperparameter

values

Learning
Algorithm

final
model

Figure D.1: k-fold cross-validation for model selection. (Reference:[Ras20])

151

Bibliography

[AC16] Deepak K. Agarwal and Bee-Chung Chen. Statistical Methods for Recom-
mender Systems. Cambridge University Press, USA, 1st edition, 2016.

[AC19] Francesco Archetti and Antonio Candelieri. Bayesian Optimization and Data
Science. Springer Publishing Company, Incorporated, 1st edition, 2019.

[Agg16] Charu C. Aggarwal. Recommender Systems: The Textbook. Springer
Publishing Company, Incorporated, 1st edition, 2016.

[And04] Chris Anderson. The long tail. Wired Magazine, 2004.

[AT05] G. Adomavicius and A. Tuzhilin. Toward the next generation of recommender
systems: a survey of the state-of-the-art and possible extensions. IEEE
Transactions on Knowledge and Data Engineering, 17(6):734–749, June 2005.

[BB08] Léon Bottou and Olivier Bousquet. The tradeoffs of large scale learning. In
Advances in Neural Information Processing Systems, pages 161–168, 2008.

[BB12] James Bergstra and Yoshua Bengio. Random search for hyper-parameter
optimization. J. Mach. Learn. Res., 13:281–305, February 2012.

[BCN18] Léon Bottou, Frank E. Curtis, and Jorge Nocedal. Optimization methods
for large-scale machine learning. 2018.

[Ber19] Hadrien Bertrand. Hyper-parameter optimization in deep learning and trans-
fer learning : applications to medical imaging. PhD dissertation, Université
Paris-Saclay, NNT : 2019SACLT001ff, 2019.

[BHK98] John S. Breese, David Heckerman, and Carl Kadie. Empirical analysis
of predictive algorithms for collaborative filtering. In Proceedings of the

152

Fourteenth Conference on Uncertainty in Artificial Intelligence, UAI’98, page
43–52, San Francisco, CA, USA, 1998. Morgan Kaufmann Publishers Inc.

[BHMM19] Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling
modern machine-learning practice and the classical bias–variance trade-off.
Proceedings of the National Academy of Sciences, 116(32):15849–15854, 2019.

[Bjo19] Emil Bjornson. Reproducible research: Best practices and potential misuse
[perspectives]. IEEE Signal Processing Magazine, 36(3):106–123, 2019.

[BK07a] Robert M. Bell and Yehuda Koren. Lessons from the netflix prize challenge.
SIGKDD Explor. Newsl., 9(2):75–79, December 2007.

[BK07b] Robert M. Bell and Yehuda Koren. Scalable collaborative filtering with
jointly derived neighborhood interpolation weights. In Seventh IEEE Inter-
national Conference on Data Mining (ICDM 2007), pages 43–52, 2007.

[BOHG13] J. Bobadilla, F. Ortega, A. Hernando, and A. Gutiérrez. Recommender
systems survey. Knowledge-Based Systems, 46:109–132, 2013.

[Cao16] Longbing Cao. Non-iid recommender systems: A review and framework of
recommendation paradigm shifting. ArXiv, abs/2007.07217, 2016.

[Chi12] Mung Chiang. Networked Life: 20 Questions and Answers. Cambridge
University Press, New York, NY, USA, 2012.

[CKT10] Paolo Cremonesi, Yehuda Koren, and Roberto Turrin. Performance of rec-
ommender algorithms on top-n recommendation tasks. pages 39–46, 01
2010.

[CP04] B. Jack Copeland and Diane Proudfoot. The Computer, Artificial Intelligence,
and the Turing Test, pages 317–351. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2004.

[DK11] Christian Desrosiers and George Karypis. A Comprehensive Survey of
Neighborhood-based Recommendation Methods, pages 107–144. Springer US,
Boston, MA, 2011.

[DOM02] Stephan Dreiseitl and Lucila Ohno-Machado. Logistic regression and artificial
neural network classification models: A methodology review. J. of Biomedical
Informatics, 35(5/6):352–359, oct 2002.

153

[Fis36] R. A. Fisher. The use of multiple measurements in taxonomic problems.
Annals of Eugenics, 7(7):179–188, 1936.

[Fun06] Simon Funk. Netflix update:try this at home. http://sifter.org/simon/
journal/20061211.html, 2006.

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016. http://www.deeplearningbook.org.

[GNOT92] David Goldberg, David Nichols, Brian M. Oki, and Douglas Terry. Using
collaborative filtering to weave an information tapestry. Commun. ACM,
35(12):61–70, December 1992.

[Got97] L. Gottfredson. Mainstream science on intelligence: An editorial with 52
signatories, history, and bibliography. Intelligence, 24:13–23, 1997.

[GSB+16] María N. Moreno García, Saddys Segrera, Vivian F. López Batista, María
Dolores Muñoz Vicente, and Angel L. Sánchez. Web mining based framework
for solving usual problems in recommender systems. a case study for movies’
recommendation. Neurocomputing, 176:72–80, 2016.

[HK15] F. Maxwell Harper and Joseph A. Konstan. The movielens datasets: History
and context. ACM Trans. Interact. Intell. Syst., 5(4):19:1–19:19, December
2015.

[Hof04] Thomas Hofmann. Latent semantic models for collaborative filtering. ACM
Trans. Inf. Syst., 22(1):89–115, January 2004.

[JRTZ16] Dietmar Jannach, Paul Resnick, Alexander Tuzhilin, and Markus Zanker.
Recommender systems — beyond matrix completion. Commun. ACM,
59(11):94–102, October 2016.

[JSW98] D. Jones, Matthias Schonlau, and W. J. Welch. Efficient global optimization
of expensive black-box functions. Journal of Global Optimization, 13:455–492,
1998.

[KAU16] Shah Khusro, Zafar Ali, and Irfan Ullah. Recommender Systems: Issues,
Challenges, and Research Opportunities, pages 1179–1189. 02 2016.

[KB11] Yehuda Koren and Robert Bell. Advances in Collaborative Filtering, pages
145–186. Springer US, Boston, MA, 2011.

154

http://sifter.org/simon/journal/20061211.html
http://sifter.org/simon/journal/20061211.html
http://www.deeplearningbook.org

[KEK18] Daniel Kluver, Michael D. Ekstrand, and Joseph A. Konstan. Rating-Based
Collaborative Filtering: Algorithms and Evaluation, pages 344–390. Springer
International Publishing, Cham, 2018.

[Kor08] Yehuda Koren. Factorization meets the neighborhood: A multifaceted collab-
orative filtering model. In Proceedings of the 14th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, KDD ’08, page
426–434, New York, NY, USA, 2008. Association for Computing Machinery.

[Kus64] H. J. Kushner. A new method of locating the maximum point of an arbitrary
multipeak curve in the presence of noise. Journal of Basic Engineering,
86(1):97–106, mar 1964.

[KY05] Dohyun Kim and Bong-Jin Yum. Collaborative filtering based on iterative
principal component analysis. Expert Systems with Applications, 28(4):823 –
830, 2005.

[LDS11] Pasquale Lops, Marco Degemmis, and Giovanni Semeraro. Content-based
recommender systems: State of the art and trends. In Recommender Systems
Handbook, 2011.

[LM05] Daniel Lemire and Anna Maclachlan. Slope one predictors for online rating-
based collaborative filtering, 2005.

[LT15] Aristomenis S. Lampropoulos and George A. Tsihrintzis. Machine Learning
Paradigms: Applications in Recommender Systems. Springer Publishing
Company, Incorporated, 2015.

[McC98] John McCarthy. What is artificial intelligence. 1998.

[McC07] John McCarthy. What is artificial intelligence?, 2007. http://www-formal.
stanford.edu/jmc/.

[Mit97] Thomas M. Mitchell. Machine Learning. McGraw-Hill, Inc., New York, NY,
USA, 1 edition, 1997.

[MMRS06] John McCarthy, Marvin Minsky, Nathaniel Rochester, and Claude E. Shan-
non. A proposal for the dartmouth summer research project on artificial
intelligence, august 31, 1955. AI Magazine, 27(4):12–14, 2006.

[MRT12] M. Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of
machine learning. In Adaptive computation and machine learning, 2012.

155

http://www-formal.stanford.edu/jmc/
http://www-formal.stanford.edu/jmc/

[OD19] Graham Oppy and David Dowe. The Turing Test. In Edward N. Zalta,
editor, The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab,
Stanford University, winter 2019 edition, 2019.

[OMT+08] Thomas Oommen, Debasmita Misra, Navin KC Twarakavi, Anupma Prakash,
Bhaskar Sahoo, and Sukumar Bandopadhyay. An objective analysis of sup-
port vector machine based classification for remote sensing. Mathematical
geosciences, 40(4):409–424, 2008.

[Pat07] Arkadiusz Paterek. Improving regularized singular value decomposition for
collaborative filtering. Proceedings of KDD Cup and Workshop, 01 2007.

[PB07] Michael J. Pazzani and Daniel Billsus. Content-based recommendation
systems. In The Adaptive Web, 2007.

[PVG+12] Fabian Pedregosa, Gael Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, David Courna-
peau, Matthieu Brucher, Matthieu Perrot, Edouard Duchesnay, and Gilles
Louppe. Scikit-learn: Machine learning in python. Journal of Machine
Learning Research, 12, 01 2012.

[Ras20] Sebastian Raschka. Model evaluation, model selection, and algorithm selec-
tion in machine learning, 2020.

[RIS+94] Paul Resnick, Neophytos Iacovou, Mitesh Suchak, Peter Bergstrom, and
John Riedl. Grouplens: An open architecture for collaborative filtering of
netnews. In Proceedings of the 1994 ACM Conference on Computer Supported
Cooperative Work, CSCW ’94, pages 175–186, New York, NY, USA, 1994.
ACM.

[RW05] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes
for Machine Learning (Adaptive Computation and Machine Learning). The
MIT Press, 2005.

[Sam59] A. L. Samuel. Some studies in machine learning using the game of checkers.
IBM Journal of Research and Development, 3(3):210–229, 1959.

[SB18] Alan Said and Alejandro Bellogín. Coherence and inconsistencies in rating
behavior: Estimating the magic barrier of recommender systems. User
Modeling and User-Adapted Interaction, 28(2):97–125, jun 2018.

156

[Sea80] John R. Searle. Minds, brains, and programs. Behavioral and Brain Sciences,
3(3):417–424, 1980.

[SKKR00] Badrul Munir Sarwar, George Karypis, Joseph A. Konstan, and John Thomas
Riedl. Application of dimensionality reduction in recommender system - a
case study. 2000.

[SKKR01] Badrul Sarwar, George Karypis, Joseph A Konstan, and John Riedl. Item-
based collaborative filtering recommendation algorithms. In Proceedings of
the 10th International Conference on World Wide Web, WWW 2001, WWW
’01, pages 285–295. Association for Computing Machinery, Inc, 4 2001.

[SKKS10] Niranjan Srinivas, Andreas Krause, Sham Kakade, and Matthias Seeger.
Gaussian process optimization in the bandit setting: No regret and exper-
imental design. In Proceedings of the 27th International Conference on
International Conference on Machine Learning, ICML’10, page 1015–1022,
Madison, WI, USA, 2010. Omnipress.

[SSBD14] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning:
From Theory to Algorithms. Cambridge University Press, USA, 2014.

[SSW+16] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P. Adams, and Nando
de Freitas. Taking the human out of the loop: A review of bayesian opti-
mization. Proceedings of the IEEE, 104(1):148–175, jan 2016.

[Tur50] A. M. Turing. I.—COMPUTING MACHINERY AND INTELLIGENCE.
Mind, LIX(236):433–460, 10 1950.

[UFA+98] Lyle Ungar, Dean Foster, Ellen Andre, Star Wars, Fred Star Wars, Dean Star
Wars, and Jason Hiver Whispers. Clustering methods for collaborative
filtering. AAAI Press, 1998.

[Vap00] Vladimir Vapnik. The Nature of Statistical Learning Theory. Springer: New
York, 2000.

[Vel12] Rosemarie Velik. Ai reloaded: Objectives, potentials, and challenges of the
novel field of brain-like artificial intelligence. BRAIN Broad Research in
Artificial Intelligence and Neuroscience, 3:25–54, 10 2012.

[YWZ+16] Z. Yang, B. Wu, K. Zheng, X. Wang, and L. Lei. A survey of collaborative
filtering-based recommender systems for mobile internet applications. IEEE
Access, 4:3273–3287, 2016.

157

158

	Abstract
	List of Figures
	List of Tables
	Abbreviations
	Symbols
	1 Introduction
	1.1 Origins and general overview of RS
	1.2 Goal of this work
	1.2.1 Research objective
	1.2.2 Specific research objectives
	1.2.3 Research methodology
	1.2.4 Limitations
	1.2.5 Project outline

	2 State of the Art
	2.1 Artificial Intelligence
	2.2 Machine Learning
	2.2.1 Supervised learning framework
	2.2.1.1 Datasets, feature selection and extraction
	2.2.1.2 An overview of learning theory
	2.2.1.3 Problem formalization
	2.2.1.4 Central assumption of statistical learning theory
	2.2.1.5 Loss functions, true risk and empirical risk
	2.2.1.6 Empirical Risk Minimization
	2.2.1.7 Optimization
	2.2.1.8 Model selection
	2.2.1.9 Complexity, overfitting and underfitting

	2.3 Recommender systems
	2.3.1 Machine Learning in RS
	2.3.2 Taxonomy of RS
	2.3.2.1 Content-based RS
	2.3.2.2 Collaborative filtering
	2.3.2.3 Knowledge-based RS

	2.3.3 Challenges and limitations
	2.3.3.1 Cold start
	2.3.3.2 Data sparsity
	2.3.3.3 Scalability
	2.3.3.4 Limitations of IID assumptions in traditional recommendation approaches

	2.3.4 Recommendation as risk minimization
	2.3.4.1 Problem formalization and notation
	2.3.4.2 The two phases of RS: Prediction and ranking
	2.3.4.3 Toy example

	2.3.5 The complexity of predicting user preferences: Moving beyond traditional classification and regression algorithms in RS
	2.3.5.1 Understanding the significance and variation of movie ratings on a 1 to 5 scale
	2.3.5.2 Collaborative filtering as a generalization of classification and regression

	3 Recommendation Algorithms
	3.1 Baseline Predictor
	3.1.1 Optimization through Stochastic Gradient Descent

	3.2 Collaborative filtering: Taxonomy
	3.3 Memory-based collaborative filtering
	3.3.1 User-based approach: k-NNusers
	3.3.1.1 Generation of recommendations
	3.3.1.2 Metrics for quantifying users' similarity
	3.3.1.3 PCCBaseline metric
	3.3.1.4 User-based CF with Baseline Predictor: k-NNusers

	3.3.2 Item-based approach: k-NNitems
	3.3.2.1 Metrics for quantifying items' similarity
	3.3.2.2 Item-based CF with Baseline Predictor: k-NNitems

	3.4 Model-based collaborative filtering
	3.4.1 Matrix factorization
	3.4.2 Singular value decomposition
	3.4.3 Basic matrix factorization
	3.4.4 Unbiased matrix factorization: SVDunbiased
	3.4.4.1 Optimization through Stochastic Gradient Descent

	3.4.5 Biased matrix factorization: SVDbiased
	3.4.5.1 Optimization through Stochastic Gradient Descent

	3.5 Evaluation of recommendation algorithms
	3.5.1 Metrics for prediction accuracy
	3.5.2 Metrics for classification accuracy
	3.5.2.1 Confusion matrix

	3.5.3 Metrics for ranking accuracy

	4 Hyperparameter Optimization
	4.1 Introduction
	4.2 Parameters vs. hyperparameters
	4.3 Hyperparameter optimization: An overview
	4.4 Standard techniques
	4.4.1 Grid search
	4.4.2 Random search

	4.5 Bayesian optimization
	4.5.1 Problem formalization
	4.5.2 Surrogate model
	4.5.2.1 Gaussian Processes
	4.5.2.2 Covariance of the Gaussian Process

	4.5.3 Acquisition function
	4.5.3.1 Probability of improvement
	4.5.3.2 Expected improvement
	4.5.3.3 Lower confidence bound

	4.5.4 Bayesian optimization algorithm

	5 Experiments and Discussion
	5.1 System configuration
	5.2 Datasets
	5.2.1 Description of the variables involved

	5.3 Exploratory data analysis
	5.3.1 Long tail
	5.3.2 Distribution of ratings

	5.4 Dataset splitting
	5.5 Experiments
	5.5.1 Hyperparameter impact analysis in RS
	5.5.2 Comparative performance of hyperparameter optimization techniques
	5.5.3 Investigating the effects of data sparsity on recommendation algorithms

	5.6 Results
	5.6.1 Experiment 1
	5.6.1.1 Baseline Predictor
	5.6.1.2 k-NNusers
	5.6.1.3 k-NNitems
	5.6.1.4 SVDunbiased
	5.6.1.5 SVDbiased

	5.6.2 Experiment 2
	5.6.2.1 Performance comparison
	5.6.2.2 Improved hyperparameter optimization using Bayesian optimization
	5.6.2.3 RMSE analysis
	5.6.2.4 MAP and F-Score

	5.6.3 Experiment 3

	6 Conclusions and Future Work
	6.1 Summary

	A MAP Performance
	A.1 MAP performance for ML 100K and 1M datasets

	B Definitions and Technical Details
	B.1 Linear regression
	B.2 Logistic regression
	B.2.1 Parameter estimation

	B.3 Source of prediction errors
	B.4 The bias-variance trade-off
	B.5 Differentiation
	B.5.1 Differentiation of pu [2 pu2]
	B.5.2 Differentiation of qi [2 qi2]

	C Numerical Examples
	C.1 Baseline Predictor
	C.2 k-NNitems
	C.3 k-NNusers
	C.4 Precision, Recall and MAP
	C.5 Simon Funk's SVD algorithm
	C.6 Ranking algorithm

	D Model Selection Illustration
	Bibliography

