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Abstract—Most of the existing characterizations of the integral
input-to-state stability (iISS) property are not suitable for time-
varying or switched (nonlinear) systems. Previous work by the
authors has shown that in such cases where converse Lyapunov
theorems for stability are not available, iISS-Lyapunov functions
may not exist. In these cases, the iISS property can still be
characterized as the combination of global uniform asymptotic
stability under zero input (0-GUAS) and uniformly bounded
energy input-bounded state (UBEBS). This paper shows that
such a characterization remains valid for time-varying impulsive
systems, under an appropriate condition on the number of
impulse times on each finite time interval.

Index Terms—Stability, impulsive systems, bounded energy,
nonlinear systems.

I. INTRODUCTION

Input-to-state stability (ISS) [1] and integral-ISS (iISS) [2]
are arguably the most important and useful state-space based
nonlinear notions of stability for systems with inputs. The iISS
property gives a state bound that is the sum of a decaying-
to-zero term whose amplitude depends only on the initial
state, and a term depending (nonlinearly) only on an integral
of a nonlinear function of the input. The latter term can be
interpreted as an input energy bound.

For time-invariant systems described by ordinary differential
equations, several characterizations of the iISS property exist
(see [2]–[4]). Among the different characterizations, perhaps
the most practical ones are those based on iISS-Lyapunov
functions [3]. Indeed, since iISS is known to be equivalent to
the existence of an iISS-Lyapunov function, there is no loss of
generality in focusing on the obtention of such functions. Re-
sults that ensure that an iISS system admits the corresponding
type of Lyapunov function heavily rely on converse Lyapunov
theorems for stability [5], since iISS implies global asymptotic
stability.

As for time-varying systems, although some Lyapunov
characterizations of ISS exist when the function f defining
the system dynamics ẋ = f(t, x, u) is continuous [6]–[8],
no corresponding Lyapunov characterizations of iISS exist.
Moreover, previous work by the authors [9] has shown that
if f is not continuous with respect to the time variable, as is
the case for switched systems, then iISS-Lyapunov functions
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may not exist. Also in [9], it is shown that for a wide variety
of dynamical systems (where f does not have to be continuous
and solutions are not necessarily unique), iISS is equivalent
to global uniform asymptotic stability under zero input (0-
GUAS) in combination with uniformly bounded energy input-
bounded state (UBEBS) (see Section II-B for the precise
definitions). Note that although f may be not continuous, the
state trajectory is indeed continuous by virtue of being the
solution to an ordinary differential equation.

Impulsive systems are dynamical systems whose state
evolves continuously most of the time but may exhibit jumps
(discontinuities) at isolated time instants (see [10]). The con-
tinuous evolution of the state (i.e. between jumps) is governed
by ordinary differential equations. The time instants when
jumps occur are part of the impulsive system definition and the
after-jump value of the state vector is governed by a static (i.e.
not differential) equation. The aim of this paper is to analyze
whether and in what ways the previously derived character-
ization of iISS (namely, iISS = 0-GUAS + UBEBS) can be
extended to impulsive systems [11], especially to impulsive
systems where both the ordinary differential equations defining
continuous state evolution and the static equation defining
after-jump values can be time-varying and lack time continuity.

Notation. N, R, R>0 and R≥0 denote the natural numbers,
reals, positive reals and nonnegative reals, respectively. |x|
denotes the Euclidean norm of x ∈ Rp. We write α ∈ K
if α : R≥0 → R≥0 is continuous, strictly increasing and
α(0) = 0, and α ∈ K∞ if, in addition, α is unbounded. We
write β ∈ KL if β : R≥0 × R≥0 → R≥0, β(·, t) ∈ K∞ for
any t ≥ 0 and, for any fixed r ≥ 0, β(r, t) monotonically
decreases to zero as t→∞. For every n ∈ N and r ≥ 0, we
define the closed ball Bnr := {x ∈ Rn : |x| ≤ r}.

II. PROBLEM STATEMENT

A. Impulsive systems

Consider the time-varying impulsive system with inputs

ẋ(t) = f(t, x(t), u(t)), for t /∈ σ, (1a)
x(t) = x(t−) + g(t, x(t−), u(t)), for t ∈ σ, (1b)

where t0 ≥ 0 is the initial time, σ = {τk}Nk=1, with N finite
or N =∞, is a strictly increasing sequence of impulse times



in R>0, the state variable x(t) ∈ Rn, the continuous-time
input variable u(t) ∈ Rm and f and g are functions from
R≥0×Rn×Rm to Rn. The ordinary differential equation (1a)
defines the continuous evolution of the state vector x and (1b)
defines the value of x at the impulse times. To ensure that the
jumps in x caused by (1b) cannot occur infinitely frequently,
it is assumed that τk → ∞ when N = ∞. By convention
we define τ0 = 0 (however, τ0 is not considered an impulse
time) and, when N is finite, we set τN+1 := ∞. We will
employ I to denote the set of all these admissible impulse
time sequences, i.e. I denotes the set of all strictly increasing
sequences of positive real numbers that either have a finite
number of elements or are unbounded. Let U be the set of all
the functions u : R≥0 → Rm that are Lebesgue measurable
and locally bounded. We will use the term “input” to refer to
a pair w = (u, σ) ∈ U × I consisting of a continuous-time
input u and an admissible impulse time sequence σ.

Besides the fact that the impulsive system (1) is time-
varying (since f and g have explicit time dependence), another
difference with respect to standard formulations for impulsive
systems with inputs (such as [11]) is that in (1b) the value
of x at an impulse time t ∈ σ depends on the instantaneous
value u(t) and not on the left limit u(t−). Hence, we do not
need u to have a left limit at any t ∈ σ.

A solution to (1) corresponding to an initial time t0, an
initial state x0 ∈ Rn and an input w = (u, σ) ∈ U × I is a
right-continuous function x : [t0, Tx)→ Rn such that:

i) x(t0) = x0;
ii) x is a Carathéodory solution of the differential equation

ẋ(t) = f(t, x(t), u(t)) on [τk, τk+1)∩ [t0, Tx) for all 0 ≤
k ≤ N ; and

iii) for all t ∈ σ ∩ (t0, Tx) it happens that x(t) = x(t−) +
g(t, x(t−), u(t)), where x(t−) := lims→t− x(s).

The solution x is said to be maximally defined if no other
solution y satisfies y(t) = x(t) for all t ∈ [t0, Tx) and has
Ty > Tx. A solution x is forward complete if Tx = ∞. We
will use T (t0, x0, w) to denote the set of maximally defined
solutions of (1) corresponding to initial time t0, initial state x0,
and input w. We say that (1) is forward complete for a given
σ ∈ I if for every t0 ≥ 0, x0 ∈ Rn and w = (u, σ) with
u ∈ U , any solution x ∈ T (t0, x0, w) is forward complete.
Given σ ∈ I, we define nσ(t0,t] to be the number of elements
of σ (i.e. the number of jumps) that lie in the interval (t0, t]:

nσ(t0,t] := #
[
σ ∩ (t0, t]

]
. (2)

B. Stability definitions

Stability notions for systems with inputs that are uniform
with respect to initial time, such as uniform ISS and iISS,
bound the state trajectory in relation to initial state, elapsed
time and input. In the context of impulsive systems, the
input can be interpreted as having both a continuous-time
and an impulsive component. From (1b), one observes that
the values of u at the instants t ∈ σ may instantaneously
affect the state trajectory. For this reason, input bounds suitable
for the required stability properties have to account for the

instantaneous values u(t) at t ∈ σ. Given an input w = (u, σ)
and ρ1, ρ2 ∈ K∞, we thus define

‖w‖(ρ1,ρ2) :=

∫ ∞
0

ρ1(|u(s)|)ds+
∑
t∈σ

ρ2(|u(t)|). (3)

The quantity defined in (3) can be loosely interpreted as a
measure of the energy content of an input that has some
impulsive behaviour at the time instants t ∈ σ.

We are interested in determining whether some stability
property holds not just for a single impulse time sequence
σ ∈ I but also for some family S ⊂ I. For example, if we
know that jumps will not occur closer than ∆ > 0 units of
time apart, the family S could be defined as all those sequences
σ = {τk}Nk=1 where τk+1 − τk ≥ ∆ for all k ≥ 1. We thus
consider the uniform stability notions given in Definition 2.1.
To simplify notation, for every interval J ⊂ [0,∞) and u ∈ U ,
we define uJ via uI(t) := u(t) if t ∈ J and uJ(t) := 0
otherwise; for an input w = (u, σ), we define wJ := (uJ , σ).

Definition 2.1: Given S ⊂ I, we say that the impulsive
system (1) is
a) 0-GUAS uniformly over (the family of impulse time se-

quences) S if there exists β ∈ KL such that

|x(t)| ≤ β(|x(t0)|, t− t0) ∀t ≥ t0, (4)

for every x ∈ T (t0, x0, w0) with t0 ≥ 0, x0 ∈ Rn and
w0 = (0, σ) with σ ∈ S.

b) UBEBS uniformly over S if there exist α, ρ1, ρ2 ∈ K∞
and c ≥ 0 such that

α(|x(t)|) ≤ |x(t0)|+ ‖w(t0,t]‖(ρ1,ρ2) + c ∀t ≥ t0, (5)

for every x ∈ T (t0, x0, w) with t0 ≥ 0, x0 ∈ Rn and
w ∈ U × S. The pair (ρ1, ρ2) will be referred to as an
UBEBS gain.

c) iISS uniformly over S if there exist β ∈ KL and α, ρ1, ρ2 ∈
K∞ such that

α(|x(t)|) ≤ β(|x(t0)|, t− t0) + ‖w(t0,t]‖(ρ1,ρ2) (6)

for all t ≥ t0, for every x ∈ T (t0, x0, w) with t0 ≥ 0,
x0 ∈ Rn and w ∈ U ×S. The pair (ρ1, ρ2) will be referred
to as an iISS gain.

If (1) is 0-GUAS uniformly over S, then under u ≡ 0 the
state converges asymptotically to the origin. In addition, this
convergence is uniform over initial times and over impulse
time sequences within the family S. The uniform-over-S
UBEBS property just imposes a bound on the state trajectory
without necessarily guaranteeing convergence. The bound is
uniform over initial times and over all σ ∈ S, and depends on
the initial state norm and the input energy. The uniform-over-
S iISS property imposes a bound that is also uniform over
initial times and over all σ ∈ S. This bound is formed by a
term similar to the 0-GUAS property and another term equal
to the input energy.

This paper aims at yielding insight into this problem:
Let S ⊂ I. Under what conditions is the uniform-
over-S iISS property equivalent to the combination
of 0-GUAS and UBEBS, both uniformly over S?



This problem was answered for time-invariant non-impulsive
systems in [4], and for time-varying and switched (non-
impulsive) systems in [9].

III. MAIN RESULTS

A. Previous assumptions

First, we note that if jumps do not occur (σ = ∅), then (1)
becomes the type of system considered in [9] and hence f in
(1a) has to satisfy the conditions required in Assumption 1 of
[9]. We thus require the following definiton.

Definition 3.1: A function h : R≥0×Rn×Rm → Rn is said
to belong to class A, written h ∈ A, if the following items
hold:

i) there exist νh ∈ K and a nondecreasing function Nh :
R≥0 → R>0 such that |h(t, ξ, µ)| ≤ Nh(|ξ|)(1+νh(|µ|))
for all t ≥ 0, all ξ ∈ Rn and all µ ∈ Rm;

ii) for every r > 0 and ε > 0 there exists δ > 0 such that
for all t ≥ 0, |h(t, ξ, µ) − h(t, ξ, 0)| < ε if |ξ| ≤ r and
|µ| ≤ δ.

It is said to belong to class AL, written h ∈ AL, if h ∈ A
and, in addition,
iii) h(t, ξ, 0) is locally Lipschitz in ξ, uniformly in t, i.e. for

every ξ ∈ Rn there are an open ball B containing ξ and
a constant L ≥ 0 so that for every ξ1, ξ2 ∈ B and t ≥ 0
it happens that |h(t, ξ1, 0)− h(t, ξ2, 0)| ≤ L|ξ1 − ξ2|.

Note that a function h belongs to class AL if and only if it
verifies Assumption 1 of [9]. We thus will require that f in
(1a) satisfy f ∈ AL.

B. Intermediate results

To see what other conditions may be needed, we will try
to follow, mutatis mutandis, the steps in the proof of [9,
Theorem 1] for the characterization of iISS for non-impulsive
time-varying and switched systems. This proof requires two
intermediate results, namely Lemmas 3 and 4 in [9]. Lemma 3
in [9] gives a very crude estimate on how large the state of a 0-
GUAS system can become for an arbitrary input, depending on
time and input energy, when it is known that the state remains
bounded. The estimate has the property that the bound on
the state norm depends only on the initial state x(t0) and the
elapsed time t− t0, but is independent of (i.e. uniform over)
the initial time t0. The proof of [9, Lemma 3] requires the
integral expression for the solution to ẋ = f(t, x, u), given
by x(t) = x(t0) +

∫ t
t0
f(s, x(s), u(s))ds. As compared with

the latter, the integral expression for the solution of (1) has an
extra term due to its impulsive part:

x(t) = x(t0) +

∫ t

t0

f(s, x(s), u(s))ds+∑
τ∈σ∩(t0,t]

g(τ, x(τ−), u(τ)). (7)

The proof of Lemma 3 of [9] also requires Gronwall in-
equality, which provides an explicit inequality for continuous
functions that satisfy an implicit integral inequality. The next
lemma provides a generalization of this inequality suitable for

piecewise-continuous functions, i.e. for continuous functions
with isolated jumps.

Lemma 3.1 (Generalized Gronwall Inequality): Let 0 ≤
t0 < T ≤ ∞ and let y : [t0, T ) → R be a right-continuous
function having a finite left-limit at every discontinuity instant.
Suppose that the points of discontinuity of y can be arranged
into a sequence σ ∈ I. Let p ∈ R and q1, q2 ≥ 0. If y satisfies

y(t) ≤ p+ q1

∫ t

t0

y(s)ds+ q2
∑

s∈σ∩(t0,t]

y(s−) (8)

for all t ∈ [t0, T ), then in the same time interval y also satisfies

y(t) ≤ p(1 + q2)n
σ
(t0,t] · eq1(t−t0). (9)

The proof of Lemma 3.1 follows by direct application of
Proposition 1 of [12] (see also Theorem 1.5.1 in [10]). Note
that if y is continuous and hence σ in Lemma 3.1 satisfies
σ = ∅, then Lemma 3.1 reduces to the classic Gronwall
inequality.

We are now ready to provide a generalization of Lemma 3 of
[9] in the current setting. The proof is given in the Appendix.

Lemma 3.2 (Generalization of Lemma 3 in [9]): Let S ⊂ I,
let the impulsive system (1) be 0-GUAS uniformly over S and
let β ∈ KL characterize the 0-GUAS property. Suppose that
f, g ∈ AL and let νf and νg be, respectively, the functions
corresponding to f and g as per item i) of Definition 3.1. Let
χf , χg ∈ K∞ satisfy χf ≥ νf and χg ≥ νg . Then, for every
r > 0 and every η > 0, there exists L = L(r) and κ = κ(r, η)
such that if x ∈ T (t0, x0, w) with t0 ≥ 0, x0 ∈ Rn, w =
(u, σ) ∈ U × S satisfies |x(t)| ≤ r for all t ≥ t0, then also

|x(t)| ≤ β(|x0|, t− t0) +
[
(t−t0+nσ(t0,t])η

+κ‖w(t0,t]‖(χf ,χg)
]
(1+L)

nσ
(t0,t] ·eL(t−t0). (10)

As with [9, Lemma 3], the inequality (10) is only useful when
its right-hand side is less than r, since |x(t)| ≤ r for all
t ≥ t0 is already assumed. If σ = ∅ (no impulses), and hence
nσ(t0,t] = 0, then (10) reduces to the corresponding bound in
Lemma 3 of [9].

We now reach the main difference between the non-
impulsive and impulsive cases, namely that the bound on the
state given by Lemma 3.2 does not only depend on the initial
state and elapsed time. This happens because of the factor
nσ(t0,t] that counts the number of jumps in the interval (t0, t].
Fixing the elapsed time to T , so that t = t0 + T , the quantity
nσ(t0,t0+T ] need not be uniformly bounded over all values of
t0, as the following example shows.

Example 3.1: Consider the sequence σ = {τk}∞k=1 with
t1 = 1 and τk+1 = τk + 1/(k + 1). Note that σ is a strictly
increasing sequence and limk→∞ τk =

∑∞
k=1(1/k) = ∞.

Then σ has no finite limit points and hence σ ∈ I. However,
limk→∞ τk+1 − τk = limk→∞ 1/(k + 1) = 0, and hence
consecutive elements of σ occur closer together as time
increases. Then, if we consider the interval (t0, t0 +1] and the
number of elements of σ that fall within the latter interval,
namely nσ(t0,t0+1], it follows that limt0→∞ nσ(t0,t0+1] =∞. ◦

We thus will require the following definition.



Definition 3.2: The set S ⊂ I is said to be uniformly
incrementally bounded (UIB) if there exists a nondecreasing
function φ : R>0 → R≥0 so that nσ(t0,t] ≤ φ(t− t0) for every
σ ∈ S and all t > t0 ≥ 0. ◦
The set S[τD] of dwell-time sequences with dwell-time τD >
0 or more generally the set S[N0, τD] of average dwell-time
sequences with chatter bound N0 ∈ N and average dwell-time
τD > 0 (σ ∈ S[N0, τD] if nσ(t0,t] ≤ N0 + τD(t − t0) for all
0 ≤ t0 < t), are examples of UIB sets.

The other intermediate result, namely Lemma 4 of [9],
shows that if a system is 0-GUAS, then UBEBS could be
equivalently defined setting c = 0 in (5). By imposing the
condition that S ⊂ I be UIB, we are able to extend this result
to the current setting. The proof is given in the Appendix.

Lemma 3.3: Consider the impulsive system (1) and let
S ⊂ I be UIB. Suppose that f, g ∈ AL. If (1) is 0-
GUAS and UBEBS, both uniformly over S, then there exist
α̃, ρ̃1, ρ̃2 ∈ K∞ for which the estimate (11) holds for every
x ∈ T (t0, x0, w) with t0 ≥ 0, x0 ∈ Rn and w ∈ U × S.

α̃(|x(t)|) ≤ |x(t0)|+ ‖w(t0,t]‖(ρ̃1,ρ̃2) ∀t ≥ t0. (11)

C. Characterizations of iISS

We now have almost all the ingredients required for an-
swering the stated problem. The only additional step is an ε-δ
characterization of the uniform-over-S iISS property, given as
Theorem 3.1. The proof is given in the Appendix.

Theorem 3.1: Let ρ1, ρ2 ∈ K∞ and S ⊂ I. Consider the
notation ‖w‖ = ‖w‖(ρ1,ρ2) and for r ≥ 0, BSr := {w ∈
U ×S : ‖w‖ ≤ r}. Then, system (1) is iISS uniformly over S
with iISS gain (ρ1, ρ2) if and only if it is forward complete
for every σ ∈ S and the following conditions hold:

i) For every T ≥ 0, r ≥ 0, s ≥ 0, there exists C > 0 such
that every x ∈ T (t0, x0, w) with t0 ≥ 0, x0 ∈ Bnr and
w ∈ BSs satisfies |x(t)| ≤ C for all t ∈ [t0, t0 + T ].

ii) For each ε > 0, there exists δ > 0 such that every x ∈
T (t0, x0, w) with t0 ≥ 0, x0 ∈ Bnδ and w ∈ BSδ satisfies
|x(t)| ≤ ε for all t ≥ t0.

iii) There exists α̃ ∈ K∞ such that for every r, ε > 0 there
exists T > 0 so that for every x ∈ T (t0, x0, w) with
t0 ≥ 0, x0 ∈ Bnr and w ∈ U × S, then

α̃(|x(t)|) ≤ ε+ ‖w‖, ∀t ≥ t0 + T.

We may finally provide an answer to the problem addressed.
This is given in the following Theorem.

Theorem 3.2: Consider the impulsive system (1) and sup-
pose that f, g ∈ AL. Let S ⊂ I be a UIB set of impulse time
sequences. Then, (1) is iISS uniformly over S if and only if
it is 0-GUAS and UBEBS, both uniformly over S.

Proof: (⇒) Considering w = (u, γ) with u = 0, the
estimate (6) reduces to α(|x(t)|) ≤ β(|x(t0)|, t−t0) and hence
|x(t)| ≤ α−1(β(|x(t0)|, t − t0)). The function β̃ := α−1 ◦β
satisfies β̃ ∈ KL, and hence (4) follows with β replaced by
β̃. Therefore, clearly iISS implies 0-GUAS, both uniformly
over S. Consider β ∈ KL from (6), define β0 ∈ K∞ via
β0(r) = β(r, 0), and note that β0(r) ≥ r for all r ≥ 0.

Define ψ ∈ K∞ via ψ(r) = β−10 (r/2) ∈ K∞, and note that
ψ(r) ≤ r/2 for all r ≥ 0. From (6), we obtain

ψ ◦α(|x(t)|) ≤ ψ
(
β0(|x(t0)|) + ‖w(t0,t]‖(ρ1,ρ2)

)
≤ ψ (2β0(|x(t0)|)) + ψ(2‖w(t0,t]‖(ρ1,ρ2))
≤ |x(t0)|+ ‖w(t0,t]‖(ρ1,ρ2),

and hence (5) follows with α replaced by α̃ := ψ ◦α ∈ K∞.
We have thus shown that iISS implies UBEBS, both uniformly
over S.

(⇐) Let α̃, ρ̃1, ρ̃2 ∈ K∞ be given by Lemma 3.3, so that
(11) is satisfied. We will prove that (1) is iISS uniformly over
S with iISS gain (ρ̃1, ρ̃2) by establishing each of the items of
Theorem 3.1.

i) Let T ≥ 0, r ≥ 0 and s ≥ 0. Let x ∈ T (t0, x0, w)
with t0 ≥ 0, x0 ∈ Bnr , w ∈ BSs . From (11), it follows that
α̃(|x(t)|) ≤ r + s, and hence |x(t)| ≤ α̃−1(r + s) + 1 =: C
for all t ≥ t0. This establishes item i) of Theorem 3.1.

ii) Let ε > 0. Let δ = α̃(ε)/2. Then, if x ∈ T (t0, x0, w)
with t0 ≥ 0, x0 ∈ Bnδ and w ∈ BSδ , it follows from (11) that
|x(t)| ≤ α̃−1(2δ) = ε for all t ≥ t0. This establishes item ii)
of Theorem 3.1.

iii) Let α = α̃/2 ∈ K∞. Let r, ε > 0 and let x ∈
T (t0, x0, w) with t0 ≥ 0, x0 ∈ Bnr and w ∈ U × S. We
distinguish two cases:

(a) ‖w‖ ≥ r,
(b) ‖w‖ < r.

In case (a), from (11) we have α̃(|x(t)|) ≤ r + ‖w(t0,t]‖ ≤
r + ‖w‖ ≤ 2‖w‖, hence α(|x(t)|) ≤ ‖w‖ ≤ ε + ‖w‖ for all
t ≥ t0.

Next, consider case (b). From (11), we have α̃(|x(t)|) ≤
r + ‖w‖ < 2r =: r̃ for all t ≥ t0. Let β ∈ KL characterize
uniform-over-S 0-GUAS property, so that (4) is satisfied under
zero input, and let L = L(r̃) > 0 be given by Lemma 3.2. Let
ε̃ = ε and T̃ > 0 satisfy β(r̃, T̃ ) < ε̃/2. Let φ correspond to
the UIB property of S, and define ψ : R>0 → R>0 via ψ(s) =
s+φ(s). Define η = ε̃

4ψ(T̃ )(1+L)ψ(T̃ )eLψ(T̃ )
. Let κ = κ(r̃, η) >

0 be given by Lemma 3.2. Let δ = ε̃
4κ(1+L)ψ(T̃ )eLψ(T̃ )

. Define

N :=
⌈
r
δ

⌉
and T := NT̃ , where dse denotes the least integer

not less than s ∈ R.
For i = 0 to N , let si = t0 + iT̃ . Consider the intervals

Ii = [si−1, si], with i = 1, . . . , N . We claim that there exists
j ≤ N − 1 for which ‖w(sj ,sj+1]‖ ≤ δ. For a contradiction,
suppose that ‖w(sj ,sj+1]‖ > δ for all 0 ≤ j ≤ N − 1.
Then, ‖w‖ ≥ ‖w(s0,sN ]‖ =

∑N−1
j=0 ‖w(sj ,sj+1]‖ > Nδ ≥ r,

contradicting case (b). Therefore, let 0 ≤ j ≤ N − 1 be such
that ‖w(sj ,sj+1]‖ ≤ δ.

Since x ∈ T (sj , x(sj), w) and |x(t)| ≤ r̃ for all t ≥ sj ,
from Lemma 3.2 it follows that

|x(sj + T̃ )| ≤ β(|x(sj)|, T̃ )+(
[T̃ + nσ(sj ,sj+1]

]η + κ‖w(sj ,sj+1]‖
)

(1 + L)
nσ(sj,sj+1]eLT̃

≤ β(r̃, T̃ ) + (ψ(T̃ )η + κδ)(1 + L)ψ(T̃ )eLψ(T̃ ) ≤ ε̃.



Therefore, using (11) with t0 replaced by sj + T̃ , we reach

α̃(|x(t)|) ≤ |x(sj + T̃ )|+ ‖w(sj+T̃ ,t]
‖ ≤ ε̃+ ‖w‖

for all t ≥ t0+T because t0+T ≥ sj+T̃ . Since α = α̃/2 ≤ α̃,
it follows that item iii) of Theorem 3.1 also is satisfied.

IV. CONCLUSIONS

We have addressed the characterization of the integral input-
to-state stability property for time-varying impulsive systems
in terms of global uniform asymptotic stability under zero
input and a uniformly bounded-energy input bounded state
property. We have shown that by imposing the condition that
the number of jumps over an interval be bounded in relation to
the interval length but irrespective of the interval’s initial time,
this characterization carries over to the type of time-varying
impulsive systems considered. Future work may be aimed at
extending this characterization to hybrid systems where jumps
could occur infinitely often.

APPENDIX

A. Proof of Lemma 3.2

The proof requires the following Claim, whose proof fol-
lows from Appendix B of [9] by replacing f(t, ξ, µ, i) with
h(t, ξ, µ) and γ with νh.

Claim 1: Let h ∈ A (as per Definition 3.1). Then, for every
r∗ > 0 and η > 0 there exists κ = κ(r∗, η) > 0 such that for
all t ≥ 0, ξ ∈ Bnr∗ and µ ∈ Rm,

|h(t, ξ, µ)− h(t, ξ, 0)| ≤ η + κνh(|µ|).

Fix r > 0 and η > 0, and define r∗ := β(r, 0) ≥ r. Let
Lf = Lf (r) > 0 and Lg = Lg(r) > 0 be Lipschitz constants
for f(t, ·, 0) and g(t, ·, 0), respectively, on the compact set Bnr∗
and valid for every t ≥ 0. Let L = max{Lf , Lg}. Let κf and
κg be the quantities given by Claim 1 in correspondence with
r∗ and η, for f and g, respectively. Let κ = max{κf , κg}. Let
x ∈ T (t0, x0, w) with t0 ≥ 0, x0 ∈ Rn, w = (u, σ) ∈ U × S
satisfy |x(t)| ≤ r for all t ≥ t0. Let y ∈ T (t0, x0, w0), with
w0 = (0, σ). Then, x(t), y(t) ∈ Bnr∗ for all t ≥ t0. Let t ≥ t0.
For all t0 ≤ τ ≤ t, we have, using (7),

|x(τ)− y(τ)| ≤
∫ τ

t0

∣∣∣f(s, x(s), u(s)
)
− f

(
s, y(s), 0

)∣∣∣ds
+

∑
s∈σ∩(t0,τ ]

∣∣∣g(s, x(s−), u(s)
)
− g
(
s, y(s−), 0

)∣∣∣
Adding and subtracting f(s, x(s), 0) and g(s, x(s−), 0) within
the respective norm signs, and employing the bound in f and
g given by Claim 1, it follows that

|f(s, x(s), u(s))− f(s, y(s), 0)| ≤ η + κfνf (|u(s)|)
+ Lf |x(s)− y(s)|,

|g(s, x(s−), u(s))− g(s, y(s−), 0)| ≤ η + κgνg(|u(s)|)
+ Lg|x(s−)− y(s−)|.

Defining δ(t) = |x(t) − y(t)|, and recalling the definition of
L and κ, then for all t0 ≤ τ ≤ t,

δ(τ) ≤
∫ t

t0

[η+κχf (|u(s)|)]ds+
∑

s∈σ∩(t0,t]

[η+κχg(|u(s)|)]

+

∫ τ

t0

Lδ(s)ds+
∑

s∈σ∩(t0,τ ]

Lδ(s−)

The result then follows from application of Lemma 3.1, the
facts that

∫ t
t0
ηds = (t − t0)η and

∑
s∈σ∩(t0,t] η = nσ(t0,t]η,

and |x(t)| ≤ |y(t)|+ δ(t) ≤ β(|x0|, t− t0) + δ(t).

B. Proof of Lemma 3.3

Let α, ρ1, ρ2 and c be as in the estimate (5). Let ρ̃1 :=
max{ρ1, νf} and ρ̃2 := max{ρ2, νg}. For r ≥ 0 define

ᾱ(r) := sup
x∈T (t0,x0,w), t≥t0≥0, |x0|≤r, w∈U×S, ‖w‖≤r

|x(t)|

where ‖w‖ := ‖w‖(ρ̃1,ρ̃2). From this definition, it follows
that ᾱ is nondecreasing and from (5) that it is finite for all
r ≥ 0. Next, we show that limr→0+ ᾱ(r) = 0. Let β ∈ KL
be the function which characterizes the uniform-over-S 0-
GUAS property of (1), let φ correspond to the UIB property
of S, and define ψ : R>0 → R>0 via ψ(s) = s + φ(s).
Let r∗ = α−1(2 + c) and L = L(r∗) > 0 be given by
Lemma 3.2. Let ε > 0 be arbitrary. Pick 0 < δ1 < 1 such that
δ1 ≤ β(δ1, 0) < ε/2, and T > 0 such that β(δ1, T ) < δ1/2.
Define η = δ1

4ψ(T )(1+L)ψ(T )eLψ(T ) and let κ = κ(r∗, η) > 0

be given by Lemma 3.2. Last, pick 0 < δ2 < 1 such that
δ2 < δ1

4κ(1+L)ψ(T )eLψ(T ) . Then, for every x ∈ T (t0, x0, w),
with t0 ≥ 0, |x0| ≤ δ1, w ∈ U × S and ‖w‖ ≤ δ2, we
claim that |x(t)| < ε for all t ≥ t0. First, note that under
the given bounds for x0 and w, from (5) it follows that
α(|x(t)|) ≤ δ1 + δ2 + c ≤ 2 + c, and hence |x(t)| ≤ r∗

for all t ≥ t0 ≥ 0. Then, application of Lemma 3.2 with
χf = ρ̃1 and χg = ρ̃2 gives the estimate (10), whence for all
t ∈ [t0, t0 + T ],

|x(t)| ≤ β(|x0|, 0) + [ψ(T )η + κ‖w(t0,t]‖](1 + L)ψ(T )eLψ(T )

≤ β(δ1, 0) + [ψ(T )η + κδ2](1 + L)ψ(T )eLψ(T ) < ε,

where we have used the facts that 0 ≤ t − t0 ≤ T ≤ ψ(T ),
nσ(t0,t] ≤ φ(t − t0) ≤ φ(T ) ≤ ψ(T ). Also from (10) we
have that |x(t0 + T )| ≤ β(δ1, T ) + [ψ(T )η + κδ2](1 +
L)ψ(T )eLψ(T ) < δ1. Since x ∈ T (s1, x(s1), w), with s1 =
t0+T , and |x(s1)| < δ1, then |x(t)| < ε for all t ∈ [s1, s1+T ]
and |x(s1 + T )| < δ1. Therefore, by means of an inductive
argument we can prove that |x(t)| < ε for all t ∈ [sn, sn+T ],
where sn = t0 + nT , and that |x(sn + T )| < δ1. In
consequence, |x(t)| < ε for all t ≥ t0 as we claim. Thus,
if δ = min{δ1, δ2}, for all x ∈ T (t0, x0, w), with t0 ≥ 0,
|x0| ≤ δ, w ∈ U × S with ‖w‖ ≤ δ, we have |x(t)| ≤ ε for
all t ≥ t0. Therefore, ᾱ(r) ≤ ᾱ(δ) < ε for all 0 < r < δ and
limr→0+ ᾱ(r) = 0.

Since ᾱ is nondecreasing and limr→0+ ᾱ(r) = 0 there exists
α̂ ∈ K∞ such that α̂(r) ≥ ᾱ(r) for all r ≥ 0. Let x ∈
T (t0, x0, w) with t0 ≥ 0, x0 ∈ Rn and w ∈ U × S. Let



t ≥ t0.From well-known results on differential equations, there
exists x∗ ∈ T (t0, x0, w(t0,t]) such that x∗(τ) = x(τ) for all
τ ∈ [t0, t]. By using the definition of ᾱ and the fact that
α̂(r) ≥ ᾱ(r), we then have |x(t)| = |x∗(t)| ≤ α̂(|x0|) +
α̂(‖w(t0,t]‖). Define α̃ ∈ K∞ via α̃(s) = α̂−1(s)/2. Applying
α̃ to both sides of the preceding inequality and using the fact
that α̃(a+ b) ≤ α̃(2a) + α̃(2b), we reach α̃(|x(t)|) ≤ |x0|+
‖w(t0,t]‖, which establishes the result.

C. Proof of Theorem 3.1

Necessity is straightforward, so we just establish sufficiency.
Item i) implies that (1) is forward complete for every σ ∈ S.
To see this, suppose that there exist t0 ≥ 0, x0 ∈ Rn and
w ∈ U × S so that x ∈ T (t0, x0, w) is not forward complete.
Let Tm < ∞ be the maximum existence time of x. Then,
σ ∩ [t0, Tm) is finite and x is obtained by piecing together
a finite number of Carathéodory solutions over bounded in-
tervals. By standard properties of differential equations, then
limt↗Tm |x(t)| = ∞. By causality, x does not change if
w is replaced by w̄ := w[t0,Tm] = (u[t0,Tm], σ[t0,Tm]), with
u[t0,Tm] coinciding with u in the interval [t0, Tm] and being 0
elsewhere, and σ[t0,Tm] = σ ∩ [t0, Tm]. Since u ∈ U implies
that u is locally bounded, it follows that s := ‖w̄‖ <∞. Let
r = |x(t0)| and take C in correspondence with r, s and T =
Tm from item i). Then, |x(t)| ≤ C for all t ∈ [t0, t0 + Tm],
which contradicts the fact that limt↗Tm |x(t)| =∞.

Let α̃ ∈ K∞ and T > 0 be given by item iii), the latter
in correspondence with r > 0 and ε = 1. Let C be given by
item i) in correspondence with s = r and T . From items i) and
iii), we then have, whenever t0 ≥ 0, x0 ∈ Bnr and w ∈ BSr ,

|x(t)| ≤ C, ∀t ∈ [t0, t0 + T ],

α̃(|x(t)|) ≤ 1 + ‖w‖, ∀t ≥ t0 + T.

It follows that α̃(|x(t)|) ≤ α̃(C) + 1 + ‖w‖ for all t ≥ t0.
Let φ(r) := inf{C̃ ≥ 0 : α̃(|x(t)|) ≤ C̃, ∀x ∈

T (t0, x0, w),∀t ≥ t0 ≥ 0,∀x0 ∈ Bnr ,∀w ∈ BSr }. By the
previous analysis, then φ(r) ≤ α̃(C)+1+r <∞ for all r ≥ 0.
Also, φ is nondecreasing and α̃(|x(t)|) ≤ φ(|x(t0)|)+φ(‖w‖)
for all t ≥ t0 whenever x ∈ T (t0, x0, w) with t0 ≥ 0, x0 ∈ Rn
and w ∈ U×S . From item ii), it follows that limr↘0 φ(r) = 0.
There thus exists η ∈ K∞ such that φ ≤ η and then

α̃(|x(t)|) ≤ η(|x(t0)|) + η(‖w‖) for all t ≥ t0, (12)

whenever x ∈ T (t0, x0, w) with t0 ≥ 0, x0 ∈ Rn and w ∈
U × S. Let ψ, α ∈ K∞ be defined via ψ(s) = η−1(s/2) and
α = min{α̃, ψ ◦ α̃}. Then, applying ψ to (12) and using the
inequality ψ(a+ b) ≤ ψ(2a) + ψ(2b), it follows that

α(|x(t)|) ≤ |x(t0)|+ ‖w‖ for all t ≥ t0, (13)

whenever x ∈ T (t0, x0, w) with t0 ≥ 0, x0 ∈ Rn and w ∈
U × S. Define

Tr,ε := inf
{
τ ≥ 0 : α(|x(t)|) ≤ ε+ ‖w‖,∀t ≥ t0 + τ,

∀t0 ≥ 0,∀x ∈ T (t0, x0, w),∀x0 ∈ Bnr ,∀w ∈ U × S
}
.

By item iii) and since α ≤ α̃, then Tr,ε <∞ for every r, ε > 0.
Moreover, Tr,ε is nondecreasing in r for fixed ε > 0 and
nonincreasing in ε for fixed r > 0. By (13), then Tr,ε → 0 as
ε→∞ for fixed r > 0.

Fact 1: Tr,ε can be strictly upper bounded by T̄r,ε with the
following properties:
a) For each fixed r > 0, T̄r,· : R>0 → R>0 is continuous,

strictly decreasing, and onto, so that limε↘0 T̄r,ε =∞ and
limε→∞ T̄r,ε = 0.

b) For each fixed ε > 0, T̄·,ε is strictly increasing and
limr→∞ T̄r,ε =∞.

Let ψr denote the inverse function of T̄r,ε considered as a
function of ε for fixed r > 0. For every r > 0, then ψr is
continuous on R>0 and lims↘0 ψr(s) = ∞. By definition of
Tr,ε and since T̄r,ε > Tr,ε, we have that

t0 ≥ 0, x0 ∈ Bnr , w ∈ U×S, x ∈ T (t0, x0, w), t ≥ t0+ T̄r,ε

⇒ α(|x(t)|) ≤ ε+ ‖w‖ (14)

Note that t = t0 + T̄r,ε is equivalent to ε = ψr(t− t0). Hence,
from the implication (14) at t = t0 + T̄r,ε, it follows that

t > t0 ≥ 0, x0 ∈ Bnr , w ∈ U × S, x ∈ T (t0, x0, w)

⇒ α(|x(t)|) ≤ ψr(t− t0) + ‖w‖ (15)

The proof concludes following exactly the same steps as for
the proof of Lemma 2.7 in [13].
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