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Abstract— This article proposes an integrated navigation
system for multiple micro aerial vehicles flying in formation.
A data fusion algorithm uses measurements from an inertial
measurement unit, a GPS receiver, and a camera allowing to
use the positioning information of the surrounding vehicles to
improve its estimation. A measure of the navigation perfor-
mance of the formation is defined. Based on such measure, the
position where each vehicle should be located in the formation
is studied to guarantee the best overall navigation quality.

I. INTRODUCTION

Several research projects with the goal of developing
swarm of micro aerial vehicles (MAVs) have emerged in the
last years. The reason is the broad spectrum of applications
in which this kind of systems could be applied, e.g., rescue,
surveillance, inspection of hazardous environments, among
others. For instance, in [1], [2] a swarm of vision-controlled
MAVs capable of autonomous navigation is presented. The
swarm is used for 3D-mapping of the environment, where
each vehicle collects data which is then fused and processed
off-line for precise 3D-mapping. During the mission, vehi-
cles are monitored and commanded with a ground station.
Sharing navigation information among MAVs can improve
the performance of the swarm, but additional computations
and technological challenges must be taken into account,
for instance inter-vehicle communication. Depending on the
swarm mission, MAV hardware, and navigation sensors, the
decision of sharing navigation information should be taken.
This fact results in the need of a quantitative measure of
how to improve the navigation performance of the system if
navigation information is shared among vehicles.

The navigation system is a fundamental component for
vehicle control, since it computes the navigation parameters
(position, velocity and attitude) of the vehicle. Different
sensors can be used to estimate the navigation parameters.
For instance, inertial navigation systems compute navigation
parameters numerically integrating data provided by an iner-
tial measurement unit (IMU), which contains three orthogo-
nal gyroscopes and three orthogonal accelerometers. These
systems are fundamental in several applications because they
collect and provide autonomous information at high rates.
Nevertheless, accumulated errors grow unbounded over time.
To achieve an acceptable level of accuracy, a high quality
IMU is required, which results in high cost and elevated size
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and weight, making its use impractical for many applications
like MAVs.

In contrast, navigation systems that depend on external
signals (e.g. GPS, magnetometers, cameras) provide mea-
surements with bounded errors but at slower data rates, which
translates into limitations for certain applications. Moreover,
these sensors are vulnerable to jamming or temporal occlu-
sions of signals which affect their measurements.

The core of an integrated navigation system is a data fu-
sion algorithm (usually an extended Kalman filter - EKF) that
combines the on-board sensor information. This algorithm
estimates the navigation parameters with bounded errors,
high accuracy and high data rates. By doing this, the quality
and cost of the inertial sensors can be drastically reduced.
Fusing navigation information brings the ability of using
small size and low weight inertial sensors in MAVs while
still having a good navigation performance.

In this article we present an integrated navigation system
to be used in MAVs flying in formation. The fusion algorithm
incorporates measurements from an IMU, a GPS receiver,
and a camera that allows to visually detect the surrounding
vehicles. Integration of IMU and GPS data is common in the
literature, see for example [3] and references therein. Differ-
ent methodologies for complementing GPS/INS integrated
navigation systems with vision sensors have been studied.
For instance, Hoshizaki et al. [4] and Veth et al. [5] studied
how the inclusion of feature-tracking methods improve the
performance of tightly-coupled INS/GPS navigation system.
In [6] Fakih et al. proposed an adaptive method for merging
information provided by a camera with inertial sensors and
GPS. Priot et al. [7] proposed a method for performing
inertial sensors calibration, which merged information of
a deeply-coupled INS/GPS navigation system and images
provided by a camera.

Using a camera as an exterioreceptive sensor not only
complements GPS/INS systems, but it can also help main-
taining a good estimate on GPS occlusion, as seen for
example in [8]–[10]. In [8], [9], cameras are used on-
board the vehicles to extract features from the environment
and estimate UAVs poses. Saska et al. [10] use on-board
cameras to detect fiducial markers placed on other vehicles
to estimate relative distance, which was fused with IMU and
Optical Flow measurements. In [11], a monocular camera
is used to improve agents positioning, with a UAV flying
over a group of unmanned ground vehicles (UGV) without
state information sharing. Martinelli et al. [12] studied the
integration of visual information from a monocular camera
with that of an IMU in cooperative localization, sharing
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sensor data.
In this work we propose a simple loosely-coupled

INS/GPS integration. Although techniques mentioned above
may have better performance, the main contribution of this
work is not the INS/GPS integration. Instead, we are inter-
ested in using camera measurements to obtain relative posi-
tioning with respect to other vehicles in the swarm/formation.
These measurements allow sharing navigation information
among vehicles, which can improve the navigation perfor-
mance. In some sense, this is similar to the visual SLAM
problem, where we replace landmarks with the surrounding
vehicles.

The works mentioned so far have in common that all
vehicles in the same domain are equal. This assumption is
usually true, but not always holds. One can imagine a group
of UGV with different sensors, as individual tasks may differ
to achieve a global goal. This is easier to see in the case of
MAVs, as their payload weight is a fundamental constraint.

Now, suppose that a formation of MAVs (with different
quality of navigation systems) is performing a given task,
also assume that vehicles have relative position informa-
tion (for instance given by the camera). We are interested
in studying the following problem: Given a fixed vehicle
formation, is the navigation performance affected if we
rearrange the order of the vehicles? For answering this
question we study the navigation performance of the for-
mation and analyze how this performance changes under
vehicles permutations. Under certain assumptions we define
the optimal vehicles arrangement.

Results presented here can be extended to other navigation
sensors measuring relative positioning. The reason for using
a camera to provide inter-vehicle relative information is
mainly practical, since it is a small, light, and low cost sensor.

The outline of this paper is as follows: in section 2
we present notation and the preliminaries. In section 3 we
introduce integrated navigation algorithms, focusing on the
dynamics that describes the error behavior of these systems,
which is crucial for implementing the integrated navigation
algorithm. Section 4 is devoted to introducing a simplified
model for the camera used as navigation sensor. In section
5 we present the integrated navigation algorithm that fuses
inertial, GPS, and camera information. In section 6 we study
the optimal formation problem exposed above and finally in
section 7 we present simulation results.

II. PRELIMINARIES

In what follows, Rn denotes the space of (column) vectors
with n real components. Given a matrix A ∈ Rn×m,
AT ∈ Rm×n denotes its transpose. SO(3) denotes the
special orthogonal group of matrices in R3×3, i.e., orthogonal
matrices with determinant equal to 1 (which is the set of
matrices representing rotations in R3).

The operator S : R3 → R3×3 is defined as the (invertible)
function that assigns to x ∈ R3, the unique skew-symmetric
matrix S(x) ∈ R3×3 such that S(x)y = x × y, for every
y ∈ R3, where × denotes the standard cross product. In

fact, if x = (x1, x2, x3)T then

S(x) =

 0 −x3 x2

x3 0 −x1

−x2 x1 0

 .
Given k matrices in Rn×m, we define the Rkn×km matrix

diag


A1

A2

...
Ak

 =


A1 0 . . . 0
0 A2 . . . 0

0 0
. . . 0

0 0 . . . Ak


III. INERTIAL NAVIGATION SYSTEM

To determine the position, velocity, and orientation of
a vehicle from inertial measurements (accelerometers and
gyroscopes), the differential kinematic equations that relate
such parameters must be integrated in real time [3]. This
task is performed by the inertial navigation system (INS).
To perform this operation, it is required to know the initial
position, velocity, and attitude of the vehicle. Given that,
this computation is based on the numerical integration of the
kinematic equations. The accurate knowledge of the initial
conditions, as well as the accuracy of the inertial instruments,
are crucial for the navigation. Otherwise the errors could
grow unboundedly with time. This is the main drawback
of the INS, and it is not negligible in low cost inertial
instruments, in particular those based on MEMS technologies
[13].

A. Inertial navigation system error dynamics

In this section, an INS error model for each vehicle in
the formation of MAVs is presented. This model is of great
importance in the design of the integrated navigation system.

Let pi, vi : R → R3 and Ci : R → SO(3) functions
of time t ∈ R representing the (true) position, velocity and
attitude of vehicle i, respectively. Let p̂i, v̂i : R → R3 and
Ĉi : R→ SO(3) the position, velocity and attitude of vehicle
i computed by the INS.

As usual, the INS position and velocity errors are defined
as

δpi = p̂i − pi, (1)
δvi = v̂i − vi. (2)

and the attitude error φ : R→ R3 is defined as

φi = S−1(ĈiC
T
i − I). (3)

Remark III.1. It is well known that, a non-zero vector
ψ ∈ R3 can be identified with the (unique) rotation matrix
having ψ ∈ R3 as invariant vector and rotating any v ∈ R3,
‖ψ‖ radians (defining a positive direction of rotation) around
ψ/‖ψ‖. Moreover, this identification is given by

M(ψ) = I +
sin ‖ψ‖
‖ψ‖

S(ψ) +
1− cos ‖ψ‖
‖ψ‖2

S2(ψ) ∈ SO(3).

Note that, for ψ small enough (neglecting second order
terms) M(ψ) ∈ SO(3) can be approximated by M̃(ψ) =
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I + S(ψ) ∈ R3×3. Then, for a given time t ∈ R, the
attitude error has an interesting physical interpretation.
Since Ĉ(t) = (I + S(φ(t)))C(t), for small φ(t) ∈ R3, the
matrix M̃(φ(t)) = I + S(φ(t)) approximates the rotation
matrix that compensates the cosine matrix calculated by the
INS.

Close to the equilibrium point (δpTi , δv
T
i , φ

T
i ) = 0 ∈ R9

the INS error dynamics can be modeled as [3],

Ẋi(t) = Ãi(t)Xi(t) + B̃i(t)ξ̃i(t) (4)

where,
Xi(t) = (δpi(t)

T , δvi(t)
T , φi(t)

T )T ,

Ãi(t) =

 0 I 0
g

|p̂i(t)| (3
p̂i(t)p̂i(t)

T

|p̂i(t)|2 − I) 0 −S(Ĉi(t)fi(t))

0 0 0

 ∈
R9×9,

B̃i(t) =

 0 0

0 Ĉi(t)

Ĉi(t) 0

 ∈ R9×6 and

ξ̃i(t) = (δωi(t)
T , δfi(t)

T )T ∈ R6.

The specific force fi and the angular velocity ωi are the
IMU measurements of vehicle i, which are corrupted with
perturbations δfi and δωi, respectively. The gravity g is
assumed a constant with value 9.798m

s2 .
Given the sequence of times {tk}k∈N, it is possible to

discretize equation (4) to obtain a discrete time model [3]:

Xi(tk+1) = Ai(tk)Xi(tk) +Bi(tk)ξi(tk). (5)

To design an integrated navigation algorithm, the IMU
measurements perturbations are modeled as gaussian zero-
mean stochastic processes {ξi(tk)}k∈N with realizations in
R6 and covariance matrices Qi(tk) = E

(
ξi(tk)ξi(tk)T

)
>

0. Thus, the INS error is the stochastic process {Xi(tk)}k∈N,
with realizations in R9, given by equation (5).

If we have n ∈ N MAVs, then we can define the stochastic
process {X(tk)}k∈N, with realizations in R9n, given by
XT (tk) = [XT

1 (tk), XT
2 (tk), . . . , XT

n (tk)], k ∈ N, which
models the INS error of all the vehicles in the formation.
Then, from equation (5) it follows that

X(tk+1) = A(tk)X(tk) +B(tk)ξ(tk), (6)

where

A(tk) = diag


A1(tk)
A2(tk)

...
An(tk)

 ,

B(tk) = diag


B1(tk)
B2(tk)

...
Bn(tk)

 and ξ(tk) =


ξ1(tk)
ξ2(tk)

...
ξn(tk)

 .

p1

zb

yb

xb

pi
p2

zi

yi

xi

qi2

qi1

Fig. 1. Camera model

IV. CAMERA MEASUREMENTS MODEL

Suppose that we have a formation of n MAV, with posi-
tions {p1(t), p2(t), . . . , pn(t)}. The purpose of this section
is to present the method implemented to determine the
position of vehicle i, by observing with a camera ki(t) ∈ N
vehicles, with known positions pj(t) ∈ R3, j ∈ Ii(t) ⊆
{1, 2, . . . , n}, j 6= i. Observe that, the number of vehicles
in the field of view is not the same for each vehicle (this
is the reason for subindex i in ki) and it is a function of
time. For example, suppose that we have 5 UAV flying in
formation and, in time t ∈ R, vehicle 1 can see vehicles
I1(t) = {2, 4, 5}, (k1(t) = 3).

In order to simplify notation, in what follows we will omit
the dependence on time t. For defining the camera model,
we will make reference to Figure 1. For a given time t ∈ R,
let pi = pi(t) ∈ R3 be the camera focal point of vehicle
i, with focal distance df , and let πf be the camera plane
defined as

πf = {p ∈ R3 : (p− pi + dfz
b)T zb = 0}.

Where (xb, yb, zb) is an orthogonal frame with zb normal
to the plane πf and xb, yb defining the axis of the image
where the points qij are measured by the camera.

Notice that, since the camera is fixed to the vehicle, the
frame (xb, yb, zb) defines the attitude of the vehicle1. Let
αij , βij ∈ R be the coordinates of point qij in the camera
plane (i.e., the coordinates measured by the camera). If Ci ∈
SO(3) is a matrix containing vectors xb, yb, zb as columns
(i.e., the matrix representing the attitude of vehicle i), then:

(qij − pi)(pj − pi)T ẑb = Ci

 αij

βij
−df

 (pj − pi)T ẑb = (7)

= −df (pj − pi),

or more compactly, since ẑb = Ci [0 0 1]
T ,

M̃ijC
T
i (pj − pi) = 0, (8)

1This is the reason why the supraindex b is used, the body frame, as it
is usually called.
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where

M̃ij =

[
df 0 αij

0 df βij

]
.

This is a simplified standard camera model, see for in-
stance [4], [14].

Remark IV.1. Notice that, to determine the position pi ∈ R3

using only camera information it is necessary to know the
attitude of vehicle i (i.e., Ci ∈ SO(3)) and the position of
at least two vehicles pj , pk, i 6= j, k satisfying, αij 6= αik or
βij 6= βik, i.e., two vehicles distinguishable with the camera.
Indeed, suppose that pj , pk, i 6= j, k then we can write[

M̃ij

M̃ik

]
CT

i pi =

[
M̃ijC

T
i pj

M̃ikC
T
i pk

]
. (9)

If αij 6= αik or βij 6= βik, it follows that

[
M̃ij

M̃ik

]
=


df 0 αij

0 df βij
df 0 αik

0 df βik


has full rank, then equation (9) has a unique solution.

If ki (different) vehicles {pjr}r=1,...,ki , jr ∈ Ii are in the
field of view of the camera of vehicle i, and two of these
vehicles satisfy condition given in Remark IV.1, position of
vehicle i can be obtained by solving equation

 M̃ij1
...

M̃ijki

CT
i p

c
i =

 M̃ij1C
T
i pj1

...
M̃ijki

CT
i pjki

 . (10)

The supra-index in pci is to remark that this position is
obtained with measurements provided by the camera.

Let χIi(j) =

{
1 if j ∈ Ii
0 if j /∈ Ii

and Mij = χIi(j)M̃ij .

Notice that, equation (10) can be written as,

 Mi1

...
Min

CT
i p

c
i =

 Mi1C
T
i p1

...
MinC

T
i pn

 . (11)

Then,

pci = Ci

 Mi1

...
Min


†  Mi1C

T
i p1

...
MinC

T
i pn

 =

 n∑
j=1

MT
ijMij

−1 n∑
j=1

MT
ijMijC

T
i pj


The matrix Ci needed to solve equation (10) can be ob-

tained from the navigation system of vehicle i. The positions
pj of the other vehicles are provided by their respective
navigation systems. As a result, inter-vehicle communication
is required to share such navigation information.

A. Camera error model

The camera error model is obtained by a perturbation of
equation (11), where the focal length df is assumed known.
By Remark III.1, δCi = Ĉi − Ci ≈ S(φi)Ci. Then,

 Mi1

...
Min

CT
i δp

c
i =

 Mi1C
T
i S(p1 − pi)

...
MinC

T
i S(pn − pi)

φi+ (12)

 Mi1C
T
i δp1

...
MinC

T
i δpn

+

 δMi1C
T
i (p1 − pi)

...
δMinC

T
i (pn − pi)

 ,
where δMij = χIi(j)

[
0 0 δαij

0 0 δβij

]
.

Then,

−δpci (t) = Σiφi + ∆i

 δp1

...
δpn

+ Θi


δαi1

δβi1
...

δαin

δβin

 , (13)

where,
Σi(t) = Σi(Ii(t), t) = −Ci(t) Mi1(t)

...
Min(t)


†  Mi1(t)Ci(t)

TS(p1(t)− pi(t))
...

Min(t)CT
i (t)S(pn(t)− pi(t))


∆i(t) = ∆i(Ii(t), t) =

−Ci(t)

 Mi1(t)
...

Min(t)


†

diag

 Mi1(t)CT
i (t)

...
Min(t)CT

i (t)


Θi(t) = Θi(Ii(t), t) =

−Ci(t)

 Mi1(t)
...

Min(t)


†

diag


zb

T
(p1(t)− pi(t))

zb
T

(p1(t)− pi(t))
...

zb
T

(pn(t)− pi(t))
zb

T
(pn(t)− pi(t))


Notice that ∆i(t) is a block diagonal matrix. We will use

the notation (∆i(t))k for the k block element of its diagonal,
i.e.,

(∆i(t))k = −Ci

 n∑
j=1

MT
ijMij

−1

MT
ikMikC

T
i

The supra-index in δpci denotes that this is the error in
position calculation obtained with the camera, and should
not be confused with δpi, which is the position error of the
INS.
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The method for calculating the position of vehicle i with
a camera has three different sources of error. The first term
(which depends on φi) is due to the attitude error given by
the navigation system of vehicle i. The second term (which
depends on δpj) represents the uncertainty in the position of
vehicle j, given by the navigation system of vehicle j. The
last source (which depends on δαij and δβij) is given by
the errors in the determination of points αij and βij , i.e., a
camera error measurement.

V. INTEGRATED NAVIGATION

Navigation systems based on GPS and INS have comple-
mentary characteristics. While GPS-based systems allow to
bound INS errors, the latter provides navigation information
between GPS data acquisitions or when satellites are not
available. This motivated the use of both sources of informa-
tion in the same integrated navigation system. The ability to
combine different information sources is not limited to INS
and GPS. It is possible to incorporate attitude or position
information from radar, altimeters, magnetometers, cameras,
etc.

In a nutshell, integrated navigation systems can be de-
scribed as follows: The INS provides navigation information
affected with errors (due to the uncertainty in the initial
conditions or to errors in the accelerometers and rate gyros).
These errors are expected to be small enough for relative
short periods of time. The system errors behave as described
in equation (5). Given such model, we can obtain a filter
that estimates the INS errors and compensates for them.
Therefore, a measurement of such errors is needed. Here is
when the additional sensors—such as GPS, magnetometers
or cameras—come into play. These additional sensors are
usually called external navigation sensors, since their mea-
surements depend on external parameters (satellite signals,
visual patterns, earth magnetic field, among others).

A. INS/GPS integrated navigation system

Assume that we have n > 2 MAV flying and suppose
that, additionally to the INS, each vehicle is equipped with
a GPS receiver providing its position and velocity. Then, for
vehicle i = 1, . . . , n it is possible to implement an integrated
navigation system merging the information provided by the
INS and the GPS. Here we propose the classical loosely-
coupled INS/GPS (see for instance [3]). Let pgpsi , vgpsi ∈
R3 be the position and velocity given by the GPS, which
are corrupted by zero-mean Gaussian white noises ηpi

and
ηvi with covariance matrices (σp

i )
2
I3×3, (σ

v
i )

2
I3×3 > 0,

respectively. We define the Kalman filter input vector as

ygpsi :=

[
p̂i − pgpsi

v̂i − vgpsi

]
=

[
δpi + ηpi

δvi + ηvi

]
.

Suppose that {tk}k∈N are discrete times when a mea-
surement of GPS is available. According to equation 5, the
state model of the Kalman filter of the integrated navigation
system is given by

 δpi(tk+1)
δvi(tk+1)
φi(tk+1)

 = Ai(tk)

 δpi(tk)
δvi(tk)
φi(tk)

+Bi(tk)ξi(tk), (14)

ygpsi (tk) = Hgps
i (tk)

 δpi(tk)
δvi(tk)
φi(tk)

+ ηgpsi (tk), (15)

where Hgps
i (tk) =

[
I3×3 0 0

0 I3×3 0

]
, for every tk and

ηgpsi (tk) =

[
ηpi(tk)
ηvi(tk)

]
.

B. INS/Camera integrated navigation system

The scheme proposed for integrating the camera mea-
surement with the INS is similar to that used for the GPS
measurements. Although the integration could be done using
bearings to each vehicle instead of solving equation (11),
in order to use the same formulation as we did for the
(loosely-coupled) GPS, we use the vehicle position measured
with the camera instead of bearings to each vehicle. But it
should be taken into account that a better performance of
the system could be achieved if bearings to each vehicle is
used for integrating the camera and pseudorange and delta-
pseudorange for the GPS.

Suppose that, at time tk, vehicle i has ki (different) vehi-
cles {pjr}r=1,...,ki , jr ∈ Ii in its field of view, and satisfies
the condition of Remark IV.1. Applying equation (11) we can
calculate position pi. We call this measurement pci , which is
corrupted by an error δpci , given by equation (12). We define
the input vector as,

yci :=
(
p̂i − pci

)
=
(
δpi − δpci

)
.

Observe that, δpci does not depends only on Xi =
(δpTi , δv

T
i , φ

T
i ) but also on every Xjr , jr ∈ Ii, r = 1, . . . , ki.

Furthermore, since the vehicles in the field of view of vehicle
i change with time, then all states Xi, i = 1, . . . , n must be
taken into account in the Kalman filter model. In fact, by
equation (13),

yci (tk) =
[
Hc

i1 . . . Hc
in

]

X1

X2

...
Xn

+ Θi


δαi1

δβi1
...

δαin

δβin

 (16)

where,

Hc
ij(tk) =

{ (
I 0 Σi(tk)

)
if i = j(

(∆i(tk))j 0 0
)

if i 6= j
(17)

By equation (6), the state model of the Kalman filter for
the INS/Camera integrated navigation system is,

X(tk+1) = A(tk)X(tk) +B(tk)ξ(tk) (18)
yci (tk) = Hc

i (tk)X(tk) + Θi(tk)ηci (tk), (19)

56



where ηci (tk) = [δαi1(tk), δβi1(tk), . . . , δαin(tk), δβin(tk)]
T

are assumed zero-mean Gaussian random noises with
covariance matrix (σc

i )
2
I2n×2n > 0, and

Hc
i (tk) =

[
Hc

i1 Hc
i2 . . . Hc

in

]
(tk)

.

Fusing both integration strategies, we obtain an
INS/GPS/camera integrated navigation system.

VI. BEST FORMATION FLYING CONFIGURATION UNDER
DIFFERENT QUALITY NAVIGATION SENSORS

Suppose that we have a formation of n vehicles where
m < n of these vehicles have low-cost navigation systems
and n − m vehicles are carrying high-quality navigation
systems. If the vehicles are performing a certain task, the
problem we address in this section is the following: How to
distribute the vehicles in the formation in order to achieve
the best navigation performance for the whole swarm. More
specifically, where should the n−m vehicles with the high
quality navigation system be located.

To study this problem, a performance criteria must be es-
tablished. Observe that, for vehicle i = 1, . . . , n, the dynamic
model for the Kalman filter of the integrated navigation
algorithm is given by (see equation (6))

X(tk+1) = A(tk)X(tk) +B(tk)ξ(tk) (20)
Y (tk) = H(tk)X(tk) +D(tk)η(tk), (21)

where Y T (tk) = [yT1 (tk), yT2 (tk), . . . , yTn (tk)] are
the external measurements of each one of the n
vehicles and ηT (tk) = [ηT1 (tk), ηT2 (tk), . . . , ηTn (tk)]
the corresponding (uncorrelated) noises with zero-
mean and (diagonal) covariance matrix R(tk) =
diag

(
R1(tk), R2(tk), . . . , Rn(tk)

)
> 0. More precisely,

for i = 1, . . . , n:

yi =

[
ygpsi

yci

]
∈ R9, ηi =

[
ηgpsi

ηci

]
∈ R2n+6,

Ri(tk) =

 (σp
i )

2
iI3×3 0 0

0 (σv
i )

2
I3×3 0

0 0 (σc
i )

2
I2n×2n

 > 0,

where (σp
i )

2
, (σv

i )
2
> 0 stands for GPS position and

velocity variance noises and (σc
i )

2
> 0 for the camera

variance noise, respectively. Notice that here it is assumed
that the variance noise is the same in x, y and z-axis.

Matrix D(tk) is a block diagonal, D(tk) =
diag (D1(tk), D2(tk), . . . , Dn(tk)), where

Di(tk) =

[
I6×6 0

0 Θi(tk)

]
∈ R9×(2n+6),

for i = 1, . . . , n. In what follows we assume that Θi(tk),
and hence Di(tk), are full rank matrices for all i = 1, . . . , n
and tk ≥ t0.

Matrix H(tk) =
[
HT

1 (tk), HT
2 (tk), . . . ,HT

n (tk)
]T

,
where

Hi(tk) =

[
0 . . . Hgps

i (tk) . . . 0
Hc

i (tk)

]
∈ R6×9n,

for i = 1, . . . , n.

A. Kalman filter covariance and information matrices

Let P (tk) and P−(tk) be the update and prediction
covariance matrices of the Kalman filter corresponding to the
formation (see equations (20)). More precisely, if X̂(tk) is
the Kalman filter estimate of state X(tk) given measurements
{ti}i=0,...,k, then

P (tk) = E((X(tk)− X̂(tk))(X(tk)− X̂(tk))T ).

In a similar way, if X̂−(tk) is the Kalman filter prediction
of state X(tk) given measurements {ti}i=0,...,k−1, then

P−(tk) = E((X(tk)− X̂−(tk))(X(tk)− X̂−(tk))T ).

Matrices P (tk), P−(tk) are assumed to be strictly posi-
tive. Also denote I(tk) = P (tk)−1 and I−(tk) = P−(tk)−1,
which are the update and prediction information matrices. It
is well-known that the relation between I(tk) and I−(tk) is
given by [15],

I(tk) = I−(tk) +H(tk)T (D(tk)R(tk)D(tk)T )−1H(tk).
(22)

These matrices give a measure of the navigation perfor-
mance of the formation. In fact, the trace of matrix I(tk)
is closely related to the observability of state X(tk) [16].
If matrix I(tk) increases with time (in the order given
for positive matrices) then the navigation error decreases.
Besides the trace of the information matrix, there are several
scalar measures of how well the system performs; see for in-
stance [17], which is a survey of different scalar performance
measures for tracking and sensor allocation problems.

One of the main reasons to work with the information
matrix in navigation is that it allows to separate information
coming from each sensor. This fact is used in the next
section to select the optimal vehicle formation for the MAV.
However, other measures based on the covariance matrix
have a more clear physical interpretation. The A-optimality
and D-optimality criteria decide the best filter solution based
on the trace and determinant of the covariance matrix,
respectively [17].

It is possible to estimate a solution for the D-optimality
criteria based on the trace of information matrix [18].

B. MAV Formation flying

In this section we assume that n vehicles are performing
a given task that requires such vehicles to preserve their
attitude and relative positions, i.e., pi(tk)−pj(tk) = pi(tl)−
pj(tl) for all i 6= j = 1, . . . , n and times tk, tl > t0.

As mentioned before, suppose that some vehicles have a
better navigation system, more specifically, better external
navigation sensors but similar inertial sensors. We will as-
sume that the vehicles are numbered with respect to their
external sensors quality, i.e., σp

1 ≤ σp
2 ≤ · · · ≤ σp

n, also
σv

1 ≤ σv
2 ≤ · · · ≤ σv

n, and σc
1 ≤ σc

2 ≤ · · · ≤ σc
n.

Notice that, if inertial sensors are similar and their er-
rors are assumed to be stationary, it follows that Q =
Qi(tk) = E

(
ξi(tk)ξi(tk)T

)
> 0. Thus, E

(
ξ(tk)ξ(tk)T

)
=

diag(Q, . . . , Q).
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The problem we are interested in is: Does the navigation
quality of the formation depend on where each vehicle is
located in the formation? As a quality index of the formation
navigation performance we use the trace of information
matrix I(tk).

Note that relocation of vehicles in the formation can be
seen as a reordering the diagonal blocks Ri(tk) of matrix
R(tk) = diag (R1(tk), R2(tk), . . . , Rn(tk)). Each formation
has associated an information matrix. In fact, each reordering
of R(tk) can be represented as ΠTR(tk)Π, where Π is a
block permutation matrix. Thus we can give a parametriza-
tion of the set of information matrices corresponding to the
different formations. Notice that, at most we have n! different
information matrices:

IΠ(tk) = I−Π (tk)+H(tk)T (D(tk)ΠTR(tk)ΠD(tk)T )−1H(tk).
(23)

Since D(tk)ΠTR(tk)ΠD(tk)T is a block diagonal matrix,
it follows that,

IΠ(tk) = I−Π (tk) +
n∑

j=1

Hj(tk)T (Dj(tk)ΠTRj(tk)ΠDj(tk)T )−1Hj(tk).

Let I = {1, . . . , n} and fΠ : I → I a bijective function,
each of these functions corresponding to a different block
permutation matrix Π. Since Hgps

i = Hgps
j , for every i, j =

1, . . . , n, by equations (14) and (18), it follows that,

IΠ(tk) = I−Π (tk) + diag (J1, . . . , Jn)

+

n∑
j=1

(σc
fΠ(j))

−2Hc
j (tk)T (Θj(tk)Θj(tk)T )−1Hc

j (tk), (24)

where, for j = 1, . . . , n

Jj =


(
σp
fΠ(j)

)−2

I3×3 0 0

0 (σv
fΠ(j))

−2I3×3 0

0 0 03×3


The second term of equation (24) shows that the location

of the vehicles with better GPS receivers does not affect the
formation navigation performance, because the trace of this
term is invariant respect any vehicle permutation. However, a
better camera sensor can affect the navigation performance.
This can be studied looking at the third term of the equation
above. This is an expected result since the camera gives
relative vehicle positions, meanwhile GPS gives absolute
position information.

Now, if attitude and relative vehicle positions are fixed,
then Hj = Hj(tk) and Θj = Θj(tk) do not depend on tk.
From equation (24), it follows that

tr(IΠ(tk)) = tr(I−Π (tk)) + 3

n∑
j=1

(
(σp

i )
−2

+ (σv
i )
−2
)

(25)

+

n∑
j=1

(
σc
fΠ(j)

)−2

tr
(
Hc

j
T (ΘjΘ

T
j )−1Hc

j

)
(26)

We are interested in solving the following problem: Given
I−Π (tk) find the argument of

max
{fΠ:I→I, bijective}

tr(IΠ(tk))

Solutions to this problem indicate where the vehicles with
better camera sensors should be located in order to achieve
the best navigation performance for the formation. Although
the solution above can be found solving n! Kalman filters,
this is numerical intractable if we have several vehicles in
the formation. The following results allows us to find the
solution to the problem presented above.

Lemma VI.1. Let A1, A2, . . . , An ∈ Rn×n be positive
matrices such that tr(A1) ≥ tr(A2) ≥ · · · ≥ tr(An), and
let α1 ≥ α2 ≥ · · · ≥ αn ≥ 0. Then,

tr

(
n∑

i=1

αiAi

)
≥ tr

(
n∑

i=1

βiAi

)
,

for every (β1, β2, . . . , βn) = fΠ ((α1, α2, . . . , αn)).

Proof: The proof follows from the linearity of trace
operator and from the fact that tr(Ai) ≥ 0, since Ai ≥ 0.

It makes sense to study the update-step in the information
filter, because different quality sensors are fundamental in
this step. Inertial sensors are involved in the prediction-step,
and every vehicle is carrying a similar inertial navigation
system.

The results presented above allow us to give a positive
answer to the question that motivates this section.

Theorem VI.2. Suppose we have a formation of n ∈ N
vehicles such that, for every tk, tl > t0, pi(tk) − pj(tk) =
pi(tl) − pj(tl) and Ci(tk) = Ci(t0), with i, j = 1, . . . , n.
Suppose that the external sensors satisfy 0 < σc

1 ≤ σc
2 ≤

· · · ≤ σc
n, and inertial sensors errors satisfy Q = Qi(tk) =

E
(
ξi(tk)ξi(tk)T

)
> 0, for every i = 1, . . . , n. Then, the

best formation flying configuration satisfies

tr
(
Hc

n
T (ΘnΘT

n )−1Hc
n

)
≤ · · · ≤ tr

(
Hc

1
T (Θ1ΘT

1 )−1Hc
1

)
Proof: The proof follows from Lemma VI.1 and

equation (25).

VII. SIMULATION RESULTS

In this section we present simulation results to validate
the proposed INS/GPS/camera integration strategy. First, we
show how relative position information improves the naviga-
tion performance, for this a benchmark trajectory is proposed
to analyse the incidence of the camera measurements on the
navigation performance.

The second simulation shows how the navigation per-
formance of the formation is modified when we rearrange
the order of the vehicles. We show a simple (but realistic)
example to put in evidence the importance of the location of
each vehicle.
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Fig. 2. Trajectory of one MAV with respect to an initial position: straight
flight (0 s to 200 s), left turn (200 s to 335 s), right turn (335 s to 470 s).
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Fig. 3. Trajectories of the 5 MAVs

A. Navigation system comparison

The first case of study is a formation of 5 MAVs flying
with constant altitude (1.2 m) above the ground and follow-
ing the trajectory shown in Figure 2. Each vehicle follows
the same trajectory relative to the initial point but with a
different initial attitude, as shown in Figure 3.

The vehicles have INS/GPS/camera navigation systems
with the following specifications:
• INS:

– Rate gyros noise: 1.5× 10−3 rad/s (σ).
– Accelerometers noise: 5× 10−3 m/s2 (σ).
– Initial attitude error: 10° (randomly distributed).

• GPS:
– Position noise: 15 m (σ).
– Velocity noise: 0.2 m/s (σ).

• Camera:
– Measurement noise: 0.5° (σ) (equivalent).
– Mask: 70° (view angle from MAV nose).

In the following section, we present the navigation results
only for vehicle 1 (MAV1) since similar results hold for the
remaining vehicles.

Figures 4 and 5 show position and attitude error corre-
sponding to the navigation system of MAV1 for 25 realiza-
tions. Figure 6 shows the vehicles that are in the field of
view of MAV1 over time.

It can be seen that around t = 225 s the first vehicle is
detected (vehicle 5). In Figure 5, it can be noted at that time,
how the attitude error calculated by the navigation system is

reduced since relative information is included. Furthermore,
it can also be seen that around t = 320 s the quality of the
estimation starts degrading, in agreement with the period in
Figure 6 when no vehicles are in the camera’s field of view.
This illustrates the improvement to the navigation system due
to the use of the camera.

B. Vehicles optimal allocation

In this section we study, for a given trajectory, how
the navigation performance of the formation is affected by
different vehicles arrangements. More precisely: there are
5 MAV flying in formation and one of them is assumed to
have a better navigation system. The vehicles are in hovering
position maintaining a fixed formation (equally distributed
in a circle), as it is shown in Figure 7. Only vehicle MAV1
has camera information, the remaining vehicles only have
INS/GPS navigation information. We locate the vehicle with
better navigation system (MAV1) in different positions (more
specifically we switch MAV1 and MAV2) and we study how
the navigation performance is affected. It is not difficult to
predict the outcome of this simulation since when the camera
is installed in MAV1, four vehicles are in the field of view.
However, when camera sensor is placed in MAV2 no vehicles
are in the field of view (because of the attitude of MAV2). In
this example it is clear that an optimal solution for vehicle
location is to place the vehicle with the camera in position
MAV1 (according to Figure 7). This is the solution given
in Theorem VI.2. When the camera is located in a vehicle
different from MAV1 then, tr

(
Hc

j
T (ΘjΘ

T
j )−1Hc

j

)
= 0,

for every j = 1, . . . since there are no vehicles in the
field of view of the camera. However, if the camera is
located in MAV1 then, tr

(
Hc

j
T (ΘjΘ

T
j )−1Hc

j

)
6= 0, for

every j = 2, . . .. Thus, if I0 ≥ 0 is the information matrix
corresponding to the ordering with the camera located in the
position of MAV1, then according to equation (25), it follows
that tr(I0) ≥ tr(IΠ), for every vehicle reordering Π.

Figures 8 and 9 show the effect on attitude error of
the navigation system when we switch MAV1 and MAV2.
Figure 8 shows the attitude error of MAV1 when the camera
is located in MAV1, the attitude error of the remaining
vehicles has a behavior similar to Figure 9. On the other
hand, if camera is located in MAV2 then the attitude error
of all vehicles is similar to Figure 9.

This is a simple example because only one vehicle is
equipped with a camera and it is easy to see where it should
be located. But the idea can be extended to a more complex
vehicle formation.

It is worth to mention that the idea presented here can be
used for different navigation configurations, however here
it is presented for a loosely coupled INS+GPS+Camera
configuration. For some sensors, in particular for camera
sensor, in real application the assumption that some cameras
are better than others (i.e., σc

1 ≤ ... ≤ σc
n) is not well-

founded. But even in the case, Theorem teo-optim-alloc
states where should be located the vehicles carrying the
cameras in order to make the most of this information, as
previous example shows.
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Fig. 4. Position error of the navigation system of MAV1. Similar results
hold for the others vehicles.

Fig. 5. Attitude error of the navigation system of MAV1. Similar results
hold for the others vehicles.

Fig. 6. Vehicles in the field of view of camera 1 over time
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Fig. 7. Vehicles in formation. Arrows show where is pointing the camera
of each vehicle. Only MAV1 has in the field of view the others vehicles in
the formation, as dotted lines show.
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Fig. 8. Attitude error for the optimal ordering.

VIII. CONCLUSIONS

In this article we presented an integrated navigation algo-
rithm for a fleet of UAV. Each vehicle carries a navigation
system that fuses information of inertial sensors, GPS and
a camera which provides position information of the sur-
rounding vehicles. It is assumed that each vehicle is capable
of transmitting its current navigation position. Also it is
assumed that each vehicle can be identified with the camera.

The use of relative positioning between vehicles has been
widely studied in the literature, not only for navigation but
for implementing control algorithms for formation flying.
From the point of view of navigation, several interesting
problems arise. In particular we are interested in studying
how the navigation performance is affected if we reorder
the vehicles in the formation. More specifically, we assumed
that some vehicles in the formation have better quality
navigation systems and we study where these vehicles should
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Fig. 9. Attitude error for the non-optimal ordering.
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be located to maximize the benefit of their high-quality
navigation information. Although this problem can be solved
numerically, we were interested in obtaining a formal result
that gives the optimal formation. In order to obtain this
result, we define a metric for the navigation performance
of the fleet based on the trace of the associated information
matrix. Under certain conditions, we showed that the optimal
formation can be found comparing the model measurement
matrices corresponding to each exterioreceptive sensor (GPS
or camera). It is worth mentioning that although we focus
on GPS or camera sensors, this result can be extended to
others exterioreceptive sensors that provide relative vehicle
position information.
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