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Memory reconsolidation occurs when a retrieving event destabi-
lizes transiently a consolidated memory, triggering thereby a new
process of restabilization that ensures memory persistence. Al-
though this phenomenon has received wide attention, the effect
of new information cooccurring with the reconsolidation process
has been less explored. Here we demonstrate that a memory-
retrieving event sets a neural tag, which enables the reconsolida-
tion of memory after binding proteins provided by the original or
a different contiguous experience. We characterized the specific
temporal window during which this association is effective and
identified the protein kinase A (PKA) and the extracellular signal-
regulated kinase 1 and 2 (ERK 1/2) pathways as the mechanisms
related to the setting of the reconsolidation tag and the synthesis
of proteins. Our results show, therefore, that memory reconsoli-
dation is mediated by a “behavioral tagging” process, which is
common to different memory forms. They represent a significant
advance in understanding the fate of memories reconsolidated
while being adjacent to other events, and provide a tool for de-
signing noninvasive strategies to attenuate (pathological/trau-
matic) or improve (education-related) memories.
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Memory, the capacity to store, remember, and retrieve events
that build an individual’s identity, has a fundamental role

weak learning events, capable of setting the tags but incapable of
inducing long termmemories, can produce stable memories if a new
salient event adjacent to them provides the proteins that contribute
to memory consolidation.
The validity of the BT assumptions for memory consolidation

has been demonstrated in rats through the combination of a weak
inhibitory avoidance (IA) training capable of inducing short- but
not long-term memory, and the adjacent exploration of a novel
open field (OF) capable of inducing protein synthesis in the hip-
pocampus. Within a critical time window, the weak IA learning
could use PRPs synthesized by the exploration of the novel OF,
thus resulting in the consolidation of an otherwise inexistent IA-
LTM (19). Similar designs have been used to show that several
LTMs processed at hippocampal and cortical levels depend on BT
processes (20–24). Furthermore, memory persistence and LTM of
extinction have also been shown to depend on BT mechanisms
(25, 26). This process can also account for the strengthening of
human memories via the coupling of training with emotional re-
lated events (27), a finding that has important consequences for
improving the retention of challenging contents at school (28).
In the case of memory reconsolidation, the role of novelty

after memory reactivation has been less explored. Previous work
showed that reactivation of an appetitive spatial memory in rats
induces a reconsolidation process that can be impaired by the
beta-adrenergic antagonist propranolol and that can be rescued
upon impairment by an adjacent spatial novelty (29). These

Significance

We studied how novel events contiguous to memory retrieval
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for the survival of numerous organisms. Memory consolidation is 
a crucial process, which consists of the stabilization of fragile 
memory traces into long-term memories (LTMs) (1). Memories 
may be subjected to a different process termed memory recon-
solidation, which occurs upon exposure to retrieving events that 
reactivate the memory (2, 3). Such retrieval destabilizes tempo-
rarily the information previously memorized, which undergoes 
then a new process of consolidation susceptible to interferences 
and which may result in the modification of the original LTM (4, 
5). Like in memory consolidation, protein-synthesis blockade after 
memory reactivation leads to retrograde amnesia (3), thus showing 
that both consolidation and reconsolidation rely on the synthesis of 
proteins. Yet, memory reconsolidation cannot be considered a mere 
recapitulation of consolidation as it is mediated by different brain 
structures and molecular cascades (4, 6–8).
Because one of the fundamental functions of reconsolidation 

is memory updating (9, 10), the role of new information contiguous 
to recall (11, 12) is of fundamental importance because it might 
boost or interfere with memory restabilization. Studies addressing 
the effect of adjacent, novel events on memory consolidation have 
led to the behavioral tagging (BT) hypothesis (13). BT is the be-
havioral analog of the synaptic tagging and capture hypothesis (14), 
formulated to explain the synaptic specificity in functional plasticity 
models of long-term potentiation and depression (15, 16). It pos-
tulates that two parallel and complementary mechanisms occur 
during LTM formation: the setting of transient learning tags in 
neurons, providing a potential substrate for storing recently ac-
quired information, and the synthesis of plasticity-related proteins 
(PRPs), that once captured at the tagged sites allow the consoli-
dation of memories (17, 18). This process explains, therefore, how
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results, which may be affected by early aging (30), suggested that BT
underlies memory reconsolidation but despite their evident interest
they did neither demonstrate the setting of a reconsolidation tag by
the retrieving event nor did they characterize the temporal dy-
namics of protein synthesis induced by the spatial novelty, the two
elements that are essential for a demonstration of a BT process.
Here we focused on the role of new information adjacent to

memory reactivation to determine if a BT process underlies mem-
ory reconsolidation. We hypothesized that retrieving events set a
reconsolidation tag allowing the binding of new proteins, which may
be provided by contiguous novel experiences. Using different be-
havioral tasks, we characterized the mechanistic underpinnings of
tag setting and PRP synthesis in a reconsolidation scenario, and
demonstrate that some reactivating events promote reconsolidation
by providing proteins that overcome the effect of a protein-synthesis
blocker. Our findings thus provide a definitive demonstration of BT
as an essential mechanism for memory reconsolidation.

Results
We first studied if the blockade of the reconsolidation process via
the infusion of a protein synthesis inhibitor could be prevented by

associating the memory reactivation session with a different be-
havioral task that usually induces protein synthesis in shared brain
areas. Rats were habituated to an IA box for 5 min during 2 d and
were then subjected to a training session performed 24 h later. In
such a training, they learn not to step down on a compartment in
which they receive an electric foot shock. On the fourth day, animals
were exposed to a reactivation session that lasted 40 s during which
they were replaced in the IA box in the absence of reinforcement
and LTM was again evaluated 24 h after this session. Fig. 1A shows
that control animals infused with a vehicle solution (Veh) in the
CA1 region of the dorsal hippocampus immediately after the
reactivation session exhibited IA-LTM on the next day; in contrast,
reactivated animals infused with an appropriate dose of the protein-
synthesis inhibitor emetine (EME; see SI Appendix, Fig. S1A for
dose–response effects) were amnesic. This effect was not observed
if EME was infused 24 h after training but without subjecting the
animals to the reactivation session. Hence, after reactivation, the IA
memory becomes labile and requires protein synthesis to persist,
thus confirming the existence of a reconsolidation phase (31).
If reconsolidation occurs through a BT process, two parallel and

complementary processes should be triggered when it is engaged:
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Fig. 1. Exploration of an OF rescues the blockade of reconsolidation induced by protein-synthesis inhibition for a persistent period of time and within a
restricted time window. (Top) Experimental design. The figures show the latency to step-down from the platform during TR and test sessions, expressed as
mean ± SEM. R: animals submitted to a reactivation session. NR: nonreactivated animals. (A–D) Newman–Keuls analysis after one-way ANOVA. (A) ***P <
0.001 vs. TR; +++P < 0.001 vs. R+Veh and NR+EME, n = 7. (B) ***P < 0.001 vs. TR; +++ P < 0.001 vs. R+Veh and OF-60+(R+EME), n = 8. (C) ***P < 0.001 and **P <
0.01 vs. TR, +++ P < 0.001 and ++P < 0.01 vs. R+EME (24 h LTM-Test); ##P < 0.01 vs. R+EME (7 d LTM-Test); n = 6–7. (D) ***P < 0.001 vs. TR; +++P < 0.001 vs.
R+Veh; OF-60+(R+EME) and OF+30+(R+EME); n = 8–10.
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could not be prevented by the prior OF exploration (60 min
before), suggesting that PKA is involved in the setting of the tag.
The infusion of U0126 also impaired memory reconsolidation,
but in this case, IA-LTM could be rescued by the prior OF ex-
ploration (Fig. 3B). This result indicates that the ERK 1/2
pathway does not participate in the tag-setting process. More-
over, the infusion of EME after the exploration of the novel
arena completely blocked the memory rescue (Fig. 3C) when
reactivation was followed by U0126 infusion. Overall, these re-
sults suggest that while the PKA pathway participates in the tag
setting, the ERK 1/2 pathway is involved in the synthesis of PRPs
required for the reconsolidation.
We next asked if the tagging and capture process underlying

IA reconsolidation also operates in the reconsolidation of a dif-
ferent kind of memory. We thus repeated the previous experi-
ments using the spatial version of the object recognition task
(SOR). In this task, an animal reveals its learning of the spatial
configuration of two identical objects when it exhibits higher ex-
ploration of the object that was displaced to a novel location in a
test (20, 40–42). The time exploring both objects allows calculating
a discrimination index (DI). The test also forms a hippocampus-
dependent memory but, contrary to the IA task that induces an
aversive memory, it induces a nonaversive spatial memory.
First, we observed that animals injected with Veh after a reac-

tivation session exhibited significant LTM in a test with a displaced
object (Fig. 4A). SI Appendix, Figs. S2–S4 show that in all cases, a
consolidated memory of the content learned during the training
session was present in the reactivation session, with equivalent
discrimination indexes between the different experimental groups
within each experiment. Infusing EME at an appropriate dose (SI
Appendix, Fig. S1B for dose–response effects) immediately after a
2-min SOR reactivation session performed 24 h after training
induced LTM amnesia 24 h later, confirming the necessity of
protein synthesis for the reconsolidation process triggered by the

TR LTM-Test
La

te
nc

y 
(S

ec
) R+EME

(EME-60’)+R
R+Veh

(OF+Veh)
+(R+EME)

(OF+EME)
+(R+EME)

TR

TR

React Test:  R+Veh

Test:  (EME-60)+R

24h

24h 24h

24h

EME

Veh
React

TR React Test:  (OF+Veh)
           +(R+EME)

23h 24h

EME
60mOF

TR Test:  R+EME24h 24h

EME

React

TR React Test:  (OF+EME)
           +(R+EME)

23h 24h

EME
60mOF

Veh

EME

***
***

***

0

30

60

90

120

150

180

+++ +++

Fig. 2. Exploration of an OF rescues IA-memory reconsolidation through a
protein-dependent mechanism. (Top) Experimental design. The figures show
the latency to step-down from the platform during training (TR) and test
sessions, expressed as mean ± SEM. R: animals submitted to a reactivation
session. ***P < 0.001 vs. TR; +++P < 0.001 vs. R+Veh, (EME-60′)+R and
(OF+Veh)+(R+EME). Newman–Keuls analysis after one-way ANOVA, n = 6–8.

the setting of a reconsolidation learning tag and the synthesis of 
PRPs. Moreover, if the setting of the tag is independent of protein 
synthesis, then the amnesia induced by EME infusion after 
memory reactivation could be prevented by providing the required 
proteins through a different associated task, performed when EME 
is not present. To test this hypothesis, we repeated the previous 
experiment but we allowed rats to explore a novel OF 60 min before 
exposing them to the IA-memory reactivation session in the pres-
ence of EME. Fig. 1B shows that exposure to the novel OF pre-
vented the amnestic effect of EME infusion, thus confirming that 
the coupling of novel events capable of providing PRPs during the 
reconsolidation phase has a facilitating effect.
We next evaluated whether the rescuing effect is specifically re-

lated to the protein-synthesis process. In other words, we studied if 
such a rescuing is possible in the case of the postretrieval LTM 
(PR-LTM) that depends on protein synthesis, but not in the case of 
the postretrieval short-term memory (PR-STM) that is independent 
of protein synthesis (31–33). Thus, we repeated the previous ex-
periment but testing the EME-infused animals 3 h, 24 h, and 7 d 
after memory reactivation (Fig. 1C). Infusing EME after the reac-
tivation session did not affect IA memory 3 h later but it induced a 
long-term amnesia 24 h and 7 d after the reactivation session. When 
the animals were allowed to explore the novel OF 60 min before the 
reactivation session, and EME was afterward infused, the PR-STM 
was again not affected. However, in the case of the 24-h memory, 
this treatment rescued the PR-LTM, which would be otherwise 
impaired in the absence of the OF experience (Fig. 1C). This res-
cuing effect persisted at least for 7 d.
As the lifetime of the tag is limited and the newly synthetized 

proteins are subjected to time-dependent degradation, the res-
cuing effect of the novel experience should be temporally re-
stricted. To test this hypothesis, we studied the time course of the 
memory-rescue efficiency of the novel OF by exposing different 
groups of animals to a novel OF at different times before or after 
the reactivation of the IA memory in the presence of EME. We 
found that OF exploration rescued memory reconsolidation 
when it was performed 1 h before or 30 min after the reactivation 
session, but not at farther time points (Fig. 1D), thus defining the 
temporal window that is necessary for the PRPs and the tag to 
coexist in order to promote memory reconsolidation.
To confirm that the novel OF experience provided newly syn-

thesized proteins to the tag established upon memory reactivation, 
we allowed animals to explore a novel OF 60 min before a memory 
reactivation session in the presence of EME, but this time, they 
were also infused with EME or Veh immediately after the OF 
session. Fig. 2 shows that in the Veh group the reconsolidation 
process was successfully achieved, thus showing again that PRPs 
produced during the OF session allow overcoming the effect of 
EME delivered upon memory reactivation. Yet, animals infused 
with EME both immediately after the OF exploration and upon 
memory reactivation had no memory, thus confirming that the 
PRPs rescuing reconsolidation under EME were synthesized 
upon the exploration of the novel arena.
As the existence of BT implies the setting of a tag triggered by 

memory reactivation, impairing this process could also lead to a 
blockade of memory reconsolidation and to LTM amnesia. In 
the absence of such a tag, an associated task providing new proteins 
should be ineffective to rescue the impaired memory. To test this 
hypothesis, we inhibited protein kinase A (PKA) and the extra-
cellular signal-regulated kinase 1 and 2 (ERK1/2) pathways, which  
mediate the reconsolidation process of different memories and are 
involved in BT during memory consolidation (34, 35). To this end, 
we infused either Veh, Rp-cAMP (PKA inhibitor), or U0126 
(MEK inhibitor) upon memory reactivation, at doses which proved 
to be effective in similar contexts (35–39). We determined if this 
interference was rescued by the previous exploration of a novel OF. 
Fig. 3A shows that the infusion of Rp-cAMP immediately after the 
reactivation session impaired memory reconsolidation in a way that
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while the PKA pathway was required for the process of tag
setting, the ERK 1/2 pathway was specifically activated to engage
the synthesis of PRPs required for the reconsolidation.
Overall, the present results provide a mechanistic analysis that

was absent in prior works indicating that BT could mediate
memory reconsolidation in rodents (29, 30). In these works, which
focused on both appetitive spatial learning and contextual fear
conditioning, a novel spatial experience (placing rats in a novel
box) contiguous to memory reactivation, improved the persistence
of the memory subjected to reconsolidation by the reactivating
event (29, 30). Furthermore, when the process of reconsolidation
was impaired by the delivery of the beta-adrenergic antagonist
propranolol, the introduction of spatial novelty reversed the im-
pairment (29). These findings are relevant, as they are consistent
with the participation of a BT process in memory reconsolidation,
but they lack the demonstration that the reactivating event sets a
reconsolidation tag and that the contiguous novel experience pro-
vides PRPs that once captured by the tag lead to longer memory
persistence. These two phenomena require specific analyses as they
have separate time courses, one which refers to the temporal
duration of the tag and the other to the temporal duration of
PRPs availability after synthesis. As these analyses were absent in
prior works, their conclusions were carefully formulated with re-
spect to the possibility that BT underlies the process of memory
reconsolidation (29). In contrast, our work characterized the
temporal dynamics and the molecular nature of both phenomena,
providing thereby the concrete demonstration of their participa-
tion in a reconsolidation scenario.
Different works reported that the BT process underlies LTM

consolidation in the case of aversive, appetitive, and spatial mem-
ories (13). This conclusion applies also to memory persistence (26)
and to the long-term extinction of aversive memories (25). Our work
shows that besides these scenarios, BT also participates in memory
reconsolidation, a fact that highlights its generality as a fundamental
mechanism underlying the formation of lasting memories.
Inhibiting the PKA and the ERK1/2 pathways upon memory

reactivation in the IA or SOR tasks revealed the different impli-
cation of these pathways in the process of memory reconsolidation.
Infusing the PKA inhibitor induced a retrograde amnesia that
could not be prevented by the exploration of a novel arena. In this
case, even when proteins were provided by the exploration of the
OF, memory was not reconsolidated, confirming the importance of

TR LTM-Test

La
te

nc
y 

(S
ec

) OF+(R+Rp)
R+Rp
R+Veh OF+(R+U0126)

R+U016R+Veh

La
te

nc
y 

(S
ec

)

TR LTM-Test

TR

TR

React Test:
R+Veh

Test:
R+Rp

24h

24h
24h

24h

Rp-cAMP

Veh

React

TR React Test:
OF+(R+Rp)

23h 24h

Rp-cAMP

60mOF

TR

TR

React Test:
R+Veh

Test:
R+U0126

24h

24h 24h

24h

U016

Veh

React

TR React Test:
OF+(R+U0126)

23h 24h

U0126

60mOF

***

C

La
te

nc
y 

(S
ec

)

(OF+EME)+
(R+U0126)

(OF+Veh)+
(R+U0126)

R+Veh

TR LTM-Test

*** ***

***

TR

TR

React Test:
R+Veh

Test:(OF+Veh)
+(R+U0126)

24h

23h 24h

24h

U016

Veh

React

TR React Test:(OF+EME)
+(R+U0126)

23h 24h

U0126

60mOF

60mOF
Veh

EME

BA

0

30

60

90

120

150

180

+++

0

30

60

90

120

150

180

***

+++

0

30

60

90

120

150

180

+++ +++

Fig. 3. PKA and ERK 1/2 are required for different processes during IA-memory reconsolidation. (Top) Experimental design. The figures show the latency to
step-down from the platform during TR and test sessions, expressed as mean ± SEM. R: animals submitted to a reactivation session. (A–C) Newman–Keuls
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n = 11–13. (C) ***P < 0.001 vs. TR; +++P < 0.001 vs. R+Veh and (OF+Veh)+(R+U0126), n = 6.

reactivation session (Fig. 4A). Again, this impairment of SOR 
reconsolidation by EME was prevented by OF exploration oc-
curring 60 min before memory reactivation (Fig. 4B). Further-
more, the amnesia induced by EME infusion after reactivation 
and its prevention by the exploration of the novel arena were 
specific for the PR-LTM (24 h), as no effect was observed for the 
postretrieval STM (3 h). This result confirms the specificity of the 
phenomenon for the long-term protein synthesis-dependent 
reconsolidation (Fig. 4C). Finally, we observed that the rescuing 
effect of the novel OF occurred when exploration took place be-
tween 120 min before and 60 min after the reactivation session 
(Fig. 4D).
We further showed that the OF exploration rescued memory 

reconsolidation due to its capacity to induce protein synthesis in 
the hippocampus, as the infusion of EME immediately after the 
exploration impaired rescuing (Fig. 5). We also observed that OF 
exploration was unable to prevent amnesia induced by the in-
fusion of Rp-cAMP in the dorsal hippocampus immediately after 
the reactivation session (Fig. 6A). This suggests again that the 
PKA pathway is involved in a fundamental process that, via the 
setting of the reconsolidation tag, allows the restabilization of 
the mnemonic trace. On the other hand, the amnesia induced by 
U0126 could be prevented by the previous exploration of the 
novel OF (Fig. 6B), and this prevention was in turn impaired by 
the infusion of EME immediately after the novel experience 
(Fig. 6C), suggesting that the ERK pathway is involved in the 
synthesis of PRPs required for SOR memory reconsolidation.

Discussion
Our results demonstrate conclusively that memory reconsolida-
tion occurs through a tagging and capture process, which un-
derlies the stabilization of memories resulting from different 
hippocampus-dependent learning tasks such as IA and SOR. In 
both experimental contexts, we demonstrated that infusing the 
protein synthesis inhibitor EME upon memory reactivation im-
pairs the reconsolidation process, leading to long-term amnesia. 
This amnesia could be overcome if animals explored a novel 
arena within a critical time window around memory reactivation. 
The rescuing effect of novelty was dependent on its capacity to 
induce the synthesis of PRPs in the hippocampus, and on their 
subsequent capture by a tag set upon the reactivation session. It 
was specific for the PR-LTM and persistent in time. Moreover,
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and determine the fate of the memory. Our data unveil that a
putative reconsolidation tag lasts around 30–45 min for the IA
memory and around 1–2 h for the SOR memory, showing that
despite their transient nature, the duration of the tags depends
on which memory is being reconsolidated. These time windows
explain why, in most studies, memory reconsolidation is impaired
by the action of protein synthesis inhibitors and other substances
provided immediately after memory reactivation, but not 4 or 6 h
later (3, 31, 43, 44). They account for the different timescales of
interference observed in the reconsolidation of distinct memo-
ries, and define a clear interval around a memory reactivation
session during which events and interventions could be used to
modify an established memory trace.
The possibility of attenuating established memories as a result

of impairing reconsolidation opens perspectives for treating pa-
thologies related to traumatic memories, phobias, and addictions
(10). Indeed, this strategy proved to be efficient in certain cases
(45–49). Our work allows improving this efficiency as it pro-
vides an innovative perspective to define the pharmacological or
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Fig. 4. Exploration of an OF rescues the blockade of reconsolidation induced by EME for a persistent period of time and within a restricted time window.
(Top) Experimental design. The figures show the discrimination index between the object moved to the novel position and the nonmoved object, expressed as
mean ± SEM, during TR and test sessions. R: animals submitted to a reactivation session. NR: nonreactivated animals. (A–D) Newman–Keuls analysis after one-
way ANOVA. (A) ***P < 0.001 vs. TR; +++P < 0.001 vs. R+Veh and NR+EME n = 6–7. (B) ***P < 0.001 vs. TR; +++P < 0.001 vs. R+Veh and OF+(R+EME), n = 7–8.
(C) ***P < 0.001 vs. TR, +++P < 0.001 vs. R+Veh and OF-60+(R+EME) in 24 h test, n = 6. (D) ***P < 0.001 vs. TR; +++P < 0.001 vs. R+Veh, OF-120+(R+EME), OF-
60+(R+EME) and OF+60+(R+EME); ♦♦♦P < 0.001 vs. R+Veh; ## P < 0.01 vs. OF-60+(R+EME), n = 6–9.

the PKA pathway for tag setting. In the absence of the tag, PRPs 
could not be captured to restabilize the mnemonic trace. As af-
fecting the tag results in the impossibility of capturing PRPs from 
any source, we cannot exclude that the PKA pathway also plays a 
role in the synthesis of PRPs during memory reconsolidation. In 
contrast, the participation of ERK1/2 pathway in memory recon-
solidation was better delimited. Inhibition of this pathway after 
memory reactivation induced long-term retrograde amnesia that 
could be overcome through exploration of a novel OF, i.e., through 
protein synthesis. This result indicates that ERK1/2 pathway is 
required for the PRPs synthesis process rather than for setting the 
reconsolidation tag. It also shows that if there was an effect of the 
inhibitor U0126 on the learning tag, it was not relevant to impair 
its function.
A tagging and capture mechanism relies on the coexistence of 

the tag and the newly synthesized proteins in order for the 
capture process to occur (17, 19). Both the duration of the tag 
and the protein synthesis/degradation dynamics define the time 
window during which cooccurring events can contribute PRPs



behavioral manipulations that may affect memory reconsolidation,
and the timescales at which different events can affect it. We posit
that traumatic memories could be effectively blocked if their
reactivation would be associated with a novel experience impairing
the reconsolidation tag or the protein synthesis process, or com-
peting for the proteins required for reconsolidation. In a different

scenario, our findings could help developing efficient strategies to
improve retention of valuable memories such as those acquired in
an educational context. Providing further PRPs during the recon-
solidation phase could enhance PRP capture by reconsolidation
tags and thus enhance the original and the updated memory traces.
In conclusion, the characterization of behavioral tagging as a fun-
damental mechanism underlying memory reconsolidation opens
new research avenues for designing effective therapies in transla-
tional research or to develop newstrategies to improve retention in
educational contexts.

Materials and Methods
Subjects. The study was conducted using male Wistar rats (weight: 280–300 g
at the moment of the experiment) from the animal core facility of the
Faculty of Exact and Natural Sciences of the University of Buenos Aires
(UBA). Rats were housed in groups of three per cage, containing water and
food ad libitum, at a constant room temperature of 22 °C and under a 12-h
light/dark cycle (lights on: 6 AM). The experiments were performed during
the light phase.

The experimental procedures used in this study were approved by the
Institutional committee for the use and care of laboratory animals of the
Faculty of Medicine of the UBA, and respected the guidelines of the National
Institute of Health Guide for the Care and Use of Laboratory Animals.

Drugs. Emetine, U0126, and Rp-cAMP were purchased from Sigma. Emetine
(50 μg per side diluted in saline), Rp-cAMP (0.5 μg per side diluted in saline),
or U0126 (0.4 μg per side diluted in 10% dimethyl sulfoxide in saline) were
infused in volume of 0.8 μL per side to specifically inhibit protein synthesis,
PKA or MEK protein kinase activities, respectively.

The drugs and doses used in this study were chosen based on their
demonstrated target specificity (50–52) and clear effects on memory (19,
35–39, 53, 54). In addition, the dose of EME used in our behavioral experi-
ments (50 μg) was obtained from a dose–response curve (with doses of 0.5;
5.0, and 50 μg per side), which showed its effectiveness to impair memory
reconsolidation in both tasks (SI Appendix, Fig. S1)

Surgical and Drug-Infusion Procedures. The procedures for implanting the
cannulas, infusing drugs, and examining the localization of cannulas histo-
logically were performed as described in a previous work (19). Antero-
Posterior (AP), Ventral (V), and Lateral (L) coordinates were established us-
ing the Bregma as the reference point. Briefly, guide cannulas were ste-
reotaxically implanted 1 mm above the pyramidal cell layer of the CA1
region of the dorsal hippocampus (AP −3.9 mm, V 3.0 mm, L ±3.0 mm) in rats
that were deeply anesthetized. The coordinates of the rat brain atlas by
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Paxinos and Watson (55) were used as a reference. After a resting and re-
covery period of at least 1 wk, procedural manipulations were performed.
Drugs were infused using a 30-gauge infusion needle, which was fitted into
the guide cannula. The tip of the infusion needle protruded 1.0 mm beyond
the guide cannula. The data included in the analyses corresponded to ani-
mals with correct cannula implants (>95% of the rats).

Behavioral Setups, Training, and Testing Procedures. To avoid unnecessary
emotional stress, all rats were handled daily for 3 min during 3 d before any
behavioral procedure. Animals were then randomly assigned to each ex-
perimental group/condition. Experiments were performed by more than one
experimenter (generally two or three) given the complexity of the experi-
mental schedules that went over more than 1 d. Each experimenter was blind
with respect to the treatment (behavioral or drug infusion) assigned to a
given animal.

The OF apparatuses were previously described (19). A novel environment
exploration consisted of a 5-min OF session. For the IA, we used a step-down
inhibitory avoidance system manufactured by Med Associates Inc. The
training protocol is an adaptation of that described previously by Radiske
et al. (31) showing the existence of reconsolidation in the IA task. Rats were
subjected to two habituation sessions, a training session, a reactivation
session, and a test session, each of them spaced by 24 h. During the habit-
uation session animals were placed in the platform and let to explore freely
the avoidance box for 5 min. During day three, in the training session, rats
were placed in the platform and immediately after stepping down with their
four paws, they received an electric foot shock (0.5 mA during 3 s). After the
end of the shock, rats were removed from the training box and returned to
their home cages. On day four, in the reactivation session, animals were
placed in the platform and taken from it after 40 s. On day five, a full test
session was performed placing the animals in the platform and measuring
the latency to step down up to a maximum of 400 s. In this task, the increase
in the latency to step down from training to test is indicative of memory. A
greater latency is indicative of a better memory. As training performance
was always equivalent among the different experimental groups, the
training (TR) group data resulted from a random pool of animals matching
the same number of animals in the larger experimental group. In this way,
an artificial increase in the global degrees of freedom was avoided.

The arena used for the SOR task was an acrylic box (60 cm width × 40 cm
length × 50 cm height) presenting different visual clues (black and white
patterns). During the first 2 d animals were habituated to the context letting
them freely explore the arena without objects for 30 min each a day. On day
three, when the training phase started, two identical objects were placed in
two adjacent corners of the arena, distant 7 cm from the lateral walls.
During this phase, animals could explore the arena during 8 min. We mea-
sured the time dedicated to explore each object. On the next day, memory
was reactivated by switching one of the objects to a new position and
allowing the rats to explore for 2 min. Finally, during the test session, the
object moved for the reactivation session was moved again to a new position
and animals were left to explore one more time during 2 min. The exploration
time was recorded for each object and expressed as a relative discrimination
index: (time in novel–time in old position)/(time in novel + time in old posi-
tion). Positive values of this index reflect the presence of memory. Values
around zero or negative values reflect the absence of memory.

To reduce the use of animals, rats were used twice, once in the IA task and
once in the SOR task. Performance in these tasks is not affected by their
sequential ordering (42) The rats could rest between 1 and 2 wk between the
two tasks.

Data Analysis. One-way ANOVA followed by post hoc Newman–Keuls tests
for multiple comparisons were used to perform between-group comparisons
by means of GraphPad Prism 8 (GraphPad Software Inc.). Full statistics, F
values, and degrees of freedom for each figure panel are provided in
SI Appendix.

Data Availability. Latencies and discrimination indexes for individual animals
are available at the Open Science Framework repository (https://osf.io/
r6d9u/).
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