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ABSTRACT

The ultimate purpose of the statistical analysis of ordinal patterns is to characterize the distribution of the features they induce. In particular,
knowing the joint distribution of the pair entropy-statistical complexity for a large class of time series models would allow statistical tests
that are unavailable to date. Working in this direction, we characterize the asymptotic distribution of the empirical Shannon’s entropy for any
model under which the true normalized entropy is neither zero nor one. We obtain the asymptotic distribution from the central limit theorem
(assuming large time series), the multivariate delta method, and a third-order correction of its mean value. We discuss the applicability of
other results (exact, first-, and second-order corrections) regarding their accuracy and numerical stability. Within a general framework for
building test statistics about Shannon’s entropy, we present a bilateral test that verifies if there is enough evidence to reject the hypothesis that
two signals produce ordinal patterns with the same Shannon’s entropy. We applied this bilateral test to the daily maximum temperature time
series from three cities (Dublin, Edinburgh, and Miami) and obtained sensible results.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0118706

We present results about the statistical properties of ordinal pat-
terns’ Shannon entropy: exact and approximate first-, second-,
and third-order moments and its asymptotic distribution. We
discuss their limitations and propose a new model. We present
applications to test the hypothesis that two time series produce
ordinal patterns with the same Shannon entropy.

I. INTRODUCTION

The analysis of signals throughout their ordinal patterns has
received much attention since it was proposed by Bandt and
Pompe.1 This approach is appealing, among other virtues, for its
ability to translate analysis into a graphical depiction: the signal is

represented as a point in the entropy–complexity plane (H × C), a
closed two-dimensional manifold.

There is a vast literature of successful applications of this kind
of analysis, among them: The ability to distinguish noise from
chaos,2 the analysis of economic markets and biomedical systems,3

fault diagnosis of rotating machinery,4 and image texture analysis.5–7

Chagas et al.8 pointed out a common trait of such applications:
the lack of a theoretical background when performing comparisons
among signals and when contrasting a signal with a hypothesized
model. The authors proposed a test for the white noise model using
empirical evidence. Although this approach proved useful, extend-
ing it to other situations requires extensive simulation experiments
and data analysis.

The ultimate goal in a statistical approach to the Bandt and
Pompe methodology is the exact specification of the distribution of
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the coordinates of points in H × C for a large class of time series
models. Our purpose is delimited: In this work, we present exact,
approximate, and asymptotic results of the distribution of Shannon’s
entropy when the patterns that result from the Bandt and Pompe
symbolization follow a multinomial distribution. The properties of
such a distribution that we employ later are recalled in Sec. II.

The exact and approximate results we present in Sec. III
appeared in the works by Basharin,9 by Hutcheson,10 and by Hutch-
eson and Shenton.11 These works have received little attention from
the community that uses the permutation entropy approach.

We discuss the applicability of these expressions in Sec. IV,
stressing that the exact ones are of limited use in practice with high-
standard numerical platforms currently available. We obtain the
asymptotic distribution of Shannon’s entropy using the properties
of the multinomial distribution, the central limit theorem, and the
multivariate delta method (Sec. III D). We propose a better approx-
imation by plugging a third-order correction of the mean into its
asymptotic expression [Eq. (29)].

We also provide a general framework for hypotheses testing,
including the possibility of contrasting series of different lengths and
embedding dimensions. We explicitly derive test statistics for the
null hypothesis that two time series produce the same number of
symbols, and we apply these tests to climatology data.

II. ORDINAL PATTERNS AND THE MULTINOMIAL

DISTRIBUTION

Let x = (x1, x2, . . . , xn+D−1) be a real-valued time series of
length n + D − 1 without ties. We compute π1, π2, . . . , πn sym-
bols from subsequences of embedding dimension D, for instance,
πj = BP(xj, xj+1, . . . , xj+D−1), where BP is the Bandt–Pompe sym-
bolization. There are D! possible symbols: πj ∈ π = {π 1, π 2, . . . , πD!}.
We form the histogram of proportions h = (h1, h2, . . . , hD!) in
which the bin h` is the proportion of symbols of type π ` of the total
n symbols. We will model those symbols as a k dimensional random
vector with a multinomial distribution in which k = D!.

Consider a series of n independent trials in which only one of k
mutually exclusive events π 1, π 2, . . . , π k is observed with probabil-

ity p1, p2, . . . , pk, respectively, such that p` ≥ 0 and
∑k

`=1 p` = 1. Let
N = (N1, N2, . . . , Nk) be the vector of random variables that count
the number of occurrences of the events π 1, π 2, . . . , π k in the n
trials, with

∑k
`=1 N` = n. Then, the joint distribution of N is

Pr
(
N = (n1, n2, . . . , nk)

)
= n!

k∏

`=1

p
n`
`

n`!
, (1)

where n` ≥ 0 and
∑k

`=1 n` = n. We denote this situation as
N ∼ Mult(n, p), with p = (p1, p2, . . . , pk).

As per the conditions under which the Bandt and Pompe tech-
nique is used, we require that n � k. The common practice is k = 3!,
4!, 5!, or 6!, and n ≥ 100k.

Consider the random vector N ∼ Mult(n, p). Its main moments
are

E(N`) = np`, (2)

Var(N`) = np`(1 − p`), (3)

Cov(N`, Nj) = −np`pj, and (4)

%(N`, Nj) =
√

p`pj

(1 − p`)(1 − pj)
(5)

for every 1 ≤ `, j ≤ k. The book by Johnson et al. (Sec. 11.18 in
Ref. 12) is a comprehensive treatise on this topic.

The maximum likelihood (ML) estimator of p` is the rela-
tive frequency p̂` = N`/n, 1 ≤ ` ≤ k, and the distribution of np̂ is
Mult(n, p). The properties of ML estimators grant that if p̂ is the
ML estimator of p, then for any function g(p), the ML estimator of
g(p), namely, ĝ(p), is g(p̂); cf. Casella and Berger (Theorem 7.2.10 in
Ref. 13). We will use this result to obtain the asymptotic distribution
of Shannon’s entropy.

Let Xn = (X1n, X2n, . . . , Xkn) be a sequence of independent and
identically distributed random vectors, with a Mult(n, p) distribu-
tion. If p̂ is the vector of sample proportions and Yn = √

n(p̂ − p),
then

E(Yn) = 0, (6)

Cov(Yn) = Dp − ppT, (7)

where Dp = Diag(p1, p2, . . . , pk), and the superscript T denotes
transposition. Mukhopadhyay (Theorem A.2.1 in Ref. 14) states that

Yn
D−→ N

(
0, Dp − ppT

)
. (8)

This asymptotic distribution is the basis of our forthcoming deriva-
tions.

III. THE ENTROPY AND ITS PROPERTIES

This section presents the main results about H(p̂) under the
multinomial model. Regarding its mean and variance, we recall exact
expressions, first, second, and third-order approximations. Finally,
its asymptotic distribution is presented.

The Shannon’s entropy of a multinomial-distributed random
variable is

H(p) = −
k∑

`=1

p` ln p`, (9)

which is bounded between 0 and ln k. The minimum is attained
when p` = 1 for some 1 ≤ l ≤ k and pj = 0 for every j 6= `, while
the expression is maximized by p` = 1/k for every 1 ≤ ` ≤ k. In the
following, we will consider only probability vectors p that differ from
these two extreme points.

We are interested in the statistical properties of H(p) when it is
indexed by p̂ = (p̂1, p̂2, . . . , p̂k), the ML estimator of p. Our problem
then becomes in finding the distribution of
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H(p̂) = −
k∑

`=1

p̂` ln p̂` (10)

= −
k∑

`=1

N`

n
ln

N`

n

= ln n − 1

n

k∑

`=1

N` ln N` (11)

under N = (N1, N2, . . . , Nk) ∼ Mult(n, p).

A. Exact mean and variance

Hutcheson and Shenton11 found the expressions for the exact first and second-order moments of (10). They are given by

E(H(p̂)) = ln n −
n−1∑

j=1

(
n − 1

n − j

)
ln(n − j + 1)

k∑

`=1

p
n−j+1
` (1 − p`)

j−1, (12)

and, denoting the integer part of x ∈ R as [x],

Var
(
H(̂p)

)
=

n−2∑

a=0

(
n − 1

a

) k∑

`=1

pn−a
` (1 − p`)

a

[
n−1∑

b=a+1

(
n − 1

b

) k∑

`=1

pn−b
` (1 − p`)

b
(

ln
n − a

n − b

)2

]

− n − 1

n

n−3∑

b=0

(
n − 2

b

) 


[(n−b−2)/2]∑

a=0

(
n − b − 2

a

)∑ ∑

` 6=j

pn−a−b−1
` (1 − p`)

a+1(1 − p`pj)
b
(

ln
n − a − b − 1

a + 1

)2


 . (13)

B. First-order approximation

Basharin9 provided some of the first results about the properties of H(p̂). This author found first-order approximations for its expected
value and variance, whose expressions are given by

Ě
(
H(p̂)

)
= H(p) − k − 1

2n ln 2
(14)

and

V̌ar
(
H(p̂)

)
= 1

n

[ k∑

`=1

p`

ln2 p`

ln2 2
− H2(p)

]
. (15)

Notice that Eq. (14) can be used to build a first-order bias corrected estimator for H(p). Basharin9 also proved that H(p̂) is consistent
[H(p̂) → H(p) when n → ∞] and asymptotically normal.

C. Third-order approximation

Hutcheson10 presented third-order approximate expressions by expanding (12) and (13) in series and retaining only the initial terms.
With this, we have

Ẽ
(
H(p̂)

)
= H(p) − k − 1

2n
+ 1 −

∑k
`=1 p−1

`

12n2
+

∑k
`=1(p

−1
` − p−2

` )

12n3
(16)

and

Ṽar
(
H(̂p)

)
=

∑k
`=1 p` ln2 p` −

(∑k
`=1 p` ln p`

)2

n
+ k − 1

2n2
+

∑k
`=1 p−1

` −
∑k

`=1 p−1
` ln p` +

∑k
`=1 p−1

`

∑k
`=1 p` ln p` − 1

6n3
. (17)

Notice that dropping the last term in these expressions yields second-order approximations for the mean and variance, respectively. Exact
expressions should be better than approximations, but we will see in Sec. IV that the first ones have limited application due to the numerical
instabilities they incur. On the contrary, all approximations are numerically stable.

Hutcheson and Shenton11 briefly discussed how to obtain higher-order moments that would be useful for computing the skewness and
kurtosis.
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D. Asymptotic distribution

We recall the following theorems known as the Delta Method
and its multivariate version. For their proofs, we refer to Lehmann
and Casella.15

Theorem 1. Let Xn be a sequence of independent and iden-
tically distributed random variables such that

√
n(Xn − θ) converges

in distribution to a N (0, σ 2) law. Consider the transformation h(Xn)

such that h′(θ) exists and does not vanish. Then,
√

n
[
h(Xn) − h(θ)

]

converges in distribution to a N
(
0, σ 2[h′(θ)]2

)
law.

Theorem 2. Let Xn = (X1n, X2n, . . . , Xkn) be a sequence of
independent and identically distributed vectors of random variables
such that

√
n(X1n − θ1, X2n − θ2, . . . , Xkn − θk) converges in distri-

bution to the multivariate normal law Nn(0, 6), where 6 is the
covariance matrix. Suppose that h1, h2, . . . , hk are real-functions
continuously differentiable in a neighborhood of the parameter
point θ = (θ1, θ2, . . . , θk) such that the matrix of partial derivatives

B = (∂hi/∂θj)
k

i,j=1
is non-singular in the mentioned neighborhood.

Then, the following convergence in distribution holds:
√

n
[
h1(Xn) − h1(θ), h2(Xn) − h2(θ), . . . , hk(Xn) − hk(θ)

]

D−→ N
(
0, B6BT

)
.

For our case of interest N ∼ Mult(n, p), the covariance matrix
of Eq. (8) is

(
Dp − ppT

)
`j

=
{

p`(1 − p`) if ` = j,

p`pj if ` 6= j
(18)

for 1 ≤ l, j ≤ k.
In order to apply the delta method using Theorem 2 to Shan-

non’s entropy defined in Eq. (10), we use the functions

h`(p1, p2, . . . , pk) = p` ln p`, (19)

which verify that

∂h`

∂pj

=
{

ln p` + 1 if ` = j,

0 otherwise
(20)

for 1 ≤ `, j ≤ k. Hence, the covariance matrix of the multivariate

normal limit distribution 6p = (∂h`/∂pj)(Dp − ppT)(∂h`/∂pj)
T is

of the form

(6p)`j
=

{
(p` − p2

`)(ln p` + 1)2 if ` = j,

−p`pj(ln p` + 1)(ln pj + 1) otherwise
(21)

for 1 ≤ l, j ≤ k. Therefore, we conclude that
√

n
[
h1(p̂1) − h1(p1), h2(p̂2) − h2(p2), . . . , hkp̂k − hk(pk)

]

D−→ N (0, 6p). (22)

An equivalent expression is

√
n
[
h1(p̂1), h2(p̂2), . . . , hk(p̂k)

] D−→ N




√
n




h1(p1)

h2(p2)

...
hk(pk)


 , 6p


 .

(23)

For a random vector Y such that
√

nY
D−→ N (

√
nµ, 6), it can

be proved that E(
√

nY) → √
nµ and that Var(

√
nY) → 6. Pro-

vided well-known properties, it holds that E(Y)

→ µ and Var(Y) → 1/n6. Applying this to Eq. (23),

[
h1(p̂1), h2(p̂2), . . . , hk(p̂k)

] D−→ N







h1(p1)

h2(p2)

...
hk(pk)


 ,

1

n
6p


 . (24)

We now use Eq. (24) and the fact that the Shannon’s entropy is
a linear combination of the functions {h1(p1), h2(p2), . . . , hk(pk)}.

Let Z ∼ N (µ, 6) be a multivariate Gaussian k dimensional
vector, with µ ∈ R

k and 6 = (σ`,j), 1 ≤ `, j ≤ k. Let W = aTZ be

a linear combination of the Z elements, with a ∈ R
k. Thus, W

is N
(
aTµ,

∑k
`=1 a2

`σ`,` + 2
∑k−1

`=1

∑k
j=`+1 a`ajσ`,j

)
distributed (see

Lehmann and Casella15). Using the limit distribution presented in
Eq. (24) and a = (−1, −1, . . . , −1), we have

H(p̂) = −
k∑

`=1

p̂` ln p̂`

D−→ N
(
H(p), σ 2

n,p

)
, (25)

where

σ 2
n,p = 1

n

k∑

`=1

p`(1 − p`)(ln p` + 1)2

− 2

n

k−1∑

j=1

k∑

`=j+1

pjp`(ln pj + 1)(ln p` + 1). (26)

Notice that the asymptotic mean coincides with Eq. (9) and that
computing the asymptotic variance does not pose any numerical
difficulty.

Some studies and applications use a normalized entropy com-
puted from Eq. (9) divided by ln k. In this case, the asymptotic
distribution is N

(
H(p)/ ln k, σ 2

n,p/(ln k)2
)
.

IV. EXPERIMENTS, NUMERICAL STABILITY, AND

ACCURACY

Basharin’s first-order approximations to the mean and vari-
ance, Eqs. (14) and (15), do not offer numerical difficulty, except
in situations where there is at least one probability value near
zero, p` ≈ 0 for some 1 ≤ ` ≤ k. Such cases are easily handled as
the limit limp→0 p ln p = 0 and pose no numerical challenges. The
same situation occurs with second-order approximations, Eqs. (16)
and (17).

Hutcheson’s exact expressions, Eqs. (12) and (13), involve more
sources of numerical instabilities, namely, combinatorial numbers,((

a

b

))
with very large a and b values. We implemented these exact

expressions using computer algebra platforms (Mathematica, Yacas,
and Maxima) as well as with high-precision specialized numeri-
cal functions in R (the VeryLargeIntegers package, that allows
storing and operating with arbitrarily large integers). None of these
platforms returned useful values of either Eq. (12) or Eq. (13) for
practical situations. Despite that and for the sake of completeness,
we report some of those results in the following.
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FIG. 1. Log-relative errors for Basharin, Hutcheson, and
asymptotic approximations using different underlying distributions:
[LRE] = 2 (green), [LRE] = 1 (blue), and [LRE] = 0 (red).

Following Almiron et al.,16 we compare a “certified” value c
with its “approximation” x by computing the absolute value of the
relative error and taking its decimal logarithm,

LRE(x, c) =
{

− log |x−c|
|c| if c 6= 0, and

− log |x| otherwise.
(27)

This log-relative error relates to the number of significant digits
that are correctly computed; therefore, we report its integer part
[LRE(x, c)].

In the following, the Basharin, Hutcheson, and asymptotic
approximations are compared with the exact expected value given
in (12).

In this experiment, we applied four different types of under-
lying distributions: equiprobable Pe, a perturbed equiprobable law

Chaos 32, 113118 (2022); doi: 10.1063/5.0118706 32, 113118-5

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

FIG. 2. Relative errors for Basharin (pink), Hutcheson (green), and asymptotic (light blue) approximations for a given number of ordinal patterns k and different underlying
distributions Pe, P2, PH, and PL.

P2, the half perturbed distribution PH, and the linear distribution
PL.

• Pe: p` = 1
k
, ` = 1, . . . , k.

• P2: p` = 1/k, ` = 1, . . . , k − 2, pk−1 = 1
k

+ ε, and pk = 1
k

− ε,
0 < ε < 1/k.

• PH: p` = 1/k − ε, ` = 1, . . . , k
2
, and p` = 1/k + ε, ` = k

2
, . . . , k,

0 < ε < 1/k.
• PL: p` = `∑k

j=1 j
.

The results obtained are shown in Fig. 1, where green, blue, and
red boxes correspond to [LRE] = 2, 1, and 0, respectively. It can be
seen that the asymptotic approximation has the best performance,
followed by Basharin’s approximation.

The same scenarios and underlying distributions were used to
compute the relative error

RE(x, c) =
{

|x−c|
|c| if c 6= 0, and

|x| otherwise
(28)

and to compare the certified value c = E
(
H(p̂)

)
given in (12)

against the Basharin, Hutcheson, and asymptotic approximations.
The results obtained are shown in Fig. 2, where it can be seen that

for a previously selected number of possible patterns k and any
of the underlying distributions here applied, the asymptotic esti-
mate always provides the most accurate approximation (in terms of
relative errors).

It is worth mentioning that we computed LRE and RE for
n ≤ 1000 since, as already mentioned, the formula for the exact
expression E

(
H(p̂)

)
, given in Eq. (12), involves binomial coefficients

that can only be computed with the aforementioned computational
platforms when n ≤ 1000. Nevertheless and despite the fact that
these values of n are not large enough to be considered “asymp-
totic,” the asymptotic estimate given in Eq. (25) is the most accurate

TABLE I. The largest n such that Mathematica v. 13.0.0 returns a value for Eq. (12)

under two underlying distributions P .

k

P 6 24 120 720

Pe 400 228 151 110
PL 571 283 174 122
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FIG. 3. Histograms and boxplots of 106

values of the entropy from the PL model,
k ∈ {6, 24, 120, 720}, and the series of length
n = 103 k.

approximation of E
(
H(p̂)

)
in terms of LRE and RE for any combi-

nation of k, n, and underlying distribution even in those situations
where k ≈ n.

As previously mentioned, Eqs. (12) and (13) do not return
usable values when implemented in either dependable numeri-
cal platforms or certified computer algebra systems. For instance,
Table I shows the maximum n values for which the exact mean
underPe andPL can be obtained using Mathematica17 in a computer
Mac OS X ARM (64 bit). Notice that Pe poses harder numerical
problems thanPL, but, in any case, these numerical limitations make
the exact values from Eqs. (12) and (13) of little practical use; recall
the rule-of-the-thumb n ≥ 100k.

In order to study the behavior of expressions (12), (14),
and (16) for long signals, in the following, we consider “certified”
the value computed with independent simulations. First, we analyze
the shape of the sample entropies from the PL model. For each value

of k ∈ {6, 24, 120, 720}, we sample 106 independent values of Ĥ from
the PL model and the series of length n = 103 k. Figure 3 shows the
histograms and boxplots of these data.

Table II shows the mean Ĥ, median q1/2(Ĥ), standard deviation

s(Ĥ), asymmetry γ1(Ĥ), and excess kurtosis γ2(Ĥ) of the observed
entropy over 106 independent samples from the PL model, for four
values of k = D!, along with approximate 95 % confidence intervals.
It can be observed that, as k increases, so do the centrality mea-

sures of the samples (the mean Ĥ and the median q1/2(Ĥ) coincide,
suggesting no lack of symmetry). The dispersion, measured by the

standard deviation s(Ĥ), reduces when k increases. The asymmetry

value, γ1(Ĥ), is slightly negative and reduces with increasing k, and

the excess kurtosis γ2(Ĥ) is negligible in all cases.
Figure 4 shows the quantile–quantile plots of the entropies for

the normal distribution. Notice that, although the histogram for
k = 6 does not reveal any clear deviation from a normal density, the
slight positive excess kurtosis explains the lack of fit of a few observa-
tions. Apart from that, the observations lie very close to the straight
lines.

We now compare our “certified” values obtained by simula-
tion with Hutcheson’s exact values and third-order approximations.

TABLE II. Sample mean Ĥ, median q1/2(Ĥ), standard deviation s(Ĥ), asymmetry γ1(Ĥ), and excess kurtosis γ2(Ĥ) of the observed entropy over 106 independent samples

from the PL model, for four values of k =D!, along with approximate 95% confidence intervals.

k Ĥ q1/2(Ĥ) s(Ĥ) γ1(Ĥ) γ2(Ĥ)

6 0.9276 0.9276 0.0033 −0.0693 0.0033
±6.44 × 10−6 ±8.09 × 10−6 ±4.56 × 10−6 ±4.80 × 10−3 ±9.60 × 10−3

24 0.9451 0.9451 0.0010 −0.0296 0.0004
±1.97 × 10−6 ±2.41 × 10−6 ±1.40 × 10−6 ±4.80 × 10−3 ±9.60 × 10−3

120 0.9604 0.9604 0.0003 −0.0115 0.0020
±5.92 × 10−7 ±7.34 × 10−7 ±4.19 × 10−7 ±4.80 × 10−3 ±9.60 × 10−3

720 0.9707 0.9707 0.0001 −0.0033 −0.0053
±1.76 × 10−7 ±2.18 × 10−7 ±1.24 × 10−7 ±4.80 × 10−3 ±9.60 × 10−3
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FIG. 4. Quantile–quantile plots of the entropies for the Normal distribution.

First, Fig. 5 shows, in log–log scales, the relationship between the rel-

ative error incurred by H to the mean of 106 independent samples Ĥ
as a function of the number of possible patterns k and of the factor
that determines the number of observed patterns n = Factor × k.
For a sample size fixed, the relative error decreases with the number
of possible patterns. When the number of possible patterns is fixed,
the relative error decreases as the sample size increases.

The largest relative error is of the order of 5 × 10−3; it cor-
responds to the case k = 6 and n = 300 for which H ≈ 0.927 79

and Ĥ ≈ 0.923 09. The smallest relative error occurs when k = 720
and n = 72 ×106. In such a case, it amounts to approximately
7.81987 ×10−6. Figure 6 shows, for each of the two extreme situ-
ations of minimum and maximum relative errors, the histogram of
106 observations, the underlying density function as a thin black line,
and the asymptotic density distribution as a thick red line. We used
a semilogarithmic scale.

FIG. 5. Relative error incurred byH to the mean of 106 independent samples Ĥ as
a function of the number of possible patterns k and of the factor that determines
the number of observed patterns n = Factor × k.

It can be observed that the asymptotic standard deviation is
acceptable for describing the data dispersion, and the asymptotic
mean deviates from the observed mean, as Fig. 5 shows. Such a
deviation is slight in the case shown in Fig. 6(a) and much more
noticeable in Fig. 6(b). With this, we conclude that the relative error
is an unreliable measure of the quality of a model.

Figures 5 and 6 suggest, thus, that there is room for an

improved asymptotic model for the sample entropy Ĥ. Our proposal
for a corrected model stems from fusing the information we have

about the asymptotic distribution of Ĥ, namely, Eqs. (25) and (26),

and the third-order corrected expected value of Ĥ given in Eq. (16).
With this, given the sequence (π1, π2, . . . , πn) of symbols obtained
from words of size D, first compute its histogram of proportions
p̂ = (̂p1, p̂2, . . . , p̂k), where k = D! and p̂` = #{j : πj = π (`), 1 ≤ j

≤ n}/n, and then assume that Ĥ = −
∑k

`=1 p̂` ln p̂` is an outcome

FIG. 6. Histograms of 106 samples of Ĥ underPL along with the empirical densities (thin black lines) and asymptotic models (thick red lines). (a) Case k = 6 and n = 300.
(b) Case k = 720 and n = 72 ×106.
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FIG. 7. Histograms of 106 samples of Ĥ underPL, along with the sample density (thin black line) and the corrected model (purple thick line). (a) Case k = 6 and n = 300.
(b) Case k = 720 and n = 72 ×106.

FIG. 8. Maximum daily temperatures in Dublin, Edinburgh, and Miami, from 8 August 1992 until 30 December 2019, along with the histograms of k = 6 (left) and k = 24
(right) patterns.
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from a random variable that has a normal distribution with mean

µn,p = −
k∑

`=1

p` ln p` − k − 1

2n
+ 1 −

∑k
`=1 p−1

`

12n2
+

∑k
`=1(p

−1
` − p−2

` )

12n3

(29)

and variance given by

σ 2
n,p = 1

n

k∑

`=1

p`(1 − p`)(ln p` + 1)2

− 2

n

k−1∑

j=1

k∑

`=j+1

pjp`(ln pj + 1)(ln p` + 1). (30)

Figure 7 shows the histograms of 106 samples of Ĥ in two sit-
uations, namely, k = 6 and n = 300 [Fig. 7(a)], and k = 720 and
n = 72 ×106 [Fig. 7(b)]. In both cases, the samples were produced
under PL. The empirical densities are shown in thin black lines,
while the corrected densities are shown in thick purple lines. The
corrected model, i.e., the normal distribution with mean µn,p̂ and
variance σ 2

n,p̂
, provides an excellent description of the observed

data.

V. HYPOTHESIS TESTS AND APPLICATIONS

Let x = (x1, x2, . . . , xnx) and y = (y1, y2, . . . , yny) be two inde-
pendent time series of length nx = Tx + Dx − 1 and ny = Ty

+ Dy − 1, respectively. Let us also assume that these time series
were generated by the stochastic (and maybe unknown) models
Mx and My. We are interested in testing if these time series are
statistically different. We choose to compare the entropy of their
ordinal patterns among the many possible ways of performing such
an assessment.

In this sense, we compute the series of symbols π x
1 , π x

2 , . . . , π x
Dx!

and π
y
1 , π

y
2 , . . . , π

y

Dy!, and then, we find the histograms p̂x and

p̂y. From Sec. III D, we know that Shannon’s entropies H(p̂x)

and H(p̂y) are random variables with asymptotic distributions

N
(
µnx ,px

, σ 2
nx ,px

)
and N

(
µny ,py

, σ 2
ny ,py

)
, respectively, with means

and variances given by Eqs. (29) and (30).
If x and y have the same underlying dynamics, then H(px)

= H(py), and we expect to observe H(p̂x) ≈ H(p̂y). Our test will then

verify the following hypothesis:

H0 : H(px) − H(py) = 0

vs the alternative

H1 : H(px) − H(py) 6= 0.

It is, therefore, a bilateral test.
Our test statistic is

W = H(p̂x) − H(p̂y). (31)

Using (29) and (30) and the assumption that the time series x and

y are independent, it is straightforward that W
D−→ N

(
µW, σ 2

W

)
,

where µW = µnx ,px
− µny ,py

and σ 2
W = σ 2

nx ,px
+ σ 2

ny ,py
. Thus, for any

observed η > 0, it holds that

Pr
(
|H(p̂x) − H(p̂y)| ≤ η | H0

)
≈ Pr

(
|W| ≤ η | H0

)

= 28
(η − µW

σW

)
− 1, (32)

where 8 is the standard Gaussian cumulative distribution function.
Under H0, the test statistic W is asymptotically distributed as

N
(
0, σ 2

W

)
, and therefore, the p-value of the observed test statistic is

approximately 2
(
1 − 8(ε)

)
, where

ε =
H(p̂x) − H(p̂y)

σ̂W

(33)

and

σ̂W =
√

σ 2
nx ,p̂x

+ σ 2
ny ,p̂y

. (34)

Unilateral tests and other specific hypotheses can be eas-
ily obtained using that H(p̂x) ∼ N

(
µnx ,p̂x

, σ 2
nx ,px

)
and that H(p̂y)

∼ N
(
µny ,p̂y

, σ 2
ny ,py

)
. In particular, for the unilateral tests,

TABLE III. p-values of the hypothesis test applied to maximum temperature data.

Dublin vs Edinburgh

Edinburgh

Dublin k = 6 k = 24 k = 120 k = 720

k = 6 0.0005 0.3294 0.6766 0.0830
k = 24 4.60 × 10−5 0.0457 0.4694 0.6354
k = 120 1.48 × 10−6 0.0047 0.1124 0.6639
k = 720 4.98 × 10−9 0.0001 0.0106 0.1594

Dublin vs Edinburgh

Miami

Dublin k = 6 k = 24 k = 120 k = 720

k = 6 8.78 × 10−8 1.68 × 10−11 3.33 × 10−15 0
k = 24 4.85 × 10−3 7.71 × 10−6 1.47 × 10−8 5.98 × 10−12

k = 120 1.48 × 10−1 1.54 × 10−3 1.26 × 10−5 2.89 × 10−8

k = 720 8.66 × 10−1 4.87 × 10−5 1.37 × 10−3 1.21 × 10−5

Dublin vs Edinburgh

Miami

Edinburgh k = 6 k = 24 k = 120 k = 720

k = 6 0 0 0 0
k = 24 2.86 × 10−7 9.05 × 10−11 4.33 × 10−14 0
k = 120 7.86 × 10−4 1.20 × 10−6 2.49 × 10−9 1.25 × 10−12

k = 720 5.83 × 10−2 4.57 × 10−4 3.30 × 10−6 7.13 × 10−9
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(1) H0 : H(px) − H(py) ≥ 0vs H1 : H(px) − H(py) < 0,

(2) H0 : H(px) − H(py) ≤ 0vs H1 : H(px) − H(py) > 0,

the p-values of the observed test statistics are approximately 8(ε)

and 1 − 8(ε), respectively, with ε defined in (33). These approx-
imations follow the approach discussed by Boos and Stefanski
(Sec. 3.6.1 in Ref. 18).

VI. CLIMATE DATA

Our goal in this analysis is to evaluate sequences that come
from (i) the same underlying process and (ii) different dynam-
ics. For this, we analyzed a series of maximum daily temperatures
measured in three stations around the world: Dublin Phoenix Park
(Ireland), Edinburgh Royal Botanic Garden (Scotland), and Miami
International Airport (United States of America). We obtained these
datasets from the Climate Data Online website, supported by the
National Oceanic and Atmospheric Administration (NOAA) at
https://www.ncei.noaa.gov/cdo-web/. They are part of the GHCN
(Global Historical Climatology Network)-Daily data set, the world’s
most extensive collection of daily climatology measurements, that
functions as the official archive for daily data from the Global Cli-
mate Observing System (GCOS) Surface Network (GSN). This data
set contains observations of a variety of meteorological elements,
including maximum and minimum temperatures, at more than
100 000 stations distributed across all continents.

We used daily data from 8 August 1992 until 30 December
2019. These daily observations are shown in Fig. 8 (in Fahrenheit
degrees).

Dublin and Edinburgh have similar temperate oceanic cli-
mates, with few temperature differences. However, extreme tem-
peratures might be a little below zero Celsius degrees (32 ° F) a few
days of the winter and make it into the mid-70s for some summer
days. On the other hand, Miami has a tropical monsoon climate,
with an average temperature of 77 ° F (25 °C) and extreme temper-
atures of 50 ° F in winter and 91.4 ° F in summer (10 °C and 33 °C,
respectively). Figure 8 shows that, beyond these differences in the
marginal properties, the series from Dublin and Edinburgh seem
to follow a simple sine–cosine plus noise pattern closely. In con-
trast, the dynamics underlying the Miami data seem more complex:
there is less variation except during January and February, where the
maximum temperatures exhibit large deviations.

Figure 8 also shows the histograms of k = 6 (left) and k = 24
(right) patterns. Dublin and Edinburgh have similar histograms,
while Miami’s data have a predominant pattern. This configura-
tion also appears when analyzing k = 120 and k = 720 patterns, but
the visualization is too busy. Notice that it is impossible to make a
visual comparison of histograms obtained with different embedding
dimensions, although our test statistics allow for such an operation.

We applied the test introduced in Sec. V to contrast the null
hypothesis between each possible pair of locations considering dif-
ferent values of the embedding dimension D ∈ {3, 4, 5, 6} and, thus,

FIG. 9. Points in the H × C plane from (with
boundaries in light gray) the three maximum daily
temperature time series, along with the proposed
confidence intervals for Shannon’s entropy and
different embedding dimensions D.
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of the number of possible patterns k ∈ {6, 24, 120, 720}. In this case,
all the time series have the same length n = 10000. The correspond-
ing p-values are shown in Table III, from which we can see that H0 is
not rejected only for Dublin vs Edinburgh except for k taking larger
values for Dublin than for Edinburgh, or k = 6 and k = 24 being
the same value for both zones. These conclusions hold even after
applying a conservative Bonferroni correction.19

We show in Fig. 9 the points in the H × C plane from the three
maximum daily temperature time series, along with the proposed
confidence intervals at the 0.1 % level for Shannon’s entropy and
different embedding dimensions D ∈ {3, 4, 5, 6}. The boundaries for
each embedding dimension appear as light gray lines; see details
about this kind of plot in the works by Chagas et al.8 and by Mar-
tin et al.20 and the references therein. Notice that these are visual
representations of the tests that contrast the entropies from series
analyzed with the same embedding dimension; i.e., they depict the
main diagonals of Table III.

Figure 9 shows that the maximum daily temperatures measured
in Miami consistently have the smallest entropy and the largest com-
plexity. The entropy carries enough information to discriminate its
underlying dynamics from those that produce the measurements
in Dublin and Edinburgh. Notice, also, that in this case, the com-
plexity does not add information to the problem of discriminating
the underlying processes that gave rise to the temperature measure-
ments. The entropies from Dublin and Edinburgh are always very
close, statistically indistinguishable at approximately the 95 % level
of confidence in three (D = 4, 5, 6) out of four cases.

Whether the observed complexity is able or not to identify dif-
ferent underlying dynamics in Dublin and Edinburgh is an open
question since, to date, we do not have expressions for their distri-
bution.

VII. REMARKS AND CONCLUSIONS

Unlike the χ 2 test, the test statistic W we propose in (31) does
not perform a bin-by-bin comparison. Our approach, on the one
hand, represents an inevitable loss of information but, on the other
hand, allows the comparison of entropies computed from different
embedding dimensions.

The generality of our test promotes its application in feder-
ated learning, as it allows different sources to encode the data using
different embedding.

Although we study Shannon’s entropy from ordinal patterns,
the approach to obtain the asymptotic distribution is valid for
the Shannon entropy computed over transition graphs and their
variants.

It is noteworthy that the presented derivations do not cover the
extreme cases for which H(p) = 0 or H(p) = 1. The former does not
involve any randomness. The latter was studied by Chagas et al.8

using an empirical approach.
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