
Automated workarounds from Java program specifications based on
SAT solving

Marcelo Uva1 · Pablo Ponzio1,3 · Germán Regis1 · Nazareno Aguirre1,3 · Marcelo F. Frias2,3

Abstract
The failures that bugs in software lead to can sometimes be bypassed by the so-called workarounds: when a (faulty) routine
fails, alternative routines that the system offers can be used in place of the failing one, to circumvent the failure. Existing
approaches to workaround-based system recovery consider workarounds that are produced from equivalent method
sequences, automatically computed from user-provided abstract models, or directly produced from user-provided equivalent
sequences of operations. In this paper, we present two techniques for computing workarounds from Java code equipped
with formal specifications, that improve previous approaches in two respects. First, the particular state where the failure
originated is actively involved in computing workarounds, thus leading to repairs that are more state specific. Second, our
techniques automatically compute workarounds on concrete program state characterizations, avoiding abstract software
models and user-provided equivalences. The first technique uses SAT solving to compute a sequence of methods that is
equivalent to a failing method on a specific failing state, but which can also be generalized to schemas for workaround
reuse. The second technique directly exploits SAT to circumvent a failing method, building a state that mimics the (correct)
behaviour of a failing routine, from a specific program state too. We perform an experimental evaluation based on case
studies involving implementations of collections and a library for date arithmetic, showing that the techniques can
effectively compute workarounds from complex contracts in an important number of cases, in time that makes them feasible
to be used for run-time repairs. Our results also show that our state-specific workarounds enable us to produce repairs in
many cases where previous workaround-based approaches are inapplicable.

Keywords Runtime recovery · Workarounds · SAT Solving

B Nazareno Aguirre
naguirre@dc.exa.unrc.edu.ar

Marcelo Uva
uva@dc.exa.unrc.edu.ar

Pablo Ponzio
pponzio@dc.exa.unrc.edu.ar

Germán Regis
gregis@dc.exa.unrc.edu.ar

Marcelo F. Frias
mfrias@itba.edu.ar

1 Universidad Nacional de Río Cuarto, Río Cuarto, Argentina

2 Instituto Tecnológico de Buenos Aires (ITBA), Buenos Aires,
Argentina

3 Consejo Nacional de Investigaciones Científicas y Técnicas
(CONICET), Buenos Aires, Argentina

1 Introduction

Even in software systems that are built with high-quality
standards using rigorous software development techniques,
bugs still make it through to deployment. Various issues
contribute to this situation: the intrinsic complexity of soft-
ware, the constant adaptation and extension that software
systems undergo during maintenance, and the increasing
pressure to shorter time to market, among other factors.
These circumstances, combined with demands for availabil-
ity on software, make techniques that help systems tolerate
bug-related failures highly relevant. A mechanism that has
been useful for bypassing failures led to by program bugs
is the so-called workaround: when a call to a (faulty) rou-
tine leads to a failure, alternative routines or combinations
of routines that the software system offers can be used in
place of the failing one, to circumvent the failure. Previous
works have exploited the workaround notion to automat-

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-018-0503-8&domain=pdf

state that mimics the (correct) behaviour of this failing
routine. This second technique is then closer to work on
constraint-based repair, e.g. [32,36,37], although it differs
in the approaches used to improve scalability (see the Sect. 6
for a comparison with these techniques).

In order to assess the applicability of the presented tech-
niques, we develop a number of case studies based on
contract-equipped collection classes and a Java library for
date arithmetic. For these case studies, we produce ran-
domly generated program state scenarios, wheremethods are
assumed to fail, and workarounds for them, of the two kinds
just described, are computed. These case studies show that
the techniques can effectively compute workarounds from
complex contracts in an important number of concrete state
situations, in times that makes them feasible to be used for
run-time repairs. Our results also show that our produced
state-specific workarounds allow us to produce repairs in
many cases where previous approaches are inapplicable, i.e.
where no workaround based on sequence of methods equiv-
alent to the failing routine is possible, and that workaround
schemas derived from identified “concrete” workarounds
can significantly improve the efficiency in finding method
workarounds in new failing situations.

The remainder of this article is organized as follows. In
Sect. 2, we describe some preliminaries, in particular the con-
cept of workaround, and the Alloy and DynAlloy languages,
and their associated SAT-based analyses, that will be cen-
tral to our techniques. Section 3 presents our first technique
that computes traditionalworkarounds from contracts of Java
programs. Section 4 introduces our second technique, whose
corresponding workarounds are obtained by directly manip-
ulating program states, as opposed to doing so indirectly via
available methods of the module being treated. Section 5
is dedicated to an experimental evaluation of the presented
techniques, including an assessment of the results and the
identification of potential threats to validity. Section 6 com-
pares our presented techniques with relatedwork, and finally,
in Sect. 7, we draw some conclusions and propose some lines
for further work.

2 Background

Workaroundsand run-time repair Theconcept ofworkaround
was initially defined in the context of self-healing sys-
tems [8]. Intuitively, a workaround exploits the implicit
redundancy present in system modules in order to overcome
a fault in the module. Given an initial state Si , a routine m
(failingwhen invoked in state Si), and a desired final state S f ,
a workaround is a procedure P composed of a sequence of
other routines in the module that contains m, that leads from
Si to S f . If the intended behaviour of a given system module
is captured through a finite state machine abstraction, then a

ically recover from run-time failures in some application
domains, notably web applications [5]. However, while exist-
ing approaches compute workarounds automatically, they
do so from an abstract, state machine like model of the
software being considered [5,8], that needs to be manually
provided, or require the user to provide equivalent alterna-
tive sequences of operations [4], from which workarounds are
computed, diminishing the automation of workaround-based
system recovery. In both cases, workarounds are computed
from equivalent method sequences, either because these are
produced from abstract state machine models where different
paths connecting the same states are equivalent sequences
[5,8], or because these are directly produced from user-
provided equivalent sequences [4].

In this paper, we propose two techniques that, through the
use of state-of-the-art SAT-based technology, can automati-
cally compute workarounds directly from formal specifica-
tions accompanying Java source code in the form of JML
contracts, thus avoiding the need for more abstract, manu-
ally built software models or user-provided alternatives to
system routines. Furthermore, our techniques make the par-
ticular state in which the failure took place an active part of
the workaround computation, leading to more state-specific
workarounds. Thus, many of our computed workarounds can
be used for run-time repair only in a particular situation in
which a failure occurred.

Our techniques have similar requirements for their appli-
cation, but differ in the actual mechanism to compute, and
provide, workarounds. The first technique employs SAT
solving to compute workarounds that, as usual, exploit the
intrinsic redundancy of the module holding the failing rou-
tine; while this technique produces state-specific repairs,
they can be generalized to produce schemas, which can be
used to speed up the search for workarounds in other fail-
ing states. Workaround schemas are predefined sequences of
methods that need to be instantiated with concrete inputs to
be transformed into state-specific workarounds. Workaround
schemas exploit the observation that a same sequence of
methods can be useful in many different repair situations,
if we vary the inputs passed to the methods. The advantage
of using schemas is that, in case a schema can be applied,
the underlying decision procedure (a SAT solver) only has
to find inputs for the (fixed) sequence of methods, avoiding
the need to perform a nondeterministic search for method
sequences to employ in building workarounds. Furthermore,
finding inputs for schemas can be done in parallel with the
“traditional” workaround finding procedure, and returning
the first workaround found by any of the running processes.
As shown in our experimental assessment, schemas allow us
to significantly reduce the time required to find a workaround
in many cases.

The second technique directly exploits SAT solving to
circumvent the failing method, automatically building a

method or routine failing in a specific state is represented by
a particular transition from a source state (the initial state) to
the desired target state.Workarounds composed of sequences
of other routines can be systematically explored by traversing
the state machine, from the initial state, attempting to reach
the final state without traversing through transitions labelled
with the failing routine. This is in fact the process employed
for automated workaround computation presented in [6,8].

Other approaches employing workarounds (although not
computing them automatically) have been developed in the
context of self-healing systems. A distinguishing approach
is that presented in [4], where an architecture for self-healing
systems, composed of amechanism tomonitor systemexecu-
tion and automatically recover via rollbacks and the applica-
tion of (user provided) workarounds, is introduced. The con-
cept ofworkaround has been successfully applied in real soft-
ware systems through the above-described approaches, with
demonstrating case studies involving complex software sys-
tems such as Google Maps and Flickr [5]. Moreover, further
experimental analyses have been performed, showing that
the redundancy exploited by the workarounds mechanism is
actually inherent to many component-based systems [7].

It is worth remarking that the mentioned workaround-
based run-time recovery approaches [4–6,8] compute
workarounds fromequivalentmethod sequences.When these
are produced from abstract state machinemodels, the level of
abstraction of such models makes different paths connecting
the same states to be equivalent sequences [6,8]. Other works
directly require users to provide such equivalent sequences
to be used as part of workarounds [4]. This implies that com-
puted workaround sequences can be used in any program
state, in place of the failing routine.

The Alloy and DynAlloy modelling languages In Alloy
[20], data types are defined by signatures. For instance,
assuming that we want to model the behaviour of linked
lists, their structure can be defined through signatures Null,
Node and List in Fig. 1a. Int (integers) is the only prede-
fined signature. Every signature defines a set of atoms, i.e. a
domain. The modifier one forces the corresponding signa-
tures to have exactly one element, i.e. to be singletons, which
is useful to define constants to be used in specifications. (In
our case, Null is such a “constant”.) Signatures can have
fields. For instance, signature List has two fields, head
and size. Field head is in fact a relation (more precisely,
a function) from List atoms to Node atoms or Null.

Alloy also features facts, predicates and assertions. Facts
define properties assumed to be true in the models and
are written in relational logic (first-order logic with rela-
tional operators, including transitive and reflexive–transitive
closures). For instance, if one would want to restrict anal-
ysis to acyclic lists, one may impose acyclicity via fact
acyclicLists in Fig. 1a. In this fact, dot (.) is relational
composition (which can be intuitively seen as a navigational

operator); * and ˆ represent reflexive–transitive and transi-
tive closures; so, the formula expresses that, for every list l
and every node n reachable from the list’s head, n cannot
be reached from n navigating through (one or more) “next”
links.

Predicates are formulas with potentially free variables
and can be used to express properties, and in particular to
capture operations. For instance, predicate getFirst in
Fig. 1a captures the “get first” operation on lists. Finally,
assertions are intended properties, i.e. properties that should
be implied by facts, but must be checked for. For instance,
one may check that, when lists have size one, getFirst
and getLast return the same value, expressed in assertion
getFirstEqGetLast in Fig. 1a.

Both predicates and assertions can be subject to auto-
mated analysis using Alloy Analyzer, a tool that employs
off-the-shelf SAT solvers to build satisfying instances of
predicates or violating instances for assertions, under user-
provided scopes. Figure 1a shows some sample commands
running Alloy Analyzer. These will use SAT solving to build
instances involving at most one list, five nodes and using
integers with bit width 5, that satisfy getFirst, and vio-
late getFirstEqGetLast, respectively. In the first case,
it will serve as a sample execution of getFirst. In the
second case, if a violation is found, it exhibits a problem
regarding a property that the user thought it would be valid;
if on the other hand no counterexample is found, it helps
gaining confidence on the correctness of the model and the
validity of the property (although it is clearly not a proof of
validity).

Alloy is a convenient, simple and expressive language for
building static models of software. Dealing with dynamic
models, i.e. models that capture system execution elements
such as state change, is less straightforward. DynAlloy [13]
is an extension of Alloy that incorporates convenient con-
structs to easily capture state change. DynAlloy’s syntax and
semantics is based on dynamic logic. The language extends
Alloy with basic actions, programs and partial correctness
assertions. Basic actions are defined through pre- and post-
conditions. For instance, an action that removes all elements
of a list can be defined asremoveAll in Fig. 1b. This atomic
action updates the head and size of the list, using relational
overriding (++). A few things areworth noticing. First, action
removeAll has List’s fields head and size as explicit
parameters, insteadof being attributes of argument thiz (we
avoid this because it is a reserved word in Alloy). This is
a necessary part of our mutable model of the heap (see [14]
for details). Second, as opposed to Alloy predicates, which
require parameters for poststate variables, these are implicit
in DynAlloy’s actions. Indeed, notice that the postcondition
refers to primed variables head’ and size’, which are
not listed explicitly as action arguments. Moreover, when a
primed variable is not mentioned in the postcondition, it is

one sig Null { }

sig Node {
 elem: Int,
 next: Node+Null
}

sig List {
 head: Node+Null,
 size: Int
}

fact acyclicLists {
 all l: List | all n: Node | n in
l.head.*next => not (n in n.^next)
}

}

assert getFirstEqGetLast {
all l: List | all n1, n2: Int |

l.size = 1 and getFirst[l,n1] and getLast[l,
n2] => n1 = n2
}

run getFirst for 5 but 1 List, 5 Int
check getFirstEqGetLast for 5 but 1 List, 5 Int

act removeAll[thiz: List,
head: List -> one (Node+Null),
size: List -> one Int] {

 pre { }

}

program choose[l: List, result: Int] {
 local [chosen: Boolean, curr: Node+Null]
 chosen := false;
 curr := l.head;
 ([curr!=Null]?;
 (

(result:=curr.elem; chosen:=true)+(skip));
 curr:=curr.next

)*;
 [chosen = true]?
}

assertCorrectness chooseIsCorrect[l: List,
result: Int]
{
 pre { l.size>0 and repOK[l] }
 program = choose[l, result]

}

run choose for 5 but 1 List, 5 Int, 5 lurs
check chooseIsCorrect for 5 but 1 List, 5 Int, 5
lurs

(b)

the second command checks whether every terminating exe-
cution of at most five iterations of choose, on valid and
nonempty lists with at most five nodes and integers of bit
width 5, returns an element of the list.

Alloy and DynAlloy are sufficiently expressive to capture
Java programs and JML specifications and have been used
as intermediate languages for various analyses, including
bounded verification and test generation of JML-annotated
Java programs [2,15,16] (although the SAT-based analysis
of Alloy/DynAlloy is intrinsically incomplete). Our trans-
lation is based on [15,16] and relies on symmetry breaking
and tight field bounds as optimizations. More precisely, we
use the symmetry breaking technique introduced in [15,16],
which automatically builds predicates that force canonical
orderings in heap allocated structures, allowing the anal-
ysis to remove structures which are isomorphic to others
already considered. Tight field bounds, on the other hand,
are used to reduce the number of variables and clauses in
the propositional encodings of the memory heap, for Java
program analysis [15,16]. They are automatically computed
from assumed properties, such as preconditions and invari-

(a)

Fig. 1 Alloy and DynAlloy specifications for linked lists

assumed to be left unchanged by the action; that is, variable
thiz (the list object to which removeAll is applied) is
not changed by this atomic action. DynAlloy programs are
built using assignment (:=), skip, tests (guarded skip actions,
[expr]?) and atomic actions as base cases, combined using
sequential composition (;), nondeterministic choice (+) and
iteration (*). A sample program that nondeterministically
returns some element of a linked list is program choose
in Fig. 1b. DynAlloy programs can be equipped with par-
tial correctness assertions. For instance, one may specify
the intended behaviour of the choose program as a par-
tial correctness assertion, as illustrated in Fig. 1b, where we
assume repOK to be a provided Alloy predicate character-
izing the representation invariant of lists (e.g. acyclicity).
DynAlloy programs are subject to SAT-based analysis, via a
translation into Alloy [13]. They can be run (i.e. producing
instances that correspond to program executions), and when
they are equipped with partial correctness assertions, they
can be verified against their specifications. For instance, the
first command in Fig. 1b produces an execution of choose
on a list with at most five nodes with at most five iterations;

ants, and are employed to restrict structures in states that are
assumed to satisfy such properties. These optimizations are
crucial to our analysis’ efficiency, especially because we use
the encoding for numerical data types originally introduced
in [2] (extended to support some Alloy functions, notably
cardinality), enabling us to support increased precision in
numerical characterizations of Java basic data types.We refer
the reader to [2,15,16] for further details.

3 Computing workarounds from program
specifications

Let us now turn our attention to our first technique for
computing automated workarounds for Java program spec-
ifications, employing the SAT-based automated analysis
described in the previous section. The approach exploits the
translation of JMLcontracts of Java programs intoDynAlloy,
and the bounded iteration (*) and nondeterministic choice
(+) operators from this language, to build a partial cor-
rectness assertion involving a (nondeterministic) program,
whose counterexamples correspond to workarounds.

The overall approach works as follows. Let C be a class,
and m1,m2, . . . ,mk the public methods in C . Each method
mi is accompanied by its pre- and postcondition in JML, say
premi and postmi

, respectively. Notice that, as explained in
the previous section, from the JML formulas corresponding
to the contract of mi , we can obtain corresponding Alloy
formulas, using the translation embedded in TACO [16]. This
process leads to Alloy formulas preAmi

and postAmi
. According

to DynAlloy’s syntax, we can, with these formulas, define a
DynAlloy atomic action

ai : act ai
{
pre

{
preAmi

}
post

{
postAmi

}}
.

Notice that the behaviour of DynAlloy atomic action ai is
defined by its pre- and postcondition, i.e. it is assumed that
ai behaves exactly as its specification prescribes. Now, given
actions a1, a2, . . . , ak , corresponding to the translation of
methods m1,m2, . . . ,mk into DynAlloy, we can build the
DynAlloy program

(a1 + a2 + · · · + ak) ∗ .

According to the semantics of nondeterministic choice and
iteration, this program represents all sequential composi-
tions of actions a1, a2, . . . , ak , and consequently, of methods
m1,m2, . . . ,mk .

Now, let us suppose that method mi fails at run-time, in
a concrete program state si . Again, we can capture state si
as an Alloy predicate s Ai , as shown in the previous section.

Thus, we have all the elements to construct the following
partial correctness assertion:

{
s Ai

}
(a1 + a2 + · · · + ai−1 + ai+1 + · · · + ak) ∗

{
¬postAmi

}

which can be automatically analysed using DynAlloy Ana-
lyzer. A counterexample of the above assertionwould consist
of a sequence of Alloy states sA0 , . . . , sA j such that:

– sA0 is state s
A
i ;

– there is a sequence ap(1); ap(2); . . . ; ap(j) of operations
such that 〈sAi , sAi+1〉 are related by ap(i) transition rela-
tion; and

– sA j is a state s Af that does not satisfy ¬postAmi
, i.e. that

satisfies postAmi
.

Taking into account that s Ai and postAmi
are Alloy repre-

sentations of state si and the postcondition of method mi ,
respectively, such counterexample is indeed a workaround:
it provides a sequence of actions, representing methods of
class C , that take the system from state si to a state that sat-
isfies postmi

. Moreover, if DynAlloy Analyzer does not find
a counterexample to the above assertion, within a provided
scope, it is guaranteed that there are no workarounds in that
scope (with workarounds understood as simple sequences of
other methods, not more complex programs). It is important
to notice the key role that state s Ai plays in this workaround
computation approach. This “pre” state drives the search for
a sequence of methods that leads to a state satisfying the
postcondition of interest. In fact, having this pre-state fixed
improves the scalability of our DynAlloy analysis (checking
programs with a high degree of nondeterminism such as the
above is costly, especially for preconditions admitting many
possible initial states). Moreover, this mechanism makes our
workarounds state specific, in the sense that they allow us
to recover from a failure of mi in state s Ai and not necessar-
ily in other program states. As we will show later on, this
more general kind of workaround enables us to recover in
many situations in which workarounds based on equivalent
sequences are unavailable.

Dealing with parameterized methodsWhen looking for a
workaround involving methods that receive parameters, we
have an additional problem, namely how to choose appro-
priate values to pass as parameters so that these lead to
workarounds. To do so, we define atomic actions that nonde-
terministically assign a value to a variable. For instance, for
integer-typed variables such an action is defined as follows:

act nonDetAssign[x : Int] {
pre { }
post { x’ in Int }

}

Then, if a method m(int i) is involved when attempting
to build workarounds for another method, it will participate

in the iteration of nondeterministic choice of methods, as
program: nonDetAssign[i] ; m[i]. Notice that this
nondeterministic assignment is inside the iteration*, to allow
for the possibility of using m[i] more than once, with dif-
ferent parameters. Also, in this example we are using Alloy’s
Int signature, for illustration purposes. In our case studies,
we use the custom-built signatures for Java precision integers
defined in [2].
An Example Consider a simple Java implementation of
tuples, with methods:

– setFirst(int value),
– setSecond(int value) and
– swap() (swaps first and second elements of a tuple).

Suppose that method setFirst(3) fails on a tuple object
twith valuest.first: 4 and t.second: 3. Then, the
DynAlloy program that is built to produceworkarounds from
is the following:

assertCorrectness computeWorkaround[t : Tuple+Null ,
first : Tuple -> one Int ,
second : Tuple -> one Int]

{
pre { t!=Null and t.first=4 and t.second=3 }
program { local i : Int;

(t.swap() + (nonDetAssign[i] ; t.setSecond[i]))*
}
post { !(t.first ’=3 and t.second ’=t.second)}

}

For this program, the analysis would return, for instance, the
following workaround:

swap();
nonDetAssign(i);
setSecond(i)

3.1 Workaround schemas

While theworkarounds computed by the technique presented
in this section are state specific, we observed that many of
the obtained workarounds can be easily (and efficiently)
adapted to be applied to many different repair situations,
by changing the values taken by some of their inputs. Con-
sider, for example, the java.util.TreeSet API given
in Table 1. Assuming that the pollFirst method fails to
establish its postcondition when the smallest element in the
set is a negative number, it will fail for instance at the state
s ={-1,3,7}. A feasible workaround (discovered by our
technique) to circumvent this problem is shown below:

// Initial state s={-1,3,7}
int res = s.first();
s.remove(-1);
return res;

Notice that a faulty method is likely to fail again in the
future, when executed with similar inputs. For example,
pollFirst will also fail for input s ={-2,4,9}. This
time, a workaround to substitute pollFirst and keep this
class’s client running, may be the following:

// Initial state s={-2,4,9}
int res = s.first();
s.remove(-2);
return res;

Observe the similarities betweenbothworkarounds above.
Basically, they are both an instance of what we call a
workaround schema, given below:

// X: int
int res = s.first();
s.remove(X);
return res;

where X is an integer value (-1 in the first case,-2 in the sec-
ond). This schema can be applied to any input set s, although
this is not necessarily true of all schemas. Also notice that a
schema is not a permanent workaround [18], as it has some
variables that have to be instantiated appropriately for the
given initial state.

As another example, the schema:

// X: int
s.add(X);
int res = s.remove(X);
return res;

can be employed to build a transient workaround for the
containsmethod, only in cases where the element we are
searching for does belong to the involved set. For example,

where nonDetAssign assigned 3 to variable i. (These
values can be recovered from the counterexample instance
built by DynAlloy Analyzer.) The minimum scope to provide
to find such workaround is two loop unrolls, one tuple and
two 32-bit integers.

It is important to notice that in the above-described
approach to compute workarounds, methods are seen as
atomic, i.e. we do not take into account the code of method
implementations, only their specifications. This simplifica-
tion is made for scalability reasons, since there is no technical
limitation in translating methods as programs (rather than
doing so as atomic actions, as in our case).

As we mentioned previously, the technique presented in
this section allows us to compute state-specific, or as we will
call them later, “transient”, workarounds. This is in contrast
to workarounds involved in related techniques (see Sect. 6),
which are in general state independent. However, as we dis-
cuss in the remainder of this section, some workarounds
computed by our technique can be generalized, or “lifted”, to
workaround schemas, that may be reused in many different
repair scenarios.

Table 1 Excerpt of the java.util.TreeSet API

Return type Method and description

Boolean add(E e)

Adds the specified element to this set if it is not
already present

E ceiling(E e)

Returns the least element in this set greater than
or equal to the given element, or null if there is
no such element

void clear()

Removes all of the elements from this set

Boolean contains(E e)

Returns true if this set contains the specified
element

E first()

Returns the first (lowest) element currently in this
set

E floor(E e)

Returns the greatest element in this set less than
or equal to the given element, or null if there is
no such element

E higher(E e)

Returns the least element in this set strictly
greater than the given element, or null if there
is no such element

Boolean isEmpty()

Returns true if this set contains no elements

E last()

Returns the last (highest) element currently in
this set

E lower(E e)

Returns the greatest element in this set strictly
less than the given element, or null if there is no
such element

E pollFirst()

Retrieves and removes the first (lowest) element,
or returns null if this set is empty

E pollLast()

Retrieves and removes the last (highest) element,
or returns null if this set is empty

Boolean remove(Object o)

Removes the specified element from this set if it
is present.

NavigableSet<E> Subset(E fromElement, boolean fromInclusive ,
E toElement, boolean toInclusive)

Returns a view of the portion of this set whose
elements range from fromElement, inclusive, to
toElement, exclusive

SortedSet<E> subset(E fromElement, E toElement)

Returns a view of the portion of this set whose
elements range from fromElement to toElement

the following is a workaround for a faulty invocation of the
contains method, with inputs s ={-2,3,9} and e = 3
(which we also denote by {-2,3,9}.contains(3)):

// s={-2,3,9}, e=3
s.add(4);
int res = s.remove(4);
return res;

Notice that this workaround consists of adding an element
to a set that does not already contain it, so that removing the
element from the set (and restoring the set to its former state)
and returning true have the same behaviour as that expected
for {-2,3,9}.contains(3).

In order to improve workaround discovery using our
technique presented above, we propose to lift the transient
workarounds discovered by our approach for a faulty method
to schemas. These schemas canbe used to circumvent failures
produced at a later time by the same method (see Sect. 3.2).
As shown in our experimental results, the use of schemas
allows our approach to compute workarounds faster in such
situations, as instantiating schemas to build workarounds
involves querying a SAT solver on how to choose the appro-
priate nonprimitive variables (the Xs in the schemas above).
This is a much easier problem to solve, compared to solv-
ing the general workaround finding problem presented in the
beginning of Sect. 3, as the latter involves a significant degree
of nondeterminism in choosing the right actions in the right
order (the + and * in the partial correctness assertion built
by our approach).

3.2 Creating and exploiting workaround schemas

Creating a schema from a transient workaround calls for a
generalization process of some kind. In our case, we choose
a very simple process that involves replacing all the primitive
constants by variables of the corresponding type. The reason
is that generating schemas from workarounds must be very
efficient, to make it worthwhile as a mechanism for saving
time in producing new workarounds.

As an example of our schema generation process, con-
sider the following transient workaround, used previously as
a recovery for {-1,3,7}.pollFirst():

// Initial state s={-1,3,7}
int res = s.first();
s.remove(-1);
return res;

This workaround can be lifted to the following schema:

// X: int
s.add(X);
bool res = s.remove(X);
return res;

In order to repair a failure of pollFirst for another
input, say {-2,4,9}.pollFirst(), we encode the
above schema as the following DynAlloy program:

assertCorrectness instanceSchema[s : TreeSet ,
. . .

res : Int ,
] {

pre { prePollFirst[s] and s={-2,4,9} }
program { local X : Int;

nonDetAssign[X];
add[s,X];
remove[s,X,res]

}
post { !postPollFirst[s,res] }

}

and use a SAT solver to fill in the X’s. As seen in the previous
section, an execution of the above program could set X to−2,
which results in the workaround below:

// Initial state s={-2,4,9}
int res = s.first();
s.remove(-2);
return res;

Notice how solving the above program is much cheaper
than solving the general program for finding a transient
workarounds:

{
s Ai

}
(a1 + a2 + · · · + ai−1 + ai+1 + · · · + ak) ∗ {¬postAmi

}

as the solver only has to choose appropriate values for the
primitive variables. On the other hand, the latter program
contains a high degree of nondeterminism in the selection of
actions and a bounded iteration that is much more expensive
to represent as a propositional formula because it encodes a
significant number of feasible intermediate states.

Now, clearly different schemas may be collected as gen-
eralizations of previously obtained workarounds. When a set
sc1, sc2, . . . , sc j of schemas is available for a given method,
we can capture the nondeterministic choice of all of them as
a DynAlloy program:

{
s Ai

}
sc1 + sc2 + · · · + sc j

{¬postAmi

}

Rollback
State

Broken
Method

in
p

u
t

in
p

u
t

WA found WA NOT found

YES

WA Schema
Database

Transient WA
Builder

WA Schema
Finder

YES

LIFT ;
STORE

NO

Workarounds
Finder

Fig. 2 Our approach for finding workarounds

and (ii) the other runs the general transient workaround find-
ing program. If task (i) finishes first producing a workaround
as an instance of a schema, then we stop the other job and
return the instantiated schema as a recovery. If on the other
hand (ii) finishes first, then we stop the other job, return the
produced workaround as the proposed recovery and promote
this workaround to a schema, as described in the previous
subsection (as long as this schema was not already present
in the database).

As described later on in this paper, the use of schemas
allowed us to repair many faulty scenarios with a signifi-
cant speedupwith respect to the transientworkaroundfinding
approach (see Sect. 5.3).

3.3 Applying workarounds in practice

The workarounds computed by our approach can be used
straightforwardly in the context of previous self-healing
approaches, like the one presented in [4]. The approach
put forward therein, calledARMOR, proposes instrumenting
calls to the programs that are being subject to workarounds.
The instrumentation works by storing the system state before
every call to a method of a module for which workarounds
are going to be provided, and checks whether the state after
the call satisfies the method postcondition (in our case, JML
postconditions are automatically translated to run-time asser-
tions). In case, it does not, ARMOR rollbacks to the system

Finding workarounds using this program is still much
cheaper for the SAT solver than the general program for find-
ing transient workarounds. This is mainly due to two reasons.
Firstly, this simpler program does not involve bounded itera-
tion. Secondly, in practice we can restrict the set of available
schemas to build workarounds for a given action to just a few,
leading to less nondeterminism (i.e. j � k).

Schemas are incorporated into the process of finding
workarounds as shown in Fig. 2. We store previously discov-
ered schemas for each method in a schema database. When
a method fails for a given input, two tasks are run in parallel:
(i) one attempts to produce a workaround from previously
stored schemas using the nondeterministic program above

state before the call. At this point, our approach can be
invoked to find a feasible workaround for the method in the
rollback state that is then passed to ARMOR for it to execute
the workaround. The result of executing the workaround pro-
duces a valid state that can be passed to the system to continue
its execution as if the failure never occurred.

Of course, using ARMOR produces an overhead in run-
time, 194% in the worst case reported in [4], for a system
that terminates in a few seconds. We believe that the benefits
of using ARMOR combined with our approach to compute
workarounds to repair run-time failures greatly outweigh the
run-time overhead of the approaches.

The technique that we will introduce in Sect. 4 tackles
the workaround computation problem in a different way, by
resorting to the use of SAT solving to directly build a recovery
program state, rather than a recovery sequence of methods.

4 Program state repair using SAT

The technique in the previous section computes standard
workarounds, and differs from other workaround approaches
in that it applies to contract specifications at the level of detail
of source code, and it computes workarounds fully automat-
ically. In this section, we present a different approach, which
attempts to repair the failing routine by directly producing
the expected post state using the specification of the routine
and SAT solving.

While this technique has in principle the same constraints
as the previous one, i.e. that contracts must be available
for the programs being subject to the analysis, it can be
better explained (and exploited) through the use of abstrac-
tion functions. Data representations often attempt to capture
more abstract models. For instance, binary search trees are
often used as an implementation of sets of elements. The
abstraction function is part of a data representation speci-
fication, which indicates how concrete data representation
instances map to the corresponding abstract elements. Going
back to our example of binary search trees, the abstraction
function would indicate, for each binary search tree, which
is the set is represents (i.e. it essentially returns the set of
values held in the AVL). Contract languages such as JML
[9] support the definition of model variables and abstraction
functions; abstraction functions can also be captured directly
in Java, as shown in [24]. In our case, to simplify the pre-
sentation, we will use Alloy to express abstraction functions.
For instance, the abstraction function of binary search trees,
we just referred to, is captured in Alloy (in this case, using a
predicate) as follows:

pred absFunction[thiz : Tree ,
root : Tree -> one (Node+Null),
left : Node -> one (Node+Null),
right : Node -> one (Node+Null),
key : Node -> one Int ,
result : set Int] {

result = thiz.root .*(left+right).key
}

So, let us assume that, besides the pre- and postconditions
for all class methods, and the class invariant, we have the
Alloy specification of the abstraction function. (This may
be given in JML and then translated to Alloy.) Now, as in
the previous technique, assume that method mi breaks at
run-time in a concrete program state si . We would want to
recover from this failure, reaching a state s f that satisfies
the postcondition postmi

(si , s f). (Notice that the postcondi-
tion in languages such as JML and DynAlloy is actually a
postcondition relation that indicates the relationship between
precondition states and postcondition states.) We can build a
formula that characterizes these “recovery” states, as follows:

pred recoveryStates[s_f : State] {
some x, y | alpha[s_i , x] and alpha[s_f , y] and

post_m_i [x, y] and repOK[s_f]
}

where repOK is the class invariant translated to Alloy,
post_m_i is the postcondition relation ofmethodmi , trans-
lated to Alloy from JML, and alpha is the abstraction
function. Finding satisfying instances of this predicate will
produce valid poststates, in the sense that they satisfy the
class invariant, that mimic the execution of method mi .

An Example Consider a binary search tree representation
of sets. Assume that the JML invariant for binary search
trees and the JML postcondition of method remove have
already been translated into Alloy predicates repOK and
post_rem, respectively. These would look as follows:

pred repOK[thiz : Tree ,
root : Tree -> one(Node+Null),
left : Node -> one(Node+Null),
right : Node -> one (Node+Null),
key : Node -> one Int] {

all n : Node | n in thiz.root .*(left + right) implies
(n.key != null and
(no (((n.left).*(left+right)&(n.right).*(left+right))-Null))
and (n !in n.^(left+right)) and
(all m : Node | m in n.left .*(left+right) implies
n.key >m.key) and

(all m : Node | m in n.right .*(left+right) implies
m.key >n.key)

)
}

pred post_rem[elems , elems ’ : set Int , elem : Int] {
elem in elems and elems ’ = elems - elem

}

Now, consider the left-hand side binary search tree in
Fig. 3, and suppose that method remove(x) failed on this
tree, for x = 3. By looking for models of the following
Alloy predicate:

pred recoveryStates [thiz : Tree ,
root ,root ’ : Tree -> one (Node+Null),
left ,left ’ : Node -> one (Node+Null),
right ,right ’ : Node -> one(Node+Null),
key ,key ’ : Node -> one Int] {

thiz = T0 and root = (T0 ->N0) and
left = (N0->N1)+(N1->N3)+(N2->Null)+(N3 ->Null)+(N4->Null)
and right = . . . and . . . key = . . . and . . .

some x, y : set Int |
absFunction[thiz ,root ,left ,right ,key ,x] and
absFunction[thiz ’,root ’,left ’,right ’,key ’,y] and
post_rem[x, y, 3]

}

we will be searching for a valid binary search tree that rep-
resents the set resulting from removing 3 from the left-hand
side tree of Fig. 3. The right-hand side binary tree in Fig. 3 is

4

2 5

31 4

2

51

{1, 2, 3, 4, 5} {1, 2, 4, 5}

N0 N0

N1 N1 N2N2

N3N3 N4

5 Evaluation

Our evaluation consists of an experimental assessment of the
effectiveness of the two presented techniques for automati-
cally computingworkarounds and repairing faulty states, and
an analysis of how our state-specific workarounds improve
previous works in terms of repairability. The evaluation of
the effectiveness of the techniques is based on the follow-
ing benchmark of collection implementations (accompanied
by their corresponding JML contracts including requires/en-
sures clauses, loop variant functions and class invariants):

– two implementations of interface java.util.List,
one based on singly linked lists, taken from [15], the other
a circular doubly linked list taken from
AbstractLinkedList in Apache
Commons.Collections;

– three alternative implementations of
java.util.Set, one based on binary search trees
taken from [34], another based on AVL trees taken from
[3], and the red–black trees implementation
TreeSet from java.util; and

– one implementation of java.util.Map, based on
red–black trees, taken from class TreeMap in
java.util.

This benchmark is complemented with the analysis of a Java
library, namely library JodaTime for date arithmetic.

The comparison of our state-specific workarounds with
previous works in terms of repairability is made on classes
from java.util and Graphstream, based on the exper-
iments presented in [18].More precisely, we extend the set of
classes employed in the evaluation of [18], namely Stack
from java.util and the six classes of Graphstream,
with a class from java.util (TreeSet) and a class from
Graphstream
(FixedArrayList).

All the experiments were run on a PC with 3.40GHz
Intel(R) Core(TM) i5-4460 CPU, with 8GB of RAM. We
used GNU/Linux 3.2.0 as the OS. The workaround repair
prototypes togetherwith the specifications used for the exper-
iments can be found in [1]. Experiments can be reproduced
following the instructions provided therein. Also, further
experimental data are presented in [1].

5.1 Effectiveness of the techniques

In order to assess the effectiveness of our workaround tech-
niques, we artificially built repair situations, i.e. situations in
which it was assumed that a method m has failed. These sit-
uations were randomly and automatically constructed, using
Randoop [27]. For each data structure interface, we ran Ran-
doop for 1 h, producing 116,000 list traces, 136,000 set

Fig. 3 Two binary search trees, and the sets they represent

an instance satisfying the predicate. Notice how this returned
structure does not perform the expected change that a removal
method, of a leaf in this case, would produce. But as far as
the abstract data type instance that the structure represents,
this resulting structure is indeed a valid result of removing
key 3.

Predicate recoveryStates above makes some simpli-
fications, for presentation purposes. First, it uses Alloy Int
signature, whereas in our experiments we use a Java precision
integer specification. Second, notice the use of higher-order
existential quantification (some x, y: set Int). Such
quantifications are skolemized for analysis (a “one” signa-
ture declares x and y as set Int fields, which are then
used directly in predicate recoveryStates), a standard
mechanism to deal with existential higher-order quantifica-
tion in Alloy, since Alloy Analyzer does not directly support
it (see [20] for more details). Finally, and more impor-
tantly, two elements are also part of recoveryStates,
though not explicitly mentioned in the predicate. One is the
addition of an automatically computed symmetry breaking
predicate, as put forward in [15,16], which forces a canon-
ical ordering in the structures and has a substantial impact
in analysis. Second, we use tight bounds [15,16] computed
from class invariants (these reduce propositional state repre-
sentations by removing propositional variables that represent
field values deemed infeasible by the invariants) to constrain
postcondition states, since these states are assumed to satisfy
the corresponding invariants, as shown in the above predi-
cate.

Again, notice how the specific state where the failure orig-
inated is an important part of our workaround computation
(lines 6 and 7 of predicate recoveryStates “fix” the
pre-state for the workaround computation). In fact, for this
particular technique a fixed pre-state is a necessary part, since
the solver needs it to be fixed to attempt to find a repairing
poststate.

traces and 138,000 map traces, leading to the same number
of instances of the corresponding data structure. We sam-
pled one every 1000 structures (number 1000, number 2000,
number 3000, etc., since Randoop tends to produce struc-
tures of increasing size due to its feedback driven generation
policy based on randomly extending previously obtained
sequences [27]), obtaining 116 lists, 136 sets and 138 maps.
We proceeded in a similar way for class TimeOfDay of
JodaTime, producing 50 scenarios. For each method m
in the corresponding class, we assumed it failed on each
of the structures, and attempted a workaround-based repair
using the remaining methods. So, for instance, for method
removeLast from List, we attempted its workaround
repair using the remaining 32 methods of the class, in 116
different repair situations. Notice that for the first technique,
and since workarounds are computed at the interface level
from method specifications (not implementations), we have
one experiment per interface (e.g. AVL and TreeSet set
implementations are equivalent from the specification point
of view, so computing workarounds for one implementa-
tion also work for the others). For the second technique,
on the other hand, each implementation leads to different
experiments, since the technique depends on the structure
implementation.

We summarize the experimental results of the evaluation
of the first technique in columns Lists, Sets and Maps of
Tables 2, 3 and 4. Tables report:

– method being fixed (the fix is computed from the iteration
of nondeterministic choice of remaining methods);

– total time, the time spent in fixing all 100 faulty situa-
tions; time is reported in h:mm:ss format;

– average repair time, i.e. the time that in average it took
to repair each faulty situation; again, time is reported in
h:mm:ss format;

– average workaround length, i.e. number of routines that
the found workaround had, in average; and

– number of timeouts, i.e. faulty situations that could not
be repaired within 10 min.

It is important to remark that, in the tables, we only count the
repairs that actually ended within the timeout, to compute
the total and average repair times. Also, each table reports,
for the corresponding structure, theminimum,maximum and
average size for the randomly generated structures (see table
headings).

Regarding the second technique, we evaluated its per-
formance on producing recovery structures on the same
scenarios as the first technique. Recall that scenarios were
produced using, for all implementations of the same data
type, the same interface, so these are shared among different
implementations of the same data type. The timeout is set
in 10 min. Results are reported in the remaining columns of

Tables 2, 3 and 4. Notice that for this technique we do not
report workaround size, since it “repairs” the failing method
by directly building a suitable postexecution state. Regarding
the results of both techniques on the JodaTime date arith-
metic library, these are summarized in a single table (Table
5), for varying bit widths in numeric data types.

Assessment Notice that our first technique performed very
well on the presented experiments. Many methods could be
repairedwithin the timeout limit of 10min (see the very small
number of timeouts in the tables) and with small traces; in
fact, the great majority could be repaired by workarounds of
size 1 (i.e. by calling only one alternative method), and some
with workarounds of size up to 3, confirming the observa-
tions in [7]. It is important to observe that some methods
are difficult to repair. For instance, method clear, that
removes all elements in the corresponding collection, can-
not be solved alternatively by short workarounds. In fact,
this method requires performing as many element removals
as the structure holds, which went beyond the 10-min time-
out in all cases. This technique also performed well on our
arithmetic-intensive case study. Notice that, as bit width is
increased, analysis becomes slightly more expensive, but
more workarounds arise (since some workarounds are infea-
sible with smaller bit widths). Our second technique features
evenmore impressive experimental results.Most of the repair
situations that we built with Randoop were repaired using
this technique. This included repairing methods that, from
many program states, could not be repaired by the first tech-
nique.

These techniques scaled for the evaluated classes beyond
some SAT-based analysis techniques, e.g. for test gener-
ation or bounded verification [2,16]. The reason for this
increased scalability might at first sight seem obvious, since
the analysis starts from a concrete program state (a dis-
tinguishing characteristic of our computed workarounds).
However, the nondeterminism of the (DynAlloy) program
used in the computation of the workarounds, formed by
an iteration of a nondeterministic choice of actions (repre-
senting methods), makes the analysis challenging and the
obtained results, in terms of efficiency, relatively surprising.
A technical detail that makes the results interesting is the
fact that the translation from Java into Alloy and DynAl-
loy that we use encodes numerical data types with Java’s
precision. That is, integers are encoded as 32-bit integers (in
the case of JodaTime, where arithmetic is heavily used, we
assessed our techniqueswith different bitwidths), as opposed
to other works that use Alloy integers (very limited numeri-
cal ranges). The approach is that presented in [2], extended
to make some Alloy functions, notably cardinality (#), work
on these numerical characterization of Java basic data types.

As we have stated in the paper, our approach requires
formal specifications. Our case studies demanded differ-
ent specification overheads. Data structure implementations

Ta
bl
e
2

W
or
ka
ro
un
d
co
m
pu
ta
tio

n
fo
r
lis
ts

L
i
s
t
s
:1

16
st
ru
ct
s.
;m

in
.s
iz
e:
6;

m
ax
.s
iz
e:
25
;a
vg
.s
iz
e:
14
.8
5

S
i
n
g
l
y

L
k
d

L
i
s
t
s
:1

16
st
ru
ct
s.
;m

in
.s
iz
e:
6;

m
ax
.s
iz
e:
25
;a
vg
.s
iz
e:
14
.8
5

A
b
s
t
.

L
k
d

L
i
s
t
s
:1

16
st
ru
ct
s.
;m

in
.s
iz
e:
6;

m
ax
.s
iz
e:
25
;a
vg
.s
iz
e:
14
.8
5

M
et
ho
d
to

fix
L
i
s
t
s

S
i
n
g
l
y

L
k
d

L
i
s
t
s

A
b
s
t
.

L
k
d

L
i
s
t
s

To
ta
lt
im

e
A
vg

re
p.

tim
e

A
vg

w
a.

#
T
O
s

To
ta
lt
im

e
A
vg

re
p.

tim
e

#
T
O
s

To
ta
lt
im

e
A
vg

re
p.

tim
e

#
T
O
s

ad
d

0:
36
:0
6

0:
0:
18

1
0

0:
08
:0
1

0:
0:
04

0
0:
11
:1
8

0:
0:
05

0

ad
dfi

rs
t

0:
36
:0
5

0:
0:
18

1
0

0:
08
:0
9

0:
0:
04

0
0:
11
:2
0

0:
0:
05

0

cl
ea
r

19
:2
0:
00

–
–

11
6

0:
07
:5
0

0:
0:
04

0
0:
10
:2
2

0:
0:
05

0

co
nt
ai
ns

0:
36
:1
6

0:
0:
18

1
0

0:
07
:4
4

0:
0:
04

0
0:
10
:3
6

0:
0:
05

0

ge
t

0:
36
:2
5

0:
0:
18

1
0

0:
07
:4
2

0:
0:
04

0
0:
11
:1
9

0:
0:
05

0

ge
tfi
rs
t

0:
36
:1
4

0:
0:
18

1
0

0:
09
:5
2

0:
0:
05

0
0:
11
:1
1

0:
0:
05

0

in
de
xo
f

0:
35
:1
8

0:
0:
18

1
0

0:
09
:2
0

0:
0:
04

0
0:
12
:2
3

0:
0:
06

0

is
em

pt
y

0:
36
:0
5

0:
0:
18

1
0

0:
07
:4
0

0:
0:
04

0
0:
11
:1
2

0:
0:
05

0

la
st
in
de
xo
f

0:
35
:2
9

0:
0:
18

1
0

0:
09
:0
0

0:
0:
04

0
0:
12
:2
3

0:
0:
06

0

of
fe
r

0:
36
:1
8

0:
0:
18

1
0

0:
08
:1
6

0:
0:
04

0
0:
11
:1
7

0:
0:
05

0

pe
ek

0:
36
:3
5

0:
0:
18

1
0

0:
08
:0
0

0:
0:
04

0
0:
11
:2
3

0:
0:
05

0

po
ll

0:
36
:1
4

0:
0:
18

1
0

0:
08
:3
2

0:
0:
04

0
0:
11
:3
1

0:
0:
05

0

po
p

0:
36
:0
7

0:
0:
18

1
0

0:
08
:2
4

0:
0:
04

0
0:
10
:2
8

0:
0:
05

0

pu
sh

0:
36
:2
5

0:
0:
18

1
0

0:
08
:3
3

0:
0:
04

0
0:
11
:2
6

0:
0:
05

0

re
m
ov
e

0:
36
:0
5

0:
0:
18

1
0

0:
08
:4
0

0:
0:
04

0
0:
10
:5
8

0:
0:
05

0

re
m
ov
em

1:
34
:3
4

0:
0:
48

17
32

0
0:
11
:1
8

0:
0:
06

0
0:
11
:1
2

0:
0:
05

0

se
te
le
m
en
t

1:
48
:3
8

0:
0:
56

19
48

0
0:
07
:5
4

0:
0:
04

0
0:
10
:4
2

0:
0:
05

0

si
ze

0:
36
:2
4

0:
0:
18

1
0

0:
08
:0
4

0:
0:
04

0
0:
10
:3
9

0:
0:
05

0

Ta
bl
e
3

W
or
ka
ro
un
d
co
m
pu
ta
tio

n
fo
r
se
ts
an
d
tr
ee
s

S
e
t
s
:1

36
st
ru
ct
s.
;m

in
.s
iz
e:
11
;m

ax
.s
iz
e:
22
;a
vg
.s
iz
e:
13
.1
7

T
r
e
e
S
e
t
:1

36
st
ru
ct
s.
;m

in
.s
iz
e:
11
;m

ax
.s
iz
e:
22
;a
vg
.s
iz
e:
13
.1
7

A
V
L

T
r
e
e
:1

36
st
ru
ct
s.
;m

in
.s
iz
e:
11
;m

ax
.s
iz
e:
22
;a
vg
.s
iz
e:
13
.1
7

S
e
a
r
c
h

T
r
e
e
:1

36
st
ru
ct
s.
;m

in
.s
iz
e:
11
;m

ax
.s
iz
e:
22
;a
vg
.s
iz
e:
13
.1
7

M
et
ho
d
to

fix
S
e
t
s

T
r
e
e
S
e
t

A
V
L

T
r
e
e

S
e
a
r
c
h

T
r
e
e

To
ta
lt
im

e
A
vg

re
p.

tim
e

A
vg

.w
a.

#
T
O
s

To
ta
lt
im

e
A
vg

re
p.

tim
e

#
T
O
s

To
ta
lt
im

e
A
vg

re
p.

tim
e

#
T
O
s

To
ta
lt
im

e
A
vg

re
p.

tim
e

#
T
O
s

ad
d

20
:4
0:
24

0:
00
:4

2
1

12
4

2:
30
:1
3

0:
1:
02

1
1:
18
:0
7

0:
0:
30

1
0:
49
:1
1

0:
0:
17

1

ce
ili
ng

1:
37
:2
8

0:
00
:4

3
1

0
0:
19
:1
5

0:
0:
08

0
0:
19
:2
7

0:
0:
08

0
0:
18
:4
8

0:
0:
08

0

cl
ea
r

1:
39
:4
4

0:
00
:4

4
1

0
0:
10
:1
9

0:
0:
04

0
0:
11
:3
3

0:
0:
05

0
0:
10
:4
8

0:
0:
04

0

co
nt
ai
ns

1:
39
:4
4

0:
00
:4

4
1

0
0:
10
:3
3

0:
0:
04

0
0:
11
:4
4

0:
0:
05

0
0:
10
:5
1

0:
0:
04

0

fir
st

1:
03
:2
8

0:
00
:2

8
1

0
1:
33
:5
0

0:
0:
37

1
0:
57
:4
0

0:
0:
21

1
0:
49
:2
6

0:
0:
13

2

flo
or

1:
37
:2
8

0:
00
:4

3
1

0
2:
01
:3
4

0:
0:
49

1
1:
00
:1
9

0:
0:
22

1
0:
27
:4
6

0:
0:
12

0

hi
gh
er

1:
01
:1
2

0:
00
:2

7
1

0
1:
55
:1
7

0:
0:
42

2
0:
58
:1
3

0:
0:
21

1
1:
10
:4
7

0:
0:
27

1

is
E
m
pt
y

0:
49
:5
2

0:
00
:2

2
1

0
1:
42
:1
5

0:
0:
41

1
1:
00
:2
6

0:
0:
22

1
1:
14
:1
7

0:
0:
24

2

la
st

1:
08
:0
0

0:
00
:3

0
1

0
1:
19
:2
7

0:
0:
30

1
0:
53
:0
2

0:
0:
19

1
0:
35
:4
7

0:
0:
15

0

lo
w
er

0:
49
:5
2

0:
00
:2

2
1

0
1:
29
:0
2

0:
0:
35

1
0:
57
:2
8

0:
0:
21

1
1:
11
:4
7

0:
0:
18

3

po
llF

ir
st

1:
39
:4
4

0:
00
:4

4
1

0
1:
23
:5
7

0:
0:
37

0
0:
51
:0
5

0:
0:
22

0
0:
47
:4
3

0:
0:
12

2

re
m
ov
e

21
:5
6:
15

0:
01
:1

5
2

13
1

1:
41
:1
9

0:
0:
40

1
0:
51
:3
8

0:
0:
22

0
0:
34
:2
8

0:
0:
15

0

Table 4 Workaround
computation for maps

Maps: 138 structs.; min. size: 11; max. size: 22; avg. size: 13.68

Tree Maps: 138 structs.; min. size: 11; max. size: 22; avg. size: 13.68

Method to fix Maps Tree Maps

Total time Avg rep. time Avg wa. # TOs Total time Avg rep. time # TOs

ceilingkey 0:48:38 0:0:21 1 0 0:34:38 0:0:15 0

clear 23:00:00 – – 138 0:29:53 0:0:12 0

containsvalue 0:47:01 0:0:20 1 0 0:30:45 0:0:13 0

firstentry 0:51:09 0:0:22 1 0 0:31:29 0:0:13 0

get 23:00:00 – – 138 0:29:37 0:0:12 0

higherentry 1:17:04 0:0:33 1 0 0:32:44 0:0:14 0

isempty 1:20:19 0:0:34 1 0 0:27:16 0:0:11 0

lastkey 1:20:10 0:0:34 1 0 0:30:02 0:0:13 0

lowerentry 1:17:03 0:0:33 1 0 0:32:57 0:0:14 0

polllastentry 7:26:46 0:3:14 1 0 7:54:33 0:2:55 10

put 23:00:00 – – 138 16:36:33 0:5:55 44

remove 23:00:00 – – 138 9:27:27 0:3:03 21

to permanent workarounds, that can be used in place of the
failing method in any situation. Results are given in Table 6.

We proceeded in a similar way for classes Vector2,
Vector3, Path and Edge, with 200 randomly generated
scenarios for Vector2 and Vector3, 160 scenarios for
Path and 150 scenarios for Edge. We report the results
of our first technique in Tables 7, 8, 9 and 10. Again, each
method analysis is also accompanied by the permanent infor-
mation, indicating whether the corresponding method has a
state-independent workaround identified by the technique in
[18].

As mentioned above, we extended the classes evaluated
in [18] with two further classes of the same case studies.
These were assessed following the same procedure as for
the other classes. For TreeSet, we considered the same
116 structures generated for our effectiveness evaluation; for
FixedArrayList,we randomlygenerated 300 structures.
The evaluation on TreeSet is reported in Table 11, while
the evaluation on class FixedArrayList is reported in
Table 12. Again, as for the other classes, for each method
we indicate in column permanent whether the method has a
workaround based on equivalent sequences.

Assessment The evaluation of transient workarounds
compared to permanent workarounds shows that, in a sig-
nificant number of cases, one is able to compute tran-
sient workarounds (i.e. state-specific workarounds) when
no permanent workaround (workarounds based on equiv-
alent sequences) is possible. Even in classes with a high
degree of redundancy such as Stack (where almost every
functionality is provided by at least two methods), there
are some methods with no permanent workarounds for
which our first technique is able to effectively produce
state-specific repairs. About 50% of methods in classes

have clear abstract mathematical models, and thus, methods
for these classes can be formally specified rather straightfor-
wardly, with the aid of suitable abstraction functions. For the
case of JodaTime, the overhead was significantly larger:
we needed to manually examine the code of this case study’s
classes to understand the behaviour of methods, and logically
capture such behaviours. The most serious overhead was in
understanding (intended) software behaviour, not in writing
the specifications themselves.

5.2 State-specific versus traditional workarounds

We now turn our attention to the analysis of our state-
specific computed workarounds, compared to the traditional
workarounds based on equivalent method sequences. As
mentioned earlier, the evaluation is based on the experi-
ments presented in [18], extended with one class for each
of the involved case studies (TreeSet from java.util
and FixedArrayList from Graphstream). Let us first
refer to the classes evaluated in [18], i.e. Stack from
java.util, and classes Vector2, Vector3, Path and
Edge from Graphstream. For class Stack, we consid-
ered 141 randomly and automatically generated scenarios,
following the same approach as for our previous experiments,
using Randoop. For each method of the class, we assumed it
failed in each scenario, and ran our first technique, to attempt
to produce a state-specific method-sequence workaround.
We report the number of repairs found (column # transient),
total time as well as average time. We also indicate, for each
method, whether it has a state-independent workaround iden-
tified by the technique in [18] (column permanent). We call
our workarounds transient in the sense that these repair the
corresponding method only in a specific state, as opposed

Ta
bl
e
5

W
or
ka
ro
un
d
co
m
pu
ta
tio

n
fo
r
jo
da
tim

e

M
et
ho
d
to

fix
Te
ch
ni
qu
e
1

Te
ch
ni
qu
e
2

I
n
t
.
1
6

b
i
t
s

I
n
t
.
3
2

b
i
t
s

I
n
t
.
1
6

b
i
t
s

I
n
t
.
3
2

b
i
t
s

#
w
a.

To
ta
lt
im

e
A
vg

re
p.

#
w
a.

To
ta
lt
im

e
A
vg

re
p.

#
w
a.

To
ta
lt
im

e
A
vg

re
p.

#
w
a.

To
ta
lt
im

e
A
vg

re
p.

m
in
us
H
ou
rs

48
0:
08
:2
3

0:
00
:1
0

48
0:
13
:1
2

0:
00
:1
6

48
0:
01
:1
8

0:
00
:0
1

48
0:
02
:3
2

0:
00
:0
3

m
in
us
M
ill
is

1
7:
50
:0
9

0:
00
:0
9

48
1:
21
:5
3

0:
01
:4
2

1
0:
01
:4
6

0:
00
:0
2

48
0:
05
:2
7

0:
00
:0
6

m
in
us
M
in
ut
es

9
6:
31
:3
0

0:
00
:1
0

46
1:
00
:0
0

0:
00
:5
2

9
0:
01
:3
0

0:
00
:0
1

48
0:
05
:3
7

0:
00
:0
7

m
in
us
Pe
ri
od
H
ou
rs

48
0:
08
:4
1

0:
00
:0
1

48
0:
13
:1
2

0:
00
:1
6

48
0:
01
:1
8

0:
00
:0
1

48
0:
02
:3
1

0:
00
:0
3

m
in
us
Pe
ri
od
M
ill
is

1
7:
50
:0
9

0:
00
:0
9

45
1:
48
:0
5

0:
01
:4
4

1
0:
01
:4
5

0:
00
:0
2

48
0:
05
:2
6

0:
00
:0
6

m
in
us
Pe
ri
od
M
in
ut
es

9
6:
31
:3
2

0:
00
:1
0

46
1:
01
:5
3

0:
00
:5
4

9
0:
01
:3
4

0:
00
:0
1

48
0:
04
:3
8

0:
00
:0
5

pl
us
H
ou
rs

48
0:
08
:5
7

0:
00
:1
1

48
0:
12
:3
8

0:
00
:1
5

48
0:
01
:1
8

0:
00
:0
1

48
0:
02
:3
2

0:
00
:0
3

pl
us
M
ill
is

1
7:
50
:1
2

0:
00
:1
2

47
1:
12
:0
1

0:
01
:1
9

1
0:
01
:3
9

0:
00
:0
2

48
0:
04
:5
5

0:
00
:0
6

pl
us
M
in
ut
es

29
3:
13
:2
1

0:
00
:0
9

48
0:
13
:0
0

0:
00
:1
6

29
0:
01
:3
0

0:
00
:0
1

48
0:
02
:5
1

0:
00
:0
3

pl
us
Pe
ri
od
H
ou
rs

48
0:
08
:4
5

0:
00
:0
1

48
0:
12
:5
0

0:
00
:1
6

48
0:
01
:1
7

0:
00
:0
1

48
0:
02
:3
1

0:
00
:0
3

pl
us
Pe
ri
od
M
ill
is

1
7:
50
:1
2

0:
00
:1
2

47
1:
06
:4
1

0:
01
:1
2

1
0:
01
:4
4

0:
00
:0
2

48
0:
05
:0
1

0:
00
:0
6

pl
us
Pe
ri
od
M
in
ut
es

29
3:
14
:4
1

0:
00
:0
9

48
0:
12
:4
2

0:
00
:1
5

29
0:
01
:3
1

0:
00
:0
1

48
0:
02
:5
3

0:
00
:0
3

w
ith

H
ou
rO

fD
ay

48
0:
09
:2
1

0:
00
:1
1

48
0:
13
:1
8

0:
00
:1
6

48
0:
01
:0
7

0:
00
:0
1

48
0:
02
:2
2

0:
00
:0
2

ge
tH
ou
rO

fD
ay

0
8:
00
:0
0

–
0

8:
00
:0
0

–
48

0:
01
:0
7

0:
00
:0
1

48
0:
02
:4
1

0:
00
:0
3

ge
tM

ill
is
O
fS
ec
on
d

0
8:
00
:0
0

–
0

8:
00
:0
0

–
48

0:
01
:0
6

0:
00
:0
1

48
0:
02
:3
9

0:
00
:0
3

Table 6 Workaround computation for stack

Stacks: 141 structs.; min. size: 5, max. size: 19, avg. size: 12.19

Method to fix Total time Avg rep. time Avg. wa. # TOs # transient Permanent?

stack_contains 1:43:24 0:00: 44 1 1 141 NO

stack_empty 1:34:00 0:00: 40 1 1 141 NO

stack_firstElement 1:43:24 0:00: 44 1 1 141 YES

stack_peek 1:43:24 0:00: 44 1 1 141 YES

stack_pop 1:56:00 0:00: 51 1 1 141 YES

stack_push 4:51:24 0:02: 05 1 1 141 YES

vector_add 1:45:45 0:00: 45 2 1 141 YES

vector_addElement 1:52:48 0:00: 48 1 1 141 YES

vector_addIndexItem 1:45:45 0:00: 45 1 1 141 YES

vector_clear 1:34:00 0:00: 40 1 1 141 YES

vector_elementAt 1:45:45 0:00: 45 1 1 141 YES

vector_get 1:45:45 0:00: 45 1 1 141 YES

vector_get first 1:43:24 0:00: 44 1 1 141 YES

vector_insertElementAt 1:45:45 0:00: 45 1 1 141 YES

vector_lastElement 1:43:24 0:00: 44 1 1 141 YES

vector_remove 1:45:45 0:00: 45 1 1 141 YES

vector_removeAllElements 1:45:45 0:00: 45 1 1 141 YES

vector_removeElement 1:48:06 0:00: 46 1 24 117 NO

vector_removeElementAt 1:45:45 0:00: 45 1 1 141 YES

vector_removeIndex 1:45:45 0:00: 45 1 1 141 YES

vector_set 1:45:45 0:00: 45 1 1 141 YES

vector_setElement 1:45:45 0:00: 45 1 1 141 YES

Table 7 Workaround computation for Vector2

Vector2s: 200 structs.; min. size: NA, max. size: NA, avg. size: NA (always two components)

Method to fix Total time Avg rep. time Avg. wa. # TOs # transient Permanent?

copy 00:05:05 00:00:01 1 0 200 YES

equals 00:05:16 00:00:01 1 0 200 NO

fill 00:05:10 00:00:01 1 0 200 YES

iszero 00:05:13 00:00:01 1 0 200 NO

setxy 00:05:07 00:00:01 1 0 200 YES

validcomponent 00:05:07 00:00:01 1 0 200 NO

x 00:05:15 00:00:01 1 0 200 YES

y 00:05:14 00:00:01 1 0 200 YES

these enable run-time fixes that workarounds based on equiv-
alent sequences are unable to handle.

From the point of view of efficiency, however, a very
important point to notice is that permanent workarounds are
reusable. That is, once a state-independent workaround for a
method is found, it can be used in any situation, so its com-
putation cost is amortized as more failing scenarios arise. In
fact, if we consider the work in [18], for some methods it
takes in average the same amount of time to compute a per-

Vector2, Vector3, Path and Edge do not have perma-
nent workarounds, and we can provide transient workarounds
in most of the evaluated scenarios. Classes TreeSet and
FixedArrayList provide less redundancy, and thus,
fewer permanent workarounds are available; most of the
cases (all of them in the case of TreeSet, actually) can
be repaired with transient workarounds. These experiments
show that our state-specific workarounds have better repair
capability than permanent workarounds, in the sense that

Table 8 Workaround computation for Vector3

Vector3s: 200 structs.; min. size: NA, max. size: NA, avg. size: NA (always three components)

Method to fix Total time Avg rep. time Avg. wa. # TOs # transient Permanent?

copy 00:05:07 00:00:01 1 0 200 YES

equals 00:05:13 00:00:01 1 0 200 NO

fill 00:05:07 00:00:01 1 0 200 YES

iszero 00:05:09 00:00:01 1 0 200 NO

setxyz 00:05:12 00:00:01 1 0 200 YES

validcomponent 00:05:21 00:00:01 1 0 200 NO

x 00:05:26 00:00:01 1 0 200 YES

y 00:05:24 00:00:01 1 0 200 YES

z 00:05:26 00:00:01 1 0 200 YES

Table 9 Workaround
computation for path

Paths: 160 structs.; min. size: 2, max. size: 15, avg. size: 8.93

Method to fix Total time Avg rep. time Avg. wa. # TOs # transient Permanent?

contains_edge 00:06:37 00:00:02 1 0 160 NO

contains_node 00:06:38 00:00:02 1 0 160 NO

equals 00:06:39 00:00:02 1 0 160 NO

getedgecount 00:06:30 00:00:02 1 0 160 YES

getnodecount 00:06:30 00:00:02 1 0 160 YES

isempty 00:06:35 00:00:02 1 0 160 NO

pathsize 00:06:30 00:00:02 1 0 160 YES

Table 10 Workaround computation for edge

Edges: 150 structs.; min. size: NA, max. size: NA, avg. size: NA (always join two vertices)

Method to fix Total time Avg rep. time Avg. wa. # TOs # transient Permanent?

addattribute 00:05:37 00:00:02 1 0 150 YES

addattributes 00:11:54 00:00:02 2 0 150 NO

changeattribute 00:05:32 00:00:02 1 0 150 YES

clearattributes 00:41:50 00:00:04 3.478 58 92 NO

getattribute 00:05:42 00:00:02 1 0 150 YES

getnode0 00:05:30 00:00:02 1 0 150 YES

getnode1 00:05:31 00:00:02 1 0 150 YES

getopposite 00:31:48 00:00:02 1 120 30 NO

getsourcenode 00:05:27 00:00:02 1 0 150 YES

gettargetnode 00:05:31 00:00:02 1 0 150 YES

isdirected 00:23:57 00:00:02 1 81 69 NO

isloop 00:23:54 00:00:02 1 81 69 NO

removeattribute 00:05:33 00:00:02 1 0 150 NO

setattribute 00:05:34 00:00:02 1 0 150 YES

manent workaround, that it takes our technique to compute
a transient, state-specific one.

5.3 Assessment of workaround schemas

In this section, we experimentally assess the advantages
of exploiting workaround schemas with respect to tran-

sient workarounds. Table 13 shows examples of transient
workarounds found by our approach (second column), the
schemas obtained from the workarounds (third column) and
an informal description of when the schemas can be applied.
We chose the java.util.TreeSet case study because
it allows us to illustrate the different kinds of transient
workarounds and schemas that can be discovered using our

Table 11 Workaround
computation for TreeSet

TreeSets: 136 structs.; min. size: 11, max. size: 22, avg. size: 13.16

Method to fix Total time Avg rep. time Avg. wa. # TOs # transient Permanent?

add 20:40:24 0:00: 42 1 124 12 NO

ceiling 02:38:59 00:00:43 1 0 136 NO

clear 02:39:47 00:00:44 2 0 136 YES

contains 02:40:04 00:00:44 1 0 136 NO

first 02:35:51 00:00:42 1 0 136 YES

floor 02:39:38 00:00:43 1 0 136 NO

higher 02:39:36 00:00:44 1 0 136 NO

is_empty 02:40:22 00:00:44 1 0 136 YES

last 02:40:12 00:00:44 1 0 136 YES

lower 02:38:31 00:00:43 1 0 136 NO

poll_first 02:40:37 00:00:44 1 0 136 NO

poll_last 02:40:45 00:00:44 1 0 136 NO

remove 21:56:15 0:01: 15 2 131 5 NO

subseta 06:00:53 00:01:20 1 0 136 NO

subsetb 06:02:19 00:01:19 1 0 136 NO

Table 12 Workaround
computation for FixedArrayList

FixedArrayLists: 300 structs.; min. size: 1, max. size: 53, avg. size: 23.03

Method to fix Total time Avg rep. time Avg. wa. # TOs # transient Permanent?

contains 00:34:02 00:00:06 1 0 300 NO

get 00:33:50 00:00:06 1 0 300 NO

getlastindex 08:02:31 00:00:20 3.11 45 255 NO

getnextaddindex 04:32:57 00:00:06 1 82 218 NO

isempty 00:34:29 00:00:06 1 0 300 YES

realsize 02:55:00 00:00:07 1 64 236 NO

remove 14:39:05 00:00:04 1 286 14 NO

size 02:58:17 00:00:06 1 63 237 NO

unsafeget 00:33:27 00:00:06 1 0 300 NO

repaired by executing {1,7,10}.contains(−1) (W). The ratio-
nale is that {1,7,10}.add(10) should not modify its input set
and return the boolean false (10 is already in s; hence, it
is not added again), and exactly the same result (false as a
return value, an unchanged input set) is obtained by executing
{1,7,10}.contains(−1).

In Table 13, we denote schemas by F �→ S (third col-
umn) together with the condition C that must be satisfied
for our approach to produce a successful repair using the
schema (fourth column). This means that if F is invoked
using inputs I satisfying condition C , a SAT solver can be
queried to produce inputs to instantiate schema S, resulting
in a state-specific workaround for the execution of F on I . In
this way, the schema in the first row of the table can be read
as follows: for any set s and element X such that X ∈ s (C ,
the condition that needs to be satisfied), a call to s.add(X) (F)

approach. We purposefully omit the return values of methods
and workarounds in Table 13 to simplify the presentation.
The detailed relevant method signatures are presented in
Table 1.

For space reasons, we use a slightly different, more con-
cise, notation in Table 13, compared to the notation we
employed to introduce our approaches in Sect. 3. Here, we
often replace formal by actual parameters in method invo-
cations. For instance, in the first row, second column of
Table 13 we denote by {1,7,10}.add(10) the invocation to
the add method with parameters s = {1, 7, 10} and e = 10.
In the second column, we denote state-specific workarounds
by F �→ W , where F is a particular invocation of a failing
method using specific inputs and W is a sequence of meth-
ods that serves as a fix for that scenario. For example, in
row one we have that the call {1,7,10}.add(10) (F) can be

Table 13 Examples of transient WA and schemas found by our approach for java.util.TreeSet

Method Transient WAs WA Schemas Conditions

add(e) {1,7,10}.add(10) �→ {1,7,10}.contains(-1) s.add(X) �→ s.contains(Y) X ∈ s

ceiling(e) {1,7,10}.ceiling(10) �→ {1,7,10}.floor(10) s.ceiling(X) �→ s.floor(Y) True

{1,7,10}.ceiling(8) �→ {1,7,10}.floor(11)

{1,7,10}.ceiling(20) �→ {1,7,10}.floor(-1)

contains(e) {2,4}.contains(5) �→ {2,4}.isEmpty() s.contains(X) �→ s.isEmpty() X /∈ s, s 	= ∅
{2,4}.contains(4) �→ {2,4}.add(5);{2,4,5}.remove(5) s.contains(X) �→ s.add(Y);s.remove(Z) X ∈ s

first() {2,3,4}.first() �→ {2,3,4}.floor(2) s.first() �→ s.floor(X) True

floor(e) {1,7,3,10}.floor(10) �→ {1,7,3,10}.ceiling(10) s.floor(X) �→ s.ceiling(Y) True

{1,7,3,10}.floor(8) �→ {1,7,3,10}.ceiling(5)

{1,7,3,10}.floor(-1) �→ {1,7,3,10}.ceiling(100)

higher(e) {2,3,5}.higher(4) �→ {2,3,5}.floor(5) s.higher(X) �→ s.floor(Y) True

{2,3,5}.higher(-10) �→ {2,3,5}.floor(-1)

isEmpty() {2,3,4}.isEmpty() �→ {2,3,4}.contains(10) s.isEmpty() �→ s.contains(X) s 	= ∅
{}.isEmpty() �→ {}.add(1);{1}.remove(1) s.isEmpty() �→ s.add(X);s.remove(Y) s = ∅

last() {2,3,4}.last() �→ {2,3,4}.floor(4) s.last() �→ s.floor(X) True

lower(e) {-1,3,4}.lower(2) �→ {-1,3,4}.floor(-1) s.lower(X) �→ s.floor(Y) True

{1,3,24}.lower(-1) �→ {1,3,24}.floor(-2)

pollFirst() {2,4,7}.pollFirst() �→ {2,4,7}.first();{2,4,7}.remove(2) s.pollFirst() �→ s.first();s.remove(X) True

pollLast() {2,4,7}.pollLast() �→ {2,4,7}.last();{2,4,7}.remove(7) s.pollLast() �→ s.last();s.remove(X) True

remove(e) {2,5,9}.remove(2) �→ {2,5,9}.pollFirst() s.remove(X) �→ s.pollFirst() X = min(s)

{2,5,9}.remove(9) �→ {2,5,9}.pollLast() s.remove(X) �→ s.pollLast() X = max(s)

can be replaced by a call to s.contains(Y) (S), and the SAT
solver will find a value for Y such that the latter call produces
exactly the same result as the former (i.e. if s = {1,7,10} and
X = 10, the solver might return −1 as an answer). The other
rows of the table share the same format.

While transient workarounds are very specific to a par-
ticular state, the schemas that are derived from them feature
different degrees of generality. On the one hand, we have
schemas that are always useful to repair the given action.
Examples of these are the schemas discovered for the actions
first, floor, higher, last, lower, pollFirst
and pollLast. In such cases, our approach is much faster,
as shown by the experimental analysis discussed below.
Notice that in none of these cases the schemas correspond
to permanent workarounds, as the variables of the schemas
have to be instantiated with different values depending on
the input sets.

On the other hand, other schemas are only applicable
under particular conditions on the inputs of the actions. For
example, add can only be repaired when the element to be
added is already in the set; remove can be repaired only if
the element being removed is the smallest or the largest of the
set; and the second schema for isEmpty only works for the
empty set.While some of theseworkarounds are rather naive,
in somecases they can still be veryuseful. (The schema-based
workarounds for remove are good examples.)

With respect to the performance of our approach, Tables
14 and 15 show the time required to find a workaround when
schemas are used and when they are not, for the Stack and
TreeSet case studies, respectively. Again, we used many
randomly generated inputs for each method, assumed the
method failed for the input, and tried to produce a repair with
and without schemas. The result of this experiment indicates
that schemas are significantly faster as a vehicle for produc-
ing repairs than the general transient workaround discovery
approach, 11.12 times faster for Stack and 8.48 times faster
for TreeSet, and they should be used if available (recall
that schemas are derived from transient workarounds, and
can be used when the same method fails after the schema is
created).

It is important to remark that our prototypical tool for
workaround discovery is not as efficient as it can be in gen-
erating workarounds from schemas, as it encodes schemas
as part of a DynAlloy program, which is run each time a
new schema-based workaround is searched for. Optimizing
the run-time of schema-based workaround search is feasi-
ble, for instance, by storing the CNF formula corresponding
to the schema instantiation program, instead of building this
formula for each call, as our prototype does.

Table 14 Speedup achieved by using schemas in the Stack case study

Stacks: 141 structs.; min. size: 5, max. size: 19, avg. size: 12.19

Method to fix Avg rep. time without templates Avg rep. time with templates Speed up

stack_contains 0:00:44 0:00: 03 14.67

stack_ empty 0:00:40 0:00: 04 10

stack_firstElement 0:00:44 0:00: 04 11

stack_peek 0:00:44 0:00: 04 11

stack_pop 0:00:51 0:00: 05 10.2

stack_push 0:02:05 0:00: 04 31.25

vector_add 0:00:45 0:00: 04 11.25

vector_addElement 0:00:48 0:00: 04 12

vector_addIndexItem 0:00:45 0:00: 05 9

vector_clear 0:00:40 0:00: 04 10

vector_elementAt 0:00:45 0:00: 04 11.25

vector_get 0:00:45 0:00: 04 11.25

vector_get_first 0:00:44 0:00: 04 11

vector_insertElementAt 0:00:45 0:00: 05 9

vector_lastElement 0:00:44 0:00: 04 11

vector_remove 0:00:45 0:00: 20 2.25

vector_removeAllElements 0:00:45 0:00: 04 11.25

vector_removeElement 0:00:46 0:00: 20 2.3

vector_removeElementAt 0:00:45 0:00: 04 11.25

vector_removeIndex 0:00:45 0:00: 04 11.25

vector_set 0:00:45 0:00: 04 11.25

vector_setElement 0:00:45 0:00: 04 11.25

Table 15 Speedup achieved by
using schemas in the TreeSet
case study

Sets: 136 structs.; min. size: 11, max. size: 22, avg. size: 13.16

Method to fix Avg rep. time without templates Avg rep. time with templates Speed up

add 0:00:42 0:00: 03 14

ceiling 0:00:43 0:00: 13 3.31

clear 0:00:44 0:00: 02 22

contains 0:00:44 0:00: 02 22

first 0:00:28 0:00: 06 4.67

floor 0:00:43 0:00: 12 3.6

higher 0:00:27 0:00: 13 2.1

is_empty 0:00:22 0:00: 02 11

last 0:00:30 0:00: 06 5

lower 0:00:22 0:00: 07 3.14

poll_first 0:00:44 0:00: 05 8.8

remove 0:00:15 0:00:07 8.5

results (notice that even for our second part of the evalua-
tion, transient vs. permanent, we had to equip the evaluated
classes with JML specifications in our to be able to run one of
our techniques). We manually checked that the workarounds
obtained using our techniques (using both of them) were cor-
rect, confirming that, as far as our techniques required, the
specifications were correct.

5.4 Threats to validity

Our experimental evaluation involved implementations
accompanied by corresponding abstract data types. When
available, these were taken from previous work, that used
them in a benchmark for automated analysis. We did not
formally verify that these implementations and specifica-
tions are correct, and they may contain errors that affect our

Our experiments involved randomly generated scenar-
ios (program states), from which workaround computations
were launched. Different randomly picked scenarios may of
course lead to different results. We attempted to build a suf-
ficiently varied set of such program states, while keeping the
size of the sample manageable. In all cases, we performed
workaround computations, for each method under analysis,
onmore than100 scenarios. Thesewere selected following an
even distribution, and taking into account how Randoop (the
random testing tool used to produce the scenarios) performed
the generation, reporting our results as an average. We took
as many measures as possible to ensure that the selection
of the cases did not particularly favour our techniques. Our
workaround computation tools make use of optimizations,
such as tight bounds [15,16]. These may introduce errors,
e.g. making the exploration for workarounds not bounded
exhaustive. We experimentally checked consistency of our
prototypes with/without these optimizations, to ensure these
did not affect the outcomes.

When comparing with other techniques, especially in the
second part of our evaluation, we relied in the results and
running times reported in the literature [18], since replicat-
ing the experiments in our own infrastructure led to worse
running times than those reported in [18].

The authors of [28] state that strong contracts allowed
them to find twice as many bugs than weaker contracts, using
testing. We believe that it is much more important to have
stronger contracts in program repair techniques (like the one
presented here) than in other approaches like verification or
software testing, since a repair that is not correct results in
new failures that do not contribute to improving software
reliability (in fact it decreases reliability). The problem of
incorrect repairs with weaker specifications happened too
frequently in our experiments that we ended up discarding
them.

6 Related work

Existing approaches to workaround computation are among
the closestwork related to our first technique.We identify two
lines, one that concentrates in computing workarounds, as in
[6,8,18], and another that focuses on applying workarounds
[4]. Our work is closer to the former, since we do not study
in this paper the run-time application of workarounds. As
opposed to [6,8], requiring a state transition system abstrac-
tion, our workarounds are computed directly from source
code contracts. Our workarounds are also transient, as we
have previously emphasized in the paper, as opposed both
to [6,8] and [18], that produce permanent workarounds,
with a diminished repairability as evaluated in the previ-
ous section. The work in [18] produces equivalent method
sequences (workarounds) directly at the level of source code.

The approach differs from ours in the fact that they do not
employ formal specifications; it instead resorts to a two-phase
procedure based on evolutionary computation that uses: (i)
test cases in the first phase, to produce candidate equivalent
sequences that behave as the method of interest in the test
scenarios, and (ii) the method of interest (that for which an
equivalent sequence is being computed) in the second phase,
to attempt to compute a test that differentiates the routines
[18]. This second phase needs to assume that the method of
interest is correct, a hypothesis that prevents the use of the
technique for workaround computation.

Workarounds of the kind used in [4] are alternative equiv-
alent programs to that being repaired. Thus, workarounds
can be thought of as automated program repair strategies.
In this sense, the work is related to the works on automated
program repair, e.g. [10,22,35]. Again, as we mentioned, the
workarounds that we compute can repair a program in a spe-
cific state, i.e. they are workarounds as in the original works
[6,8], that do not constitute “permanent” program repairs, but
“transient” ones, i.e. that only work on specific situations.
Program repair techniques often use tests as specifications
and thus can lead to spurious fixes (see [29,33] for detailed
analyses of this problem).

Our second technique for workarounds directly manip-
ulates program states, as opposed to trying to produce
these indirectly via method calls. This technique is closely
related to constraint-based and contract-based structure
repair approaches, e.g. [11,19,21], in particular the approach
of Khurshid and collaborators to repair complex structures,
reported in [36,37]. While Khurshid et al. compute a kind
of structure “frame” (the part of the structure that the failing
program modified) and then try to repair structures by only
modifying the frame, we allow modifications on the whole
structure. Also, in [36,37], Alloy integers are used, instead of
integers with Java precision. Thus, a greater scalability can
be observed in their work (in that work the authors can deal
with bigger structures, compared to our approach), whereas
in our case the program state characterization is closer to
the actual Java program states. Moreover, our technique can
repair structures that the approach in [36] cannot. A thorough
comparison cannot be made, because the tool and experi-
ments from [36] are not available. Nevertheless, we have
followed that paper’s procedure, and attempted to repair some
of the randomly produced structures of our experiments. For
instance, in cases where a rotation is missing (in a balanced
tree), the approach in [36] cannot produce repairs, since the
fields that are allowed to change are restricted to those vis-
ited by the program, and since the rotation is mistakenly
prevented, the technique cannot modify fields that are essen-
tial for the repair. If, instead, we allow the approach in [36]
to modify the whole structure, then the approach is similar
to ours without the use of tight bounds and symmetry break-
ing, which we already discussed in the previous section. The

bility. In fact, automated SAT-based bounded verification
techniques (e.g. the tool TACO [15]) have hard problems
scaling up to structures with half the size of those supported
by our approach. For example, for bounded verification of
a single method of Binary Search Tree, using struc-
tures with up to 10 nodes, TACO requires more than 30 min,
and it does not terminate in 10 h for structures with 12 nodes
(similar tools, like JForge [12], exhibit even worse perfor-
mance). In contrast, our approach can find run-time repairs
for the same case in less than a minute, for structures twice
as large (11 to 22 nodes). There are two reasons for this.
First, our approach works at the specification level, which
as explained above is usually much more abstract than the
source code level. In this way, our approach does not care
about implementation details (i.e. for Binary Search Trees
our approach works with simple sets, in contrast to TACO
and JForge that work with the detailed structure of pro-
gram heaps conforming Binary Search Trees). Second, our
approach exploits the fact that it has to consider only one
initial state (the state where the faulty action failed), instead
of the whole set of (bounded) initial states that satisfy the
precondition of a method needed to perform bounded ver-
ification. This greatly reduces the work of the SAT solver
in finding run-time repairs. This means that our approach
can still be useful when the software is well tested or veri-
fied with bounded approaches like TACO/JForge, as testing
might miss faults, and for the reasons mentioned above the
scalability of our approach can be superior to that of similar
verification approaches.

Compared to theorem proving based techniques, like
Dafny [23], our approach sacrifices full correctness guar-
antees, but requires significantly less work from the user.
Proving program correctness typically involves a deep under-
standing of the low-level details of the program being
verified, such as pointer aliasing, frame conditions and loop
invariants, that are not needed by our approaches, which only
depend on higher level method pre/postconditions and class
invariants. Moreover, theorem provers often require the user
to devise and prove auxiliary lemmas to complete verifica-
tion, as well as mastering proof techniques like induction,
reductio ad absurdum, etc., that are not required by our
approaches.

Notice that our techniques disregard nonfunctional prop-
erties such as resource efficiency and thus cannot handle bugs
affecting these aspects of software.

7 Conclusions and future work

The intrinsic complexity of software, the constant adap-
tation/extension that software undergoes and other factors
make it very difficult to produce software systems main-
taining high quality throughout their whole lifetime. This

approaches are, however, complementary, in the sense that
we may restrict modifiable fields as proposed in [36], and
they could exploit symmetry breaking predicates and tight
bounds, as in our case. Our work uses tight field bounds to
improve analysis. Tight bounds have been exploited in pre-
vious work, to improve SAT-based automated bug finding
and test input generation, e.g. in [2,15,16,30], and in sym-
bolic execution-based model checking, to prune parts of the
symbolic execution search tree constraining nondeterminis-
tic options, in [17,31].

Both our techniques require formal specifications for run-
time repair; more precisely, we require that class invariants,
preconditions and postconditions for the methods involved
in the workaround discovery process, to be provided. While
this requirement may seem very demanding for developers,
we conjecture that there is no other effective way to guarantee
that the run-time repairs produced by approaches such as the
ones presented in this paper are indeed correct. This is in fact
an issue that affects automated program repair approaches in
general, not only “run-time” repairs as the ones aimed at in
this paper. As a hint of the seriousness of this issue, some
of the authors of this paper have recently conducted a study
[38] that shows that most of the program repairs produced
by state-of-the-art automated repair tools that do not use for-
mal specifications are in fact spurious (i.e. are not correct
repairs). This issue, known as overfitting and also acknowl-
edged by various researchers [26,33], evidences that, while
tests may be suitable as a way of approximating program ver-
ification, these are “too partial” as behaviour specifications
to be used in more complex settings, such as program repair
ones.

To reduce the burden of writing specifications, modern
formal modelling languages (like JML) provide different fea-
tures. Notably, model-based contracts [28] allow one to write
invariants, preconditions and postconditions over an abstract
model of the software, in a simple and concise way. For
instance, by using model-based contracts one can relate the
states of a TreeSet structure (implemented with a red–black
tree) to a simple sets and specify the pre- and postconditions
of methods at the set level; one can express the postcondition
of a TreeSet’s add method by saying that the obtained
set after the execution of add is equal to the union of
the former set plus the new added element. The authors of
[28] state that strong contracts allowed them to find twice
as many bugs than weaker contracts, using testing. Other
authors have also recently recognized the relative simplicity
of formal specification compared to implementation in some
domains, as well as the need (and usefulness) of formal spec-
ification for complex activities such as repair or synthesis
[25].

Since our techniques require formal specifications, one
may wonder why not perform automated verification rather
than performing run-time recoveries. One reason is scala-

fact, combined with increasingly stronger pressures to have
constant availability in software, makes techniques that help
systems tolerate bug-related failures highly relevant. In this
paper, we have presented two techniques that contribute
to tolerate run-time bug-related failures. These techniques
propose the use of SAT-based automated analysis to auto-
matically compute workarounds, i.e. alternative mechanisms
offered by failingmodules to achieve a desired task, and auto-
mated program state repair. These techniques apply directly
to formal specifications at the level of detail of program
contracts, which are exploited for workaround and state
repair computations. Our program state characterizations are
closer to the actual concrete program states than some related
approaches and can automatically deal with program spec-
ifications at the level of detail of source code, as opposed
to alternatives that require the engineer to manually produce
high level state machine program abstractions. Also, our pro-
duced workarounds are state specific, in the sense that these
can be used in place of a failing routine only in a particu-
lar program state, that is used as part of the search for the
alternative execution path. We have performed an experi-
mental evaluation that involved various contract-equipped
implementations (including arithmetic-intensive ones) and
showed that our techniques can circumvent run-time failures
by automatically computing workarounds/state repairs from
complex program specifications, in a number of randomly
produced execution scenarios. The experiments also show
that our techniques can compute state-specific workarounds
inmany situations inwhichworkarounds based on equivalent
method sequences are unavailable.

Our presented work leads to various lines for further
work. On one hand, further experimental evaluation, in par-
ticular evaluating the techniques’ performance in software
other than our case studies, is important, especially taking
into account the previously identified target for workarounds
[8]. Also, developing more sophisticated optimization tech-
niques, for instance, further exploiting tight bounds, is a
constant concern in our research. Finally, the repairs pro-
duced by our workarounds are “transient”, in the sense
that they only repair a failing program in a specific state
situation. However, many of the computed workarounds
are in fact instances of more “permanent” workarounds,
i.e. they may be generalized to produce alternative pro-
gram paths to permanently circumvent program failures.
Our notion of workaround schema is a step in the direction
of automatically producing generalizations from transient
workarounds, but as we mentioned previously, do not con-
stitute permanent workarounds per se (schema variable
instantiation still demands calls to a SAT solver). We are
nevertheless, through schemas, a step closer to permanent
workarounds. We plan to study mechanisms to promote
schemas into permanent workarounds as part of our future
work.

References

1. Replication Package for Automated Workarounds from Java Pro-
gram Specifications Based on SAT Solving. http://dc.exa.unrc.edu.
ar/staff/naguirre/sat-workarounds/. Accessed 30 July 2018

2. Abad, P., Aguirre, N., Bengolea, V.S., Ciolek, D., Frias,M.F., Gale-
otti, J.P., Maibaum, T., Moscato, M.M., Rosner, N., Vissani, I.:
Improving test generation under rich contracts by tight bounds and
incremental SAT solving. In: Sixth IEEE International Conference
on Software Testing,Verification andValidation (ICST2013), Lux-
embourg, 18–22 Mar 2013, pp. 21–30. IEEE Computer Society
(2013)

3. Belt, J., Xianghua, D.: Sireum/topi LDP: a lightweight semi-
decision procedure for optimizing symbolic execution-based anal-
yses. In: van Vliet H., Issarny V. (eds.) Proceedings of the 7th
Joint Meeting of the European Software Engineering Conference
and the ACM SIGSOFT International Symposium on Foundations
of Software Engineering 2009, Amsterdam, 24–28 Aug 2009, pp.
355–364. ACM (2009)

4. Carzaniga, A., Gorla, A., Mattavelli, A., Perino, N., Pezzè, M.:
Automatic recovery from runtime failures. In: Notkin D., Cheng
B.H.C., Pohl K. (eds.) 35th International Conference on Software
Engineering (ICSE ’13), San Francisco, CA, pp. 782–791, 18–26
May 2013. IEEE Computer Society (2013)

5. Carzaniga, A., Gorla, A., Perino, N., Pezzè, M.: Automatic
workarounds for web applications. In: Roman G.-C., van der Hoek
A. (eds.) Proceedings of the 18th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, 2010, Santa
Fe, NM, USA, 7–11 Nov 2010, pp. 237–246. ACM (2010)

6. Carzaniga, A., Gorla, A., Perino, N., Pezzè, M.: RAW: runtime
automatic workarounds. In: Kramer J., Bishop J., Devanbu P.T.,
Uchitel S. (eds.) Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering (ICSE 2010), Cape Town,
vol. 2, pp. 321–322, 1–8 May 2010. ACM (2010)

7. Carzaniga, A., Gorla, A., Perino, N., Pezzè, M.: Automatic
workarounds: exploiting the intrinsic redundancy of web appli-
cations. ACM Trans. Softw. Eng. Methodol. 24(3), 16-1–16-42
(2015)

8. Carzaniga, A., Gorla, A., Pezzè,M.: Self-healing bymeans of auto-
matic workarounds. In: Cheng B.H.C., de Lemos R., Garlan D.,
Giese H., Litoiu M., Magee J., Müller H.A., Taylor R.N. (eds.)
2008 ICSE Workshop on Software Engineering for Adaptive and
Self-Managing Systems, SEAMS 2008, Leipzig, Germany, 12–13
May 2008, pp. 17–24. ACM (2008)

9. Chalin, P., Kiniry, J.R., Leavens, G.T., Poll, E.: Beyond assertions:
advanced specification and verification with JML and esc/Java2.
In: de Boer F.S., Bonsangue M.M., Graf S., de Roever W.P. (eds.)
Formal Methods for Components and Objects, 4th International
Symposium, FMCO 2005, Amsterdam, 1–4 Nov 2005, Revised
Lectures, volume 4111 of Lecture Notes in Computer Science, pp.
342–363. Springer (2005)

10. Debroy, V., Wong, W.E.: Using mutation to automatically suggest
fixes for faulty programs. In: Third International Conference on
Software Testing, Verification and Validation (ICST 2010), Paris,
7–9 Apr 2010, pp. 65–74. IEEE Computer Society (2010)

11. Demsky, B., Rinard,M.C.: Automatic detection and repair of errors
in data structures. In: Crocker R.S. Jr., Guy L. (eds.) Proceedings
of the 2003 ACM SIGPLAN Conference on Object-Oriented Pro-
grammingSystems, Languages andApplications (OOPSLA2003),
26–30 Oct 2003, Anaheim, CA, pp. 78–95. ACM (2003)

12. Dennis, G., Chang, F.S.H., Jackson, D.: Modular verification of
code with SAT. In: Pollock L.L., Pezzè M. (eds.) Proceedings of
the ACM/SIGSOFT International Symposium on Software Testing
and Analysis (ISSTA 2006), Portland, Maine, pp. 109–120, 17–20
July 2006. ACM (2006)

http://dc.exa.unrc.edu.ar/staff/naguirre/sat-workarounds/
http://dc.exa.unrc.edu.ar/staff/naguirre/sat-workarounds/

13. Frias, M.F., Galeotti, J.P., Pombo, C.L., Aguirre, N.: Dynalloy:
upgrading alloy with actions. In: Roman G.-C., Griswold W.G.,
Nuseibeh B. (eds.) 27th International Conference on Software
Engineering (ICSE 2005), 15–21 May 2005, St. Louis, Missouri,
pp. 442–451. ACM (2005)

14. Galeotti, J.P., Frias, M.F.: Dynalloy as a formal method for the
analysis of java programs. In: Sacha K. (ed.) Software Engineer-
ing Techniques: Design for Quality (SET 2006), 17–20 Oct 2006,
Warsaw, Poland, volume 227 of IFIP, pp. 249–260. Springer (2006)

15. Galeotti, J.P., Rosner, N., Pombo, C.G.L., Frias, M.F.: TACO: effi-
cient sat-based bounded verification using symmetry breaking and
tight bounds. IEEE Trans. Softw. Eng. 39(9), 1283–1307 (2013)

16. Galeotti, J.P., Rosner, N., Pombo, C.L., Frias, M.F.: Analysis of
invariants for efficient bounded verification. In: Tonella P., Orso A.
(eds.) Proceedings of the Nineteenth International Symposium on
Software Testing and Analysis (ISSTA 2010), Trento, 12–16 July
2010, pp. 25–36. ACM (2010)

17. Geldenhuys, J., Aguirre, N., Frias, M.F., Visser, W.: Bounded lazy
initialization. In: Brat G., Rungta N., Venet A. (eds.) 5th Interna-
tional Symposium NASA Formal Methods (NFM 2013), Moffett
Field, CA, 14–16May 2013. Proceedings, volume 7871 of Lecture
Notes in Computer Science, pp. 229–243. Springer (2013)

18. Goffi, A., Gorla, A., Mattavelli, A., Pezzè, M., Tonella, P.: Search-
based synthesis of equivalent method sequences. In: Cheung S.-
C., Orso A., Storey M.A.D. (eds.) Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software
Engineering (FSE-22), Hong Kong, 16–22 Nov 2014, pp. 366–
376. ACM (2014)

19. Hussain, I., Csallner, C.: Dynamic symbolic data structure repair.
In: Kramer J., Bishop J., Devanbu P.T., Uchitel S. (eds.) Proceed-
ings of the 32nd ACM/IEEE International Conference on Software
Engineering (ICSE 2010), Cape Town, vol. 2, pp. 215–218, 1–8
May 2010. ACM (2010)

20. Jackson, D.: Software Abstractions: Logic, Language, and Analy-
sis. MIT Press, Cambridge (2006)

21. Khurshid, S., García, I., Suen, Y.L.: Repairing structurally complex
data. In: Patrice G. (ed.) Model Checking Software, 12th Inter-
national SPIN Workshop, San Francisco, CA, 22–24 Aug 2005.
Proceedings, volume 3639 of Lecture Notes in Computer Science,
pp. 123–138. Springer (2005)

22. Kim, D., Nam, J., Song, J., Kim, S.: Automatic patch generation
learned from human-written patches. In: Notkin D., Cheng B.H.C.,
PohlK. (eds.) 35th InternationalConference onSoftwareEngineer-
ing (ICSE ’13), San Francisco, CA, pp. 802–811, 18–26May 2013.
IEEE Computer Society (2013)

23. Leino, K.R.M.: Dafny: an automatic program verifier for func-
tional correctness. In: Clarke E.M., Voronkov A. (eds.) Logic for
Programming, Artificial Intelligence, and Reasoning—16th Inter-
national Conference, LPAR-16, Dakar, April 25–May 1 2010,
Revised Selected Papers, volume 6355 of Lecture Notes in Com-
puter Science, pp. 348–370. Springer (2010)

24. Liskov, B., Guttag, J.V.: Program Development in Java: Abstrac-
tion, Specification, and Object-Oriented Design. Addison-Wesley,
Reading (2001)

25. Loncaric, C., Ernst, M.D., Torlak, E.: Generalized data structure
synthesis. In: Chaudron M., Crnkovic I., Chechik M., Harman
M. (eds.) Proceedings of the 40th International Conference on
Software Engineering (ICSE 2018), Gothenburg, May 27–June 03
2018, pp. 958–968. ACM (2018)

26. Long, F., Rinard, M.: Staged program repair with condition syn-
thesis. In: Di Nitto E., Harman M., Heymans P. (eds.) Proceedings
of the 2015 10th Joint Meeting on Foundations of Software Engi-
neering (ESEC/FSE 2015), Bergamo, pp. 166–178, Aug 30–Sept
4 2015. ACM (2015)

27. Pacheco, C., Lahiri, S.K., Ernst, M.D., Ball, T.: Feedback-directed
random test generation. In: 29th International Conference on Soft-

ware Engineering (ICSE 2007), Minneapolis, MN, 20–26 May
2007, pp. 75–84. IEEE Computer Society (2007)

28. Polikarpova, N., Furia, C.A., Pei, Y., Wei, Y., Meyer, B.: What
good are strong specifications? In: Notkin D., Cheng B.H.C., Pohl
K. (eds.) 35th International Conference on Software Engineering
(ICSE ’13), San Francisco, CA, pp. 262–271, 18–26 May 2013.
IEEE Computer Society (2013)

29. Qi, Z., Long, F., Achour, S., Rinard, M.C.: An analysis of patch
plausibility and correctness for generate-and-validate patch gen-
eration systems. In: Young M., Xie T. (eds.) Proceedings of the
2015 International Symposium on Software Testing and Analysis
(ISSTA 2015), Baltimore, MD, 12–17 July 2015, pp. 24–36. ACM
(2015)

30. Rosner, N., Bengolea, V.S., Ponzio, P., Khalek, S.A., Aguirre, N.,
Frias, M.F., Khurshid, S.: Bounded exhaustive test input genera-
tion from hybrid invariants. In: Black A.P., Millstein T.D. (eds.)
Proceedings of the 2014 ACM International Conference on Object
Oriented Programming Systems Languages&Applications (OOP-
SLA 2014), Part of SPLASH 2014, Portland, OR, 20–24 Oct 2014,
pp. 655–674. ACM (2014)

31. Rosner, N., Geldenhuys, J., Aguirre, N., Visser, W., Frias, M.F.:
BLISS: improved symbolic execution by bounded lazy initializa-
tion with SAT support. IEEE Trans. Softw. Eng. 41(7), 639–660
(2015)

32. Samimi, H., Aung, E.D., Millstein, T.D.: Falling back on exe-
cutable specifications. In: D’Hondt T. (ed.) ECOOP2010—Object-
Oriented Programming, 24th European Conference, Maribor,
Slovenia, 21–25 June 2010. Proceedings, volume 6183 of Lecture
Notes in Computer Science, pp. 552–576. Springer (2010)

33. Smith, E.K., Barr, E.T., Le Goues, C., Brun, Y.: Is the cure worse
than the disease? Overfitting in automated program repair. In:
Di Nitto E., Harman M., Heymans P. (eds.) Proceedings of the
2015 10th Joint Meeting on Foundations of Software Engineering
(ESEC/FSE 2015), Bergamo, pp. 532–543, Aug 30–Sept 4 2015.
ACM (2015)

34. Visser, W., Pasareanu, C.S., Pelánek, R.: Test input generation for
java containers using state matching. In: Pollock L.L., Pezzè M.
(eds.) Proceedings of the ACM/SIGSOFT International Sympo-
sium on Software Testing and Analysis (ISSTA 2006), Portland,
Maine, pp. 37–48, 17–20 July 2006. ACM (2006)

35. Weimer, W., Nguyen, T., Le Goues, C., Forrest, S.: Automatically
finding patches using genetic programming. In: 31st International
Conference on Software Engineering (ICSE 2009), 16–24 May
2009, Vancouver, Proceedings, pp. 364–374. IEEE (2009)

36. Zaeem, R.N., Gopinath, D., Khurshid, S.,McKinley, K.S.: History-
aware data structure repair using SAT. In: Flanagan C., König B.
(eds.) Tools and Algorithms for the Construction and Analysis of
Systems—18th International Conference (TACAS 2012), Held as
Part of the European Joint Conferences on Theory and Practice
of Software (ETAPS 2012), Tallinn, Estonia, Mar 24–Apr 1 2012.
Proceedings, volume 7214 of Lecture Notes in Computer Science,
pp. 2–17. Springer (2012)

37. Zaeem, R.N., Khurshid, S.: Contract-based data structure repair
using alloy. In: D’Hondt T. (ed.) ECOOP 2010—Object-Oriented
Programming, 24th European Conference, Maribor, Slovenia, 21–
25 June 2010. Proceedings, volume 6183 of Lecture Notes in
Computer Science, pp. 577–598. Springer (2010)

38. Zemín, L., Brida, S.G., Godio, A., Cornejo, C., Degiovanni, R.,
Regis, G., Aguirre, Na., Frias,M.F.: An analysis of the suitability of
test-based patch acceptance criteria. In: 10th IEEE/ACM Interna-
tionalWorkshop on Search-Based Software Testing (SBST@ICSE
2017),BuenosAires,Argentina, 22–23May2017, pp. 14–20. IEEE
(2017)

	Automated workarounds from Java program specifications based on SAT solving
	Abstract
	1 Introduction
	2 Background
	3 Computing workarounds from program specifications
	3.1 Workaround schemas
	3.2 Creating and exploiting workaround schemas
	3.3 Applying workarounds in practice

	4 Program state repair using SAT
	5 Evaluation
	5.1 Effectiveness of the techniques
	5.2 State-specific versus traditional workarounds
	5.3 Assessment of workaround schemas
	5.4 Threats to validity

	6 Related work
	7 Conclusions and future work
	References

