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Bipartite graphs have received some attention in the study of social networks and of biological
mutualistic systems. A generalization of a previous model is presented, that evolves the topology
of the graph in order to optimally account for a given Contact Preference Rule between the two
guilds of the network. As a result, social and biological graphs are classified as belonging to two
clearly different classes. Projected graphs, linking the agents of only one guild, are obtained from
the original bipartite graph. The corresponding evolution of its statistical properties is also studied.
An example of a biological mutualistic network is analyzed in detail, and it is found that the model
provides a very good fitting of all the main statistical features. The model also provides a proper
qualitative description of the same features observed in social webs, suggesting the possible reasons
underlying the difference in the organization of these two kinds of bipartite networks.

PACS numbers: 05.90.+m, 89.75.Fb, 87.23.Ge

I. INTRODUCTION

Bipartite networks have attracted considerable atten-
tion [1], [2] because they can describe social and ecologi-
cal systems. These involve nodes of two kinds, and their
edges only link nodes of different guilds.

The examples issuing from biology concern ecological
systems. These are complex ensembles of living beings
sharing a complicated pattern of mutual dependence and
interacting in many intricate ways. A number of these
systems provide valuable services to mankind and con-
siderable attention is currently being paid to their stabil-
ity taking into account human disturbance. A sustain-
able management of ecosystems can only be achieved if
a proper understanding is reached concerning how these
systems are assembled. As far as biological systems are
concerned we will discuss the case of mutualistic systems.
They involve two groups of species, usually animals and
plants, that interact to fulfill essential biological func-
tions such as feeding or reproduction. This is the case of
systems involving plants and animals that feed from the
fruits and disperse their seeds (seed dispersal networks).
Another example is that of insects that feed from the
nectar of flowers while pollinating them in the process
(pollination networks).

Bipartite networks can also be found in social systems.
Examples of this type involve the actors and movies they
participate in [3] or the boards of directors of large com-
panies and their members [1].

An important feature of bipartite networks is the de-

gree distributions of the nodes of both guilds. In social
systems the statistical properties of the degree distribu-
tions of each guild are different. While the distribution
associated to one guild approximately follows a power
law, the degrees of the other distribute themselves as
a bell shaped (Poisson-like) curve around some average
value. In biological systems the degree distributions of
both guilds decay slower than exponentially thus having
fat tails. In spite of the fact that observed mutualistic
systems are rather small, these distributions have been
fitted by truncated power laws.
In addition it has been observed [4], [5] that in bio-

logical, mutualistic networks all the contacts (links) tend
to be nested and limited by a curve[4], [6] defined as an
isocline of perfect order [7].
In a nested network the nodes of both types can be

ordered by decreasing degree in such a way that the set
of species linked with each species in the list is contained
in the set associated to the preceding one. This organiza-
tion is such that the generalists of both type of guilds (i.e.
those nodes interacting with a great number of nodes of
the other guild) tend to interact among them while there
are no contacts among specialists (i.e. nodes interacting
with very few of the other guild). All these features in-
dicate that these networks are far from being a random
collection of interacting species, displaying instead a high
degree of internal organization.
In preceding papers we have introduced the Self-

organizing Network Model (SNM) [6], [8] to describe
nested biological webs. Within that model, the topology
of the network is the result of a self-organization process
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in which its nodes progressively redefine their links obey-
ing to a purely local rule that does not depend upon any
global feature of the network. The network undergoes in
this fashion an ordering process.

This self-organization process by no means represents
any growth or assembling process of the ecological sys-
tem. It represents instead the search of a pattern of con-
tacts between both guilds that tends to optimally take
into account some contact preference rule (CPR) that is
assumed to prevail among the nodes of the network. The
aim of this model is to trace a possible causal relation-
ship between the detailes of a local rule governing the
contacts between both guilds and the statistical features
of the network. In fact, the results obtained in [6] under
one specific assumption for such CPR accurately account
for many observed statistical features of real mutualistic
webs of widely different sizes.
In this article we present a generalization of the SNM

to cast into a single framework the organization of both,
mutualistic and social webs. We thus aim at establishing
similarities and differences between social and biological
networks by linking their statistical properties with the
CPR that governs the interactions between both guilds.
The fact that nodes of one guild share contacts with

nodes of the other kind, allows us to define a pattern
of interactions among similar nodes [1]. Any bipartite
network can also be regarded as describing two separate
systems involving only nodes of one kind. The corre-
sponding projected graphs are built by defining two nodes
of the same guild as neighbors - therefore linked by an
edge - when both share a contact with at least one node
of the other guild. For instance, two plants are consid-
ered as neighbors if they are visited by the same animal
species or two directors are neighbors if they belong to
the same board.
Two nodes of one guild may share more than one con-

tact with the nodes of the other guild. As a consequence,
in the projected graphs not all edges have the same im-
portance. Each edge carries a weight representing the
number of common neighbors of the other kind thus pro-
viding a measure of the intensity of the corresponding
interaction.This is the case for instance when more than
one animal species visit the same pair of plants or two
actors participate together in several films.
We also address the interesting question of how the

gradual changes that are involved in the SNM are re-
flected both in the topology and the weights of the inter-
actions in the projected graphs.
The aim of the previous analysis is to extract salient

features of social and biological networks and not to pro-
vide precise fittings to empirical data. Nevertheless we
compare in some detail theoretical predictions with the
values observed in a real mutualist web [9] which is one of
the largest mutualistic system reported in the literature,
therefore allowing for statistical considerations.
The theoretical discussions presented in this work shed

light on several questions. In the first place they allow
to establish links between nestedness and the shape of

degree distributions of biological networks, in the second
place they provide hints about possible reasons for the
different shapes of the degree distributions of both guilds
found in social networks. These two elements place bio-
logical and social webs into well differentiated classes of
bipartite networks. Finally the theoretical predictions of
the SNM are extended to the projected graphs and are
found to provide a faithfull description of the distribu-
tions observed in the mutualistic network of Ref. [9].

II. THEORETICAL BACKGROUND

A. The Self-organizing Network Model

We describe here a generalization of the SNM intro-
duced in Ref. [6]. We refer the reader to that article
for the details of the original model as well as for the
comparison of its results with the empirical observations.
The interaction pattern of a bipartite network can be

coded as an adjacency matrix in which rows and columns
are labeled respectively by the plant and animal species
involved in the network. Its elements Kp,a ∈ {0, 1} repre-
sent respectively the absence or the presence of an inter-
action between the plant species p and the animal species
a. In what follows we drop the term species specifying
that when mentioning plants or animals we are not re-
ferring to the behavior of separate individuals but to all
the members of a species.
The SNM is a computer model that starts from a ran-

dom adjacency matrix in which the number of plants,
animals and contacts between them are arbitrarily fixed
provided that there are no species left without links with
the other guild. Starting from this initial configuration
plants and animals iteratively redefine their contacts by
reallocating the 1’s of the adjacency matrix. This reallo-
cation obeys to some assumed CPR. In the following we
consider a CPR that indicates that the agents of either
guild prefer to set contacts with a species of the opposite
guild having a greater (or lesser) number of contacts.
We implement such swapping with the following algo-

rithm. In each iteration first a row and next a column
are chosen at random. Once a row (column) has been
chosen its contacts are reallocated with probability Pr

(Pc). Reallocation consists in choosing at random a 1
and 0 belonging to the same row (column), and swap-
ping them acording to a previously selected CPR that
we discuss below in some detail. The row (column) is
left unchanged with probability 1− Pr (1 − Pc). In case
that, upon swapping, a row or a column would be left
with no links, the reallocation is not produced. This rule
prevents the elimination of a node of the system as a
consequence of being left without interactions.
The two probability parameters Pr and Pc must not

be considered as independent because the only relevant
differences appear when their ratio R = Pr/Pc is changed
i.e. when columns and rows are updated with different
frequencies. We will consider in particular two limiting
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situations, one in which R ≃ 1 and another in which R ≪
1 or R ≫ 1. These respectively correspond to a situation
in which rows and columns are updated with the same
frequency or to the case in which rows (columns) are
updated much more frequently than columns (rows).
The swapping process is continued until the CPR that

has been imposed is optimally satisfied and no further
swappings can take place. The network reaches then a
perfectly ordered phase [10].
One possible CPR [strategy (I)] is that the degree of

the new partner must be higher than the one of the pre-
vious partner. Within this CPR species of either kind
tend to be as generalists as possible. An alternative pos-
sibility [Strategy (II)] is just the opposite, namely that
the new partner has fewer contacts than the previous
one. In this case species tend to be as specialists as pos-
sible. Strategy (I) bears some similarity with the rule of
preferential attachment of Ref. [11]. This is a stochas-
tic attachment rule by which new nodes are added to a
growing network attaching to the existing nodes with a
probability that is proportional to their degree. There
are however several important differences between pref-
erential attachment and our strategy (I).
In the first place the approach in Ref.[11] deals with a

population of entities, that are represented by the nodes
of the graph, that grows constantly. Our model deals
instead with a closed system in which new nodes are not
added. It consequently involves a change of the topology
of a network with a constant number of nodes and links.
In the second place preferential attachment is clearly a
non local process because the particular attachment of
a new node is governed by the degree distribution of all
the nodes of the network. Opposed to this, the present
model follows a purely local rule. The reallocation of
contacts with both CPR’s involves only the information
of the current and of the target nodes of its counterparts
in the bipartite network and has no relation whatsoever
to any global feature of the network. It could be thought
of as one species of animals changing its current choice
as a consequence of the better conditions offered by an
alternative species of plants that is more highly or poorly
visited.
As it is well known the fact that the decision rule is

local is an important feature if the problem of the re-
allocation of all the contacts of the network is cast into
the form of the optimization problem of fulfilling a given
CPR. Within this particular framework the SNM can be
regarded as an heuristic solution for it.

B. The projected graphs

The information contained in a bipartite network can
be used to construct two separate graphs, each composed
of nodes belonging to a single guild. This is done extract-
ing two projected graphs fulfilling the rule that two nodes
of the same guild are neighbors - and therefore linked by
an edge - if they share a contact with at least one node

of the other type in the bipartite network [1] .
Let K be the adjacency matrix with elements Kp,a ∈

{0, 1} denoting the contacts between the plant p and the
animal a. KT is the transposed of K. The two matrices

WP
p,p′ = KKT =

∑

a

Kp,aK
T
a,p′(1− δp,p′)

WA
a,a′ = KTK =

∑

p

KT
a,pKp,a′(1− δa,a′) (1)

encode the weighted adjacency matrix of the projected
graphs [12] for plants (WP ) and animals (WA). The
diagonal elements:

DP (p) =
∑

a

(Kp,a)
2 (2)

DA(a) =
∑

p

(KT
a,p)

2 (3)

that are canceled from the sums in Eq.(1) are the degrees
of the plant and animal nodes in the bipartite graph. The
non vanishing off diagonal elements of WA,P carry the
information of the number of different paths linking two
nodes of the same kind involving not more than one node
of the other guild. These weights could be interpreted
as the intensity of the interaction between such pair of
species. A suitable generalization of the concept of degree
for weighted graphs is just the total number of paths
connecting some given node with all nearest neighboring
nodes of the same kind, namely:

SA(P )(i) =
∑

j

(1 − δi,j)W
A(P )
i,j (4)

This is defined as the strength [2] of the node. It provides
a measure of the relevance of the species i in the plant-
or animal systems. The usual degree of the i−th animal

or plant in the projected graph is denoted by D
P (A)
π (i)

and is given by the number of non zero elements in each
row of the matrices WA(P ).
Besides the above distributions, the projected graphs

can also be characterized by the distribution of its clus-
tering. The clustering Ci of the i-th node of any graph
is defined (Ref.[3]) as

Ci =
ei

ki(ki − 1)/2
(5)

where ei is the number of edges among the neighbors
of the i−th node and ki is its degree. The clustering
coefficient is the fraction of first neighbors of a node that
are themselves, neighbors among them.

C. Properties of the projected graphs

It is convenient to derive some analytical results for the
properties of the projected graphs under the changes in
the topology of the original bipartite graph. To this end
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we assume a perfectly ordered bipartite graph described
by an adjacency matrix with m rows and n columns and
a given probability of contacts φ and discuss the degree
distributions of the projected graphs.
We first consider an adjacency matrix with the same

number of 1’s in all its rows. This is the case for the per-
fect order produced by SNM using the CPR of strategy
(II). As discussed below it also approximately represents
the situation of a random adjacency matrix.
Let k = nφ be the number of 1’s in each row. The

probability that any two rows share no contacts with the
same species of the other guild - and are therefore not

neighbors in the projected graph - is:

qn,k =

(

n−k
k

)

(

n
k

) =
(n− k)!2

n!(n− 2k)!
(6)

therefore the probability that a given row has ℓ neighbors
and hence has degree ℓ in the projected graph is

Pℓ|m =

(

m− 1

k

)

(1− qn,k)
ℓqm−1−ℓ

n,k ; ℓ = 1, 2 . . . ,m− 1

(7)
The number of rows with degree ℓ is Nℓ|m = mPℓ|m. The
average degree of the row-species in the projected graph
therefore is

Nm =

m−1
∑

ℓ=0

ℓNℓ|m = m(m− 1)(1− qn,k) (8)

Since k = nφ this degree distribution is fully specified
by the dimensions of the matrix and the probability of
contacts φ. A completely symmetric argument can be
made for the column-species changing n by m.
The degree distribution for the opposite case, i.e. when

the Strategy (I) is used and the system reaches an asymp-
totic order of perfect nestedness is simpler to obtain. If
there are no species with no contacts and the pattern of
interactions is nested, there exists at least one species of
each guild that is a full generalist, i.e. has contacts with
all species of the other kind. Under this condition all the
species of each guild have contacts with the generalist of
the other guild and it is therefore a neighbor of all the
other species of the same type. Such perfectly nested sys-
tem gives therefore rise to two projected graphs that are
“tiny worlds”: all species are neighbors of each other[13].
The above Eq. 6 can also be used to derive a close

estimate of density of contacts φP,A
π of the two projected

graphs for plants and animals, provided that the bipartite
adjacency matrix is random. This is

φP
π (n, φ) = 1− qn,k=nφ = 1−

(n− nφ)!2

n!(n− 2nφ)!
(9)

The density for the projected graph for animals φA
π (m,φ)

is obtained from Eq.9 by changing n by m. This prob-
ability of contacts between nodes of the same guild is a
rapidly growing function of φ, the probability of contacts
in the rectangular adjacency matrix. Hence, in general,
even very sparse adjacency rectangular matrices give rise
to densely connected projected networks.

III. RESULTS

A. Results for the bipartite graphs

In the following, if not stated otherwise, we will discuss
numerical examples concerning Strategy (I). The reason
for this is two-fold: on one hand strategy (I) has a greater
biological significance and it has been successfully used
in Ref.[6] to account for the degree distributions of sev-
eral observed mutualistic systems of a wide range of sizes.
On the other hand the ordered patterns emerging from
Strategy (II) can well be approximated by a random ad-
jacency matrix. The reason for this is simple. The use
of this strategy leads to a different situation in which all
nodes of the same kind tend to have the same number of
links [14]. If contacts are randomly assigned all species
have on average the same degree. Thus, the iterative
ordering of the SNM only tends to produce a sharper
delta-like function in the degree distributions, centered
at the corresponding average number of links.
Whenever strategy (I) is used the model always leads

to a perfectly nested pattern, no matter the relative up-
dating frequency of rows and columns, as shown in Fig.1.
These perfectly ordered systems have been obtained
starting from a random adjacency matrix of 50×150 with
a probability of contacts between both guilds of 10% and
running the SNM algorithm for a very large number of
iterations until no further swappings take place. The dif-
ferent panels of Fig. 1 have different values of R and yet
perfect nestedness is found in all cases.
The sole fact that interactions are arranged in a nested

pattern does not define the shape of the degree distribu-
tions. They do indeed differ drastically with R. Several
different shapes of this distribution can be found that are
nevertheless compatible with a nested pattern of interac-
tion. As we will soon see, the shape of the degree dis-
tribution actually provides some information about the
way in which the CPR is actually enforced among the
row- or column- species.
We discuss the numerical results obtained with the

SNM by comparing them with the real mutualistic sys-
tem described in Ref.[9]. Real systems such as this are
not perfectly ordered. To obtain a theoretical prediction
from the SNM an initial configuration has to be cho-
sen that involves a random adjacency matrix with the
same number of species and interactions as the real sys-
tem. The iterative ordering process starts from this ini-
tial state and is stoped before a perfect order has been
reached using some appropriate stopping criterion that
takes into consideration the particular empirical situa-
tion under analysis. This is in fact the only adjustable
parameter of the model. The results shown here corre-
spond to 100000 iterations of the SNM. In this case the
stopping criterium is based on a statistical estimate of
the departure from the isocline of perfect order. The
algorithm is stopped when the value of this estimate is
close to the empirically observed one.
In Fig.2 we show theoretical and empirically observed
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FIG. 1: Asymptotic adjacency matrices of a bipartite network of

50×150. Each contact is shown as a black pixel. All panels display

the adjacency matrix obtained with the SNM using Strategy (I) for

both rows and columns and after 5× 106 iterations.

[9] cumulative degree distributions [15] for three values
R = 1.0, R = 0.1 and R = 10.0. The degree distribu-
tions for both guilds that are obtained with R = 1 and
the above number of iterations, closely follow truncated
power laws, truncation being here a finite size effect.In
the limit of perfect order and R = 1 the distributions for
plants and animals can be shown to map into each other
[6] through the application of a simple scaling transfor-
mation.

The distributions for R ≪ 1 or R ≫ 1 for rows and
columns shown in the right panels of Fig. 2 have quite
different behaviors and strongly depart from the observed
distributions of the mutualistic system. These curves
show the seemingly paradoxical result that the degrees
of the guild that is updated less frequently distribute ac-
cording to truncated a power law, while the more fre-

quently updated guild has a distribution that is bell-
shaped thus indicating that the distribution of degrees
have not been greatly changed by the self organization
process and have a distribution that resembles the orig-
inal random pattern. This can be understood because
when, say, columns are frequently updated most swap-
pings take place within each column. The contacts that
are changed are therefore those of the row-agents while
columns keep their degrees with little change. Thus, the
degree distribution of the rows changes while that of the
column-agents remains close to the original random ma-
trix producing a bell shaped curve. However this is not
a transient-like behavior by which a power law could be
reached for both guilds with a larger number of itera-
tions. The progressive ordering of contacts actually pre-
vents this from happening thus giving rise to a perfectly
nested system with a different order. A similar situation
in which both guilds have different degree distributions
has been described [1] for social webs such as films and
actors and boards and directors of large companies.

B. Results for the projected graphs

The interactions among mutualist species are blended
into the weights and strengths of the projected graphs.
In what follows we discuss the results of the correspond-
ing distributions in comparison with empirically observed
data. These are shown in Figs.3, 4 and 5. All figures
have the same organization of Fig.2, namely upper pan-
els correspond to animals (columns) while lower panels
correspond to plants (rows). Theoretical values are de-
duced from the rectangular adjacency matrix whose de-
gree distributions are shown in Fig.2. We show results
that correspond to R = 1, R = 0.1 and R = 10.0. Empir-
ically observed values are always displayed as a reference
in spite of the fact that values of R that are different from
1 are not expected to represent biological networks.

1. Degree and clustering distributions.

In Fig. 3 we show the degree distributions of the pro-
jected graphs for plants and animals. For a perfectly
ordered system under Strategy (I) and for any value of R
both distributions should approach a delta like function
located at the corresponding number of species. Since
the convergence to this limiting distribution is extremely
slow, a partially ordered system is expected to show sig-
nificant departures from such extreme distributions.
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FIG. 2: Cumulative degree distributions of plants and animals of a bipartite network with the same dimensions (456 × 1428) as in

Ref.[9], for different values of R. In the two panels on the right the corresponding non cumulative distributions are shown in the insets.

The empirical distributions for plants and animals are always shown in heavy continuous line. Theoretical results are averaged over 100

realizations of the original random adjacency matrix. All distributions have bin=2; this is the main reason for the noisy appearance

of the empirical data. Notice that in the plots of the right, stars or triangles fail to account simultaneously the empirical data. The

non-cumulative degree distribution shown in the insets illustrate the different organizations of the networks with R = 0.1 and R = 10

For R ≪ 1 or R ≫ 1 either columns or rows are up-
dated more frequently than rows or columns respectively.
As explained above this causes one of the two guilds to
develop a prominent peak at the corresponding number
of species. This is the situation shown in the two right
panels of Fig. 3 in which filled triangles and stars ex-
change roles showing a peak at the extreme right.

For this same reason, the distributions for both guilds
and R = 1 are not similar and indicate that one of the
two guilds has reached a more ordered configuration than
the other. Indeed, while plants display a maximum at
the number of plant-species, animals have not yet de-
veloped such pattern showing a maximum close to the
origin. Since there are more columns than rows even for
R = 1 each row is randomly selected for updating more
frequently than each column. As a consequence plants
are closer to a situation of perfect order. This effect is
hard to observe directly in the bipartite graph. Theo-

retical values obtained for R = 1 are seen to closely re-
produce the empirically observed distributions while the
SNM run with R ≪ 1 or R ≫ 1 gives rise to projected
graphs of a completely different nature.

We have also analyzed the distribution of clustering
in the projected graphs. The results obtained for this
confirm those already shown for the degree distributions.
Upon a perfect nested order the distributions also tend to
be delta functions located at a maximum value of 1. This
agrees with the gradual approach to a tiny world pattern
in which the projected graphs are complete graphs, no
matter the value of R. Such approach however strongly
depends upon the relative updating frequency of rows
and columns. When R is widely different from 1, one
of the two guilds shows a distribution of clustering that
is a bell shaped while the other guild develops a strong
peak at the maximum possible clustering equal to 1. For
R = 1 the distributions that are obtained are in good
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FIG. 3: Degree distributions in the projected graphs for animals (upper panels) and plants (lower panels), for different values of R. The

shape of the full curves in the lower panels are diferent because of the binning.

qualitative agreement with the observed data in which
both guilds appear not to be equally ordered: while ani-
mals have a heavily skewed distribution with a maximum
at clustering equal to 1, plants have a more even distri-
bution between clustering 0.8 and 1.0.

2. Distribution of strengths.

The relative importance of the different species in both
projected systems is displayed by the distributions of
strengths. These are shown in Fig.4. These distribu-
tions provide insight about the relative relevance of the
different species in the two separate systems because they
combine into a single distribution the number of neigh-
bors with the weights of the interactions linking them.
For a nested system with R ≃ 1, distributions approach
a (truncated) power law with a vast majority of nodes
having a low strength, close to their degree in the pro-
jected graph. On the other hand, few nodes with many
neighbors have a very high strength. If R ≫ 1 or R ≪ 1
one of the two strength distributions is shaped as a bell

indicating little change with respect to the original ran-
dom distribution, while the other follows the pattern ex-
plained above. General features of empirical values are
also well described by the results obtained with the SNM
(left panel of Fig. 4)

3. Distribution of weights.

As pointed up above, updating the interactions of
one guild changes the world that is seen by the other.
The weights of the projected graphs indicate how each
guild mediates the relationship between individuals of
the other. Within the SNM such mediation changes with
R. In Fig.5 we show the theoretical and the observed
distribution of weights for plants and animals with the
same conventions of the preceding figures. In the limit
of perfect order and R = 1, weights within the animal or
plant systems approach the decay of a truncated power
law. The real system is not perfectly ordered and there-
fore the distributions have a different decay rate. This is
seen in the two left panels of Fig.5. Real data for animals
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FIG. 4: Strength distributions in the projected graphs for animals (upper panels) and plants (lower panels), for different values of R..

is seen to have a distribution of weights that is closer to
a power law than the corresponding one of plants. This
result is consistent with what has been previously ob-
served in connection with the degree distributions of the
projected graphs. The cases shown in the right panels
confirm that values of R that differ from 1 lead to a
power-law distribution of strengths for only one of the
two guilds.
Although we have not attempted a detailed fit of em-

pirical data, this is seen to be qualitatively consistent
with values R ≃ 1.

4. Distribution of paths of minimum length.

Besides the degrees, the strengths, the clustering coeffi-
cients, and the weights of the links, the projected graphs
are also described by the distribution of the (minimal)
path-lengths between any pair of nodes. This distribu-
tion is strongly dependent upon the probability of con-

tacts φπ defined in Eq.(9), between two species of the
same guild, that in turn depends upon the ordering pro-
cess stemming from the SNM.

The distribution of minimal path lengths has a differ-
ent pattern depending upon the value of R and upon the
CPR that is used in the ordering process. In Table (I) we
show as an example the results obtained with the SNM in
several circumstances together with data of the observed
system described in Ref [9]. For social type networks i.e.
when rows and columns of the adjacency matrix are up-
dated with very different frequencies, the distribution of
path lengths has a different shape for each guild. The
less frequently updated guild (in the example shown in
Table (I) this corresponds to the columns) has a larger
fraction of longer paths.

The occurrence of longer paths can only take place
through minute alterations of a perfectly nested order
of the bipartite network thus turning the distribution of
minimal path lengths into a powerful tool to detect such
alterations. This follows from the data of the network
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FIG. 5: Weight distributions of the links of the projected graphs for animals (upper panels) and plants (lower panels), and different values

of R.

reported in Ref.[9]. In this case one certainly checks the
gross feature of a great majority of shorter paths. Besides
this, a small but significant fraction of paths of length 3
is also present. This can not be expected to result from
fluctuations in the random initial conditions used in run-
ning the SNM and is never reproduced for biologically
sound values of the parameters of the SNM. A way to
understand this is the following. The 1.4 % of paths of
length 3 are a total of almost 14,000 paths. This frac-
tion of longer paths can be obtained from the presence
of a very small set of perhaps a tenth of nodes that are
linked by single vertices to a densely interconnected core
built up by the other nearly 1400 nodes that have min-
imal paths only of lengths 1 and 2. Since the SNM is
a statistical model that deals equally with all species of
both guilds one should not expect to account for these
sort of details.

IV. CONCLUSIONS

We have presented a generalization of the SNM (Self-
organizing Network Model) that aims at finding the
topology of a bipartite network that optimally takes into
account some local contact preference rule (CPR) be-
tween the agents of the two guilds. To achieve this the
rows and the columns of the adjacency matrix alterna-
tively and iteratively update their contacts following such
rule.

The CPR that favors contacts with a counterpart with
as many links as possible provided the best description
of real mutualistic networks (Ref.[6]). Thus an insect
prefers to visit a flower that has many other species vis-
iting it and a flower tends to attract a wider variety of
insects. The opposite CPR that consists in developing
some kind of specialization by which contacts are as few
as possible is not observed in nature and gives rise to de-
gree distributions that are sharply peaked at one value.

We have also considered an extension of the SNM that
amounts to change the updating frequency of the con-
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tacts of both guilds. When this extra degree of freedom is
used, the model can also qualitatively account for the dif-
ference between the degree distributions of the two guilds
that is present in social networks such as boards and
directors. These results indicate that nested bipartite
networks may belong to two well differentiated classes.
While R ≃ 1 represent the situation of ecological sys-
tems, R ≪ 1 or R ≫ 1 correspond instead to social
networks[1].
The distributions that have been observed in social

networks indicates that the CPR’s are not the same for

both guilds as in the case of mutualistic webs. While the
degree distribution of one guild (say the distributions of
the number of seats of a board) may follow some ran-
dom process around a mean that represents some com-
mon practice, the degree distributions of its counterparts
(directors) may instead be governed by a non random
process obeying some specific CPR similar to that of ei-
ther plants or animals in a mutualistic web. Thus, exec-
utives sitting in these boards may be the outcome of a
selection process based upon the special merit of sitting
already in several other boards (see Fig.8 of Ref.[1]).

Table 1

GUILD(1) φπ(%) D1
(2)(%) D2(%) D3(%) D4(%) COMMENTS

ANIMALS 26.6 26.7 71.9 1.4 .004 Observed Ref.[9]

PLANTS 68.0 68.5 31.2 .3 - Observed Ref.[9]

ANIMALS 22.1 22 78 - - Random

PLANTS 54.0 57 43 - - Random

ANIMALS 32.9 32 68 - - 70,000 iter. of SNM (3)

PLANTS 65.0 65 35 - - 70,000 iter. of SNM (3)

ANIMALS 77.1 77 23 - - 1,000,000 iter. of SNM (3),(4)

PLANTS 86.8 87 13 - - 1,000,000 iter. of SNM (3),(4)

COLUMNS 15.1 15 84 .5 - 70,000 iter. of SNM (5)

ROWS 89.5 90 10 - - 70,000 iter. of SNM (5)

Empirical distribution of minimal path lengths (first two rows)

for the system described in Ref.[9] and several results of the SNM

using Strategy I with an adjacency matrix of the same dimensions

and the same number of contacts.

(1) Plants correspond to rows and animals to columns.

(2) Dj are the fraction of paths of length j expressed as percentages

of the total number of paths. Theoretical results are rounded to

the nearest integer.

(3) Plants and animals equally updated.

(4) Bipartite network symmetrically nested, closer to perfect order

than any biological system.

(5) Columns updated 10 times less frequently than rows. This

simulation would correspond to a social type bipartite network

The presence of fat tails in biological mutualistic net-
works has traditionally been attributed to the nested
pattern of contacts between both guilds. Indeed, when
R = 1 we have found that such is precisely the case.
However the present model indicates that there is not a
close relationship between the two concepts. With the
present model any bipartite network that is adapted un-
der the SNM always reaches a perfectly nested pattern
of interactions independently of the updating frequency
of rows and columns. However, the degree distributions
strongly depend upon the different updating frequencies
or, equivalently, by the prevailing order within each guild.
Thus nestedness has to be considered under a new light.

The particular degree distributions observed in mutualis-
tic webs should be attributed primarily to the particular
way in which the pattern of interactions is achieved or, to
put it into different words, to the way in which the CPR
is actually enforced within the two guilds of the bipartite
web.

Another extension that we have considered is the study
of the two projected graphs and the changes that are in-
duced on them by the SNM. We stress the contribution of
this study to the understanding of the differences between
social-type and ecological-type networks. In addition we
have also checked that the results of the SNM for the
projected graphs with R = 1 are also in good qualitative
agreement with empirical observations of real biological
systems. Moreover the projected graphs can reveal if
plants and animals have achieved a different degree of
order, something that is difficult to observe directly from
the bipartite matrix.

We have studied the distribution of minimal path
lengths within the projected graphs. This distribution
is strongly dependent upon the probability of contacts.
Since this is a rapidly growing function of the density of
contacts in the bipartite matrix, the projected systems
tend to always be tiny worlds of very densely intercon-
nected species. Moreover, the theoretical estimates of
the distribution of minimal path lengths for the system
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of ref.[9] shed some light on possible reasons of minute de-
partures from perfect order. The lack of a small fraction
of paths of length 3 may perhaps be taken as a hint of
the presence of species within the system having different
CPR’s that, in turn may produce within the ecosystem

what in ecology are called compartments (communities

in complex network language), i.e. groups of species that
while strongly connected among themselves, are weakly
connected to the rest of the network.
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