
RE-SPaM: Using Regular Expressions for Sequential Pattern Mining in
Trajectory Databases

Leticia I. Gómez
Instituto Tecnólogico de Buenos Aires

Av. E. Madero 399
Bs.As., Argentina
lgomez@itba.edu.ar

Alejandro A. Vaisman
University of Hasselt and

Transnational University of Limburg,
Department WNI, Gebouw D, B-3590

Diepenbeek, Belgium, and
Universidad de Buenos Aires
alejandro.vaisman@uhasselt.be

Abstract

In sequential pattern mining, languages based on regu-
lar expressions (RE) were proposed to restrict frequent se-
quences to the ones that satisfy user-specified constraints.
In these languages, REs are applied over items. We pro-
pose a much powerful language, based on regular expres-
sions, denoted RE-SPaM, where the basic elements are con-
straints over the attributes of the items. Expressions in this
language may include attributes, functions over attributes,
and variables. We present the data model, sketch the syntax
and semantics of RE-SPaM, a set of examples, and suggest
how RE-SPaM can be used in the mining process.

1 Introduction

In many application domains, information is organized
as ordered sequences. These applications can benefit from
the discovery of hidden patterns in such sequences. Two
main approaches had dominated the field of pattern discov-
ery in sequences: (a) the Agrawal and Srikant [1] proposal
(the one we follow in this paper), and (b) the approach
of Mannila et al. [5]. In the former (aimed at discov-
ering inter-transactions patterns), an interesting pattern is
one that appears in the database at least as many times as
an user-specified threshold. In the proposal, an itemset is
an unordered, non-empty set of items and a sequence is
an ordered list of itemsets. The support of a sequence is
the fraction of the total number of transactions containing
it. The authors extended their proposal [7] to support time-
gap constraints, taxonomies, and time windows, resulting in
the Generalized Sequential Patterns (GSP) algorithm. Al-
though many frequent sequential patterns could be obtained
using GSP, it is likely that only a few of them could be

relevant to the user. Thus, Garofalakis et. al. [3] pro-
posed a variation, denoted SPIRIT, where regular expres-
sions are used to prune the information obtained. The algo-
rithm returns only the frequent patterns that satisfy these
regular expressions. We extend existing work in several
ways: we propose a language based on regular expressions,
called RE-SPaM, built on constraints (i.e., conditions over
attributes of complex items) rather than over atomic items.
These regular expressions can contain constants, attributes,
and variables, substantially improving earlier proposals.

In the analysis of moving object data [4], the trajectory
of an object is given by samples composed of a finite num-
ber of tuples of the form 〈Oid, t, x, y〉, such that, at a certain
instant t, the object Oid was located at coordinates (x, y).
Instead of sequences of points, we work with semantic tra-
jectories [6], in the form of sequences of geometric objects,
denoted stops, where the items to be mined are sequences
of stops in a trajectory, along with the time spent at them by
each moving object.

Mouza and Rigaux [2] proposed a language based on
regular expressions for querying trajectory patterns, where
each zone could be represented by its label (a constant)
or by a variable (@x). Variables can only be associated
with places (represented by labels or IDs) visited by ob-
jects. Thus, the language cannot deal with time constraints
or categories. On the contrary, our approach allows vari-
ables associated with any attribute of an item.

2 Preliminaries and Data Model

Traditional algorithms for sequential pattern mining
work over atomic items, i.e., literals. Each item has the
time interval of the transaction associated with it. In this
work we consider items as composed of attributes. The
data model we now define, formalizes this. We have a set



Category Schema

hotels [ID, categoryName, geom, star]
restaurants [ID, categoryName, geom, typeOfFood, price]
Eiffel Tower [ID, categoryName, geom]

zoos [ID, categoryName, geom, price]

Table 1. Schema of the categories

of attribute names A, and a set of identifier names I. Each
attribute attr ∈ A has a domain dom(attr), and each iden-
tifier ID ∈ I a domain dom(ID).

Definition 1 (Category Schema) A category schema S is
a pair (ID ,A), where ID ∈ I is a distinguished attribute
denoted identifier, and A = {attr|attr ∈ A}. In what
follows we consider the set A ordered. Thus, S has the form
(ID , attr1, ..., attrn). ��
Definition 2 (Category Occurrence) Given a cate-
gory schema S , a category occurrence for S is the
pair (〈ID, id〉,P), where ID is the ID attribute of
Definition 1 above, id ∈ dom(ID), and P is the
set of pairs {(attr1, v1), ..., (attrn, vn)}, where: (a)
attri = A(i) (remember that A is considered ordered); (b)
vi ∈ dom(attri), ∀i, i = 1..n; (c) All the occurrences of
the same category have the same set of attributes; (d) ID
is unique for a category occurrence, meaning that no two
occurrences of the same category can have the same value
for ID . (see below)

In what follows, for clarity reasons, we assume that
attr0 stands for ID . Thus, a category occurrence is the
set of pairs [(attr0, v0), (attr1, v1), ..., (attrn, vn)]. ��
Definition 3 (Category Instances) A set of occurrences of
the same category is denoted a category instance. Also,
given set of category instances (see Figure 1), we extend
the fourth condition in Definition 2 to hold for the whole
set: ID is unique for a set of category instances, meaning
that no two occurrences of categories in the set can have
the same value for ID .

The schema of each category, and a corresponding set
of category instances (i.e., the stops in the trajectories), are
shown in Table 1 and Figure 1, respectively. ��

Adding a time interval to a category occurrence, pro-
duces an Item. The time interval of an item is described
by its initial and final instants, and denoted [ts, tf]. A Table
of Items (ToI) is a finite set of tuples of the form 〈Oj , ik〉
where ik ∈ I is an item associated with an object Oj .

Example 1 Figure 2 shows an instance of a ToI corre-
sponding to the category instances of Figure 1. Note
that the first two items for OID = O2 have the same
ID because they correspond to the same category oc-
currence: [(categoryName, zoo), (ID, Z), (geom, pol7),
(price, cheap)]. ��

Definition 4 (Valuation of an Attribute and an Item)
Let (attr , v) be a pair in a category occurrence; a valua-
tion of attr is obtained applying a function Val such that
Val(attr) = (v).

Further, let I be an Item, and F a set of functions {f1,
f2, ..., fn}, such that each fi maps the value v in a pair
(attr , v) ∈ I to a single value. In addition to v, f i can have
other constants as arguments (we denote these arguments
A). A valuation of I with F , denoted V(I,F) is the item
resulting from applying F to I as follows: pick one fi in F
and apply it to the value v in a pair (attr j , v) of I , proba-
bly using some constants in A. Repeat the process with the
remaining pairs, until all pairs have been valuated. ��
Definition 5 (Transformed Subitem) Given an item I, a
set of functions F , and a valuation of I with F , V(I,F),
any subset of V is called Transformed Subitem, TS(I). ��
Definition 6 (Itemset) An itemset (i1, i2, ...in) is a non-
empty set of items, where n ≥ 1, and for all ik, k = 1..n, the
ts date, ts time, tf date, tf time values are the same.

Let IS= (i1, i2, ...in), be an itemset. A sub-itemset of IS
is a subset of (TS(i1), TS(i2),... TS(in)), where TS(ii)
is any transformed subitem of ii.

In the moving objects setting, since each moving object
can be in only one place at each moment, all itemsets be-
longing to the same OID will contain exactly one item. ��
Definition 7 (Sequences and contiguous list) A sequence
is an ordered list of itemsets 〈i1, i2, ..., im〉 such that, for
every pair of integers j, g, j < g ⇒ Val(ij .tf , v) <
Val(ig .ts, v) holds.(The i.a notation means that a is an at-
tribute of item i.

A sequence 〈a1, a2, ..., an〉 subsumes another sequence
〈b1, b2, ..., bn〉 if ∀ i ∈ 1..n, bi is a sub-itemset of ai.

Given a ToI instance with tuples of the form 〈Oj , ik〉, let
us denote Items(Oj) the set of items ik associated withOj .
Also let CL(Oj) ⊆ Items(Oj). We say CL(Oj) is a con-
tiguous list for Oj , if ∀i ∈ Items(Oj) and i /∈ CL(Oj),
the starting time of i (denoted vts(i)) is less than the start-
ing time of all the items in CL(Oj), or all the starting times
of the items in CL(Oj) are less than vts(i). ��
Definition 8 (Support) Given a ToI instance with tuples of
the form 〈Oj , ik〉. The support of a sequence S is the frac-
tion of the different objects Oj in the ToI, associated with a
contiguous list CL(Oj) which subsumes S. ��

3 RE-SPaM

We now introduce a language built over attributes of
the complex items defined in Section 2. The terms in
the language are constants (a literal enclosed by single
quotes), attributes, variables (a literal that begins with the



Category Instance

hotels (2 occurrences)
[(ID, H1), (categoryName, hotel), (geom, pol1), (star, 3)]
[(ID, H2), (categoryName, hotel), (geom, pol2), (star, 5)]

restaurants (3 occurrences)
[(ID, R1), (categoryName, restaurant), (geom, pol3), (typeOfFood, French), (price, cheap)]

[(ID, R2), (categoryName, restaurant), (geom, pol4), (typeOfFood, French), (price, expensive)]
[(ID, R3), (categoryName, restaurant), (geom, pol5), (typeOfFood, Italian), (price, cheap)]

Eiffel Tower (1 occurrence) [(ID, E), (categoryName, EiffelTower), (geom, pol6)]
zoos (1 occurrence) [(ID, Z), (categoryName, zoo), (geom, pol7), (price, cheap)]

Figure 1. Set of instances for the categories in Table 1

OID Items

O1

([(ts date,04/08/2008), (ts time,14:05), (tf date,04/08/2008), (tf time,14:33), (ID,R2),(categoryName,restaurant), (geom,pol4), (typeOfFood,French), (price,expensive)])
([(ts date,04/08/2008), (ts time,15:10), (tf date,04/08/2008), (tf time,16:05), (ID,E), (geom,pol6)])
([(ts date,04/08/2008), (ts time,17:30), (tf date,04/08/2008), (tf time,18:48), (ID,R3),(categoryName,restaurant), (geom,pol5), (typeOfFood,Italian), (price,cheap)])
([(ts date,08/08/2008), (ts time,06:22), (tf date,08/08/2008), (tf time,07:05), (ID,R1), (categoryName,restaurant), (geom,pol3), (typeOfFood,French), (price,cheap)])
([(ts date,08/08/2008), (ts time,10:00), (tf date,08/08/2008), (tf time,13:00), (ID,E), (geom,pol6)])
([(ts date,08/08/2008), (ts time,17:10), (tf date,08/08/2008), (tf time,18:17), (ID,R1), (categoryName,restaurant), (geom,pol3), (typeOfFood,French), (price,cheap)])

O2

([(ts date,03/08/2008), (ts time,11:00), (tf date,03/08/2008), (tf time,11:15), (ID,Z),(geom,pol7), (price,cheap)])
([(ts date,08/08/2008), (ts time,18:30), (tf date,08/08/2008), (tf time,21:00), (ID,Z),(geom,pol7), (price,cheap)])
([(ts date,19/08/2008), (ts time,09:00), (tf date,19/08/2008), (tf time,10:20), (ID,R1), (categoryName,restaurant), (geom,pol3), (typeOfFood,French), (price,cheap)])
([(ts date,19/08/2008), (ts time,17:00), (tf date,19/08/2008), (tf time,18:12), (ID,R2), (categoryName,restaurant), (geom,pol4), (typeOfFood,French), (price,expensive)])

Figure 2. An instance of the ToI

R1 CONSTRAINT← [ CONDITION ]
R2 CONDITION← λ
R2 CONDITION← EQ
R2 CONDITION← EQ ∧ CONDITION
R3 EQ← attr = ‘constant’
R3 EQ← attr = @vble
R3 EQ← functionName(attr, ...) = ‘constant’
R3 EQ← functionName(attr, ...) = @vble

Table 2. Grammar for constraints

‘@’ symbol), and functions of n arguments: an expression
fn(attribute, ‘ct1’, ‘ct2’, ... , ‘ctn−1’), n ≥ 1, is a function
where the first parameter is an attribute and all the other
ones are constants. ��

The grammar for the constraints is given in Table 2. The
regular expression language is built in the usual way, sup-
porting the standard operators, with the usual precedence:
‘()’,‘*’,‘+’,‘?’,‘.’,‘—’. The language also supports vari-
ables (strings preceded by ‘@’).

Example 2 The expression [].[price = ‘cheap′] includes
two constraints. The first one is an empty condition, satis-
fied by all the items in an instance of a table of items (in
what follows, ToI). The second one expresses the equality
condition. In our running example it is satisfied by the items
identified by Z, R1 and R3. ��

We now give the intuition of RE-SPaM, and how it sub-
stantially improves other proposals. For example, existing
efforts force the user to enumerate the IDs of the items to
express disjunctions, like (A|B|C|D)∗. When the number
of items becomes large, this solution would not be applica-
ble. RE-SPaM allows writing concise expressions using the
semantic information available.

Q1: Trajectories of tourists who visit hotel H1, then op-
tionally stop at restaurant R3 and the Zoo, and either end at
H1 or visiting the Eiffel Tower.

[ID=‘H1’].([ID=‘R3’].[ID=‘Z’])∗.([ID=‘E’]|[ID=‘H1’])
Q2: Trajectories that visit hotel H1, then, optionally visit

different places, and finish at the Eiffel Tower or at H1.
[ID=‘H1’].[]∗.([ID=‘E’]|[ID=‘H1’])
Empty conditions allow avoiding the enumeration of all

the items. If an expression includes an empty condition,
during the mining process it is instantiated with all the IDs
of the category instances.

Q3: Trajectories starting at a place such that price is an
attribute of the item representing this kind of place, then
stop either at the zoo or the Eiffel Tower, and end up going
to a place that serves French food, and has the same price
range as the initial stop.
[price=@x].( [ID=‘Z’] | [ID=‘E’] ).[typeOfFood=‘French’ ∧
price=@x]

Q3 introduces the use of variables. In our running ex-
ample, ‘cheap’ and ‘expensive’ are the only possible values
for prices; thus, the only valid combinations are: cheap-
cheap and expensive-expensive. Sequences such as {H1 Z
R1} and {Z E R2} do not satisfy the query. The first one
because hotel H1 is not characterized by price, the second
one because Z has cheap prices but R2 is expensive. On the
other hand, the sequence {Z Z R3} does satisfy the query.

Variables can also be used to constraint items according
to their structure. We call these expressions, metadata con-
straints.

Q4: The constraint [price=@x]+ is verified by se-
quences of one or more item (not necessary the same ones),
all of them with the same price. In our running example, Z,
R1, R2 and R3 are the items that satisfy this constraint.



4 RE-SPaM Evaluation

For query evaluation, we work with the category in-
stances depicted in Figure 1. Temporal information asso-
ciated with item occurrences is stored in the ToI (Figure 2).
Computing the support of a sequence requires computing
its Transformed Subitems (Definition 5).

Example 3 Consider the regular expression [price = @x].
[price = @x ∧ typeOfFood = ‘French’]. To obtain
the Transformed Subitems we will use the function F =
{V al} over the attributes price (for the first subexpression),
and attributes price and typeOfFood (for the second one).
Now, let us denote S the sequence of the transaction with
OID=O2 composed of two sub-itemsets, the second and
third lines in Figure 2, each one containing occurrences of
items Z and R1 respectively. The question is: which are the
sub-sequences supported by S? Since the first itemset of S
is composed only by item Z, all of its sub-itemsets are ob-
tained building subsets of the Transformed Subitem TS(Z),
using F , and the price attribute. These sub-itemsets are:
∅ and {(price, ‘cheap’)}. Analogously, the second itemset
of S is composed only by item R; thus, its sub-itemsets are
obtained building subsets of TS(R1), using F and the at-
tributes price and typeOfFood. This sub-itemsets are: ∅,
{(price, ‘cheap’), (typeOfFood, ‘French’)}. Then, the
subsequences of S satisfying the regular expression are the
ones whose items can be transformed to {(price, ‘cheap’)},
and {(price, ‘cheap’), (typeOfFood, ‘French’)}. In
our running example, these sequences are: {Z}, {R1},
{R3} for the first transformation; {R1} for the second
transformation; and {Z R1}, {R1 R1} and {R3 R1}
for both of them. ��

Typically, in GSP-based algorithms, frequent sequences
are computed in incremental phases. At each step k: (1) A
temporary set Ck is built using the previous set Ck−1. Its
elements are candidate sequences of length k. (2) Each el-
ement in Ck which contains at least one sub-sequence with
support less than the minimum is discarded due to anti-
monotony property (Ck−1 is analyzed). (3) The database
is accessed in order to analyze support, and each element in
Ck with at least minimum support is added to the set F of
frequent sequences. When an empty Ck set is obtained, F
contains the frequent sequences with minimum support.

In RE-SPaM, to evaluate if a sequence satisfies a regu-
lar expression R, we build a DFA, denoted AR which ac-
cepts the language generated byR. We use an idea first pro-
posed in the SPIRIT algorithm. There, instead of using the
original constraint C, a relaxed constraint C’ is used during
the mining process, and the second phase above is replaced
with a strategy consisting in pruning the sequences in Ck

which contain at least one subsequence which satisfies C’
and does not have minimum support. In the last phase, F

is analyzed to obtain the frequent sequences that satisfy C.
Finally, building Ck is done in three phases: (i) Ck pop-
ulation: Ck is populated using the information previously
obtained. (ii) Ck pruning by AR: Ck is pruned using the
automaton and perhaps some extra information. If a can-
didate sequence does not satisfy the relaxed constraint C’,
it is discarded at this moment. (iii) Ck pruning by the ToI
instance: Ck is pruned using the ToI instance, as we explain
later, and added to a set F of frequent candidate sequences.
Finally, F is pruned using the original constraint C. There
is a final phase, that uses all sequences in the temporary
set F and proceeds as follows. First, it uses the automaton
to prune all sequences which are not accepted. Notice that
here we are using the automaton for acceptance verification
and not for legal verification.
Acknowledgments. This research has been partially
funded by the Research Foundation Flanders (FWO- Vlaan-
deren), Research Project G.0344.05, the European Union
under the FP6-IST-FET programme, Project n. FP6-14915,
GeoPKDD:Geographic Privacy-AwareKnowledgeDiscov-
ery and Delivery, and the Argentina Scientific Agency,
project PICT 2004 11-21.350.

References

[1] R. Agrawal and R. Srikant. Mining sequential patterns.
In Proc. of the Int’l Conference on Data Engineering
(ICDE), 1995.

[2] C. du Mouza and P. Rigaux. Mobility patterns. In
Proceedings of the STDBM’04, pages 1 – 8, Toronto,
Canada, 2004.

[3] M. N. Garofalakis, R. Rastogi, and K. Shim. Mining se-
quential patterns with regular expression constraints. In
IEEE Transactions on Knowledge and Data Engineer-
ing, 2002.

[4] R. H. Güting, M. H. Böhlen, M. Erwig, C. S. Jensen,
N. A. Lorentzos, M. Schneider, and M. Vazirgiannis.
A foundation for representing and quering moving ob-
jects. ACM Trans. Database Syst., 25(1):1–42, 2000.

[5] H. Mannila, H. Toivonen, and I. Verkamo. Discovering
frequent episodes in sequences. In Proceedings of the
First International Conference on Knowledge Discov-
ery and Data Mining (KDD’95), pages 210–215, 1995.

[6] S. Spaccapietra, C. Parent, M. L. Damiani, J. A. Fer-
nandes de Macedo, F. Porto, and C. Vangenot. A con-
ceptual view of trajectories. In Technical Report, 2007.

[7] R. Srikant and R. Agrawal. Mining sequential pat-
terns: Generalizations and performance improvements.
In Proc. of the Fifth Int’l Conference on Extending
Database Technology (EDBT), 1996.


