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1 Centro de Investigaciones Ópticas (CONICET La Plata - CIC) - C.C. 3, 1897 Gonnet, Argentina
2 Departamento de Ciencias Básicas, Facultad de Ingenieŕıa, Universidad Nacional de La Plata (UNLP)
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Abstract – The aim of this letter is to introduce the permutation min-entropy as an improved 
symbolic tool for identifying the existence of hidden temporal correlations in time series. On the one 
hand, analytical results obtained for the fractional Brownian motion stochastic model theoret-ically 
support this hypothesis. On the other hand, the analysis of several computer-generated and 
experimentally observed time series illustrate that the proposed symbolic quantifier is a versatile and 
practical tool for identifying the presence of subtle temporal structures in complex dynamical 
systems. Comparisons against the results obtained with other tools confirm its usefulness as an 
alternative and/or complementary measure of temporal correlations.

e

Introduction. – It is well-known that discriminating
the presence of correlations in temporal sequences of mea-
surements or observations, i.e. experimental or natural
time series, is of vital importance for investigating the dy-
namics of systems from diverse scientific fields. The identi-
fication of time dependencies is essential for classification,
modeling, and forecasting purposes. Accordingly, over the
last years, much effort has been devoted to developing im-
proved strategies for a more accurate and robust descrip-
tion of the underlying temporal structure [1–5]. Classical
methods, like Fourier spectrum and autocorrelation func-
tion, require some premises which are seldom satisfied by
real data sets [1]. To our knowledge, hitherto, there is not
a clear and objective criterion that defines which approach
is the most appropriate for each case.

Ordinal methods that consider the temporal ranking in-
formation (ordinal or permutation patterns) of the time
series can be good alternatives to the traditional methods.
They appear to be better suited to cope with usual prob-
lems (nonstationarities, nonlinearities, noise distortions)

(a)E-mail: lucianoz@ciop.unlp.edu.ar

encountered when studying real time series. Within this
symbolic scheme, permutation entropy is the most repre-
sentative and spread descriptor. It is just the celebrated
Shannon entropic measure evaluated using the successful
recipe introduced by Bandt and Pompe (BP) [6] to ex-
tract the probability distribution associated with an input
signal. Zhao et al. [7] have recently shown that the Rényi
permutation entropy, that generalizes the standard (Shan-
non) permutation entropy, allows for a better characteriza-
tion of rare and frequent ordinal patterns. Moreover, by
analyzing series of autoregressive (AR(1)) processes and
the daily closing prices in Shanghai stock market, it is
found that the behavior of Rényi permutation entropy as
a function of the order q provides a more complete picture
of the temporal information of the system dynamics [7].

In this letter, we propose the permutation min-entropy,
i.e. the Rényi permutation entropy in the limit as the
order q → ∞, as an improved symbolic quantifier for
revealing the presence of subtle temporal correlations in
time series. In order to demonstrate this hypothesis, an-
alytical, numerical and experimental results are included.



Particularly, applications of this quantifier to numerical 
and experimental data confirm its practical feasibility and 
utility for several interesting goals, such as detecting struc-
tural changes in time series and distinguishing between dif-
ferent sets of physiological —electroencephalogram (EEG) 
and heart rate variability (HRV)— recordings in both nor-
mal and pathological conditions. A multiscale general-
ization, the multiscale permutation min-entropy, has been 
also proposed for considering the diverse temporal char-
acteristic scales commonly observed in complex system. 
Furthermore, comparisons against the results obtained by 
estimating the conventional and weighted permutation en-
tropies suggest that permutation min-entropy can help 
shed new light on the identification and characterization 
of the underlying temporal correlations that are present in 
complex time series. In the following we briefly introduce 
the permutation min-entropy quantifier, present analyti-
cal, numerical and empirical findings, and finally, we end 
with some concluding remarks.

Permutation min-entropy. – Permutation informa-
tion-theory–derived quantifier are estimated by imple-
menting the encoding scheme due to BP based on the 
ordinal relation between the amplitude of neighboring 
values of a given data sequence. This local ordinal sym-
bolic procedure, that naturally arises from the time se-
ries, inherits the causal information that stems from the 
temporal structure of the system dynamics. Moreover, it 
avoids amplitude threshold dependencies that affect other 
more conventional symbolization recipes based on range 
partitioning [8].

Here, we will illustrate how to create ordinal pat-
terns from the time series data with a simple exam-
ple. Let us assume that we start with the time series 
X = {3, 2, 5, 8, 9, 6, 1}. Two parameters, the embedding 
dimension D > 1 (D ∈ N, number of symbols that form 
the ordinal pattern) and the embedding delay τ (τ ∈ N, 
time separation between symbols) are chosen, and next, 
the time series is partitioned into subsets of length D with 
delay τ similarly to phase space reconstruction by means 
of time-delay-embedding. The elements in each new parti-
tion (of length D) are replaced by their rank in the subset. 
For example, if we set D = 3  and  τ = 1, there are five dif-
ferent three-dimensional vectors associated with X . The  
first one (x0, x1, x2) = (3, 2, 5) is mapped to the ordinal 
pattern (102) since x1 ≤ x0 ≤ x2. The second three-
dimensional vector is (x0, x1, x2) = (2, 5, 8), and (012) 
will be its related permutation because x0 ≤ x1 ≤ x2. 
The procedure continues so on until the last sequence,
(9, 6, 1), is mapped to its corresponding motif, (210). 
Afterward, an ordinal pattern probability distribution, 
P = {p(πi), i  = 1, . . . ,D!}, can be obtained from the 
time series by computing the relative frequencies of the 
D! possible permutations πi. Continuing with the ex-
ample: p(π1) = p(012) = 2/5, p(π2) =  p(021) = 0, 
p(π3) =  p(102) = 1/5, p(π4) = p(120) = 1/5, p(π5) =  
p(201) = 0, and p(π5) =  p(210) = 1/5. The permutation

entropy (PE) is just the Shannon entropy estimated by us-
ing this ordinal pattern probability distribution, S[P ] =
− ∑D!

i=1 p(πi) log(p(πi)). Coming back to the example,
S[P (X)] = −(2/5) log(2/5) − 3(1/5) log(1/5) = 1.3322.
PE quantifies the temporal structural diversity of a time
series. Ordinal pattern probability distribution P is ob-
tained once we fix the embedding dimension D and the
embedding delay time τ . Taking into account that there
are D! potential permutations for a D-dimensional vector,
the condition N � D!, with N the length of the time
series, must be satisfied in order to obtain a reliable es-
timation of P [9]. For practical purposes, BP suggest in
their cornerstone paper [6] to estimate the frequency of
ordinal patterns with 3 ≤ D ≤ 7 and time lag τ = 1
(consecutive points). Nevertheless, other values of τ > 1
(non-consecutive points) might provide additional relevant
information as has been recently shown [10,11]. By chang-
ing the value of the embedding delay τ different time scales
are being considered because τ physically corresponds to
multiples of the sampling time of the signal under anal-
ysis. For further details about the BP methodology, we
strongly recommend refs. [10,12,13], where the construc-
tion principle of ordinal patterns and all possible orderings
(patterns) for different embedding dimensions are clearly
illustrated.

Rényi permutation entropy (RPE), that generalizes the
BP permutation entropy, is defined as

Rq[P ] =
1

1 − q
log

(
D!∑
i=1

p(πi)q

)
, (1)

where the order q (q ≥ 0 and q �= 1) is a bias parameter:
q < 1 privileges rare events, while q > 1 privileges salient
events. The Shannon entropy S[P ] is recovered in the limit
as q → 1. RPE offers a more flexible tool, allowing for a
better characterization of the process under study than
just the Shannon permutation entropy counterpart [7]. In
the limit as q → ∞, Rq[P ] converges to the min-entropy
R∞[P ]. Indeed, it can be shown that R∞[P ] is a function
of the highest probability only [14]. Particularly, if the BP
encoding is implemented:

R∞[P ] = − log
(

max
i=1,...,D!

p(πi)
)

. (2)

We propose this very simple and fast quantifier, hereafter
called permutation min-entropy (PME), for the purpose
of identifying the presence of hidden correlational struc-
tures in complex time series. Of course, PME retains all
the advantages of the conventional PE, namely, i) simplic-
ity, ii) low computational cost, iii) noise robustness, and
iv) invariance with respect to nonlinear monotonous trans-
formations [6]. These properties are highly appreciated for
the analysis of experimental data. Moreover, this entropic
measure is applicable to noisy real time series from all
class of systems, deterministic and stochastic, without the
need to require any assumption about the generating pro-
cess [15]. Henceforth, normalized quantifiers are estimated



taking into account that the maximum value for RPE, ob-
tained from an equiprobable ordinal pattern probability
distribution, is equal to log(D!) independently of q.

Fractional Brownian motion: analytical and
numerical analysis. – Fractional Brownian motion
(fBm) is a widely accepted theoretical framework to model
fractal phenomena which have power-law decaying power
spectral density 1/fα with 1 < α < 3 [16]. This non-
stationary stochastic process is Gaussian, self-similar and
it has stationary increments (fractional Gaussian noise
(fGn)). Its intrinsic long-range dependences are quantified
through the Hurst exponent H ∈ (0, 1) with α = 2H + 1.
When H > 1/2, consecutive increments tend to have the
same sign so that these processes are persistent ([17],
Chapt. 9). For H < 1/2, on the other hand, consec-
utive increments are more likely to have opposite signs,
and it is said that the processes are anti-persistent ([17],
Chapt. 9). The standard memoryless Brownian motion
(random walk) is recovered for H = 1/2. Much effort has
been dedicated to the characterization of this family of
fractal stochastic processes [18–22].

Bandt and Shiha have previously found theoretical ex-
pressions for the probabilities of the ordinal patterns of
fBm for embedding dimensions D = 3 and D = 4 [2]. Ex-
tension of these results for larger embedding dimensions
is not trivial. Since these processes are self-similar, the
ordinal pattern relative frequencies result independent of
the embedding delay (time scale) τ . Using these analyt-
ical findings, in fig. 1, we have plotted RPE for different
orders q and D = 4 as a function of the Hurst exponent H .
As can be seen, the sensitivity of RPE to characterize dif-
ferent temporal correlations increases with q because the
difference between values of the quantifier for two similar
Hurst exponents is amplified. Indeed, for large values of q,
its performance as a correlation descriptor is much better
than that of PE (plotted in dashed line in fig. 1).

Going in depth over this finding, numerical and
analytical results for the PME, i.e. limq→∞RPE, of
fBm processes are illustrated in fig. 2. Mean and stan-
dard deviation of the estimated PME values (eq. (2) with
3 ≤ D ≤ 6 and τ = 1) for 1000 independent fBm realiza-
tions of length N = 10000 data points with Hurst expo-
nent H ∈ {0.05, 0.1, . . . , 0.95} are shown. Artificial fBm
time series were generated by implementing two different
algorithms. On the one hand, the method of Wood and
Chan [23] was adopted for numerical simulations of signals
with H ≤ 0.5 and, on the other hand, persistent time series
were generated via the function wfbm of MATLAB, that
follows the algorithm proposed by Abry and Sellan [24].
Taking into account that artificial series generators are
obviously not exact, this choice allows for an improved
agreement between numerical and theoretical results.

According to the findings obtained, it can be concluded
that, within the family of permutation Rényi entropies,
PME is the optimal one for the purpose of discriminating
between fBm with different Hurst exponents. It exhibits
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Fig. 1: Theoretical RPE as a function of the Hurst ex-
ponent H for fBm processes. Bias parameter q (q ∈
{0.1, 0.5, 2, 3, . . . , 99, 100}) is increasing from top to bottom.
PE is also plotted (dashed line). Analytical curves for em-
bedding dimension D = 4 are shown. A similar behavior is
observed for D = 3.
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Fig. 2: PME as a function of the Hurst exponent H for fBm
processes. Numerical results for different embedding dimen-
sions (D from 3 to 6) are plotted. Mean and standard deviation
from 1000 independent fBm simulations of length N = 10000
data points are depicted (H ∈ {0.05, 0.1, . . . , 0.95}). Analyti-
cal curves for D = 3 (continuous line) and D = 4 (dashed line)
are also included for comparison purposes.

the largest range of estimated values allowing for an en-
hanced distinction of the underlying correlations of the
processes under study. Moreover, since a roughly linear
dependence holds between PME and H , an improved char-
acterization of the fBm processes is achieved with this par-
ticular information-theory–derived quantifier.

Numerical and experimental applications. – In
a first controlled example we consider the identifica-
tion of underlying structural changes from time series.
For this purpose we generate a time series that results
from the combination of other two with similar but not
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Fig. 3: Time-dependent PME (light gray), PE (black) and
WPE (dark gray) applied to identify the transition between
two slightly different dynamical regimes. (a) Representative
time series obtained by merging two similar AR(1) processes
with the dynamical change located at the middle (dashed line).
(b) Estimated values for the three permutation symbolic quan-
tifiers by implementing a dynamical analysis with sliding win-
dows of size W = 60 and D = 3. (c) The same as (b) but with
W = 120 and D = 4. (d) The same as (b) but with W = 600
and D = 5. In the three cases time windows were slided by
20 samples and the embedding delay was set equal to 1. Av-
erage value of the estimated quantifiers over 100 independent
realizations are plotted.

identical characteristics. Following the analysis proposed
by Cánovas et al. [25], we have simulated two AR(1) pro-
cesses — xt = axt−1 + εt where εt are pseudorandom val-
ues from the standard normal distribution — of length
N = 10000 data points with two quite close values of the
parameter a (a = 0.8 and a = 0.7). The time series for
testing, of length N = 20000, is obtained by merging these
two similar AR(1) simulations, i.e. the first half of the new
time series corresponds with the AR(1) process simulated
for a = 0.8 and the second half with the AR(1) process
generated for a = 0.7. We are trying to test how suc-
cessful results PME for detecting the transition between
different dynamical regimes artificially introduced at the
middle of the time series. A dynamical analysis was im-
plemented by estimating this quantifier through sliding
time windows that move along the original signal. Results
obtained for different window sizes W and embedding di-
mensions D are depicted in fig. 3. In all cases consecutive
sliding time windows were displaced by 20 samples and re-
sults were averaged over 100 independent realizations. PE
and weighted permutation entropy (WPE) were also esti-
mated for performance comparison. WPE was introduced
in ref. [26] as a variation of the standard permutation en-
tropy in which amplitude information is incorporated in
the algorithm for estimating the ordinal pattern relative
frequencies. Improvements in the analysis of data with
spiky features or having abrupt changes in magnitude have

0 5 10 15 20 25 30 35 40
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

R
∞

[P
]

 

Set A
Set B
Set C
Set D
Set E

Fig. 4: Multiscale PME with D = 3 for the EEG database.
Mean and standard deviation of the estimated values for PME
over the 100 data segments associated with each EEG group are
plotted as a function of the embedding delay τ . Similar results
are obtained for other embedding dimensions (4 ≤ D ≤ 6).

been confirmed by using this weighted scheme [26]. From
figs. 3(b)–(d) it can be concluded that PME allows for
a clear discrimination between the two similar dynamics.
Its sensitivity to detect transitions in the underlying dy-
namics is notably improved compared with the PE, and it
attains a similar performance than the WPE. It is worth
remarking here that WPE has been shown particularly
useful for detecting dynamical changes [26].

In order to illustrate the performance of the proposed
quantifier in real contexts we next describe how it can
be used to discriminate different sets of normal and
pathological physiological data. More precisely, as a first
practical application, we analyze, via PME, five different
sets of EEGs for healthy and epileptic patients that were
previously analyzed by Andrzejak et al. [27] (available at
http://www.meb.unibonn.de/epileptologie/science/
physik/eegdata.html). The data consist of 100 data
segments, whose length is 4097 data points with a
sampling frequency of 173.61 Hz, of brain activity for
different groups and recording regions: surface EEG
recordings from five healthy volunteers in an awake state
with eyes open (Set A) and closed (Set B), intracranial
EEG recordings from five epilepsy patients during the
seizure free interval from outside (Set C) and from within
(Set D) the seizure generating area, and intracranial EEG
recordings of epileptic seizures (Set E). Details about
the recording technique of these EEG data can be found
in the original paper. Since the discrimination between
the different groups will depend on the time scale used
for the analysis and, a priori, the optimal time scale for
such a purpose is unknown, we implement a multiscale
PME strategy by analyzing the behavior of PME as a
function of the embedding delay τ for a chosen embedding
dimension. Results obtained from this multiscale analysis
are represented in fig. 4. More precisely, mean and
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Fig. 5: PME estimated from the EEG database with D = 3
and τ = 5 is plotted as a function of the same quantifier but
for D = 3 and τ = 1. Mean and standard deviation of the
estimated values over the 100 data segments associated with
each EEG group are represented. This bidimensional scheme
is able to discriminate between the different EEG data sets.

standard deviation of the estimated PME with D = 3
over the 100 realizations of each group are plotted as a
function of τ . Similar results are obtained by using other
embedding dimension (4 ≤ D ≤ 6).

From this multiscale analysis we conclude that an im-
proved distinction between the different groups is possible
through a bidimensional scheme in which PME estimated
for two different time delays (τ = 1 and τ = 5) are plotted
together. These two scales of observation are the optimal
ones to achieve an efficient group differentiation according
to the p-values of a standard two-sample t-test. A minimal
p-value is obtained for embedding delay τ = 5 for distin-
guishing between the different pairs of non-epileptic and
seizure free data with the PME estimated values. Equiv-
alently, the p-value as a function of the time scale has a
minimum for τ = 1 when comparing the PME related val-
ues of the two pathological groups (no seizure vs seizure).
As can be seen in fig. 5, different planar locations are
obtained for the healthy (Sets A and B) and unhealthy
groups (Sets C, D and E). Furthermore, data sets from
patients during the seizure free interval (Sets C and D)
and those corresponding to epileptic seizures (Set E) are
also separated. We have found that EEG segments from
healthy subjects from both sets (eyes open and closed)
have larger estimated PME values than those associated
with the other groups for τ = 5. Likewise, PME estimated
with the original sampling frequency, i.e. τ = 1, results
smaller for EEGs of patients during the epileptic seizure
than those obtained during seizure free intervals. Use of
pairs of features for biosignal classification has been pro-
posed by Parlitz et al. [10]. We have confirmed that equiv-
alent bidimensional procedures for PE and WPE are not as
efficient as group discriminators. Moreover, our findings
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Fig. 6: (a) Multiscale PME with D = 3 for the HRV database.
Mean and standard deviation of PME as a function of the
embedding delay τ for the three groups (AF, CHF and NSR).
(b) The same for PE. (c) The same for WPE. Results obtained
for higher embedding dimensions (4 ≤ D ≤ 6) are similar.

are consistent with those derived from other approaches
much more complicated, both computationally and con-
ceptually [28,29].

As a second real application, we have implemented
the multiscale PME, i.e. the PME as a function of the
embedding delay τ , for distinguishing a collection of 15
heart beat interval (RR-interval) time series of which
five were obtained from healthy persons in normal sinus
rhythm (NSR), five from congestive heart failure (CHF)
patients, and five from subjects suffering from atrial fib-
rillation (AF). These time series, made freely available
by PhysioNet (http://www.physionet.org/challenge/
chaos/), are about 24 hours long (roughly 100000 inter-
vals). Original records, without applying any filter, were
considered. Mean and standard deviation values of PME
estimated for D = 3 and 1 ≤ τ ≤ 100 are shown in
fig. 6(a) for the three groups. A clear discrimination be-
tween them is reached with the proposed symbolic quan-
tifier for two different ranges of temporal scales: when
τ ∈ [5, 25] and for embedding delays larger than 70. In
fig. 6(b) and fig. 6(c) similar analysis are illustrated for
the PE and WPE, respectively. It can be easily concluded
the higher discriminative power of PME.

Results obtained in both physiological analysis support
that the multiscale PME can be a promising potential fea-
ture for biosignal classification. It is able to magnify the
temporal correlation differences between two or more sys-
tems at several scales of observation simultaneously.

Conclusions. – In this letter, we introduce a very
simple and fast symbolic quantifier, namely the permu-
tation min-entropy, to deal with the identification of in-
tricate temporal structures from time series data. This
is an essential issue for a comprehensive understanding
and modeling of the intrinsic dynamics of the investigated
system from which a time series has been measured. We

http://www.physionet.org/challenge/chaos/
http://www.physionet.org/challenge/chaos/


report analytical, numerical and empirical evidences that 
allows us to confirm the reliability and robustness of 
the permutation min-entropy for detecting the presence 
of subtle temporal correlations. As the EEG and HRV 
examples confirm, if necessary, a multiscale generalization 
of this quantifier can be easily implemented to take into ac-
count the multiple time scales usually involved in complex 
systems. We conclude by encouraging researchers to 
use this quantifier in their fields of interest for testing 
its advantages as a discriminator of the temporal struc-
ture present in time series. Interested readers are wel-
come to contact the authors for an implemented code in 
MATLAB.
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