
Analysis of Invariants for Efficient Bounded Verification

Juan P. Galeotti, Nicolás Rosner,
Carlos G. López Pombo

Department of Computer Science, FCEyN
Universidad de Buenos Aires, Argentina

{jgaleotti,nrosner,clpombo}@dc.uba.ar

Marcelo F. Frias
Department of Software Engineering,

Buenos Aires Institute of Technology (ITBA)
Argentina

mfrias@itba.edu.ar

ABSTRACT
SAT-based bounded verification of annotated code consists
of translating the code together with the annotations to a
propositional formula, and analyzing the formula for specifi-
cation violations using a SAT-solver. If a violation is found,
an execution trace exposing the error is exhibited. Code
involving linked data structures with intricate invariants is
particularly hard to analyze using these techniques.

In this article we present TACO, a prototype tool which
implements a novel, general and fully automated technique
for the SAT-based analysis of JML-annotated Java sequen-
tial programs dealing with complex linked data structures.
We instrument code analysis with a symmetry-breaking pred-
icate that allows for the parallel, automated computation of
tight bounds for Java fields. Experiments show that the
translations to propositional formulas require significantly
less propositional variables, leading in the experiments we
have carried out to an improvement on the efficiency of
the analysis of orders of magnitude, compared to the non-
instrumented SAT-based analysis. We show that, in some
cases, our tool can uncover bugs that cannot be detected by
state-of-the-art tools based on SAT-solving, model checking
or SMT-solving.

Categories and Subject Descriptors
D.1.5 [Programming Techniques]: Object-Oriented Pro-
gramming; D.2.1 [Software Engineering]: Specifications;
D.2.4 [Software Engineering]: Program verification—Class
invariants, programming by contract, formal methods.

General Terms
Verification, Languages

Keywords
Static analysis, SAT-based code analysis, Alloy, KodKod,
DynAlloy.

1. INTRODUCTION
SAT-based analysis of code allows one to statically find

failures in software. This requires appropriately translating
the original piece of software, as well as some assertion to be
verified, to a propositional formula. The use of a SAT-solver
then allows one to find a valuation for the propositional vari-
ables that encodes a failure: a valid execution trace of the
system that violates the given assertion. With variations,
this is the approach followed by CBMC [6], Saturn [32] and
F-Soft [17] for the analysis of C code, and by Miniatur [11]
and JForge [9] for the analysis of Java code.

In the presence of contracts for invoked methods, mod-
ular SAT-based analysis can be done by first replacing the
calls in a method by the corresponding contracts and then
analyzing the resulting code. This is the approach followed
for instance in [9]. One important limitation remains at the
intraprocedural level, where the code for a single method (al-
ready including the contracts or the inlined code for called
methods) has to be analyzed. Code involving linked data
structures with rich invariants (such as circular lists, red-
black trees, AVL trees or binomial heaps) is hard to analyze
using these techniques.

In this article we present TACO (Translation of Anno-
tated COde), our prototype tool implementing a novel, gen-
eral and fully automated technique for SAT-based analysis
of sequential annotated code involving complex linked data
structures. This technique relies on a novel and effective
way of removing variables in the translation to a proposi-
tional formula. In Section 4 we will present experimental
results showing that the technique we present shows signif-
icant improvements in SAT-based intraprocedural program
analysis and allows us to uncover bugs that could not be de-
tected using state-of-the-art tools based on model checking
or SMT-solving.

To describe the technique at a high level of abstraction let
us consider the following class for singly-linked structures:

public class List { public class LNode {
LNode head; LNode next;

} int key;}

Assuming that we use this structure for representing a
singly linked list, we require lists to be acyclic. Let us also
assume that nodes have identifiers N0, N1, N2, . . ., and that
nodes are kept in the list in order according to their iden-
tifiers (N0 < N1 < · · ·). Thus, a list instance will have the
shape

ddL head next

N0

next d

N1 N2

0 1 2

The model we will adopt of the memory heap (presented
originally in [19]), models Java fields as functions from ob-
ject identifiers to object identifiers or the value null in the
codomain. For instance, if we have in the LNode domain 3
nodes whose identifiers are N0, N1 and N2, field next will
be modeled as a total function

next : {N0, N1, N2} → {N0, N1, N2, null} .

In the translation to a propositional model, field next is
modeled as a matrix of propositional variables

N0 N1 N2 null

N0 pN0,N0 pN0,N1 pN0,N2 pN0,null

N1 pN1,N0 pN1,N1 pN1,N2 pN1,null

N2 pN2,N0 pN2,N1 pN2,N2 pN2,null

For instance, propositional variable pN1,N2 models whether
next(N1) = N2 or not. Notice that since node identifiers
are assumed to be contiguous, certain variables are deemed
to be false. In this case, variables pN0,N2 , pN1,N0 , pN2,N0

and pN2,N1 must be false in all models. Since the invari-
ant asks for lists to be acyclic, variables pN0,N0 , pN1,N1 and
pN2,N2 are always false as well. If we could determine this
before translating to a propositional formula, then these 7
variables could be removed in the translation process and
be replaced by the truth value false. This would lead to a
formula with fewer variables, and therefore to a simpler SAT
problem that often can be solved in a fraction of the original
analysis time.
The contributions are summarized as follows:
1. We present a novel and fully automated technique for
canonicalization of the memory heap in the context of SAT-
solving, which assigns identifiers to heap objects in a well-
defined manner (to be made precise in Section 3.1).
2. Using this ordering, we present a fully automated and
parallel technique for determining which variables can be
removed. The technique consists of computing bounds for
Java fields (to be defined in Section 3.2). The algorithm
only depends on the invariant of the class under analysis.
Therefore, the computed bounds can be reused across all the
analyses in a class, and the cost of computing the bounds
can be amortized.
3. We present several case studies using complex linked data
structures showing that the technique improves the analysis
by reducing analysis times by several orders of magnitude
in case correct code is analyzed. We also show that the
technique can efficiently discover errors seeded using mutant
generation [7]. Finally, we report on a previously unknown
[31] error found in a benchmark presented in [30]. This error
was not detected by several state-of-the-art tools based on
SAT-solving, model checking or SMT-solving.
4. We discuss to what extent the techniques presented in
this article can be used by related tools.

The article is organized as follows. In Section 2 we de-
scribe the translation of JML-annotated sequential Java code
to a SAT problem. In Section 3 we present our novel tech-
nique for program analysis. In Section 4 we present the
experimental results. In Section 5 we discuss related work.
Finally, in Section 6 we discuss lines for further work and
draw conclusions about the results presented in the article.

2. FROM JML TO SAT
In this section we present an outline of our translation

of JML [12] annotated Java code to a SAT problem. The

JML-Java
+

Analysis scope

Alloy
annotation

DynAlloy
program

DynAlloy
Model

Alloy
Model

KodKod
Model

SAT
Formula

Scope, LU

JMLToAlloyTranslation JavaToDynAlloyTranslation

Join

DynAlloyToAlloyTranslator

AlloyToKodKodTranslator

KodKodToSATTranslator

Bounds
repository

getInvariant

getBoundForInv

Figure 1: Translating annotated code to SAT.

translation is in intention not much different from transla-
tions previously presented by other authors [10] or by some
of the authors of this article [15]. A schematic description of
TACO’s architecture that shows the different stages in the
translation process is provided in Fig. 1. In order to sim-
plify writing properties of linked structures we use in this
article an extension of JML with a construct \reach(l, T,

[f1,...,fk]) denoting the set of objects of type T reachable
from a location l using fields f1,...,fk.

Our translation uses Alloy [18] as an intermediate lan-
guage. This is an appropriate decision because Alloy is
close to JML, and the Alloy Analyzer [18] provides a sim-
ple interface to several SAT-solvers. Also, Java code can
be translated to DynAlloy programs [15]. DynAlloy [13] is
an extension of Alloy that allows us to specify actions that
modify the state much the same as Java statements do. Ac-
tion behavior is specified by pre and post conditions given as
Alloy formulas. From these atomic actions we build complex
DynAlloy programs modeling sequential Java code.

As shown in Fig. 1 the analysis receives as input an anno-
tated method, a scope bounding the sizes of object domains,
and a bound LU for the number of loop iterations. JML an-
notations allow us to define a method contract (using con-
structs such as requires, ensures, assignable, signals,
etc.), and invariants (both static and non-static). A con-
tract may include normal behavior (how does the system
behave when no exception is thrown) and exceptional be-
havior (what is the expected behavior when an exception is
thrown). The scope constrains the size of data domains dur-
ing analysis. For example, if we are analyzing a model for
singly linked lists holding objects of type Data, the scope
constrains the number of List objects, LNode objects and
Data objects to be used during analysis (for instance 1 List,
10 LNode, 10 Data is a plausible scope). This is a restric-
tion on the precision of the analysis. If an analysis does
not find a bug, it means no bug exists within the provided
scope for data domains. Bugs could be found repeating the

analysis using larger scopes. Therefore, only a portion of
the program domain is actually analyzed. Fortunately, this
is sufficient to expose many failures, since failures can often
be reproduced with few data [1].

The annotations are then translated to Alloy formulas us-
ing translation JMLtoAlloyTranslation [15], and the method
under analysis is translated to a DynAlloy program using
translation JavaToDynAlloyTranslation [15]. The resulting
translations are joined into a single DynAlloy model that in-
cludes a partial correctness assertion. The assertion states
that every terminating execution of the code starting in a
state satisfying the precondition and the class invariant leads
to a final state that satisfies the postcondition and preserves
the invariant.

In order to handle loops we constrain the number of itera-
tions by performing a user-provided number of loop unrolls
LU . Therefore, the (static) analysis will only find bugs that
could occur performing up to LU iterations at runtime. No-
tice that an interaction occurs between the scope and LU.
This is a natural situation under these constraints, and sim-
ilar interactions occur in other tools such as Miniatur [11]
and JForge [9].

As shown in Fig. 1, DynAlloy models are translated to
Alloy models using the DynAlloyToAlloyTranslator. We
will not focus on this translation, which has already been
discussed in [14], but rather emphasize the way Java classes
are modeled in Alloy as a result of applying the translations.
This will allow us to show how the technique we will present
in Section 3 fits in the code analysis process. For the Java
class for lists in Section 1, the resulting Alloy model includes
the following type definitions:

one sig null {}

sig List { sig LNode {

head : LNode + null } next : LNode + null,

key : Int }

According to Alloy semantics, signatures define sets of
atoms. These atoms are akin to the identifiers we men-
tioned in Section 1. The modifier one in signature null

constrains the signature to have a single datum. Signature
List defines list atoms and also includes a signature field
head. Field head denotes a total function from List atoms
to LNode atoms or null (in Alloy notation, head : List

-> one (LNode+null)). Similarly, we have next : LNode

-> one (LNode+null). Given scopes s for signature S and
t for signature T, one can determine the number of propo-
sitional variables required in order to represent a field f :

S -> one (T+null) in the SAT model. Notice that S and
T will contain atoms S1, . . . , Ss and T1, . . . , Tt, respectively.
We will use a matrix Mf holding s × (t + 1) propositional
variables to represent field f:

Mf T1 T2 . . . Tt null

S1 pS1,T1 pS1,T2 . . . pS1,Tt pS1,null

S2 pS2,T1 pS2,T2 . . . pS2,Tt pS2,null

...
...

...
...

...
...

Ss pSs,T1 pSs,T2 . . . pSs,Tt pSs,null

Intuitively, a variable pSi,Tj (1 ≤ i ≤ s, 1 ≤ j ≤ t) models
whether the pair of atoms/identifiers 〈Si, Tj〉 belongs to f or,
equivalently, whether Si.f = Tj . A variable pSi,null models
whether Si.f = null. Actually, as shown in Fig. 1, Alloy

models are not directly translated to a SAT problem, but to
the intermediate language KodKod [27].

A distinguishing feature of KodKod is that it enables the
prescription of partial instances in models. Indeed, each
Alloy 4 field f is translated as described above, together
with two bounds (relation instances) Lf (the lower bound)
and Uf (the upper bound). These bounds provide useful in-
formation. Consider for instance relation next. If a tuple
〈Ni, Nj〉 /∈ Unext, then no instance of field next can contain
〈Ni, Nj〉, allowing us to replace pNi,Nj in Mnext (the matrix
of propositional variables associated with relation next) by
the truth value false. Similarly, if 〈Ni, Nj〉 ∈ Lnext, pair
〈Ni, Nj〉 must be part of any instance of field next (allowing
us to replace variable pNi,Nj by the truth value true). Thus,
the presence of bounds allows us to determine the value of
some entries in the KodKod representation of a given Java
field. Thus, bounds contribute in the translation by remov-
ing propositional variables. Since, in the worst case, the
SAT-solving process grows exponentially with respect to the
number of propositional variables, getting rid of variables
often improves (as we will show in Section 4) the analysis
time significantly. In our example, determining that a pair
of atoms 〈Ni, Nj〉 can be removed from the bound Unext al-
lows us to remove a propositional variable in the translation
process. When a tuple is removed from an upper bound, the
resulting bound is said to be tighter than before.

Notice that the translation from Java code to a SAT prob-
lem could be implemented as a one-step transformation. In
this sense, the translation just described does not depend
on Alloy, DynAlloy or KodKod and can be used in more
general settings. Yet these languages and their supporting
tools offer useful infrastructure to prototype the translation.

In Section 3 we concentrate on how to determine if a
given pair can be removed from an upper bound relation
and therefore produce tighter upper bounds.

3. COMPUTING TIGHT BOUNDS
In this section we present the main contributions of the

article. Both the symmetry breaking predicates to be in-
troduced in Section 3.1 and the algorithm for automated
computation of tight upper bounds presented in Section 3.2
are novel contributions of this article.

Up to this point in the article we have made reference to
three different kinds of bounds, namely:
• The bounds on the size of data domains used by the Alloy
Analyzer. Generally, these are referred to as scopes and
should not be confused with the intended use of the word
bounds in this section.
• In DynAlloy, besides imposing scopes on data domains as
in Alloy, we bound the number of loop unrolls. Again, this
bound is not to be confused with the notion of bound that
we will use in this section.
• In the end of Section 2 we made reference to the lower
and upper bounds (Lf and Uf) attached to an Alloy field f

during its translation to a KodKod model. In this section,
we use the term bound to refer to the upper bound Uf.

Complex linked data structures usually have complex in-
variants that impose constraints on the topology of data
and on the values that can be stored. For instance, a red-
black tree, a variety of balanced, ordered binary tree, re-
quires that:

1. For each node n in the tree, the keys stored in nodes

in the left subtree of n are always smaller than the key
stored in n. Similarly, keys stored in nodes in the right
subtree are always greater than the key stored in n.

2. Nodes are colored red or black, and the tree root is
colored black.

3. In any path starting from the root node there are no
two consecutive red nodes.

4. Every path from the root to a leaf node has the same
number of black nodes.

In the Alloy model result of the translation, Java fields are
mapped to total functional relations. For instance, field left
is mapped to a total functional relation. Suppose that we are
interested in enumerating instances of red black trees that
satisfy a particular predicate. This predicate could be the
above representation invariant, or a method precondition
involving red black trees. Let us assume it is the above
invariant. Furthermore, let us assume that:

1. nodes come from a linearly ordered set, and

2. trees have their node identifiers chosen in a canonical
way (for instance, a breadth-first order traversal of the
tree yields an ordered listing of the node identifiers).

That is, given a tree composed of nodesN0, N1, . . . , Nk, node
N0 is the tree root, N0.left = N1, N0.right = N2, etc. No-
tice that the breadth-first ordering already imposes some
constraints. For instance, it is not possible that N0.left =
N2. Moreover, if there is a node to the left of node N0,
it has to be node N1 (otherwise the breadth-first listing of
nodes would be broken). At the Alloy level, this means
that 〈N0, N2〉 ∈ left is infeasible, and the same is true for
N3, . . . , Nk instead of N2. Recalling the discussion at the
end of Section 2, this means that we can get rid of sev-
eral propositional variables in the translation of the Alloy
encoding of the invariant to a propositional SAT problem.
Actually, as we will show in Section 4, for a scope of 10
tree nodes, this analysis allows us to reduce the number of
propositional variables required to model the invariant state
from 650 to 200.

The usefulness of the previous reasonings strongly de-
pends on:

1. being able to guarantee, fully automatically, that nodes
are placed in the heap in a canonical way, and

2. being able to automatically determine, for each class
field f, what are the infeasible pairs of values that can
be removed from the bound Uf.

A predicate that reduces the number of equivalent mod-
els by inducing a canonical ordering in the heap nodes is
a “symmetry breaking” predicate. We will present an ap-
propriate symmetry breaking predicate in Section 3.1. In
Section 3.2 we present a fully automatic and effective tech-
nique for checking infeasibility.

3.1 A New Predicate for Symmetry Breaking
In order to describe predicates concisely we will use Al-

loy notation, which is thoroughly described in [18]. Alloy
is a relational language. Terms are built from signature
names (which stand for unary relations –sets), from signa-
ture fields (binary relations in the case of fields coming from

Java code), and from typed variables denoting atoms from
the corresponding signature. There are three constants in
the language: univ (which denotes the set of all atoms in
the universe), none (that denotes the empty set), and iden
(which denotes the binary identity relation over the atoms
in univ). If T is a term that denotes a binary relation, then
∼T , ∗T and ˆ T denote transposition, reflexive-transitive
closure and transitive closure of the relation denoted by T ,
respectively. Union of relations is noted as +, intersection
as &, difference as −, and sequential composition as “.”. For
instance, the expression head.*next relates each input list
to the nodes in the list or the value null if the list is acyclic.
From terms we build atomic formulas T1 in T2 or T1 = T2

stating that relation T1 is contained in relation T2, and that
T1 and T2 are the same relation, respectively. From atomic
formulas we build complex formulas using the connectives !
(negation), && (conjunction), || (disjunction) and => (im-
plication). Existentially quantified formulas have the form
“some x : S | α”, where x ranges over the elements in signa-
ture S, and α is a formula. Similarly, universally quantified
formulas have the form “all x : S | α”. For a term T , formula
“no T” states that the relation denoted by T is empty.

The following Alloy predicate

pred acyclic[l : List] { all n : LNode |
n in l.head.*next => n !in n.^next }

describes acyclic lists. Running the predicate in the Alloy
Analyzer using the command

run acyclic for exactly 6 Object, exactly 1 List,
exactly 4 LNode, exactly 1 Data

yields lists that are permutations (on signature LNode). Ac-
tually, any permutation of LNode that stores data in the
same order as any of these lists, is also a model. Pruning
the state space by removing permutations on signature LN-
ode contributes to improving the analysis time. For singly
linked lists, a predicate forcing nodes to be used in the order
LNode0 → LNode1 → LNode2 → . . . removes symmetries.

The idea of canonicalizing the heap in order to reduce
symmetries is not new. In the context of explicit state
model checking, the articles [16, 23] present different ways of
canonicalizing the heap ([16] uses a depth-first search traver-
sal, while [23] uses a breadth-first search traversal of the
heap). The canonicalizations require modifying the state ex-
ploration algorithms, and involve computing hash functions
in order to determine the new location for heap objects in
the canonicalized heap. Notice that:

• The canonicalizations are given algorithmically (which
is not feasible in a SAT-solving context).

• Computing a hash function requires operating on in-
teger values, which is appropriate in an algorithmic
computation of the hash values, but is not amenable
for a SAT-solver.

In the context of SAT-based analysis, [21] proposes to
canonicalize the heap, but the canonicalizations have to be
provided by the user as ad-hoc predicates depending on the
invariants satisfied by the heap.

In this section we present a novel family of predicates that
canonicalize arbitrary heaps. In order to include the pred-
icates we will instrument the Alloy model obtained by the
translation from the annotated source code. The predicates
are automatically instantiated in these Alloy models. In
order to make the presentation of the symmetry breaking

sig Object { }
one sig null, Red, Black {}
sig RBTree extends Object {root : RBTNode + null}
sig RBTNode extends Object {

left : RBTNode + null,
value : Data + null,
color : Red + Black,
right : RBTNode + null }

sig Data extends Object { }

Figure 2: An Alloy model for red-black trees.

predicates more amenable, we will do it through a running
example. Let us consider the Alloy model for red-black trees
presented in Fig. 2. Keyword extends constrains the extend-
ing signature to be a subset of the extended one. We will use
run or check commands in the Alloy Analyzer whose scopes
will be:

exactly 1 RBTree, exactly 5 RBTNode, exactly 5 Data

Our model of Java heaps consists of graphs 〈N,E,L,R〉
where N (the set of heap nodes), is a set comprising elements
from signature Object and appropriate value signatures (int,
String, etc.). E, the set of edges, contains pairs 〈n1, n2〉 ∈
N ×N . L is the edge labeling function. It assigns class field
names to edges. An edge between nodes n1 and n2 labeled
fi means that n1.fi = n2. The typing must be respected.
R ⊆ N is the set of heap root nodes (method arguments and
static class fields, of object type).

In our running example, nodes are the objects from signa-
tures RBTree, RBTNode and Data, or the value null. Labels
correspond to field names in the model, and the root is the
argument this, of type RBTree.

We then instrument the Alloy model as follows. If the
scope for signature T is k, we include singletons T0, . . . , Tk−1.
For the trees example we have:

one sig RBTree0 extends RBTree {}
one sig RBTNode0,...,RBTNode4 extends RBTNode {}
one sig Data0,...,Data4 extends Data {}

We also introduce auxiliary functions. Function nextT es-
tablishes a linear order between elements of type T . Func-
tion minT returns the least object (according to the order-
ing nextT) in an input subset. Function prevsT returns the
nodes in signature T smaller than the input parameter. For
the example (only for signature RBTNode), we have:

fun nextRBTNode[] : RBTNode -> lone RBTNode {
RBTNode0->RBTNode1 + RBTNode1->RBTNode2 +
+ RBTNode2 -> RBTNode3 + RBTNode3->RBTNode4 }

fun minRBTNode [ns: set RBTNode] : lone RBTNode {
ns - ns.^(nextRBTNode[]) }

fun prevsRBTNode[n : RBTNode] : set RBTNode {
n.^(~nextRBTNode[]) }

Each recursive field r : S -> (S + null) from signa-
ture S is split into two partial functions (thus the lone mod-
ifier) fr : S -> lone (S + null) (the forward part of the
field, mapping nodes to strictly greater nodes or null) and
br : S -> lone S (the backward part of the field). Non-
recursive fields are not modified. In our example the result-
ing fields are:

root : RBTree -> one (RBTNode + null),
fleft : RBTNode -> lone (RBTNode + null),
bleft : RBTNode -> lone RBTNode,
fright : RBTNode -> lone (RBTNode + null),
bright : RBTNode -> lone RBTNode,
value : RBTNode -> one (Data + null).

Java fields must be total functions. We add new facts
stating that for each recursive field ri, the domains of fri
and bri form a partition of ri’s domain, making fri + bri a
well–defined total function. For our example we have:

fact { no ((fleft.univ) & (bleft.univ)) and
RBTNode = fleft.univ + bleft.univ and
no ((fright.univ) & (bright.univ)) and
RBTNode = fright.univ + bright.univ }

The instrumentation we are presenting will require us to
talk about the reachable heap objects. Since all the ob-
jects will be reachable through forward fields, we obtain a
more economic (regarding the translation to a propositional
formula) description of the reachable heap objects using for-
ward fields. In our example, instead of using the expression

this.*(root + left + value + right)

to characterize the reachable heap objects, we will use the
expression FReach defined as

this.*(root + fleft + value + fright).

We now introduce facts forcing the SAT-solver to choose
nodes in a canonical order. Intuitively, we will order heap
nodes by looking at their parents in the heap. A node may
have no parents (in case it is a heap root), or have several
parent nodes. In the latter case, among the parents we will
distinguish the minimal one (according to a global ordering)
and will call it the min parent of n (denoted minP [n]). For
the example, functions globalMin and minP are defined as
follows:

fun globalMin[s : set Object] : Object {
s - s.^(RBTree0->RBTNode0 + RBTNode0->RBTNode1 +
...+ RBTNode3->RBTNode4 + RBTNode4->Data0 +
Data0->Data1 +...+ Data3->Data4)}

fun minP[o : Object] : Object {
globalMin[(root + fleft + value + fright).o] }

N1 : T N2 : T

(a)

N1 : T N3 : T'

N2 : T

(b)

N : T'

N1 : T Ni : T

f1 fi

(c)

N4 : T'

N2 : T

N3 : T'

N1 : T

(d)

N4 : T''

N2 : T

N3 : T'

N1 : T

(e)

...

Figure 3: Comparing nodes using their min-parents.

In order to determine how to order any pair of nodes from
the same signature T , we will consider the possibilities de-
picted in Fig. 3. The ordering is then characterized by the
following conditions:
(a) To sort two root nodes of type T , we use the ordering in
which the formal parameters or static fields were declared
in the source Java file. Then a fact is added including the
explicit ordering information.
(b) To sort a root node and a non-root node of the same
type, we add a fact stating that root nodes are always smaller
than non root nodes.
(c) To sort nodes N1, . . . , Ni of the same type such that
minP[N1] = . . . = minP[Ni] = N , notice that since Java
fields are functions, there must be i different fields f1, . . . , fi
such that N.f1 = N1, N.f2 = N2, etc. We then use the
ordering in which the fields were declared in the source Java
file to sort N1, . . . , Ni.

(d) Let N1 (with min parent N3) and N2 (with min parent
N4) be nodes of the same type. If N3 and N4 are distinct and
have the same type, then we will sort N1 and N2 following
the order between N3 and N4.
(e) Finally, in order to sort nodesN1 andN2 of type T whose
min parents have different type, we will use the ordering in
which the classes of the parent nodes were defined in the
source Java file.

Since in the running example there is exactly one root
node (namely, this), we statically and automatically deter-
mine it is not necessary to add a fact for condition (a). Since
there is exactly one object in class RBTree, we do not add a
fact for condition (b). Regarding condition (c), since there is
only one field from signature RBTree to signature RBTNode,
there are no two objects with type RBTNode with the same
min parent in signature RBTree.

Fact “orderRBTNodeCondition(c)” below orders objects
of type RBTNode with the same min parent of type RBTNode:

fact orderRBTNodeCondition(c){
all disj o1, o2 : RBTNode |
let a = minP[o1] | let b = minP[o2] |
(o1+o2 in FReach and some a and some b and
a = b and a in RBTNode and o1 = a.fleft and
o2 = a.fright) implies o2 = o1.nextRBTNode[]}

Fact “orderRBTNodeCondition(d)” orders objects of type
RBTNode with different min parents of type RBTNode. A sim-
ilar fact is necessary in order to sort objects of type Data
with different RBTNode min parents.

fact orderRBTNodeCondition(d) {
all disj o1, o2 : RBTNode |
let a = minP[o1] | let b = minP[o2] |
(o1+o2 in FReach and some a and some b and
a!=b and a+b in RBTNode and a in prevsRBTNode[b])

implies o1 in prevsRBTNode[o2]}

Regarding condition (e), fact“orderRBTNodeCondition(e)”
orders objects of type RBTNode whose min parents are one
of type RBTree, and the other of type RBTNode:

fact orderRBTNodeCondition(e){
all disj o1, o2 : RBTNode |
let a = minP[o1] | let b = minP[o2] |
(o1+o2 in FReach and some a and some b and
a in RBTree and b in RBTNode)

implies o1 in prevsRBTNode[o2]}

In order to avoid“holes” in the ordering, for each signature
T we add a fact “compactT” stating that whenever a node
of type T is reachable in the heap, all the smaller ones in
the ordering are also reachable. For signature RBTNode we
have:

fact compactRBTNode { all o : RBTNode | o in FReach
implies prevsRBTNode[o] in FReach}

Finally, the instrumentation modifies the facts, functions,
predicates and assertions of the original model by replacing
each occurrence of a recursive field ri with the expression
fri + bri. For instance, if a fact acyclicRBTree is used to
state that trees are acyclic structures:

fact acyclicRBTree { all t : RBTree, n : RBTNode |
n in t.root.*(left + right) implies

n !in n.^(left + right) }

in the instrumented model it is replaced by the fact

fact acyclicRBTree { all t : RBTree, n : RBTNode |
n in t.root.*(fleft+bleft+fright+bright)
implies n !in n.^(fleft+bleft+fright+bright) }

The following theorems show that the instrumentation is
correct.

Theorem 3.1. Given a heap H for a model, there exists a
heap H ′ isomorphic to H and whose ordering between nodes
respects the instrumentation. Moreover, if an edge 〈n1, n2〉
is labeled r (with r a recursive field), then: if n1 is smaller
(according to the ordering) than n2 (or n2 is null), then
〈n1, n2〉 is labeled in H ′ fr . Otherwise, it is labeled br.

Theorem 3.1 shows that the instrumentation does not miss
any bugs during code analysis. If a counterexample for a par-
tial correctness assertion exists, then there is another coun-
terexample that also satisfies the instrumentation.

Theorem 3.2. Let H,H ′ be heaps for an instrumented
model. If H is isomorphic to H ′, then H = H ′.

Theorem 3.2 shows that the instrumentation indeed yields
a canonicalization of the heap.

3.2 Symmetry Breaking and Tight Bounds
In this section we present the main result of this article. It

is interesting to notice that despite the symmetry breaking
predicates that come with the standard distribution of the
Alloy Analyzer, isomorphic models are generated. While in
the original Alloy model functions left and right are each
encoded using n × (n + 1) propositional variables, due to
the canonical ordering of nodes we can remove arcs from
relations. In order to determine whether edges Ni → Nj

can be part of field F or can be removed from UF, TACO
proceeds as follows:

1. Synthesizes the instrumented model as shown in Section
3.1.
2. Adds to the model the class invariant as an axiom.
3. For each pair of object identifiers Ni, Nj , it performs the
following analyses:

pred NiToNjInF[] {Ni+Nj in FReach and Ni->Nj in F}
run NiToNjInF for scopes

In the example, for field fleft we must check, for instance,

pred TNode0ToTNode1Infleft[] {
TNode0+TNode1 in FReach and
TNode0->TNode1 in fleft }

run TNode0ToTNode1Infleft for exactly 1 Tree,
exactly 5 TNode, exactly 5 Data

If a “run” produces no instance, then there is no memory
heap in which Ni->Nj in F that satisfies the class invariant.
Therefore, the edge is infeasible within the provided scope.
It is then removed from UF, the upper bound relation as-
sociated to field F in the KodKod model. This produces
tighter KodKod bounds which, when the KodKod model is
translated to a propositional formula, yield a SAT problem
involving fewer variables.

TACO’s algorithm (whose pseudocode is given in Fig. 4),
receives a collection of Alloy models to be analyzed, one for
each edge whose feasibility must be checked. It also receives
as input a threshold time T to be used as a time bound for
the analyses. All the models are analyzed in parallel using
the available resources. Those individual checks that exceed
the time bound T are stopped and left for the next iteration.
Each analysis that finishes as unsatisfiable tells us that an
edge may be removed from the current bound. Satisfiable

global TIMEOUT

function fill_queue(upper_bounds, spec): int
int task_count=0
For each edge {f:A->B} in upper_bounds
M := create_Alloy_model({f:A->B},upper_bounds,spec)
task_count++
ENQUEUE(<{f:A->B},M>, workQ)

End For
return task_count

function ITERATIVE_MASTER(scope, spec): upper_bounds
workQ := CREATE_QUEUE()
upper_bounds := initial_upper_bounds(spec, scope)
Do

task_count := fill_queue(upper_bounds, spec)
result_count := 0,
timeout_count := 0,
unsat_count := 0;
While result_count != tasks_count
<{f:A->B}, analysis_result> := RECV()
result_count++
If analysis_result==UNSAT then
upper_bounds := upper_bounds - {f:A->B}

else If analysis_result==TIMEOUT then
timeout_count ++

End While
if unsat_count==0
return upper_bounds

Until timeout_count==0
return upper_bounds

function ITERATIVE_SLAVE()
While workQ>0
<{f:A->B},M> := DEQUEUE()
analysis_result := run_stoppable_Alloy(M, TIMEOUT)
SEND(master, <{f:A->B}, analysis_result>)

End While

Figure 4: TACO’s algorithm for bound refinement.

checks tell us that the edge cannot be removed. After all
the models have been analyzed, we are left with a partition
of the current set of edge models in three sets: unsatisfiable
checks, satisfied checks, and stopped checks for which we
do not have a conclusive answer. We then refine the bounds
(using the information from the unsatisfiable models) for the
models whose checks were stopped. The formerly stopped
models are sent again for analysis. This leads to an iterative
process that, after a number of iterations, converges to a
(possibly empty) set of models that cannot be checked (even
using the refined bounds) within the threshold T . Then, the
bounds refinement process finishes. Notice that, in TACO’s
algorithm, the most complex analyses (those reaching the
timeout) get to use tighter bounds in each iteration.

The following theorem shows that the bound refinement
process is safe, i.e., it does not miss bugs.

Theorem 3.3. Let H be a memory heap exposing a bug.
Then there exists a memory heap H ′ exposing the bug that
satisfies the instrumentation and such that for each field g,
the set of edges with label g (or bg or fg in case g is recur-
sive) is contained in the refined Ug.

For all the case studies we are reporting in Section 4 it
was possible to check all edges using this algorithm. Since
bounds only depend on the class invariant, the signatures
scope and the typing of the method under analysis, the same
bound can be used (as will be seen in Section 4) to improve
the analysis of different methods. Therefore, once a bound
has been computed, it is stored in a bounds repository, as
shown in Fig. 1.

4. EXPERIMENTAL RESULTS
In this section we report two kinds of experiments. We

first analyze 6 collection classes with increasingly complex
class invariants. Using these classes we will compare the
performance of TACO against the performance of TACO−.
TACO− implements the same translation to a SAT problem
implemented in TACO, but does not instrument the inter-
mediate Alloy model using symmetry reduction axioms, and
does not use tight bounds. We also compare with JForge
[10] (a state-of-the-art SAT-based analysis tool developed
at MIT). Since these classes are considered bug-free, this al-
lows us to compare the tools in a situation where the state
space must be exhausted. Later in the section, we compare
the bug-finding capabilities of TACO against several state-
of-the-art tools based on SAT-solving, model checking and
SMT-solving.

4.1 Experimental Setup
The parallel algorithm for computing bounds was run in

a cluster of 16 identical quad-core PCs (64 cores total),
each featuring two Intel Dual Core Xeon processors run-
ning at 2.67 GHz, with 2 MB (per core) of L2 cache and
2 GB (per machine) of main memory. Non-parallel analy-
ses, such as those performed with TACO after the bounds
were computed, or when using other tools, were run on a
single node. The cluster OS was Debian’s “etch” flavor of
GNU/Linux (kernel 2.6.18-6). The message-passing middle-
ware was version 1.1.1 of MPICH2, Argonne National Labo-
ratory’s portable, open-source implementation of the MPI-2
Standard. All times are reported in mm:ss format.

4.2 Analysis of Bug-Free Code
In this section we analyze methods from collection classes

with increasingly rich invariants. We will consider the fol-
lowing classes:
LList: An implementation of sequences based on singly
linked lists.
AList: The implementation AbstractLinkedList of inter-
face List from the Apache package commons.collections,
based on circular doubly-linked lists.
CList: The implementation NodeCachingLinkedList of in-
terface List from the Apache package commons.collections.
TreeSet: The implementation of class TreeSet from pack-
age java.util, based on red-black trees.
AVLTree: An implementation of AVL trees obtained from
the case study used in [2].
BHeap: An implementation of binomial heaps used as part
of a benchmark in [30].

In Section 3 we emphasized the fact that our technique
allowed us to remove variables in the translation to a propo-
sitional formula. Each of the reported classes includes some
field definitions. For each field f in a given class, during
the translation from Alloy to KodKod an upper bound Uf

is readily built. We will call the union of the upper bounds
over all fields, the upper bound. In Table 1 we report, for
each class, the following:
1. The number of variables used by TACO− in the upper
bound (#UB). That is, the size of the upper bound without
using the techniques described in this article.
2. The size of the tight upper bound (#TUB) used by TACO.
The tight upper bound is obtained by applying the bound
refinement algorithm from Section 3.2 starting from the up-
per bound.

3. The time required by the algorithm in Fig. 4 to build
the tight upper bound (the time required to build the initial
upper bound is negligible).

In all cases, the timeout used during bound refinement for
the individual analyses was set to 2’. Notice that, in average,
over 70% of the variables in the bounds can be removed.

#Node 5 7 10 12 15 17

LList #UB 30 56 110 156 240 306
#TUB 9 13 19 23 29 33
Time 00:11 00:14 00:23 00:36 01:01 01:23

AList #UB 76 128 252 344 512 676
#TUB 33 47 68 82 103 117
Time 00:16 00:25 00:51 01:26 02:47 09:28

CList #UB 328 384 498 594 768 904
#TUB 97 127 172 210 240 277
Time 00:57 01:13 01:45 02:25 05:27 21:31

TrSet #UB 170 280 650 852 1200 2006
#TUB 59 107 200 279 424 533
Time 00:49 01:13 03:03 05:11 11:30 44:23

AVL #UB 150 280 650 852 1200 2006
#TUB 55 98 177 251 389 491
Time 00:33 00:57 03:26 09:53 22:03 101:31

BHeap #UB 222 360 803 1053 1488 2394
#TUB 75 123 218 293 423 481
Time 00:44 01:12 04:00 06:48 20:13 62:50

Table 1: Sizes for initial upper bounds (#UB) and
for tight upper bounds (#TUB), and analysis time
for computation of tight upper bounds.

Once we have computed the bounds, we compare the anal-
ysis times for methods in the studied classes using TACO−,
JForge and TACO, as seen in Table 2. In all cases we are
checking that the invariants are preserved. Also, for classes
LList, AList and CList, we show that methods indeed im-
plement the sequence operations. Similarly, in class TreeSet
we also show that methods correctly implement the cor-
responding set operations. For class BHeap we also show
that methods correctly implement the corresponding prior-
ity queue operations. Loops are unrolled up to 10 times, and
no contracts for called methods are being used (just their in-
lined code). In each column we consider different scopes for
the nodes signature. We set the scope for signature Data

equal to the scope for nodes. We have set a timeout (TO)
of 10 hours for each one of the analyses. Entries “OofM”
mean “out of memory error”. When reporting times using
TACO, we are not adding the times (given in Table 1) to
compute the bounds. Still, adding these times does not yield
a TO for any of the analyses that did not exceed 10 hours.
The code being analyzed was supposedly bug-free. Actually,
when analyzing method extractMin in class BHeap, an error
was detected using TACO. Boldface positions in the table
signal that the analysis time reported is the one when the
bug was found.

Looking in Table 2 at the progression of analysis times for
TACO without bounds and JForge, it is clear that TACO
with tight bounds requires in most cases several orders of
magnitude less analysis time. While we will not present a de-
tailed analysis of memory consumption, it is our experience
that TACO uses less memory both during translation to a
propositional formula and during SAT-solving than TACO−

and JForge.

4.3 Bug Detection Using TACO
In this section we report on our experiments using TACO

in order to detect errors, and will compare TACO to other
tools. We will be analyzing method Remove from classes
LList and CList, and method ExtractMin from class BHeap.

5 7 10 12 15 17

LList Contains T− 00:03 00:05 00:08 00:11 00:13 00:22
JF 00:01 02:00 TO TO TO TO
T 00:03 00:04 00:05 00:06 00:07 00:09

Insert T− 00:04 00:09 01:14 00:33 04:26 01:25
JF 00:02 04:56 TO TO TO TO
T 00:04 00:05 00:07 00:08 00:13 00:26

Remove T− 00:05 00:27 TO TO TO TO
JF 00:04 21:51 TO TO TO TO
T 00:04 00:06 00:11 00:12 00:17 00:33

AList Contains T− 00:05 00:11 00:29 00:38 00:42 01:20
JF 00:02 05:01 TO TO TO TO
T 00:04 00:06 00:16 00:22 00:27 00:58

Insert T− 00:04 00:05 01:02 26:22 TO TO
JF 00:03 11:52 TO TO TO TO
T 00:04 00:05 00:07 00:08 00:12 00:16

Remove T− 00:06 00:14 11:25 347:39 TO TO
JF 00:18 73:27 TO TO TO TO
T 00:05 00:06 00:17 00:31 01:08 03:13

CList Contains T− 00:46 03:51 00:22 01:01 01:30 06:39
JF 00:05 10:23 TO TO TO TO
T 00:11 00:19 01:23 01:56 05:51 07:25

Insert T− 00:11 22:22 TO TO TO TO
JF 00:20 201:54 TO TO TO TO
T 00:09 00:12 00:16 00:28 01:07 02:01

Remove T− 02:43 TO TO TO TO TO
JF 02:28 TO TO TO TO TO
T 00:27 00:59 03:26 03:43 28:18 57:23

TreeSet Find T− 02:13 276:49 TO TO TO TO
JF 00:42 117:49 TO TO TO TO
T 00:04 00:10 01:56 12:43 58:54 305:06

Insert T− 21:38 TO TO TO TO TO
JF OofM OofM OofM OofM OofM OofM
T 00:43 08:44 TO TO TO TO

AVL Find T− 00:14 27:06 TO TO TO TO
JF 00:26 190:10 TO TO TO TO
T 00:03 00:06 00:36 01:41 08:20 33:06

FindMax T− 00:02 00:04 46:12 TO TO TO
JF 00:06 49:49 TO TO TO TO
T 00:01 00:01 00:03 00:04 00:09 00:13

Insert T− 01:20 335:51 TO TO TO TO
JF OofM OofM OofM OofM OofM OofM
T 00:07 00:34 04:47 21:53 173:57 TO

BHeap FindMin T− 00:12 11:41 TO TO TO TO
JF 00:22 83:07 TO TO TO TO
T 00:05 00:08 00:14 00:17 01:31 02:51

Decrease T− 05:36 TO TO TO TO TO
Key JF 01:48 TO TO TO TO TO

T 00:16 01:13 30:26 TO TO TO

Insert T− 22:46 391:10 TO TO TO TO
JF 73:47 TO TO TO TO TO
T 01:54 08:08 37:30 218:13 TO TO

Extract T− 99:59 TO TO TO TO TO
Min JF 73:47 OofM OofM OofM OofM TO

T 01:13 14:01 36:52 TO 43:33 176:47

Table 2: Comparison of code analysis times for 10
loop unrolls using TACO−(T−), JForge (JF) and
TACO (T).

Due to the similarities in the analysis techniques, we will
first compare TACO with TACO− and JForge, and later in
the section we will also compare with ESC/Java2 [5], JavaP-
athFinder [29], and Sireum/Kiasan [8]. We also used Jahob
[3], which neither succeeded in verifying the provided spec-
ifications, nor provided an understandable counterexample
(only raw formulas coming from the SMT-solvers).

In order to compare JForge, TACO− and TACO we will
generate mutants for the chosen methods using the muJava
[22] mutant generator tool. After manually removing from
the mutants set those mutants that either were equivalent
to the original methods or only admitted infinite behaviors
(the latter cannot be killed using these tools), we were left
with 31 mutants for method Remove from class LList, 81
mutants for method Remove from class CList and 50 mutants
for method ExtractMin from class BHeap.

For all the examples in this section we have set the analysis
timeout in 1 hour.

In Fig. 5 we report, for each method, the percentage of
mutants that can be killed as the scope for the Node sig-
nature increases. We have set the scope for signature Data

equal to the number of nodes. Notice that while the 3 tools
behave well in class LList, TACO can kill strictly more mu-

Figure 5: Efficacy of JForge, TACO− and TACO for
mutants killing.

tants than TACO− and JForge the CList example. We can
also see that as the scope increases, TACO− and JForge can
kill fewer mutants. This is because some mutants that were
killed in smaller scopes cannot be killed within 1 hour in a
larger scope.

In order to report analysis times, we will carry out the
following procedure, which we consider the most appropriate
for these tools:

1. Try to kill each mutant using scope 1. Let T1 be the
sum of the analysis times using scope 1 for all mutants.
Some mutants will be killed, while others will survive.
For the latter, the analysis will either return UNSAT
(no bug was found in that scope), or the 1 hour analysis
timeout will be reached.

2. Take the mutants that survived in step 1, and try to
kill them using scope 2. Let T2 be the sum of the
analysis times.

3. Since we know the minimum scope k for which all mu-
tants can be killed (because TACO reached a 100%
killing rate without any timeouts in scope k), repeat
the process in step 2 until scope k is reached. Finally,
let T =

∑
1≤i≤k Ti.

Notice first that the previous procedure favors TACO−

and JForge. In effect, if a tool is used in isolation we can-
not set an accurate scope limit beforehand (it is the user’s
responsibility to set the limit). If a scope smaller than the
necessary one is chosen, then killable mutants will survive.
If a scope larger than the appropriate one is set, then we will
be adding 1 hour timeouts that will impact negatively on the
reported times. Notice also that an analysis that reached the
timeout for scope i < k will be run again in scope i+1. This
is because we cannot anticipate if the timeout was due to a
performance problem (the bug can be found using scope i
but the tool failed to find the bug within 1 hour), or because
the bug cannot be found using scope i. In the latter case
it may happen that the mutant can be found in scope i+ 1
before reaching the timeout. This is the situation in Table
2 for method ExtractMin where the timeout was reached by
TACO for scope 12, yet the bug was found using scope 15.

It is essential to notice that the same tight bound is used
by TACO for killing all the mutants for a method within a
given scope. Thus, when reporting analysis times for TACO

in Table 3, we also add the time required to compute the
bounds for scopes 1, . . . , k. In general we tried to use 10
loop unrolls in all cases. Unfortunately, JForge runs out of
memory for more than 3 loop unrolls in the ExtractMin ex-
periment. Therefore, for this experiment, we are considering
only 3 loop unrolls for JForge, TACO− and TACO.

JForge TACO− TACO

LList.Remove 01:49 06:56 08:36 + 00:40

CList.Remove 891:50 245:12 34:51 + 06:35

BHeap.ExtractMin 04:34 19:35 16:06 + 01:09

Table 3: Analysis times for mutants killing. TACO
times reflect the analysis time plus the bounds com-
putation time.

In order to compare with tools based on model checking
and SMT-solving, we will carry out the following experi-
ments. We will choose the most complex mutants for each
method. For class LList we chose mutant AOIU 1, the only
mutant of method Remove that cannot be killed using scope
2 (it requires scope 3). For class CList we chose mutants
AOIS 31 and AOIS 37, the only ones that require scope 7
to be killed. Finally, for class BHeap there are 31 mutants
that require scope 3 to be killed (all the others can be killed
in scope 2). These can be grouped into 7 classes, accord-
ing to the mutation operator that was applied. We chose
one member from each class. In Table 4 we present analysis
times using all the tools. Table 4 shows that TACO, Java
PathFinder and Kiasan were the only tools that succeeded
in killing all the mutants. Since the fragment of JML sup-
perted by ESC/Java2 is not expressive enough to model the
invariant from class BHeap, we did not run that experiment.

JForge TACO− ESCJ Kiasan JPF TACO

LList.AOIU 1 00:01 00:09 00:06 00:05 00:02 00:18

CList.AOIS 31 TO TO TO 00:13 02:55 01:00

CList.AOIS 37 TO TO TO 00:14 02:18 01:02

BHeap.AOIS 41 00:08 00:13 – 00:32 00:03 00:13

BHeap.AOIU 8 00:02 00:14 – 00:26 00:04 00:12

BHeap.AORB 10 00:04 00:14 – 00:26 00:24 00:12

BHeap.COI 22 00:01 00:11 – 01:05 00:03 00:10

BHeap.COR 5 00:01 00:08 – 00:15 00:25 00:10

BHeap.LOI 15 00:02 00:11 – 00:26 00:29 00:15

BHeap.ROR 23 00:01 00:11 – 00:16 00:04 00:09

Table 4: Comparison of analysis behavior for some
selected mutants. Analysis time for TACO includes
the time required to compute the tight bound amor-
tized among the mutants in each class.

Notice that although we chose the supposedly most com-
plex mutants, these are still simple in the sense that they
can be killed using small scopes. As mentioned in Section
4.2, TACO found a previously unreported bug in method
ExtractMin from class BHeap. The bug cannot be repro-
duced using mutation because the smallest input that pro-
duces a failure has 13 nodes (and all mutants can be killed
with just 3 nodes). The input datum leading to the failure
is presented in Fig. 6. Notice that at least 4 loop unrolls
were required in TACO in order to exhibit the failure. In
Table 5 we report analysis times when attempting to dis-
cover the bug using all the tools. TACO is the only tool
that succeeded in discovering the error. The analysis time
for TACO reports the time for computing the bound, plus
the analysis time using 4 loop unrolls.

JForge TACO− Kiasan JPF TACO

BHeap. TO TO OofM TO 20:13 + 00:53
ExtractMin

Table 5: Analysis of a non-trivial bug.

B0
size:13

key:14
degree:0

N0
key:14

degree:2

N1

key:14
degree:1

N3

key:14
degree:0

N6

key:14
degree:0

N5

key:13
degree:3

N2

key:14
degree:2

N4

key:14
degree:1

N8

key:14
degree:0

N12

key:14
degree:0

N11

key:13
degree:1

N7

key:13
degree:0

N10

key:13
degree:0

N9

sibling

sibling

sibling

sibling

sibling

sibling

child

child child

child

child

child

Nodes

parent

parent

parent

parent

parent

parent

parent

parent

parent

Figure 6: A 13 nodes heap that exhibits the failure
in method ExtractMin.

4.4 Threats to Validity
We begin by discussing how representative the selected

case studies are. As discussed in [30], container classes have
become ubiquitous. Therefore, providing confidence about
their correctness is an important task in itself. But, as ar-
gued in [26], these structures (which combine list-like and
tree-like structures) are representatives of a wider class of
structures including, for instance, XML documents, parse
trees, etc. Moreover, these structures have become accepted
benchmarks for comparison of analysis tools in the ISSTA
community (see for instance [4, 9, 19, 30]).

In all experiments we are considering the performance of
TACO− as a control variable that allows us to guarantee
that TACO’s performance improvement is due to the pre-
sented techniques.

In Section 4.2 we analyzed bug-free code. Since the pro-
cess of bug finding ends when no more bugs are found, this
situation where bug free code is analyzed is not artificial, but
is rather a stress test that necessarily arises during actual
bug finding.

In Section 4.3 we have compared several tools. It is not
realistic to claim that every tool has been used to the best
of its possibilities. Yet we have made our best efforts in this
direction. In the case of JForge, since it is very close to
TACO, we are certain we have made a fair comparison. For
Java PathFinder and Kiasan we were careful to write repOK
invariant methods in a way that would return false as soon
as an invariant violation could be detected. For ESC/Java2,
since it does not support any constructs to express reach-
ability, we used weaker specifications that would still allow
the identification of bugs. For Jahob we used Jahob’s inte-
grated proof language, and received assistance from Karen

Zee in order to write the models. More tools could have
been compared in this section. Miniatur and FSoft are not
available for download even for academic use, and therefore
were not used in the comparison. Other tools such as CBMC
and Saturn (designed for analysis of C code) departed too
much from our intention to compare tools for the analysis
of Java code.

Analysis using TACO requires using a cluster of comput-
ers to compute tight bounds. Is it fair to compare with tools
that run on a single computer? While we do not have a
conclusive answer, for the bug in method ExtractMin (even
considering the time required to compute the bounds se-
quentially) TACO seems to outperform the sequential tools.
This is especially clear in those cases where the sequential
tools run out of memory before finding the bug (as is the case
for Kiasan and JForge). More experiments are required in
order to provide a conclusive answer.

5. RELATED WORK
In Section 3.1 we analyzed related work on heap canonical-

ization. In Section 4 we compared our tool with several other
state-of-the-art tools for program analysis. In this section
we review related (but difficult to compare experimentally)
work.

The Alloy Annotation Language (AAL) was introduced in
[20]. It allows the annotation of Java-like code using Alloy as
the annotation language. The translation proposed in [20]
does not differ in major ways from the one we implement.
Analysis using AAL does not include any computation of
bounds for fields.

In [28] the authors present a set of rules to be applied
along the translation to a SAT-formula in order to profit
from properties of functional relations. The article presents
a case-study where insertion in a red-black tree is analyzed.
The part of the red-black tree invariant that constrains trees
to not have two consecutive red nodes is shown to be pre-
served. In our experiment we verify that the complete (sig-
nificantly more complex) invariant is preserved. Actually,
for 8 loop unrolls and scope 7 for nodes and data, the anal-
ysis time decreases from 08:53 (for the property we analyze)
to 0.153 seconds using the weakened property.

Saturn [32] is also a SAT-based static analysis tool for C. It
uses as its main techniques a slicing algorithm and function
summaries. As in our case, sequential code is faithfully mod-
eled at the intraprocedural level (no abstractions are used).
Unlike TACO, summaries of called functions may produce
spurious counterexamples. Saturn can check assertions writ-
ten as C “assert” statements. Its assertion language is not
as declarative as our extension of JML.

F-Soft [17] also analyses C code. It computes ranges for
values of integer valued variables and for pointers under the
hypothesis that runs have bounded length. It is based on the
framework presented in [24]. Our technique produces tighter
upper bounds because it does not compute feasible intervals
for variables, but instead checks each individual value.

Unlike techniques based on abstraction that require the
user to provide core properties (i.e., shape analysis [25]),
TACO does not require user-provided properties other than
the JML annotations.

The techniques presented in the article are quite general.
Explicit state model checkers (such as JPF) can use tight
bounds in order to prune the state space when a state con-
tains edges that lay outside the bound. Korat [4] can avoid

evaluating the repOk method whenever the state is not con-
tained in the bounds. Running a simple membership test
will many times be less expensive than running a repOk

method. Tools that are similar to TACO (such as Miniatur
and JForge), can make direct use of these techniques.

6. CONCLUSIONS AND FURTHER WORK
This article shows that a methodology based on (1) adding

appropriate constraints to SAT problems, and (2) using the
constraints to remove unnecessary variables, makes SAT-
solving a method for program analysis as effective as model
checking or SMT-solving.

The experimental results presented in the article show
that bounds can be computed effectively, and that once
bounds have been computed, the analysis time improves con-
siderably. This allowed us to analyze real code using domain
scopes beyond the capabilities of current similar techniques
and find bugs that cannot be detected using state-of-the-art
tools for bug-finding. Still, this article presents a naive ap-
proach to bound computation, and is a starting point to a
new research line on efficient bound computation.

7. ACKNOWLEDGEMENTS
We thank Elena Morin for proofreading this article.

8. REFERENCES
[1] Andoni, A., Daniliuc, D., Khurshid, S. and Marinov,

D., Evaluating the “Small Scope Hypothesis”,
downloadable from
http://sdg.csail.mit.edu/publications.html.

[2] Belt, J., Robby and Deng X., Sireum/Topi LDP: A
Lightweight Semi-Decision Procedure for Optimizing
Symbolic Execution-based Analyses, FSE 2009,
pp. 355–364.

[3] Bouillaguet Ch., Kuncak V., Wies T., Zee K., Rinard
M.C., Using First-Order Theorem Provers in the
Jahob Data Structure Verification System. VMCAI
2007, pp. 74–88.

[4] Boyapati C., Khurshid S., Marinov D., Korat:
automated testing based on Java predicates, in ISSTA
2002, pp. 123–133.

[5] Chalin P., Kiniry J.R., Leavens G.T., Poll E. Beyond
Assertions: Advanced Specification and Verification
with JML and ESC/Java2. FMCO 2005: 342-363.

[6] Clarke E., Kroening D., Lerda F., A Tool for Checking
ANSI-C Programs, in TACAS 2004, LNCS 2988,
pp. 168–176.

[7] deMillo R. A., Lipton R. J., Sayward F. G., Hints on
Test Data Selection: Help for the Practicing
Programmer, in IEEE Computer pp. 34–41, April
1978.

[8] Deng, X., Robby, Hatcliff, J., Towards A
Case-Optimal Symbolic Execution Algorithm for
Analyzing Strong Properties of Object-Oriented
Programs, in SEFM 2007, pp. 273-282.

[9] Dennis, G., Chang, F., Jackson, D., Modular
Verification of Code with SAT. in ISSTA’06,
pp. 109–120, 2006.

[10] Dennis, G., Yessenov, K., Jackson D., Bounded
Verification of Voting Software. in VSTTE 2008.
Toronto, Canada, October 2008.

[11] Dolby J., Vaziri M., Tip F., Finding Bugs Efficiently
with a SAT Solver, in ESEC/FSE’07, pp. 195–204,
ACM Press, 2007.

[12] Flanagan, C., Leino, R., Lillibridge, M., Nelson, G.,
Saxe, J., Stata, R., Extended static checking for Java,
In PLDI 2002, pp. 234–245.

[13] Frias, M. F., Galeotti, J. P., Lopez Pombo, C. G.,
Aguirre, N., DynAlloy: Upgrading Alloy with Actions,
in ICSE’05, pp. 442–450, 2005.

[14] Frias, M. F., Lopez Pombo, C. G., Galeotti, J. P.,
Aguirre, N., Efficient Analysis of DynAlloy
Specifications, in ACM-TOSEM, Vol. 17(1), 2007.

[15] Galeotti, J. P., Frias, M. F., DynAlloy as a Formal
Method for the Analysis of Java Programs, in
Proceedings of IFIP Working Conference on Software
Engineering Techniques, Warsaw, 2006, Springer.

[16] Iosif R., Symmetry Reduction Criteria for Software
Model Checking. SPIN 2002: 22-41

[17] Ivančić, F., Yang, Z., Ganai, M.K., Gupta, A.,
Shlyakhter, I., Ashar, P., F-Soft: Software Verification
Platform. In CAV’05, pp. 301–306, 2005.

[18] Jackson, D., Software Abstractions. MIT Press, 2006.

[19] Jackson, D., Vaziri, M., Finding bugs with a constraint
solver, in ISSTA’00, pp. 14-25, 2000.

[20] Khurshid, S., Marinov, D., Jackson, D., An analyzable
annotation language. In OOPSLA 2002, pp. 231-245.

[21] Khurshid, S., Marinov, D., Shlyakhter, I., Jackson, D.,
A Case for Efficient Solution Enumeration, in SAT
2003, LNCS 2919, pp. 272–286.

[22] Ma Y-S., Offutt J. and Kwon Y-R., MuJava : An
Automated Class Mutation System, Journal of
Software Testing, Verification and Reliability,
15(2):97-133, 2005.

[23] Musuvathi M., Dill, D. L., An Incremental Heap
Canonicalization Algorithm, in SPIN 2005: 28-42

[24] Rugina, R., Rinard, M. C., Symbolic bounds analysis
of pointers, array indices, and accessed memory
regions, in PLDI 2000, pp. 182–195, 2000.

[25] S. Sagiv, T. W. Reps, R. Wilhelm. Parametric shape
analysis via 3-valued logic. ACM TOPLAS 24(3):
217–298 (2002)

[26] Siddiqui, J. H., Khurshid, S., An Empirical Study of
Structural Constraint Solving Techniques, in ICFEM
2009, LNCS 5885, 88–106, 2009.

[27] Torlak E., Jackson, D., Kodkod: A Relational Model
Finder. in TACAS ’07, LNCS 4425, pp. 632–647.

[28] Vaziri, M., Jackson, D., Checking Properties of
Heap-Manipulating Procedures with a Constraint
Solver, in TACAS 2003, pp. 505-520.

[29] Visser W., Havelund K., Brat G., Park S. and Lerda
F., Model Checking Programs, ASE Journal, Vol.10,
N.2, 2003.

[30] Visser W., Păsăreanu C. S., Pelánek R., Test Input
Generation for Java Containers using State Matching,
in ISSTA 2006, pp. 37–48, 2006.

[31] Visser W., Private communication, February 2nd.,
2010.

[32] Xie, Y., Aiken, A., Saturn: A scalable framework for
error detection using Boolean satisfiability. in ACM
TOPLAS, 29(3): (2007).

