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ABSTRACT 
Learning the bayesian network structure from a database is an NP-Hard problem for which 
the existent learning algorithms generally have exponential complexity. During this work in 
the Master, I did a bibliographic research as well as a comparison between two recent 
algorithms called TPDA and PMMS (2005) that learns the skeleton of bayesian networks 
from data. These algorithms have the advantage of having polynomial complexity, and 
provide good results for learning. After having done a theoretical analysis of the algorithms, 
I continue with an empiric analysis that consisted in testing these algorithms on data 
generated from networks knew by the scientific community (I used ASIA and ALARM 
networks). These tests have been made with the help of the toolboxes developed in Matlab 
(FullBNT, BNT – SLP and CausalExplorer). The results I have gotten by this analysis have 
permitted me to make some interesting conclusions about the efficiency and the limits of 
application of these algorithms. 
Key Words: Statistical learning, Data-mining, Knowledge extraction. 
 

RESUME 
L’apprentissage du squelette d’une réseau bayésien à partir d’une base de données est un 
problème NP-Difficile pour lequel les algorithmes d’apprentissage existant sont 
généralement de complexité exponentielle. Au cours de ce stage du Master, j’ai effectué 
une recherche bibliographique ainsi qu’une comparaison entre deux algorithmes récents 
d‘apprentissage du skeleton des réseaux bayésiens qui sont TPDA et PMMS (2005). Ces 
algorithmes on l’avantage d’avoir une complexité polynomiale, et fournissent de bons 
résultats d’apprentissage. Apres avoir effectué une analyse théorique des algorithmes, j’ai 
poursuivi sur une analyse empirique qui consisté à mettre en pratique ces algorithmes sur 
des données générées à partir de réseaux connus dans la communauté scientifique (J’ai 
utilisé le réseaux ASIA et ALARM). Cela a été fait a l’aide de boite à outils développé en 
Matlab (FullBNT, SNT – SLP et CausalExplorer). Les résultats obtenus par cette analyse 
m’ont permit de tirer des conclusions intéressantes quant à l’efficacité et les limites 
d’application de ces algorithmes. 
Mots clef : Apprentissage statistique, Data-mining, Extraction des connaissances. 
 

RESUMEN 
El aprendizaje del esqueleto de una red bayesiana a partir de una base de datos es un 
problema NP-Dificil para el cual los algoritmos de aprendizaje existentes son generalmente 
de complejidad exponencial. En el transcurso de la pasantía del Master, he efectuado una 
investigación bibliográfica así como una comparación entre dos algoritmos recientes de 
aprendizaje del esqueleto de las redes bayesianas. Ellos son TPDA y PMMS (2005). Estos 
algoritmos tienen la ventaja de tener una complejidad polinomial y proveen buenos 
resultados de aprendizaje. Luego de haber efectuado un análisis teórico de los algoritmos, 
he continuado con un análisis empírico. Este consistió en testear estos algoritmos sobre 
datos generados a partir de redes conocidas por la comunidad científica (he utilizado la red 
ASIA y ALARM). Esto fue realizado con la ayuda de las cajas de herramientas 
desarrolladas en Matlab (FullBNT , BNT – SLP y CausalExplorer). Los resultados 
obtenidos por este análisis me permitieron formular conclusiones interesantes en cuanto a la 
eficacia y a los límites de aplicación de estos algoritmos. 
Palabras clave: Aprendizaje estadístico, Data-mining, Extracción de conocimientos.   
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1. INTRODUCTION 

This project is the result of several months learning and working with bayesian networks. I 
started with some basic concepts of them which made me understand the magnitude of this 
tool. I was shocked by the way they arrived to show all the information of complex 
databases in a simple and intuitive graph. I soon realize it was not so easy to transform the 
databases into bayesian networks. This problem is NP-Hard1 and several researchers had 
tried to solve it with different combinational optimization methods. The complex of the 
problem leads to complex algorithms which generally needs exponential complexity in the 
worst case. However, TPDA (2002) and PMMS (2005) are two recent algorithms that had 
obtained polynomial complexity. They are polynomial variants of the two most recognize 
algorithms for learning bayesian networks which are PC (1993) and MMHC (2005). The 
publication of these algorithms in important revues is a proof of this recognizance and the 
recent publication of MMHC (Max Min Hill Climbing) in “Machine Learning” revue this 
year shows the current importance of them.  
 
When I was analysing these polynomials algorithms I realized that the only comparison 
between TPDA and PMMS was the one made by the authors of PMMS. In that article, they 
claimed that PMMS would work better than TPDA when the amount of data was small; 
consequently, in their tests they stopped just when TPDA started to outperform PMMS 
(with 5.000 data entries). To verify their statement, I decided to test these algorithms with a 
big amount of data (until 20.000 data entries). For TPDA algorithm I found some 
preliminary implementations in two Matlab toolboxes, but for PMMS there was no one. 
Making some research I took knowledge of a preliminary development of PRISMa 
laboratory for PMMS algorithm also in Matlab code. After learning how to use Matlab and 
all the toolboxes for bayesian networks I was finally in condition to test the two algorithms. 
I chose the ASIA and ALARM network to test them because they are the most used 
benchmark networks in the area and many researchers have used them to evaluate their 
algorithms. I made 8 sub-databases with different number of data for each network and I 
tested the power of both algorithms to learn the skeleton of these networks. The results 
finally show that PMMS generally outperforms TPDA even with big amounts of data.  
 
 
This paper is organized in 6 sections. In the following section I will define Bayesian 
Networks and I will give some relevant information about them. In the third section I will 
examine how TPDA and PMMS algorithms work; and in section four I will give the results 
of these algorithms when learning the skeleton of ASIA and ALARM networks. Finally, I 
will present some conclusions which are based on my research.  

 
 

                                                 
1 A problem is NP-hard if an algorithm for solving it can be translated into one for solving any NP-problem 
(Nondeterministic Polynomial time problem). NP-hard therefore means "at least as hard as any NP-problem," 
although it might be harder.  
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2. PRELIMINARIES 
 
2.1 BAYESIAN NETWORK 
 
Nowadays acquiring information is relatively easy, and the new challenge is to transform 
this information into knowledge. We can find different techniques for this purpose although 
this paper treats solely the method associated with Learning Bayesian Networks (for a 
comparison between the different techniques see annexe A). 
 
The Bayesian network is a powerful knowledge representation and reasoning tool 
introduced by [Kim & Pearl, 1987], [Lauritzen & Speigelhalter, 1988], [Jensen, 1996] and 
[Jordan, 1998]. The formal definition of this network is: 
 
Definition 1. B=(G, P) is a bayesian network if G=(X,E) is a directed acyclic graph (DAG) 

where the set of nodes represents a set of random variables X = {X1, … ,Xn}, and if 

Pi=[P(Xi/XPa(Xi))] is the matrix containing the conditional probability of node i given the 

state of its parents Pa(Xi). 

 
 
2.2 LEARNING BAYESIAN NETWORKS 
 
The problem of learning the most probable a posteriori Bayesian network (BN) from data 
under certain broad conditions is worst-case NP-hard (Chickering, Meek, & Heckerman 
2003). This problem involves two subtasks:  
 

� Learning the structure of the network: determining the dependant elements 
� Learning the parameters: the strength of these dependencies, as encoded by the 

entries in the condition of probabilities between variables.  
 
In my work I will only treat the task of learning the structure. This task can be divided in 
two sub-tasks: 
 

� Learning the skeleton 
� Orienting the edges 

 
This paper focuses on the sub-task of learning the skeleton because it is the NP-Hard part of 
the problem. 
 
To make this idea more clear I will give an example. In the graph of Fig. 1, every node 
represents a variable of the system and every arrow represents a causal dependency which 
has an associated probability. For the variables that do not have parents (like variable “Sex” 
in the example of Fig. 1) there are simple probabilities ( P[Sex=F] =0,5 ), but for those who 
have parents (like variable “Smoking”) there are conditional probabilities depending on the 
parent state ( P[Smoking=Y/Sex=M]=0,7 ). 
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Once we have obtained the “knowledge” of how the system works, we can obtain the 
probability that a patient has a “cough”, “fever” or “fatigue”, by asking him some inputs 
such as “sex”, “age”, etc. 

 

 
The most interesting part of the Bayesian Networks is its intuitive face, because its output 
graph can be understood by everybody and not only by those who know Bayesian 
Networks. This gives a great advantage since everyone can correct and improve the graph. 
 
 
2.3 ALGORITHMS  
 
The first, however uninformed, idea to find the best network structure is the exploration of 
all possible graphs (giving each a score) in order to choose the graph with the best score. 
Robinson [Robinson, 1977] proved that r(n), the number of different structures for a 
bayesian network with “n” nodes, is given by the recurrence formula of equation 1. 
 
 

(1) 
 
 
This equation gives r(2) = 3, r(3) = 25, r(5) = 29281, r(10) = 4,2 x 1018. 
 
Since equation 1 is super exponential, it is impossible to perform an exhaustive search in a 
acceptable time period as soon as the node number exceeds 7 or 8.  
 

+ Statistic methods 

INFORMATION  

+ Artificial Intelligence 

KNOWLEDGE 

LEARNING 
BAYESIAN 
NETWORK 

-  Fig. 1 – Example for learning bayesian networks 

GRAPH PROBABILITIES 

DATA 
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To simplify the search, many network constructed algorithms have been developed. These 
algorithms can be grouped into two categories:  
 

� One category of algorithms uses heuristic searching methods to construct a model 
and then evaluates it using a scoring method. This process continues until the score 
of the new model is not significantly better than the previous one. Different scoring 
criteria have been applied in these algorithms, such as, Bayesian scoring method 
[Cooper and Herskovits, 1992]; [Heckerman et al., 1994], entropy based method 
[Herskovits, 1991], and minimum description length method [Suzuki, 1996].  

 
� The other category of algorithms constructs Bayesian networks by analyzing 

dependency relationships among nodes. The dependency relationships are measured 
by using some kind of conditional independence (CI) test. The algorithms described 
in [Spirtes et al., 1991]; [Wermuth and Lauritzen, 1983]; [Srinivas et al., 1990], 
[Cheng et al., 2001] and [Brown et al., 2005] are found in this group. 

  
Both of these two categories of algorithms have their advantages and disadvantages: 
Generally, the first category of algorithms has less time complexity in the worst case 
scenario (when the underlying DAG is densely connected), however it may not find the 
best solution due to its heuristic nature. The second category of algorithms is usually 
asymptotically correct when the probability distribution of data satisfies certain 
assumptions, but as Cooper et al. pointed out in [Cooper and Herskovits, 1992], CI tests 
with large condition-sets may be unreliable unless the volume of data is enormous. 
 
These algorithms are in the worst case exponential. This means that they need to calculate 
an exponential number of CI tests (for the first group) or of scores (for the second group) to 
obtain the structure of the bayesian network. However, there are two algorithms of the first 
group that have arrived to obtain polynomial complexity. There names are: 
 

� PMMS (Polynomial Max-Min Skeleton) 
� TPDA (Three Phase Dependency Analysis) 

 
 
2.4 MARKOV EQUIVALENT SET AND COMPLETED-PDAGS 
 

Definition 2. Suppose we have a joint probability distribution P of the random variables in 

some set V and a DAG G = (V, E). We say that (G, P) satisfies the Markov condition if for 

each variable V Є X, {X} is conditionally independent of the set of all its no-descendents 

given the set of all its parents. 
 

Definition 3. Two dags are said equivalents (noted ≡) if they imply the same set of 

conditional dependencies (they have the same joint distribution). The Markov equivalent 

classes set (named E) is defined as E = A/≡ where we named A the dags set. 

 
Definition 4. An arc is said reversible if its reversion leads to a graph which is equivalent 

to the first one. The space of Completed-PDAGs (cpdags or also named essential graphs) 



LEARNING BAYESIAN NETWORKS 
 

         TOMÁS GROPPO PARISI  
 

 

 8 

is defined as the set of Partially Directed Acyclic Graphs (pdags) that have only undirected 

arcs and irreversible directed arcs. 

 
These three definitions are the bases to understand why a bayesian network can reduce so 
much the representation of a system. In a bayesian network not only the arcs gives 
information, but also its orientation and the absence of arcs gives a lot of information. It can 
be proved that in a faithful BN, an edge between X and Y exists if and only if there is no d-
separating set Z such that X and Y are independent. To understand this concept, I will first 
show how the orientation of the edges gives as information and then I will explain what 
means “d-separating” two nodes and how it gives valuable information. 
 
 
2.5 NODES ORIENTATION 
 
For instance, as the Bayes rule gives 
 

P(A,B,C) = P(A)P(B|A)P(C|B) = P(A|B)P(B)P(C|B) = P(A|B)P(B|C)P(C) 
 
These structures are equivalents:  
 

 
 
Then, they can be schematised by a cpdag without ambiguities: 
 

 
 
However, they are not equivalent to a “collider” (also named “V-structure”). A collider is a 
node where two arcs meet at their endpoints: 
 

 
 
Where: 
 

P(A,B,C) = P(A)P(B|A,C)P(C) 
 
[Verma & Pearl, 1990] proved that dags are equivalent if, and only if, they have the same 
skeleton (i.e. the same edge support) and the same set of V-structures. 
 
 
2.6 D-SEPARATION 
 
TPDA and PMMS algorithms construct a bayesian networks by analyzing conditional 
independence relationships among nodes. To introduce this approach, we first review the 
concept of d-separation [Pearl, 1988], which plays an important role in these algorithms.  
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For any three disjoint node sets X, Y, and Z in a belief network, X is said to be d-separated 
from Y by Z if there is no active adjacency path between X and Y. An adjacency path is a 
path between two nodes without considering the directionality of the arcs. A path between 
X and Y is active given Z if:  
 
(1) Every collider [Spirtes et al., 1996] in the path is in Z or has a descendant in Z  
(2) Every other node in the path is outside Z.  
 
In a belief network, if there is an arc from A to B, we say that A is a parent of B and B is a 
child of A. We also say that A is in the neighborhood of B and B is in the neighborhood of 
A.  
 
To understand d-separation, I will use an analogy which has been elaborated by [Cheng et 
al., 2001]. They viewed a belief network as a network system of information channels, 
where each node was a valve that was either active or inactive and the valves were 
connected by noisy information channels. The information flow could pass an active valve 
but not an inactive one. When all the valves (nodes) on one adjacency path between two 
nodes were active, they said this path was open. If any valve in the path was inactive, they 
said the path was closed. When all paths between two nodes were closed given the statuses 
of a set of valves (nodes), they said the two nodes were d-separated by the set of nodes. 
This set of nodes was named as cut-set. The status of valves could be changed through the 
instantiation of a cut-set.  
 
To clarify this explication I have included an example. In Figure 2, C-E-D is an adjacency 
path connecting C and D, even though the arcs are in different directions; we also say that E 
is a collider in the path C-E-D. Given empty evidence C and D are d-separated. 
 

 
- Fig.2 – Example of d-separation 

 
In the analogy of [Cheng et al., 2001], putting a node into the cut-set was equivalent to 
altering the status of the corresponding valves. For example, putting the collider E into the 
cut-set will open the path between C and D; while putting the non-collider B into the cut-set 
will close both the A-B-C-E and the A-B-D-E paths, thereby d-separating A and E. 
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2.7 FAITHFULNESS CONDITION 
 
In a BN=(G; P): 
 

DSEPG(X;Y|Z)       IND(X;Y|Z) 
 
In a faithful BN (G; P): 
 

DSEPG(X;Y|Z) � IND(X;Y|Z) 
 
A BN=(G; P) satisfies the faithfulness condition (called faithful network) if the Markov 
Condition applied on G entails all and only the conditional independencies in P (Spirtes, 
Glymour, & Scheines 2000).  
 
It can be proved that in a faithful BN, an edge between X and Y exists if and only if there is 
no d-separating set Z such that X and Y are independent (Spirtes, Glymour, & Scheines 
2000). Algorithms following the constraint-based approach in BN learning estimate from 
data the conditional independencies and return only the edges which satisfy the above 
condition.  
 
 
2.8 MUTUAL INFORMATION AND χ2 TEST OF INDEPENDENCE 
 
The amount of information flow between two nodes can be measured by different methods. 
In particular, TPDA uses mutual information and PMMS uses χ2 test of independence. 
 
The mutual information of two nodes (Xi; Xj) , is defined as: 
 
 

(2) 
 
 

And the conditional mutual information is defined as: 

 
 

(3) 
 
where (Xi, Xj) are two nodes and C is a set of nodes.  
 
TPDA algorithm uses conditional mutual information as CI tests to measure the average 
information between two nodes when the status of some valves are changed by the 
condition-set C. When I (Xi,Xj|C) is smaller than a certain threshold value є (set to 0.01 in 
my experiments) , it is said that (Xi, Xj) are d-separated by the condition-set C, and they are 
conditionally independent. 
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PMMS algorithm is based on tests of conditional independence and measures of the 
strength of association between a pair of variables. To implement the test of independence - 
IND(Xi;Xj|Xk) - it calculates the χ2 test as in Spirtes, Glymour and Scheines (2000), under 
the null hypothesis of the conditional independence holding.  
 
The χ2 test returns a p-value that corresponds to the probability of falsely rejecting the null 
hypothesis given that it is true. If the p-value is less than a significance level α (set to 0.01 
in my experiments) the null hypothesis is rejected. If the independence hypothesis cannot 
be rejected, it is accepted instead. A more detailed discussion on this use of independence 
tests can be found in Neapolitan (2003) pp. 593. 
 
As a measure of association, PMMS algorithm uses the negative p-value returned by the χ2 
test of independence: the smaller the p-value, the higher the association. To break the ties 
among equal p-values we used the χ2 statistic. Again, a p-value less than the 0.01 threshold 
was used to indicate a zero association. 
 
 

3. ALGORITHMS 
 
In this section I will present TPDA and PMMS, which are the two algorithms that have 
been able to obtain polynomial complexity. For each algorithm I will present: 
 

� The assumptions that have been made so as to apply these algorithms 
� An explanation and an example of how each algorithm works 

 
And then I will present a theoretical comparison between both algorithms. 
 
It is important to note that PMMS is an algorithm that finds only the structure. If we want 
to obtain a direct graph, we will have to implement an orientation technique so as to define 
the edges. On the other hand, TPDA includes an orientation technique. As my work is 
centralise in the power each algorithm has to reconstruct the real structure, I decided to 
eliminate the orientation of the edges from TPDA algorithm and compare only the 
structures. That means that the arcs between variables will be always without orientation:  
 

 
 
 
3.1 TPDA ALGORITHM 
 
This algorithm was created by Cheng, Russell and Kelly in 2001. To explain it I use the 
explanation made by their authors in [Cheng et al., 2001] 
 
3.1.1 ASSUMPTIONS 
 
This algorithm can be used to obtain the structure of a bayesian network when: 
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� The records occur independently given the underlying probabilistic model of the 

data (that is, the dataset is “independent and identically distributed”, iid) 
� The cases in the data are drawn iid from a monotone DAG-faithful distribution 
� The attributes of a table have discrete values and there are no missing values in any 

of the records 
� The quantity of data is large enough for the conditional independent test used in the 

algorithm to be reliable. 
 
Intuitively, the monotone DAG-faithful assumption requires that the conditional mutual 
information of two variables be a monotonic function of the active paths between the 
variables in the network structure: the more active open by a conditioning set, the greater 
the mutual information between the variables should be. 
 
 
3.1.1 ALGORITHM 
 
TPDA begins with a “drafting” phase, which produces an initial set of edges based on a 
simple test. The draft is a singly-connected graph (a graph without loops); found using 
(essentially) the Chow-Liu [1968] algorithm.  
 
In the second phase or the “thickening”, TPDA adds edges to the current graph when the 
pairs of nodes cannot be separated using a set of relevant CI tests. If the underlying model 
is DAG-faithful, the graph produced by this phase will contain all the edges of the 
underlying dependency model  
 
The third or “thinning” phase corresponds to Step 3: here each of the edges is examined and 
removed if the two nodes of the edge are found to be conditionally independent. 
 
TPDA then runs the OrientEdges procedure to define the essential arcs of the learned graph, 
to produce an essential graph. As I have previously mentioned, I am not considering the 
orientation of the edges because I will analyse only the skeleton. 
 
The procedure of TPDA is: 
 
Phase I: Drafting 
 
1. Initiate a graph G(V,E) where V={all the nodes of a data set}, E={ }. Initiate an empty 
list L. 
 
2. For each pair of nodes (vi ; vj) where vi ,vj Є V , compute mutual information I (vi ; vj ) 
using equation (2). For all the pairs of nodes that have mutual information greater than a 
certain small value є (that will be 0.01 for my implementations as it is suggest by the 
authors of TPDA), sort them by their mutual information and put these pairs of nodes into 
list L from large to small. Create a pointer p that points to the first pair of nodes in L. 
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3. Get the first two pairs of nodes of list L and remove them from it. Add the corresponding 
edges to E. Move the pointer p to the next pair of nodes. 
 
4. Get the pair of nodes from L at the position of the pointer p. If there is no adjacency path 
between the two nodes, add the corresponding edge to E and remove this pair of nodes 
from L. 
 
5. Move the pointer p to the next pair of nodes and go back to step 4 unless p is pointing to 
the end of L or G contains n-1 edges. (n is the number of nodes in G.) 
 
In order to illustrate this algorithm’s working mechanism, I use the example of [Cheng et 
al., 2001] where he uses a simple multi-connected network example taken from [Spirtes 
and al., 1996].  
 
I have a database that has underlying Bayesian network as Figure 3.a and my task is to 
rediscover the underlying network structure from data. After step 2, I am able to obtain the 
mutual information of all 10 pair of nodes. I have: 
 

I(B,D) > I(C,E) > I(B,E) > I(A,B) > I(B,C) > I(C,D) > I(D,E) > I(A,D) > I(A,E) > I(A,C) 
 
and all the mutual information is greater than є, I can construct a draft shown in Figure 3.b 
after step 5. Please note that the order of mutual information between nodes can not be 
arbitrary. For example, from the information theory, I have: 
 

I(A,C) < Min(I(A,B),I(B,C)) 
 
This is also the reason why Phase one can construct a graph similar to the original graph to 
some extent. In fact, if the underlying graph is a singly connected graph, Phase one of this 
algorithm is essentially the algorithm of [Chow and Liu, 1968], and it guarantees the 
constructed network structure is the same as the original one.  
 
In this example, (B,E) is wrongly added and (D,E) and (B,C) are missing because of the 
existing adjacency paths (D-B-E) and (B-E-C). The draft created in this phase is the base 
for next phase. 
 

 
- Fig.3 - Example of TPDA 
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Phase II: Thickening 
 
6. Move the pointer p to the first pair of node in L. 
 
7. Get the pair of nodes from L at the position of the pointer p. Call procedure 
try_to_separate_A (current graph, node1, node2) to see if this pair of nodes can be 
separated in current graph. If so, go to next step; otherwise, connect the pair of nodes by 
adding a corresponding edge to E. (Procedure try_to_separate_A will be presented later in 
this subsection.)  
 
8. Move the pointer p to the next pair of nodes and go back to step 7 unless p is pointing to 
the end of L.  
 
In our example, the graph after Phase II is shown in Figure 3.c. Edge (B,C) and (D,E) are 
added because procedure try_to_separate_A cannot separate these pairs of nodes using CI 
tests. Edge (A,C) is not added because CI test can reveal that A and C are independent 
given block set {B}. Edge (A,D), (C,D) and (A,E) are not added for the same reason.  
 
In this phase, the algorithm examines all pairs of nodes that have mutual information 
greater than є and are not directly connected. An edge is not added only when the two 
nodes are independent given certain block set. However, it is possible that some edges are 
wrongly added in this phase. There are two reasons for this:  
 

a) Some real edges may be still missing until the end of this phase, and these missing 
edges can prevent procedure try_to_separate_A from finding the correct condition-set.  
 

b) As Procedure try_to_separate_A uses a heuristic method, it may not be able to find 
the correct condition-set for a special group of structures. (The detail is discussed later 
in this section.) 

 
 
Phase III: Thinning 
 
9. For each edge in E, if there are other paths besides this edge between the two nodes, 
remove this edge from E temporarily and call procedure try_to_separate_A (current 
graph, node1, node2). If the two nodes are dependent, add this edge back to E; otherwise 
remove the edge permanently.  
 
10. For each edge in E, if there are other paths besides this edge between the two nodes, 
remove this edge from E temporarily and call procedure try_to_separate_B (current 
graph, node1, node2). If the two nodes are dependent, add this edge back to E; otherwise 
remove the edge permanently. (Procedure try_to_separate_B will be presented later in this 
subsection.) 
 
11. Call procedure orient_edges (current graph). (As I have said before, this procedure is 
not covered during my studies)  
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The ‘thinned’ graph of our example is shown in Figure 3.d, which has the same structure of 
the original graph. Edge (B,E) is removed because B and E are independent given {C,D}. If 
the underlying dependency model has a normal DAG-faithful probability distribution, the 
structure generated by this procedure is exactly the same as the structure of the underlying 
model. This phase can also orient edge (C,E) and edge (D,E) correctly. 
 
Since procedure try_to_separate_A uses a heuristic method to find the condition-set, it 
may not always be able to separate two d-separated nodes. In order to guarantee that a 
correct structure can always be generated, we have to use a correct procedure 
try_to_separate_B at step 10 to re-examine the current edges. 
 
Theoretically, we can use procedure try_to_separate_B to replace procedure 
try_to_separate_A in Phase II and remove step 9 in Phase III since they do the same thing. 
In practice, procedure try_to_separate_A usually uses fewer CI tests and requires smaller 
condition-sets. Therefore we try to avoid using procedure try_to_separate_B whenever it 
is possible. 
 

PROCEDURE TRY_TO_SEPARATE_A (CURRENT GRAPH, NODE1, NODE2) 
 
1: Find the neighbors of node1 and node2 that are on the adjacency paths between node1 

and node2. Put them into two sets N1 and N2 respectively. 
2: Remove the currently known child-nodes of node1 from N1 and child-nodes of node2 

from N2. 

3: If the cardinality of N1 is greater than that of N2, swap N1 and N2. 
4: Use N1 as condition-set C. 
5: Conduct a CI test using equation (3). Let v = I(node1,node2|C). If v < є , return (‘d-
separated’). 
6: If C contains only one node, go to step 8; otherwise, for each i, let Ci =C \ {the i th node 

of C}, vi= I(node1,node2|Ci). Find the smallest value vm of v1 , v2 ,… 
7: If vm < є , return (‘d-separated’); otherwise, if vm> v go to step 8 else let v = vm , C = Cm , 
go to step 6. 
8: If N2 has not been used, use N2 as condition-set C and go to step 5; otherwise, return 
(‘failed’). 
 
 
From the definition of Bayesian belief network, we know that if two nodes “a” and “b” in 
the network are not connected, they can be d-separated by the parent nodes of “b” which 
are in the paths between those two nodes. (We assume that node “a” appears earlier in the 
node ordering than “b”). Those parent nodes form a set P which is a subset of N1 or N2 of 
the above procedure. If node ordering is known, we can get P immediately and only one CI 
test is required to check if two nodes are d-separated. Since this information is usually not 
given, we have to use a group of CI tests to find such P. By assuming that removing a 
parent node of “b” will not increase the mutual information between “a” and “b”, the above 
procedure try to find set P by identifying and removing the child-nodes and irrelevant nodes 
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from N1 and N2 once a time using a group of computations and comparisons of conditional 
mutual information. However, this assumption may not be true when the underlying 
structure satisfies the following conditions: 
 
 

� There exists at least one path from “a” to “b” through a child-node of “b” and this 
child-node is a collider on the path.  

 
� In such paths, there are one or more colliders besides the child-node and all these 

colliders are the parents or ancestors of “b”. In such structures, procedure 
try_to_separate_A may identify a parent node of “b” as a child-node of “b” and 
remove it erroneously. As a result, the procedure fails to separate two d-separated 
nodes. To deal with these structures, a correct procedure try_to_separate_B is 
introduced. 

 

PROCEDURE TRY_TO_SEPARATE_B (CURRENT GRAPH, NODE1, NODE2) 
 
1: Find the neighbors of node1 and node2 that are on the adjacency paths between node1 

and node2. Put them into two sets N1 and N2 respectively. 
2: Find the neighbors of the nodes in N1 that are on the adjacency paths between node1 and 
node2, and do not belong to N1. Put them into set N1’. 
3: Find the neighbors of the nodes in N2 that are on the adjacency paths between node1 and 
node2, and do not belong to N2. Put them into set N2’. 
4: If |N1+N1’| < |N2+N2’| let set C=N1+N1’ else let C=N2+N2’. 
5: Conduct a CI test using equation (3). Let v = I(node1,node2|C). If v < є , return (‘d-
separated’). 
6: Let C’=C. For each i Є [1, |C|], let Ci =C \ {the i th node of C}, vi = I(node1,node2|Ci). 
If vi < є return (‘d-separated’) else if vi < v+ є then C’=C’\{the i th node of C}. ( є is a 
small value ) 
7: If |C’|<|C| then let C=C’, go to step 5; otherwise, return (‘failed’). 
 
 
The major difference between procedure try_to_separate_A and try_to_separate_B is 
that instead of blocking the nodes of N1 or N2 the latter procedure also blocks nodes of set 
N1’ or N2’. Since blocking two consecutive nodes in a path can always close the path, 
blocking set N1+N1’ or N2+N2’ can close all the paths that connect node1 and node2 
through two or more nodes. The only open paths are those connect node1 and node2 
through one collider. Under this circumstance, we can remove all the colliders that connect 
node1 and node2 without opening any previously closed paths. Thus, all paths between 
node1 and node2 in the underlying model can be closed.  
 
In both procedure try_to_separate_A and procedure try_to_separate_B, we have to 
compare the mutual information on different condition-sets. If we do not use quantitative 
CI tests, we can not compare the results of different CI tests and therefore can not remove 
irrelevant nodes. By reducing the cardinality of the condition-set after each iteration, we 
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can avoid to test on every subset of the initial condition-set and thus avoid exponential 
number of CI tests. However, qualitative CI test based algorithms have to carry out the test 
on every subset of C in order to separate two nodes, so the number of CI tests in such 
algorithms must be exponential in the worst case. 
 
 
3.2 PMMS ALGORITHM 
 
This algorithm was created by Brown, Tsamardinos and Aliferis in 2005. To explain it I use 
the explanation made by their authors in [Brown et al., 2005]. 
 
 
3.2.1 ASSUMPTIONS 
 
The assumptions are the same as for TPDA algorithm; although the authors of PMMS in 
[Brown et al., 2005] claim that, in certain cases, PMMS can correctly reconstruct skeletons 
of networks that are not monotone DAG-faithful. 
 
 
3.2.2 ALGORITHM 
 
I will mark with PCG

T the parents and children of T in the BN (G; P). This means that all 
the nodes with an edge to and from T will be in PCG

T. This set will be unique for all G, 
always that (G; P) is a faithful Bayesian network to the same distribution P (Pearl 1988). 
  
We define the minimum association of X and T relative to a feature subset Z, denoted as 
MINASSOC(X;T|Z), as the minimum association achieved between X and T over all subsets 
of Z: 
 

(2) 
 
ASSOC(X;T|S) is the association between two variables given a conditioning set. PMMS 
algorithm uses a statistically oriented test and the negative p-value returned by the χ2 test of 
independence IND(X;T|S) (the smaller the p-value, the higher we consider the association 
between X and T) as in Spirtes, Glymour, & Scheines (2000).  
 
The Polynomial Max-Min Skeleton algorithm (PMMS) is run on a dataset and returns the 
skeleton network. PMMS works by calling the Polynomial Max-Min Parents and Children 
algorithm (PMMPC) for each variable. PMMPC identifies an approximation of PCT given a 
target node T and the data. Once the parents and children set has been discovered for each 
node, PMMS pieces together the identified edges into the network skeleton.  
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PMMPC(T,D), the main subroutine of the PMMS algorithm, discovers the PCT using a 
two-phase scheme (shown in Fig. 5)2.  
 

PMMPC ALGORITHM 
 
1: procedure PMMPC (T,D) 

%Phase I: Forward 
2:  CPC = Ø 
3:  repeat 
4:  F = arg max X Є V GREEDYMINASSOC(X;Y;{A,B};ASSOC(X;Y|Ø);Ø) 
5:   assoc = max X Є V GREEDYMINASSOC(X;Y;{A,B};ASSOC(X;Y|Ø);Ø)  
6:   if assoc =  0 then 
7:    CPC = CPC  F 
8:  until CPC has not changed 

%Phase II: Backward 
9:  for all X Є CPC do 
10:   if GREEDYMINASSOC(X;Y;{A,B};ASSOC(X;Y|Ø);Ø) = 0 then 
11:    CPC = CPC \ {X}  
12:   return CPC 
13: end procedure 
 
14: function GREEDYMINASSOC(X,T,Z,minval,minarg)  
15:  min = min S Є Z ASSOC(X;T|minarg {S}) 

16:  arg = arg min S Є Z ASSOC(X;T|minarg {S}) 
17:  if ((min < minval) AND (Z \ minarg = Ø)) then 
18:   minval = GREEDYMINASSOC(X;T;Z \ minarg; min; minarg  {arg}) 
19:  return minval 
20: end function 
 
 
Phase I: Forward 
 
In this phase variables sequentially enter a candidate parents and children set of T, denoted 
as CPC, by use of the MAX-MIN HEURISTIC: 
 
The heuristic is admissible in the sense that all variables with an edge to or from T and 
possibly more will eventually enter CPC. The intuitive justification for the heuristic is to 
select the variable that remains highly associated with T despite our best efforts to make the 
variable independent of T. Phase I stops when all remaining variables are independent of 
the target T given some subset of CPC (when the maximum minimum association reaches 
zero). 
 
                                                 
2 PMMPC is a polynomial variant of the Max-Min Parents and Children (MMPC) algorithm (Tsamardinos, 
Aliferis, & Statnikov 2003). The MMPC algorithm can be created from PMMS algorithm by replacing the 
calls to GREEDYMINASSOC at lines 4, 5, and 10 with the function MINASSOC. 
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Conditioning on all subsets of CPC to identify the MINASSOC(X;T|CPC) requires an 
exponential number of calls to ASSOC. To get a polynomial number of calls, PMMPC 
greedily search for the subset S CPC that achieves the minimum association between X 
and T conditioned over the subsets of CPC.  
 
The function GREEDYMINASSOC(X,T,CPC,minval,minarg) starts with minval as the current 
estimate of the minimum and minarg as the current estimate of the minimizer S CPC. 
Initially, minarg = Ø and minval = ASSOC(X;T| Ø). It then augments minarg by the member 
S of CPC that reduces the association ASSOC(X;T|minarg {S}) the most. It continues in 
this fashion recursively until we condition on the full CPC or the minimum association 
achieved between X and T cannot be further reduced by augmenting minarg by a single 
variable. 
 
For example, in the network structure of Fig. 6 the set Z={A,B} is a minimal d-separating 
set of X and Y . Assuming: 
 

ASSOC(X;Y|Ø) > ASSOC(X;Y|{A}) > ASSOC(X;Y|{A,B}) 
 
then Z, a d-separating set, can be discovered in a greedy fashion. 

 

 
- Fig. 4 - Example of PMMS 

 
Phase II: Backward 
 
In this phase PMMPC attempts to remove some of the false positives that may have entered 
in the first phase. The false positives are removed by testing IND(X;T|S) for some subset of 
the candidate parents and children set, S CPC. If the independence holds, X is removed 
from CPC. The existence of an S CPC for which IND(X;T|S) is approximated by testing 
whether GREEDYMINASSOC returns zero. 
 
For example, in the network structure of Fig. 6 it is possible that X enters CPC before both 
A and B when the target is Y. Phase II, however, will remove X once both A and B are in 

X 

B A 

Y 
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CPC and the test GREEDYMINASSOC(X;Y,{A,B},ASSOC(X;Y|Ø),Ø) returns zero (since 
ASSOC(X;Y|{A,B})=0).3 
 
 
 
3.3 A COMPARISON BETWEEN TPDA AND PMMS ALGORITHM 
 
TPDA and PMMS are similar at a fundamental level. Both have a forward phase where 
variables enter a candidate parent and children set for each node T. This set is the CPC in 
the PMMS algorithm and the set of neighbors of T in the current draft of the skeleton in 
TPDA. They also both have a backward phase where variables are removed from this set. 
During these phases, both algorithms attempt to discover a set Z such that ASSOC(X;T|Z)=0 
for every X considered. 
 
A major difference between the algorithms, however, is that PMMS builds up Z starting 
from the empty set. In contrast, TPDA starts by conditioning on the full set of the candidate 
parents and children and removing nodes from this set to reach Z. 
 
When the available sample is not enough to condition on the full set of the parents and 
children set of T, I expect TPDA’s strategy to fail to accurately estimate the conditional 
mutual information between T and any other node. On the other hand PMMS starts with the 
smallest conditioning set possible – the empty set – and proceeds with conditioning on 
larger sets only when the sample allows so. Thus, I expect PMMS to better reconstruct the 
skeleton when the available sample is low relative to the parent and children set sizes. 
 
On the other hand, TPDA’s strategy will pay off for relatively large sample sizes. For 
example, suppose that X and T can be d-separated by S Z, where Z is the current 
estimate of PCT . If the available sample is enough to condition on Z it may be possible that 
IND(X;T|Z), which TPDA will discover with a single call to mutual information. In contrast, 
PMMS has to perform at least |S| calls to ASSOC to identify S. 

 
 
4. TEST 
 
4.1 METHODOLOGY 
 
The methodology I have chosen to implement these algorithms is: 
 

1. choose a belief network (a network I already know) 
2. generate randomly a data base from that network (taking into account the table of 

probabilities of the belief network) 

                                                 
3 To avoid some false positives in PMMS it is possible to remove additional arcs by checking whether the 

symmetry X Є PCY � Y Є PCX holds (for more details see Tsamardinos, Brown, & Aliferis 2005). 
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3. learn the skeleton of the bayesian network from the data base (only with the 
information of the data base I have just generated) 

4. analyse the quality of the skeleton I have found 
 
 
4.2 SOFTWARE 
 
There are many types of software that deals with Bayesian networks, for example: 
 

- Hugin [Andersen et al., 1989] 
- Netica [Norsys, 2003] 
- Bayesia Lab [Munteanu et al., 2001] 
- TETRAD [Scheines et al., 1994] 
- DEAL [Bøttcher & Dethlefsen, 2003] 
- LibB [LibB] 
- Matlab: FullBNT Network [Murphy, 2001a] 
- Matlab: SLP – BNT [Leray et al., 2003]. 
- Matlab: Causal Explorer [Aliferis et al.,2005] 

 
 
The algorithms I am comparing are very recent; therefore they are may not be readily 
available in today's software. We can find some preliminary works on different softwares 
but not always the definitive algorithms. For my experiments, I have used: 
 

� Matlab: FullBNT Network [Murphy, 2001a] 
� Matlab: SLP – BNT [Leray et al., 2003]. 
� Matlab: Causal Explorer [Aliferis et al.,2005] 
� Some preliminary developments that have been made in PRISMa laboratory 

[PRISMa] 
 
I chose these softwares because the code source is open. This means I can see, modify and 
create the code of the software. However, I have to mention that the code source of Causal 
Explorer is not open but I can make a call to the algorithms that have been developed there. 
I think is also relevant to say that the creators of Causal Explorer toolbox are also the 
creators of PMMS although there is not yet available this algorithm in the toolbox. 
 
As TPDA is an algorithm from 2001, there are two Matlab toolboxs that present 
preliminaries softwares for him: 
 

� SLP – BNT (2003) 
� Causal Explorer (2005) 

 
On the other hand, PMMS is an algorithm from 2005 so there does not exist any Matlab 
toolbox that implements this algorithm. However, there exist a preliminary development of 
PRISMa laboratory where they have started to make a Matlab file of PMMS.  
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With all this tools I have satisfactory implemented TPDA and PMMS so as to learn the 
skeleton of the ASIA and ALARM networks. I have to mention that the SLP – BNT 
software for TPDA has a little variation that utilise the χ2 test of independence instead of 
the mutual information.  
 
 
 
 
4.3 NETWORKS 
 
There are two things that I considered important so as to analyse the power of the 
algorithms: 
 

� The complexity of the network they have to analyse 
� The number of data they have 

 
It is easy to see that as the network has more variables and arcs, the complexity of the 
networks augments. It is also intuitive that if we have more data it is more probable that the 
algorithm will find the real skeleton. 
 
So as to take into account these two things, I decided to use two networks with different 
amount of data: 250, 500, 1.000, 2.000, 5.000, 10.000, 15.000 and 20.000.  
 
The networks I chose are: 
 

� ASIA: 8 nodes (each with 2 values); 8 arcs; 36 total parameters 
( http://www.norsys.com/netlib/Asia.dnet  ) 

� ALARM: 37 nodes (each with 2, 3 or 4 values); 46 arcs; 509 total parameters 
[Beinlich et al., 1989] 

 
The first network is from a simple fictitious medical domain and the second is from a 
moderate complex real-world domain. 
 
4.3.1 ASIA NETWORK 
 
This network is a very small Bayesian network for a fictitious medical domain, relating 
whether a patient has tuberculosis, lung cancer or bronchitis, to their X-ray, dyspnea, visit-
to-Asia and smoking status. The structure of this network is shown in Fig. 5. 
 
I use this simple Bayesian network to show the performance of the algorithms on small 
domains. 
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- Fig. 5 - ASIA network 
 
The variable “Tuberculosis or Cancer” is not really a variable; it is an intermediate 
organizer for the graph. For this reason, it causes some problems to the algorithms and I 
decided to eliminate from the network. The new ASIA network is shown in Fig. 6. 
 

 
 

- Fig. 6 – ASIA network (corrected) 
 
As I have already said, I will not take into account the orientation of the edges in this paper. 
When I take out the orientation of the edge and I reorganize the variables distribution, I 
have the graph of Fig. 7. 
 

 
 

- Fig. 7 – ASIA network (corrected and without orientation) 
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where I have abbreviated the variables as: 
 

� VisitToAsia  �   VA 
� Smoking  �   S  
� Tuberculosis  �   T  
� LungCancer  �   C 
� Bronchitis  �   B 
� Xray  �   X 
� Dyspnea  �   D  

 
4.3.2 ALARM NETWORK 
 
ALARM, which stands for ’A Logical Alarm Reduction Mechanism’, is a medical 
diagnostic system for patient monitoring, which includes nodes for 8 diagnoses, 16 findings 
and 13 intermediate variables [Beinlich et al., 1989]. Each variable has two to four possible 
values. The network structure is shown in Figure 19. 
 

 
 

- Fig. 17 - ALARM network 
 
The ALARM network is the most widely used benchmark in this area and many researchers 
have used it to evaluate their algorithms.  
 
 
4.4 COMPARING SKELETONS 
 
To compare the skeleton found with the true skeleton I have measured both the number of 
arcs that are missing and those that are in excess between them. This means that if both 
values are equal, I have found the original structure. 
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These measurements do not take into account the data that was created (because it 
compares it directly with the original belief network), so I have also have to measure the 
BIC score (Bayesian Information Criterion) of the new skeleton to see the correlation with 
the data base I have given. In all the sub-databases, the BIC score was larger when the 
addition of the measures was smaller giving us the information that the generated databases 
were coherent with the original belief network. The results of the BIC-score are shown in 
Annexe B. 
 
 
 
 
4.4 RESULTS 
 
4.4.1 NOTATION 
 
I used the following names to identify the different algorithms: 
 

� PMMS: Is the PMMS algorithm implemented in base of some preliminaries 
developments of a Matlab file made by PRISMa laboratory. 

� TPDA_CE_mi: Is the TPDA algorithm implemented with Causal Explorer and 
which uses “mutual information” to know the relation between variables. 

� TPDA_SLP: Is the TPDA algorithm implemented with SLP – BNT and which has a 
little modification from the original TPDA algorithm. This algorithm uses “χ2 test of 
independence” instead of “mutual information” to know the relation between 
variables. 

 
In the next sections I will present the results of the 16 sub-database (8 for each network). 
The only difference between the sub-databases of a network is the number of data entries 
(250, 500, 1.000, 2.000, 5.000, 10.000, 15.000 and 20.000). It is important to remember 
that the values are not comparable between different sub-databases, but they are 
comparable between the different algorithms for the same sub-database.  
 
 
4.4.2 ASIA NETWORK 

 
The graphs of the structures found are: 
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- Fig.8 - ASIA network with 250 data entries 

 
With only 250 data entries is quite difficult to identify the skeleton, even the simple ASIA 
network is quite far from the real structure. This sub- database only want to show that it is 
necessary a good amount of data for learning the skeleton of a bayesian network. 

 

 
- Fig.9 - ASIA network with 500 data entries 
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- Fig.10 - ASIA network with 1000 data entries 

 

 
- Fig.11 - ASIA network with 2000 data entries 

 

 
- Fig.12 - ASIA network with 5000 data entries 
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- Fig.13 - ASIA network with 10000 data entries 

 

 
- Fig.14 - ASIA network with 15000 data entries 

 

 
- Fig.15 - ASIA network with 20000 data entries 
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In Fig. 9 we start seeing the original skeleton, but it is still far away from the real skeleton. 
In the following graphs we see how they evolve just until they found the original graph. 
With 5.000 data entries, the PMMS algorithm is the first one in obtaining the real original 
skeleton (see Fig.12). The _SLP algorithm obtains the real original skeleton in the next sub-
database (see Fig.13). From now over, augmenting the amount of data will not increase the 
quality of the found skeleton and TPDA_CE_mi will never found the correct skeleton. 
 
We can see that there are some variables that are difficult to identify. The most evident case 
is the variable VA (Visit to Asia). It is easy to imagine that there are not so many cases of 
persons visiting Asia and that is why the algorithms have difficulties to identify this 
relation (the probability for a person to visit Asia in our belief network is only 0,01 ) . We 
can see that TPDA_CE_mi has never arrived to see this relation although, the others 
algorithms had arrived when the databases were big. On the other hand, PMMS has 
practically always found this relation (only in the 2000 sub database it could not found it). 
 
In the following graph I will present the number of arcs missing and in excess that were 
found by the 3 algorithms in each sub-database: 
 

0

1

2

3

4

5

6

P
M

M
S

T
P

D
A

_
S

L
P

T
P

D
A

_
C

E
_
m

i

P
M

M
S

T
P

D
A

_
S

L
P

T
P

D
A

_
C

E
_
m

i

P
M

M
S

T
P

D
A

_
S

L
P

T
P

D
A

_
C

E
_
m

i

P
M

M
S

T
P

D
A

_
S

L
P

T
P

D
A

_
C

E
_
m

i

P
M

M
S

T
P

D
A

_
S

L
P

T
P

D
A

_
C

E
_
m

i

P
M

M
S

T
P

D
A

_
S

L
P

T
P

D
A

_
C

E
_
m

i

P
M

M
S

T
P

D
A

_
S

L
P

T
P

D
A

_
C

E
_
m

i

P
M

M
S

T
P

D
A

_
S

L
P

T
P

D
A

_
C

E
_
m

i

250 500 1000 2000 5000 10000 15000 20000

ASIA network

Missing Excess

 
- Fig.16 - Missing and excess arcs in ASIA network tests 

 
It is quite easy to conclude that for the ASIA network: 
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� The algorithms practically do not make mistakes of arcs excess, which means that 
the errors are due to some variables they do not arrive to see as related (arc missing).  

� PMMS is the algorithm that obtains the corrected skeleton with fewer amounts of 
data (5000 data entries). 

� PMMS and TPDA_SLP generally gives better results than TPDA_CE_mi 
� The number of total mistakes for TPDA_CE_mi diminishes when augmenting the 

number of data entries, but it is stabilised after 500 data entries. Moreover, the 
number of missing arcs is always the same; the only difference is that with 250 
entries it also gives an excess arc. 

� The number of total mistakes for PMMS and TPDA_SLP diminishes when 
augmenting the number of data entries 

� The number of mistakes of PMMS and TPDA_SLP are practically the same; 
although some times PMMS has better results.  

 
 
 
 
 
4.4.3 ALARM NETWORK 
 
In the ASIA network, I have made the graphs of the skeleton the algorithms have found 
because they can be easily understood by a quick view. I did not make the graph for the 
ALARM network because the resulting graph were so complicate that they were quite 
difficult to understands and they did not give me any additional information. 
 
In the following graph I will present the distance of the 2 algorithms for each sub-database. 
As I have already said, the TPDA_SLP algorithm is a preliminary development and does 
not arrive to learn the structure of the ALARM network. That is the reason why it is not 
present in the graph. 
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- Fig.18 - Missing and excess arcs in ALARM network tests 

 
It is quite easy to conclude that for the ALARM network: 
 

� The algorithms have missed more arcs than the ones that they have exceed  
� None of the proposed algorithms arrive to obtain the corrected skeleton 
� PMMS always has less total mistakes than TPDA_CE_mi  
� The number of total mistakes for PMMS diminishes when augmenting the number 

of data entries just until 2000 entries. Then it gets more mistakes when augmenting 
the number of entries. 

� The number of total mistakes for TPDA_CE_mi diminishes when augmenting the 
number of data entries, but it is stabilised after 1000 data entries. 

 
To compare which algorithms makes more errors of missing and which one more of excess 
I have made another graph where I show the difference between the mistakes of PMMS and 
the ones of TPDA_CE_mi: 
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- Fig.19 - Difference between PMMS mistakes and TPDA_CE_mi mistakes 
 
In the graph we can see that: 
 

� TPDA_CE_mi makes more excess mistakes than PMMS with low amount of data. 
This tendency is reverse when the data is bigger than 5000 

� PMMS makes more missing mistakes than TPDA_CE_mi with low amount of data. 
This tendency is reverse when the data is bigger than 1000 

 
 
5. DISCUSSION AND CONCLUSION 
 
In this paper I have explained the differences between PMMS and TPDA (the two 
algorithms that have arrived to obtain polynomial complexity for learning bayesian 
networks). In section 4, I have tested them so as to learn the structure of two belief bayesian 
network: The ASIA network, which is a simple fictitious medical problem; and the 
ALARM network, which is a moderate complex real-world problem. For testing these 
algorithms I have used different Matlab applications.  
 
The results obtained for learning the skeletons of these two networks were better with the 
PMMS algorithm. Nevertheless, a little variation on the TPDA algorithm produces 
practically the same results of PMMS in the ASIA network. This variation consists in using 
the “χ2 test of independence” (like in PMMS) instead of “mutual information”(like in 
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standard TPDA) to know the relation between variables. The result is the algorithm I have 
presented by the name of TPDA_SLP. This algorithm implementation is not finished and 
actually it does not work for complex networks as ALARM, but the results in simple 
networks as ASIA are quite promising.  
 
The final conclusions are: 
 

� Actually the best option to learn the skeleton of a bayesian network with polynomial 
complexity is PMMS.  

� PMMS outperform TPDA in small and big samples of data. However, it is 
important to see how it evolves the development of TPDA_SLP.  

� The “χ2 test of independence” have proved to obtain better results than the “mutual 
information” when learning bayesian networks with polynomial complexity. 
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ANNEXE A: COMPARISON BETWEEN DIFERENT METODS FOR TRANSFORMING 

INFORMATION INTO KNOWLEDGE 
 
Source: Table obtain from the page 165 of the book “Réseaux Bayesiens” [Réseaux 
Bayesians]  
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
- Table 1 - 

 
 
Reference: 
 
+ : If the technique takes into account this problem or if it presents this advantage 
 
* : If the technique is the best one in that characteristic 
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ANNEXE B: BIC SCORE 
 
The BIC score derives from principles stated in [Schwartz, 1978] and has the following 
formulation: 
 

(2) 
 
where D is the dataset, θML are the parameter values obtained by likelihood maximisation, 
and where the network dimension Dim(B) is defined as follows: 
 
As we need ri-1 parameters (probabilities) to describe the conditional probability 
distribution P(Xi/Pa(Xi) = pai) , where ri is the size of Xi and pai is a specific value of Xi 
parents, we need Dim(Xi, B) parameters to describe P(Xi/Pa(Xi))  
 
 

(3) 
 
 
And the bayesian network dimension Dim(B) is defined by 
 

(4) 
 
 
The BIC-score is the sum of a likelihood term and a penalty term which penalise complex 
networks. If two equivalent graphs have the same likelihood and the same complexity, the 
BIC-score will be equivalent (a score is said equivalent if it gives the same results for 
equivalent dags). 
 
The BIC scores for the two networks I have implemented are: 
 
ASIA network: 
 

 
 

- Table 2 - 
 
ALARM netwrok: 
 

 
 

- Table 3 - 
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ANNEXE C: APPLICATIONS BASED ON BAYESIAN NETWORKS 
 
In this annex I present a list of applications based on Bayesian networks that was presented 
in chapter 12 of Neapolitan book: “Learning Bayesian Networks”. It includes applications 
in which structure was learned from data and ones in which the Bayesian network was 
constructed manually. The list is by no means meant to be exhaustive. 
 
Academics 
 
• The Learning Research and Development Center at the University of Pittsburgh 
developed Andes (www.pitt.edu/~vanlehn/andes.html), an intelligent tutoring system for 
physics. Andes infers a student’s plan as the student works on a physics problem, and it 
assesses and tracks the student’s domain knowledge over time. Andes is used by 
approximately 100 students/year. 
• Royalty et al [2002] developed POET, which is an academic advising tool that models the 
evolution of a student’s transcripts. Most of the variables represent course grades and take 
values from the set of grades plus the values “NotTaken” and “Withdrawn”. This and 
related papers can be 
found at www.cs.uky.edu/~goldsmit/papers/papers.html. 
 
Biology 
 
• Friedman et al [2000] developed a technique for learning causal relationships among 
genes by analyzing gene expression data. This technique is a result of the “Project for 
Using Bayesian Networks to Analyze Gene Expression,” which is described at 
www.cs.huji.ac.il/labs/compbio/expression. 
• Friedman et al [2002] developed a method for phylogenetic tree reconstruction. 
The method is used in SEMPHY, which is a tool for maximum likelihood phylogenetic 
reconstruction. More on it can be found at www.cs.huji.ac.il/labs/compbio/semphy/. 
 
Business and Finance 
 
• Data Digest (www.data-digest.com) modeled and predicted customer behavior in a variety 
of business settings. 
• The Bayesian Belief Network Application Group 
(www.soc.staffs.ac.uk/~cmtaa/bbnag.htm) developed applications in the financial sector. 
One application concerned the segmentation of a bank’s customers. Business segmentation 
rules, which determine the classification of a bank’s customers, had previously been 
implemented using an expert systems rulebased approach. This group developed a Bayesian 
network implementation of the rules. The developers say the Bayesian network was 
demonstrated to senior operational management within Barclays Bank, and these 
management personnel readily understood its reasoning. A second application concerned 
the assessment of risk in a loan applicant. 
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Capital Equipment 
 
• Knowledge Industries, Inc. (KI) (www.kic.com) developed a relatively large number of 
applications during the 1990s. Most of them are used in internal applications by their 
licensees and are not publicly available. KI applications in capital equipment include 
locomotives, gas-turbine engines for aircraft and land-based power production, the space 
shuttle, and office equipment. 
 
Causal Learning 
 
• Applications to causal learning are discussed in [Spirtes et al, 1993, 2000]. 
• Causal learning applications also appear in [Glymour and Cooper, 1999]. 
 
Computer Games 
 
• Valadares [2002] developed a computer game that models the evolution of a simulated 
world. 
 
Computer Vision 
 
• The Reading and Leeds Computer Vision Groups developed an integrated traffic and 
pedestrian model-based vision system. Information concerning this system can be found at 
www.cvg.cs.rdg.ac.uk/~imv. 
• Huang et al [1994] analyzed freeway traffic using computer vision. 
• Pham et al [2002] developed a face detection system. 
 
Computer Hardware 
 
• Intel Corporation (www.intel.com) developed a system for processor fault diagnosis. 
Specifically, given end-of-line tests on semi-conductor chips, it infers possible processing 
problems. They began developing their system in 1990 and, after many years of 
“evolution”, they say it is now pretty stable. The network has three levels and a few 
hundred nodes. One difficulty they had was obtaining and tuning the prior probability 
values. 
The newer parts of the diagnosis system are now being developed using a fuzzy-rule system, 
which they found to be easier to build and tune. 
 
Computer Software 
 
• Microsoft Research (research.microsoft.com) has developed a number of applications. 
Since 1995, Microsoft Office’s AnswerWizard has used a naive-Bayesian network to select 
help topics based on queries. Also since 1995, there are about ten troubleshooters in 
Windows that use Bayesian networks. See [Heckerman et al, 1994]. 
• Burnell and Horvitz [1995] describe a system, which was developed by UT-Arlington and 
American Airlines (AA), for diagnosing problems with legacy software, specifically the 
Sabre airline reservation system used by AA. Given the information in a dump file, this 
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diagnostic system identifies which sequences of instructions may have led to the system 
error. 
 
Data Mining 
 
• Margaritis et al [2001] developed NetCube, a system for computing counts of records 
with desired characteristics from a database, which is a common task in the areas of 
decision support systems and data mining. The method can quickly compute counts from a 
database with billions of records. See www.cs.cmu.edu/~dmarg/Papers for this and related 
papers. 
 
Medicine 
 
• Knowledge Industries, Inc. (KI) (www.kic.com) developed a relatively large number of 
applications during the 1990s. Most of them are used in internal applications by their 
licensees and are not publicly available. 
KI applications in medicine include sleep disorders, pathology, trauma care, hand and wrist 
evaluations, dermatology, and home-based health evaluations. They have the demonstration 
site www.Symptomedix.com, which is a site for the interactive diagnosis of headaches. It 
was designed and built to show the principles of operation of a Bayesian network in a 
medical application. It is medically correct for the domain of interest and has been tested in 
clinical application. The diagnostic system core was built with the KI DXpress Solution 
Series Software and has been widely used to demonstrate the use of Bayesian networks for 
diagnosis over the web. 
• Heckerman et al [1992] describe Pathfinder, which is a system that assists community 
pathologists with the diagnosis of lymph node pathology. 
Pathfinder has been integrated with videodiscs to form the commercial system Intellipath. 
• Nicholson [1996] modeled the stepping patterns of the elderly to diagnose falls. 
• Mani et al [1997] developed MENTOR, which is a system that predicts mental retardation 
in newborns. 
• Herskovits and Dagner [1997] learned from data a system for assessing cervical spinal-
cord trauma. 
• Chevrolat et al [1998] modeled behavioral syndromes, in particular depression. 
• Sakellaropoulos et al [1999] developed a system for the prognosis of head injuries. 
• Onisko [2001] describes Hepar II, which is a system for diagnosing liver disorders. 
• Ogunyemi at al [2002] developed TraumaSCAN, which assesses conditions arising from 
ballistic penetrating trauma to the chest and abdomen. It accomplishes this by integrating 
three-dimensional geometric reasoning about anatomic likelihood of injury with 
probabilistic reasoning about injury consequences. 
• Galán et al [2002] created NasoNet, which is a system that performs diagnosis and 
prognosis of nasopharyngeal cancer (cancer concerning the nasal passages). 
 
Natural Language Processing 
 
• The University of Utah School of Medicine’s Department of Medical Informatics 
developed SymText, which uses a Bayesian network to 1) represent semantic content; 2) 
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relate words used to express concepts; (3) disambiguate constituent meaning and structure; 
4) infer terms omitted due to ellipsis, errors, or context-dependent background knowledge; 
and 5) various other natural language processing tasks. The developers say the system is 
used constantly. So far four networks have been developed, each with 14 to 30 nodes, 3 to 4 
layers, and containing an average of 1,000 probability values. Each network models a 
“context” of information targeted for extraction. Three networks exhibit a simple tree 
structure, while one uses multiple parents to model differences between positive and 
negated language patterns. The developers say the model has proven to be very valuable 
but carries two difficulties. First, the knowledge engineering tasks to create the network are 
costly and time consuming. Second, inference in the network carries a high computational 
cost. Methods are being explored for dealing with these issues. The developer say the 
model serves as an extremely robust backbone to the NLP engine. 
 
Planning 
 
• Dean and Wellman [1991] applied dynamic Bayesian networks to planning and control 
under uncertainty. 
• Cozman and Krotkov [1996] developed quasi-Bayesian strategies for efficient plan 
generation. 
 
Psychology 
 
• Glymour [2001] discusses applications to cognitive psychology. 
 
Reliability Analysis 
 
• Torres-Toledano and Sucar [1998] developed a system for reliability analysis in power 
plants. This paper and related ones can be found at the site 
w3.mor.itesm.mx/~esucar/Proyectos/redes-bayes.html. 
• The Centre for Software Reliability at Agena Ltd. (www.agena.co.uk) developed TRACS 
(Transport Reliability Assessment and Calculation System), which is a tool for predicting 
the reliability of military vehicles. The tool is used by the United Kingdom’s Defense 
Research and Evaluation Agency (DERA) to assess vehicle reliability at all stages of the 
design and development life-cycle. The TRACS tool is in daily use and is being applied by 
DERA to help solve the following problems: 
1. Identify the most likely top vehicles from a number of tenders before prototype 
development and testing begins. 
2. Calculate reliability of future high-technology concept vehicles at the requirements stage. 
3. Reduce the amount of resources devoted to testing vehicles on test tracks. 
4. Model the effects of poor quality design and manufacturing processes on vehicle 
reliability. 
5. Identify likely causes of unreliability and perform “what-if?” analyses to investigate the 
most profitable process improvements. 
The TRACS tool is built on a modular architecture consisting of the following five major 
Bayesian networks: 
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1. An updating network used to predict the reliability of sub-systems based on failure data 
from historically similar sub-systems. 
2. A recursive network used to coalesce sub-system reliability probability distributions in 
order to achieve a vehicle level prediction. 
3. A design quality network used to estimate design unreliability caused by poor quality 
design processes. 
4. Amanufacturing quality network used to estimate unreliability caused by poor quality 
manufacturing processes. 
5. A vehicle testing network that uses failure date gained from vehicle testing to infer 
vehicle reliability. 
The TRACS tool can model vehicles with an arbitrarily large number of sub-systems. Each 
sub-system network consists of over 1 million state combinations generated using a 
hierarchical Bayesian model with standard statistical distributions. The design and 
manufacturing quality networks contain 35 nodes, many of which have conditional 
probability distributions elicited directly from DERA engineering experts. 
The TRACS tool was built using the SERENE tool and the Hugin API (www.hugin.dk), 
and it was written in VB using the MSAccess database engine. The SERENE method 
(www.hugin.dk/serene) was used to develop the Bayesian network structures and generate 
the conditional probability tables. A full description of the TRACS tool can be found at 
www.agena.co.uk/tracs/index.html. 
 
Scheduling 
 
• MITRE Corporation (www.mitre.org) developed a system for real-time weapons 
scheduling for ship self defense. Used by the United States Navy (NSWC-DD), the system 
can handle multiple target, multiple weapon problems in under two seconds on a Sparc 
laptop. 
 
Speech Recognition 
 
• Bilmes [2000] applied dynamic Bayesian multinets to speech recognition. Further work in 
the area can be found at ssli.ee.washington.edu/~bilmes. 
• Nefian et al [2002] developed a system for audio-visual speech recognition. This and 
related research done by Intel Corporation on speech and face recognition can be found at 
www.intel.com/research/mrl/research/opencv and at 
www.intel.com/research/mrl/research/avcsr.htm. 
 
Vehicle Control and Malfunction Diagnosis 
 
• Automotive Information Systems (AIS) (www.PartsAmerica.com) developed over 600 
Bayesian networks which diagnose 15 common automotive problems for about 10,000 
different vehicles. Each network has one hundred or more nodes. Their product, Auto Fix, 
is built with the DXpress software package available from Knowledge Industries, Inc. (KI). 
Auto Fix is the reasoning engine behind the Diagnosis/SmartFix feature available at the 
www.PartsAmerica.com web site. SmartFix is a free service that AIS provides as an 
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enticement to its customers. AIS and KI say they have teamed together to solve a number 
of very interesting problems in order to deliver “industrial strength” Bayesian networks. 
More details about how this was achieved can be found in the article “Web Deployment Of 
Bayesian Network Based Vehicle Diagnostics,” which is available through the Society of 
Automotive Engineers, Inc. Go to www.sae.org/servlets/search and search for paper 2001-
01-0603. 
• Microsoft Research developed Vista, which is a decision-theoretic system used at NASA 
Mission Control Center in Houston. The system uses Bayesian networks to interpret live 
telemetry, and it provides advice on the likelihood of alternative failures of the space 
shuttle’s propulsion systems. 
It also considers time criticality and recommends actions of the highest expected utility. 
Furthermore, the Vista system employs decision-theoretic methods for controlling the 
display of information to dynamically identify the most important information to highlight. 
Information on Vista can be found at research.microsoft.com/research/dtg/horvitz/vista.htm. 
• Morjaia et al [1993] developed a system for locomotive diagnostics. 
 
Weather Forecasting 
 
• Kennett et al [2001] learned from data a system which predicts sea breezes. 
 


