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Abstract— It is estimated that 50% of all cardiovascular deaths are caused by a sudden cardiac arrest (SCA), which
represents 15% of global mortality, and its main cause is ventricular fibrillation (VF). Therefore, it is of interest to
design new methods capable to detect changes in heart rate (HR or RR interval) that could announce the beginning
of an imminent fibrillation. In this work, an effective novel indicator, based on mean and standard deviation of
Heart Rate Variability (HRV), was studied and used to develop an algorithm that predicts imminent VF with 100%
sensitivity and 100% specificity. The study was based on 65 RR intervals signals. The algorithm’s simplicity provides
a quick-to-use implementation in a micro controller unit (MCU) for real-time VF detection, allowing its application
in a variety of medical devices with electrocardiogram (ECG) modules.

Keywords— Ventricular Fibrillation, Heart Rate Variability, Imminent Ventricular Fibrillation, Mean, Standard
Deviation.

Resumen— Se estima que el 50% de todas las muertes cardiovasculares son causadas por un paro cardı́aco repentino
(PCR), el cual representa el 15% de la mortalidad global, y su causa principal es la fibrilación ventricular (FV). Por
lo tanto, es interesante diseñar nuevos métodos capaces de detectar cambios en la frecuencia cardı́aca (intervalo FC o
RR) que pueda advertir el comienzo de una fibrilación inminente. En este trabajo, se estudió un indicador novedoso
eficaz, basado en la media y la desviación estándar de la Variabilidad de la Frecuencia Cardı́aca (VFC), y se utilizó
para desarrollar un algoritmo que predice una FV inminente con una sensibilidad y una especificidad del 100%. El
estudio se basó en 65 señales de intervalos RR. La simplicidad del algoritmo proporciona una implementación rápida
en una unidad de microcontrolador (MCU) para la detección de FV en tiempo real, lo que permite su aplicación en
una variedad de dispositivos médicos con módulos de electrocardiograma (ECG).

Palabras clave— Fibrilación ventricular, variabilidad del ritmo cardı́aco, fibrilación ventricular inminente, media,
desviación estándar.

I. INTRODUCTION

AN electrocardiogram (ECG) describes the electrical activ-
ity of the heart, namely heartbeat, recorded by electrodes

placed on the body surface. The measured voltage variations
display a series of waveforms. Signal changes, such as distur-
bances or abnormalities in the waves morphology and timing,
may reflect underlying heart complications and diseases that
can be diagnosed and treated based on the ECG signal [1],
see Figure 1(a).

Ventricular Fibrillation (VF) is a shockable cardiac arrest
rhythm that occurs when different ventricle fibers attempt to
contract uncoordinated [2]. This abnormal contraction can be
identified in an ECG due to asynchronized beats, showing an
electrical signal with no identifiable P waves, QRS complexes
and T waves. Several methods have been studied to identify
and characterize VF waves including wavelets and mother
rotors [3], [4], shown to be different between human and
animal hearts of different size [5]. This rhythm is lethal unless
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the heart is defibrillated [2].
Many VFs are preceded by ventricular tachycardia, which

is an indicator used by defibrillating pacemakers in order to
prepare the discharge of a defibrillator shock. However, the
time in which there is an increase in heart rate prior to a VF is
short and its detection might not provide enough anticipation.
It is of interest to find an indicator of an incoming onset
independent of tachycardia.

Heart Rate Variability (HRV) gives information on the
variation of the time interval between heart beats [1]. It is also
called RR variability as each heart beat corresponds to an R
peak in the ECG signal. In this study, HRV is analyzed using
time-domain methods on ECG and preprocessed RR signals
(NN). Two variables were studied from the beat-to-beat or
NN intervals: the Average of the NN intervals (AVNN) and
the Standard Deviation of the NN intervals (SDNN).

The aim of this study is to propose a novel and simple
algorithm for the detection of VF onsets that can be imple-
mented in a micro controller unit (MCU) for use in real-
time. This motivation arose because 50% of all cardiovascular
deaths are caused by a sudden cardiac arrest (SCA), which



TABLE I
DEMOGRAPHIC DATA OF SAMPLE POPULATION.

Database Age. Median
(Range)

Gender Myocardial
infarct

Cardio
myopathy

Control I 45(21-77) M:19%
F:81%

0% 0%

Control II 34(20-50) M:28%
F:72%

0% 0%

Pre-VF 57.5(32-73) M:80%
F:20%

45% 55%

represents 15% of global mortality [6] and its mainly caused
by Ventricular Fibrillation (VF) [7]. Therefore, it is relevant
to design a method capable of detecting changes in heart
rate (HR or RR interval) that could announce the beginning
of an imminent fibrillation. Preliminary experiments with 65
RR intervals, based on mean and standard deviation of HRV,
suggest that the proposed methodology is a powerful tool to
the detection of VF onsets with 100% sensitivity and 100%
specificity.
The remaining paper is organized as follows. Section II
describes the methodology proposed. Then, in Section III,
the methodology is applied to real ECG data. Discussion,
conclusions and future works, are finally reported in sections
IV and V.

II. METHODOLOGY

A. Databases used

The data used for this analysis consisted on a total of 65
RR interval signals: 45 control RR and ECG series from two
different databases and 20 pre-VF RR series.

1) Control patients I: the RR series of 27 patients who had
never suffered any cardiac malfunctioning were taken
from ”HMS-MIT-FFMS database” [8]. Subjects include
5 men between 23 and 74 years old, and 22 women
between 21 and 77 years old.

2) Control Patients II: Eighteen RR series were calcu-
lated from the ”The MIT-BIH Normal Sinus Rhythm
Database” [9] ECG signals (Figures 3 and 4). Subjects
did not have any significant arrhythmias and included 5
men, aged 26 to 45, and 13 women, aged 20 to 50.

3) Pre-VF signals from fibrillating patients: 20 patients
who had suffered at least one VF, and their RR series
was measured before the outbreak of a spontaneous
episode of VF. The last 1024 heart beats before the VF
were considered for each patient, obtained from ”Spon-
taneous Ventricular Tachyarrhythmia Database Version
1.0 from Medtronic, Inc.” [10]

The sample population demography is summarized in Table I

B. Selection of detection indicator

For all data management and analysis during this work, as
well as for all methods created, MatLab R2016a was used.

When evaluating RR signals as a function of time for control
patients (Figure 1(b)), most signals were similar, oscillating
around a mean value; however, when evaluating it for pre-
VF subjects, signals showed a high variability between each
pre-VF patient. Even though using RR signals for evaluating
possible indicators has the advantage of a significant difference

in behavior between control and pre-VF patients, it cannot
be used to extract general behaviors for pre-VF patients and
obtain a global detection rule.

In each one of the 65 RR series considered, mean and
standard deviation were calculated for the RR array. Each
signal X was divided into smaller extracts with a moving
rectangular window Ω, calculating AVNN and SDNN of each
signal section (Equations (1) to (3) respectively). Different
window lengths and overlaps were evaluated, finding a 50
beats window with one beat step (Figure 1(c)) as the optimal
combination.
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The proportional beat-to-beat variation of AVNN and SDNN
as the window approaches the onset showed visually no-
ticeably differences. For its calculation, with each new dis-
placement of the window, AVNN and SDNN are calculated,
and their difference with the previous AVNN and SDNN are
respectively defined as ∆AVNN % and ∆SDNN% (Equations
(4) and (5))

∆AV NN%n =
(AV NNn −AV NNn−1)

AV NNn−1
(4)

∆SDNN%n =
(SDNNn − SDNNn−1)

SDNNn−1
(5)

When plotting beat-to-beat ∆AVNN% and ∆SDNN% for
pre-VF patients, significant peaks were found, which did not
exist for control patients plots, showing that ∆AVNN% and
∆SDNN% were promising indicators (Figure 1(d)).

C. Detection Method

The detection method designed evaluates two thresholds in
each beat-to-beat ∆SDNN% and ∆AVNN%.The algorithm
is executed with each new beat (Figure 2), firstly adding
the new beat to the 50-samples buffer and removing the
oldest one. Continuously, the mean and standard deviation are
calculated, and compared with the prior mean and standard
deviation values respectively. The ∆SDNN%n obtained is
checked against its threshold (TSDNN ) and if higher, the
∆AVNN%n is checked against its corresponding threshold
(TAVNN ). If this second condition is met as well, the signal
is detected as pre-VF.

D. Evaluation of significance

A Student’s t-test was made with MS. ExcelTM(2016) Data
Analysis Toolkit to compare the values obtained from normal
and pre-VF ∆AVNN% and ∆SDNN% minus their respective
thresholds. This test allows to call significance between the
normal and pre-VF values obtained.



Fig. 1. Example of analysis done a control ECG signal; (a) Raw ECG signal
from database [9]. First 15 seconds are shown; (b) RR values for first 200
beats; (c) Average AVNN and SDNN calculated with windows containing 50
RR values; (d) Difference in AVNN and SDNN between consecutive windows.
The difference was shown to be more significant in ∆SDNN% rather than
∆AVNN%, which is not observable.

Fig. 2. Flow diagram for VF detection method.

III. RESULTS

A. Analysis of ∆AVNN% and ∆SDNN% values

The maximum ∆SDNN% was identified for each subject
and their respective ∆AVNN%, corresponding to the same RR
interval, was analyzed (Figures 3 and 4). The ∆SDNN% was
taken as the main parameter because its absolute values are
higher and one can better appreciate its changes in comparison
to ∆AVNN%. The latter’s absolute value varies more evenly
between patients and conditions.

All pre-VF signals show positive peaks as maximum varia-
tion for ∆SDNN% values. In 18 patients, the ∆AVNN% value
is negative and in the 2 cases where it is not, the positive
∆AVNN% has the lowest absolute value in comparison to
the other peaks. Control patients, however, show a more even
distribution of module and sign of both parameters.

B. Threshold Estimation

A rough approximation of the thresholds was done from the
previously noted characteristics. The estimation of TSDNN

was done considering the maximum ∆SDNN% for all 65
patients. A boxplot was made separating signals into two
groups and evaluating the maximum value of ∆SDNN%
for each signal (Figure 3). The distributions of groups are
distinguishable, suggesting this is a good indicator to identify
each group. A starting threshold TSDNN of 0.35 was chosen,
requiring a higher value in order to met the criteria. It is clear
from Figure 3 that this threshold alone would not separate
correctly all signals.

The second necessary threshold was estimated from a box-
plot of ∆AVNN% value at the beat corresponding to maximum
∆SDNN% (Figure 4). A starting threshold TAVNN of 0 was
chosen, in this case requiring a lower value to meet to criteria.

Fig. 3. Maximum ∆SDNN% for non-fibrilating and fibrilating patients

Fig. 4. ∆AVNN% at the beat with maximum ∆SDNN%, for non-fibrilating
and fibrilating patients

An optimization was run around the previously explained
tentative thresholds, to find which values minimized the num-
ber of pre-VF signals incorrectly detected as normal and the
number of normal RR signals incorrectly detected as pre-VF.

The limits for the tested values of TAVNN were chosen as
-0.002 and -0.007. A value greater than zero already showed a
loss of specificity with a TSDNN fixed at 0.35, while a value
lower than -0.007 already showed a loss of sensitivity.

In the case of TSDNN , the limits were chosen as 0.33
and 0.38. A value lower than 0.33 already showed a loss of



TABLE II
FALSE POSITIVES AND NEGATIVES OBTAINED WITH THE OPTIMIZATION

(FP:FN)

FP:FN TAV NN

TSDNN −0.007 −0.006 −0.005 −0.004 −0.003 −0.002
0.33 1 : 4 1 : 1 1 : 0 2 : 0 4 : 0 4 : 0
0.34 1 : 4 1 : 1 1 : 0 2 : 0 4 : 0 4 : 0
0.35 0 : 4 0 : 1 0 : 0 1 : 0 3 : 0 3 : 0
0.36 0 : 4 0 : 1 0 : 0 1 : 0 2 : 0 2 : 0
0.37 0 : 4 0 : 1 0 : 0 1 : 0 2 : 0 2 : 0
0.38 0 : 5 0 : 2 0 : 1 1 : 1 1 : 1 1 : 1

specificity with a TAVNN fixed at 0.0, while a value higher
than 0.38 already showed a loss of sensitivity.

In the main optimization, we tested thresholds in every beat
of all signals. If a beat met both criterias, the signal was
considered positive. If no beat met both criterias, the signal
was considered negative. We looked for the best combination
of TSDNN and TAVNN , evaluating the number of false
positives and false negatives. TSDNN was varied between 0.33
and 0.38 with a step of 0.1, and TAVNN was varied between
-0.002 and -0.007 with a step of 0.001. The results for these
36 iterations can be seen in Table II.

The best performance obtained detected no false positives
and no false negatives. The optimal thresholds were found to
be:

∆AVNN% Threshold: TAVNN = −0.005

∆SDNN% Threshold: TSDNN = 0.36

These thresholds were applied both to the 45 normal signals,
or true negatives, and 20 pre-VF or true positive signals,
resulting in a sensitivity of 100% and a specificity of 100%.

C. Detection results

The time between the detection and the actual VF onset
is crucial to test the effectiveness of the algorithm. It is also
an indicator of the method’s performance as it is desirable to
detect an imminent VF with enough anticipation time as to
allow some kind of preventive action. This time interval was
different for each pre-VF patient (Table III), with and average
of 312 seconds. This value represents a wide time margin as
to take medical preventive actions.

In five subjects the detection occurred less than 15 seconds
before onset, which means the detection was caused by the
immediately prior tachycardia episode, a short interval present
in many VF episodes. The intention of our detection method
is to distinguish an indicator prior to this tachycardia, which
was not met for these subjects.

D. Statistical Analysis

The difference between the ∆AVNN% and TAVNN , and
the ∆SDNN% and TSDNN were calculated. A Student’s t-
test was done. Both variables were compared between the
normal subjects and the pre-VF signals, showing p < 0.001
significance (Table IV).

It should be noted that the t-test assumes that the variables
have a normal distribution. This assumption allows a first
evaluation of the significance. However, this does not ensure
a high fidelity but it is useful as a first approach.

TABLE III
TIME INTERVALS BETWEEN DETECTION AND VF ONSET FOR PRE-VF

SUBJECTS.

Patient N◦ ∆tdetection−onset [s]
1 111.28
2 458.51
3 216.15
4 4.60
5 4.85
6 679.67
7 733.94
8 676.73
9 553.02
10 9.00
11 4.22
12 43.16
13 1015.80
14 6.32
15 17.62
16 140.80
17 478.34
18 499.60
19 535.33
20 51.50

TABLE IV
MEAN, VARIANCE AND P-VALUES OBTAINED FROM THE STUDENT’S

T-TEST.

∆AVNN% - TAV NN ∆SDNN% - TSDNN

Normal VF Normal VF
Mean −0.359 0.566 < 0.001 0.006

Variance 0.013 0.365 < 0.001 < 0.001
p-value p < 0.001 p < 0.001

IV. DISCUSSION

The goal of the designed algorithm is to find a combination
of TSDNN and TAVNN whose performance is independent of
database and therefore can be applied to any RR signal for VF
detection. The databases which were available for this work
were used to determine optimal thresholds (”learning phase”),
and these thresholds showed an excellent performance for the
same databases, but should be tested in new databases to verify
that their performance is database-independent (”operative
phase”). Otherwise, the 100% sensitivity and 100% specificity
obtained are likely to be a result of overfitting.

The method that was developed is computationally very
efficient due to the simplicity of the algorithm. As only few
instructions are performed, it is suitable for implementation in
MCUs in a real-time basis. Its low computational cost would
allow its application in monitoring ECG devices as well as in
implantable pacemakers.

The optimal time interval between the detection and VF
onset depends on the desired application. In the case of an im-
plantable pacemaker, a short prediction time is enough, as the
charging time of the capacitor is usually a few milliseconds.
However, if the detection occurs minutes before the onset, it
could provide an additional warning of possible imminent VF,
in an attempt to prevent the VF from occuring at all instead
of preparing for defibrillating it.

In the case of a monitoring ECG system used in intensive
care, a detection which triggers an alarm more than five
minutes before onset becomes significantly useful, as it allows
medical personnel to either prevent the VF or prepare an
external defibrillator for discharge. It is important to realize
that if this method could achieve a 100% specificity, the



significance of this detection becomes extremely valuable. The
high specificity that our method has shown so far, makes it
suitable for this goal.

Existing methods for the detection of imminent VF are
based on detecting the tachycardia that usually precedes the
onset. It should be clarified that our method would not be a
substitute of this type of detection, but it serves as a comple-
mentary action. In the case of VF preceded by tachycardia, it
would be useful as an extra warning flag, using the following
detection of tachycardia as confirmation. However, in the case
of spontaneous VF with a really short or absent preceding
tachycardia, this method stands out as an even more valuable
tool.

A limitation of this work is that it only uses one database
for pre-VF. Therefore, the ∆SDNN% peaks might be charac-
teristic of this database and not of pre-VF signals in general,
being caused by the device’s acquisition methods or its signal
pre-proccesing.

It is necessary to test the method’s performance in a greater
number of VF onsets, in order to increase the statistical sig-
nificance of its sensitivity. However, it is difficult to generate
databases of RR signals preceding a VF episode, as this
episode is completely undesirable. The only data available is
obtained from advanced implantable pacemakers which are
able to register and save this information, and with patient
consent to make this information public. Obtaining a great N
of testing signals is the greatest difficulty when developing VF
detection methods. Nevertheless, with the promising results
obtained so far, this method shows great advantage when
compared to standard algorithms which are very robust. Its
simplicity and the great time interval of anticipation it offers
in detection, make it a promising tool for addressing imminent
VF episodes with real-time implementation.

V. CONCLUSIONS AND FUTURE WORK

This work presented a novel and simple algorithm for
the detection of VF onsets. This effective indicator can be
implemented in real time in a variety of medical devices with
ECG modules. The method is based on mean and standard
deviation of HRV. Preliminary results in 65 RR signals suggest
that the proposed methodology is a powerful tool to detect
imminent VF with 100% sensitivity and 100% specificity.

Perspective for future work include a deep evaluation of
the proposed methodology, and generating and obtaining new
databases to test the designed method and ensure a thorough
testing of the algorithm. It is also of interest to find the proba-
bility distribution of the difference between the ∆AVNN%
and ∆SDNN% and their respective thresholds as to generate
an accurate model.
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