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A symbolic encoding scheme, based on the ordinal relation between the amplitude of neighboring
values of a given data sequence, should be implemented before estimating the permutation entropy.
Consequently, equalities in the analyzed signal, i.e. repeated equal values, deserve special attention
and treatment. In this work, we carefully study the effect that the presence of equalities has on
permutation entropy estimated values when these ties are symbolized, as it is commonly done, according
to their order of appearance. On the one hand, the analysis of computer-generated time series is
initially developed to understand the incidence of repeated values on permutation entropy estimations
in controlled scenarios. The presence of temporal correlations is erroneously concluded when true
pseudorandom time series with low amplitude resolutions are considered. On the other hand, the analysis
of real-world data is included to illustrate how the presence of a significant number of equal values can
give rise to false conclusions regarding the underlying temporal structures in practical contexts.
1. Introduction

Permutation entropy (PE) is becoming a popular tool for the 
characterization of complex time series. Since its introduction al-
most fifteen years ago by Bandt and Pompe (BP) in their founda-
tional paper [1], it has been successfully applied in a wide range of 
scientific areas and for a vast number of purposes. Without being 
exhaustive, applications in heterogeneous fields, such as biomed-
ical signal processing and analysis [2–10], optical chaos [11–15], 
hydrology [16–18], geophysics [19–21], econophysics [22–25], en-
gineering [26–29], and biometrics [30] can be mentioned. The PE 
is just the celebrated Shannon entropic measure evaluated using 
the ordinal scheme introduced by BP to extract the probability 
distribution associated with an input signal. This ordinal symbolic 
method, based on the relative amplitude of time series values, nat-
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urally arises from the time series (without any model assumptions) 
and inherits the causal information that stems from the temporal 
structure of the system dynamics. The relative frequencies of or-
dinal or permutation patterns, that quantify the temporal ranking 
information in the data sequence, need to be firstly calculated. Be-
cause of its definition via ordinal relationships, the way to handle 
equal amplitude values may have significant consequences when 
estimating the ordinal patterns probability distribution. In the case 
of variables with continuous distributions, ties can be simply ig-
nored because they are very rare. However, experimental data 
digitized with relatively low amplitude resolutions could have a 
non-negligible number of equalities and, consequently, the PE esti-
mations may be significantly affected by the procedure to consider 
them. Equal values in the time series are very usually ranked ac-
cording to their temporal order. The other recipe, suggested by 
BP [1], is to break ties by adding a small amount of noise. This 
second alternative has been rarely implemented. In this paper, 
we characterize the effect that the presence of equalities in the 
data sequence has on the PE estimations when the former, most 
used, approach is adopted. Through numerical and real-world data 
analysis, we demonstrate that the PE estimated values are biased 
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as a consequence of the presence of equal values, and more regular 
dynamics than those expected can be erroneously concluded. We 
consider that this finding is relevant for a more appropriate inter-
pretation of the results obtained when the PE is used for character-
izing the underlying dynamics of experimentally acquired observ-
ables. In particular, the effect of ties should be especially consid-
ered when using the PE for comparing the regularity degree of two 
or more experimental datasets digitized with different amplitude 
resolutions. Our main motivation is to warn future PE users about 
the importance to take this limitation into account for avoiding 
potential misunderstandings. Obviously, all related quantifiers esti-
mated using the BP symbolic representation, i.e. with the symbolic 
method that considers the temporal ranking information (ordinal 
or permutation patterns) of the time series, can be also affected 
by this issue. We can enumerate permutation statistical complex-
ity [31,32], permutation directionality index [33], symbolic transfer 
entropy [34], Tsallis permutation entropy [35], Rényi permutation 
entropy [36,37], conditional entropy of ordinal patterns [38], per-
mutation min-entropy [39], multiscale permutation entropy mea-
sures [40], permutation Hurst exponent estimator [41] and time-
scale independent permutation entropy [42], among many others. 
It is worth mentioning here that Bian et al. [43] have proposed 
the modified permutation-entropy (mPE) as an interesting alterna-
tive for dealing with equal values. Mapping equal values to the 
same symbols, these authors have shown that the mPE allows for 
an improved characterization of heart rate variability signals under 
different physiological and pathological conditions. However, Bian 
and co-authors’ approach has a different physical interpretation 
and can not be considered as a generalized permutation entropy. 
For instance, the mPE does not reach its maximum value for a 
totally random signals (white noise) as this actually happens for 
the standard PE. Also the weighted permutation entropy (WPE) has 
been introduced by Fadlallah et al. [44] a couple of years ago as an 
improved PE by incorporating amplitude information. Through this 
weighted scheme, better noise robustness and distinctive ability 
to characterize data with spiky features or having abrupt changes 
in magnitude have been achieved. As it will be shown below, the 
presence of ties also has a significant incidence on WPE estimated 
values.

The remainder of the paper is organized as follows. In Section 2, 
the PE is introduced. A testbed analysis on computer-generated 
time series is included in Section 3 in order to understand the in-
cidence of the presence of equal values on the PE estimations. Sec-
tion 4 presents a couple of applications to illustrate this drawback 
in practical situations. Finally, in Section 5, the main conclusions 
reached in this work are summarized.

2. Permutation entropy

The PE has been introduced by BP as a natural complexity
measure for time series [1]. It is the Shannon entropy of the or-
dinal symbolic representation obtained from the original sequence 
of observations. The idea behind ordinal pattern analysis is to 
consider order relations between values of time series instead of 
the values themselves. This ordinal symbolization is distinguished 
from other symbolic representations principally due to important 
practical advantages. Namely, it is conceptually simple, computa-
tionally fast, robust against noise, and invariant with respect to 
nonlinear monotonous transformations. Furthermore, the BP ordi-
nal method of symbolization naturally arises from the time se-
ries, avoids amplitude threshold dependencies that affect other 
more conventional symbolization recipes based on range partition-
ing [45], and, perhaps more importantly, inherits the causal infor-
mation that stems from the dynamical evolution of the system. 
As stated by Amigó et al. [46], “ordinal patterns are not symbols 
ad hoc but they actually encapsulate qualitative information about 
the temporal structure of the underlying data.” Because of all these 
advantages, the BP approach has been commonly implemented for 
revealing the presence of subtle temporal correlations in time se-
ries [39,47–54].

Next, we summarize how to estimate the PE from a time series 
with a toy numerical example. Let us assume that we start with 
the time series X = {4, 1, 6, 5, 10, 7, 2, 8, 9, 3}. To symbolize the 
series into ordinal patterns, two parameters, the embedding dimen-
sion D ≥ 2 (D ∈ N, number of elements to be compared with each 
other) and the embedding delay τ (τ ∈ N, time separation between 
elements) should be chosen. The time series is then partitioned 
into subsets of length D with delay τ similarly to phase space re-
construction by means of time-delay-embedding. The elements in 
each new partition (of length D) are replaced by their ranks in the 
subset. For example, if we set D = 3 and τ = 1, there are eight 
different three-dimensional vectors associated with X . The first 
one (x0, x1, x2) = (4, 1, 6) is mapped to the ordinal pattern (102). 
The second three-dimensional vector is (x0, x1, x2) = (1, 6, 5), and 
(021) will be its related permutation. The procedure continues so
on until the last sequence, (8, 9, 3), is mapped to its corresponding
motif, (120). Afterward, an ordinal pattern probability distribution,
P = {p(πi), i = 1, . . . , D!}, can be obtained from the time series
by computing the relative frequencies of the D! possible permuta-
tions πi . Continuing with the toy example: p(π1) = p(012) = 1/8,
p(π2) = p(021) = 1/4, p(π3) = p(102) = 3/8, p(π4) = p(120) =
1/8, p(π5) = p(201) = 0, and p(π6) = p(210) = 1/8. The PE is
just the Shannon entropy estimated by using this ordinal pattern
probability distribution, S[P ] = − 

∑D!
i=1 p(πi) log(p(πi)). Coming

back to the example, S[P (X)] = −(3/8) log(3/8) − (1/4) log(1/4) −
3(1/8) log(1/8) ≈ 1.4942. It quantifies the temporal structural diver-
sity of a time series. If some ordinal patterns appear more fre-
quently than others, the PE decreases, indicating that the signal 
is less random and more predictable. This allows to unveil hidden 
temporal information that helps to achieve a better understanding 
of the underlying mechanisms that govern the dynamics. Tech-
nically speaking, the ordinal pattern probability distribution P is 
obtained once we fix the embedding dimension D and the embed-
ding delay time τ . Taking into account that there are D! potential 
permutations for a D-dimensional vector, the condition N � D!, 
with N the length of the time series, must be satisfied in order to 
obtain a reliable estimation of P [55,56]. For practical purposes, BP 
suggest in their seminal paper to estimate the frequency of ordinal 
patterns with 3 ≤ D ≤ 7 and embedding delay τ = 1 (consecutive 
points). It has been recently shown that the analysis of the PE as a 
function of τ may be particularly helpful for characterizing exper-
imental time series on a wide range of temporal scales [32,57]. By 
changing the value of the embedding delay τ different time scales 
are being considered because τ physically corresponds to multi-
ples of the sampling time of the signal under analysis. For further 
details about the BP methodology, we recommend Refs. [57–59]. 
It is common to normalize the PE, and therefore in this paper, a 
normalized PE given by

HS [P ] = S[P ]/Smax = S[P ]/ log(D!) (1)

is implemented, with Smax = log(D!) the value obtained from an 
equiprobable ordinal pattern probability distribution. Defined in 
this way, HS ranges between 0 and 1. The maximum value is ob-
tained for a totally random stochastic process (white noise) while 
the minimum value is reached for a completely regular (monoton-
ically increasing or decreasing) time series.

Since the BP approach symbolizes the series replacing the ob-
servable value by its corresponding rank in the sequence, the oc-
currence of equal values deserves a special handle. In the case 
of two elements in the vector having the same value, they are 
very often ranked by their temporal order. For example, a vec-
tor (1, 4, 1), would be mapped to (021). This is the most com-



monly implemented recipe for dealing with ties. Another alterna-
tive, much more rarely used, is to add a small amount of observa-
tional noise to break equalities. The amplitude of the noise should 
be sufficiently small to not modify the ordinal relations in the data 
set, except for those vectors which have equal values. We insist 
on the fact that this latter approach has been applied in very few 
cases. We can cite Refs. [41,53,54,60] as some of these rare excep-
tions. To the best of our knowledge, how the PE estimated values 
are affected by the occurrence of a high frequency of equal val-
ues in the original data has not been previously explored in detail. 
In an effort to fill this gap, we have included in the following two 
sections numerical and experimental tests for characterizing this 
PE limitation when equal values are ranked according to their or-
der of appearance.

3. Numerical tests

To illustrate the effect that the occurrence of a high frequency
of ties has on PE estimated values, we have numerically gen-
erated an ensemble of one hundred independent sequences of 
N = 1,000 pseudorandom integer values drawn from a discrete 
uniform distribution on the interval [0, i] with i ranging from 1 
to 50 with step equal to one. The MATLAB function randi has 
been used for such a purpose. For more information about this 
function, we refer the interested reader to the following web-
site: www.mathworks.com/help/matlab/ref/randi.html. In particu-
lar, when i = 1, pseudorandom uniform binary sequences of 0’s 
and 1’s are considered. Examples of these pseudorandom uniform 
discrete time series for i = 1, i = 9, and i = 50 are plotted in Fig. 1. 
Obviously, the number of ties is very large for the binary case, and 
it decreases as i increases.

The normalized PE (Eq. (1)) with different embedding dimen-
sions, D ∈ {3, 4, 5, 6}, and embedding delay τ = 1 (consecutive 
data points) has been estimated for the one hundred independent 
realizations for each i-value. Mean and standard deviation (dis-
played as error bars) are shown in Fig. 2 as a function of i. The 
normalized PE estimated values associated with continuous uni-
formly distributed pseudorandom numbers on the open interval 
(0, 1), generated by implementing the rand function of MATLAB 
with a Mersenne Twister generator algorithm [61], have been also 
included. Being more precise, means from one hundred indepen-
dent realizations of the same length (N = 1,000) for the different 
embedding dimension are indicated with horizontal dashed lines. 
It is clearly observed that normalized PE values from pseudoran-
dom discrete time series with a high frequency of occurrence of 
equal values are much lower than those obtained for a pseu-
dorandom continuous time series, leading to a totally spurious 
identification of non-random temporal structures. Because of the 
way ties are ordered, the relative frequencies of some permuta-
tion patterns are overestimated in detriment of those associated 
with other motifs which are underestimated, and, consequently, 
a non-uniform ordinal pattern probability distribution is obtained. 
This causes a decrease in the normalized PE estimation that could 
be erroneously interpreted as a signature of temporal correlation. 
Estimated PE values for the pseudorandom discrete simulations 
converge to those calculated for the pseudorandom continuous 
counterparts as the i-value increases. Analysis by implementing 
the WPE have been also carried out. For further details about 
this different definition of PE, that retains amplitude information, 
please see Ref. [44]. Results obtained, shown in Fig. 3, confirm that 
this improved ordinal permutation quantifier also suffers from this 
weakness.

As it is observed in Fig. 4, we have found qualitative similar 
findings for larger time series (N = 10,000 data points). Actually, 
the rate of convergence of the normalized PE estimations from the 
discrete to the continuous case is slower when longer time se-
Fig. 1. Some examples of the numerically generated discrete pseudorandom se-
quences. Integer values are pseudorandomly drawn from a discrete uniform distri-
bution on the interval [0, i] with a) i = 1, b) i = 9, and c) i = 50. Only one hundred
data points are depicted for a better visualization.

ries are considered (please compare enlargements of Figs. 2 and 4). 
Besides, in another numerically controlled test, pseudorandom se-
quences of continuous (uniform, normal and exponential) distribu-
tions have been discretized and analyzed. Behavior observed are 
qualitatively equivalent, i.e. once again the PE estimations decrease 
when the number of discretization levels decreases, suggesting (in-
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Fig. 2. Top: Mean and standard deviation (displayed as error bars) of HS (Eq. (1)) for
one hundred independent realizations of N = 1,000 pseudorandom integer values
drawn from a discrete uniform distribution on the interval [0, i]. Results obtained
for different embedding dimensions (D ∈ {3, 4, 5, 6}) and embedding delay τ = 1
are included. Horizontal dashed lines indicate the mean value of HS for one hun-
dred independent realizations of N = 1,000 pseudorandom numbers from a contin-
uous uniform distribution on the open interval (0, 1). Bottom: Enlargement for a
better view of the results obtained for lower discretization (larger values of i). (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

correctly) the presence of non-trivial dynamics. Interested readers 
can see these additional results in the Supplementary Material. 
Finally, it is worth remarking here that the normalized PE and 
WPE estimated values for numerical realizations of continuous 
uniformly distributed pseudorandom numbers (horizontal dashed 
lines in Figs. 2–4) are lower than one due to finite-size effects. The 
offset increases as a function of the embedding dimension D and 
it decreases for larger time series lengths.

4. Two simple applications

4.1. Decimal expansion of irrational numbers

As a first application, we are interested to investigate the ran-
domness of the decimal expansion of irrational numbers by using 
the PE. We analyzed the ordinal pattern probability distribution of 
the temporal sequences obtained by picking the first 10,000 dig-
its of the decimal expansion of several irrational numbers such 
as π , e, and 

√
2. For illustrative purpose, we have plotted the 

first one hundred entries of these time series in Fig. 5. The rel-
ative frequencies of the ordinal patterns with different embed-
ding dimensions, D ∈ {3, 4, 5, 6}, and embedding delay τ = 1 for 
the sequences associated with these three irrational numbers are 
Fig. 3. Same as Fig. 2 but using the normalized WPE, an improved PE better suited
to characterize signals having considerable amplitude information [44]. (For inter-
pretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

shown in Figs. 6–8. Ordinal patterns are numbered following the 
convention used by Parlitz et al. [57]. Fig. 9 shows the indices 
associated with the ordinal patterns for D = 3 (top) and D = 4
(bottom). As it is visually concluded from Figs. 6–8, the differ-
ent motifs are not equiprobable. Some of them are more probable 
than others, indicating, apparently, the presence of temporal com-
plex structures in the data. But perhaps what is more intriguing is 
the fact that the relative frequencies of the ordinal patterns seem 
to be the same for the different irrational numbers. Consequently, 
the normalized PE estimated values are very similar as it is de-
tailed in Table 1. Are these irregular ordinal patterns probability 
distributions due to true temporal correlations or can they be at-
tributed to the occurrence of high frequencies of ties? In order 
to provide an answer to this question, we estimate the normal-
ized PE of an ensemble of one hundred sequences of N = 10,000
pseudorandom integer values drawn from a discrete uniform dis-
tribution on the interval [0, 9]. The relative frequencies of the 
ordinal patterns for one arbitrarily chosen pseudorandom realiza-
tion is shown in Fig. 10. It is worth pointing out here the strong 
similarity with the corresponding relative frequencies of the ordi-
nal patterns obtained for the irrational numbers analysis (please 
compare Figs. 6–8 with Fig. 10). The mean μ and standard de-
viation σ of HS for the one hundred pseudorandom realizations 
are detailed in Table 2. These results are consistent with those 
obtained from the sequences of irrational numbers, i.e the nor-
malized PE estimations for π , e, and 

√
2 (please see Table 1) lie 

inside the three standard deviations confidence interval (μ ± 3σ ) 



Fig. 4. Same as Fig. 2 but for time series of length N = 10,000 data points. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Table 1
Normalized PE values for the first 10,000 digits of the decimal expansion of π , e,
and 

√
2 with different embedding dimensions and embedding delay τ = 1.

D = 3 D = 4 D = 5 D = 6

π 0.992 0.990 0.986 0.978
e 0.992 0.989 0.986 0.978√

2 0.992 0.991 0.988 0.980

obtained for the pseudorandom simulations (please see Table 2). 
Thus, the presence of true temporal correlations should be dis-
carded. We have also carried out a surrogate analysis with shuffled 
realizations. More precisely, one thousand independent shuffled re-
alizations have been generated for each one of the three irrational 
sequences. In the shuffled realizations, the values of the original 
series are simply permuted in a random way. By construction, 
this procedure generates a time series that preserves the marginal 
distribution of the original time series but is otherwise indepen-
dent. Results obtained are summarized in Fig. 11 where boxplots 
are used to display the distributions of normalized PE estimated 
values for the shuffled realizations. Since the normalized PE cal-
culated for the original series overlap with those obtained for 
their shuffled counterparts, this surrogate analysis allows to con-
firm, once again, that the null hypothesis of randomness can not 
be rejected. This finding is in agreement with results obtained by 
Luque et al. [62], who have implemented a totally different (com-
plex network) approach. Our results also imply that the irregularly 
observed frequency of motifs is a totally spurious effect due to 
the significant number of equalities that is present in the original 
Fig. 5. Sequences of digits associated with the decimal expansion of a) π , b) e, and
c) 

√
2. Only the first one hundred entries are shown for a better visualization.

time series. Moreover, a surrogate analysis with shuffled realiza-
tions appears as a practical alternative to overcome this limitation 
of the PE.

4.2. Radioactive decay data

We have finally developed an ordinal symbolic analysis for ra-
dioactive decay data. Radioactive decay is a widely recognized nat-
ural source of random numbers [63,64], whereas subtle long-term 



Fig. 6. Relative frequencies of the ordinal patterns for the first 10,000 digits of the
decimal expansion of π . Different embedding dimensions, D ∈ {3, 4, 5, 6}, and em-
bedding delay τ = 1 have been considered. Indices associated with motifs follow
the convention used by Parlitz et al. [57].

Fig. 7. Same as Fig. 6 but for e.

Fig. 8. Same as Fig. 6 but for
√

2.

Fig. 9. Ordinal patterns for D = 3 (top) and D = 4 (bottom) are depicted. They are
numbered following the convention used by Parlitz et al. [57].

Fig. 10. Same as Fig. 6 but for an arbitrarily chosen sequence of N = 10,000 pseu-
dorandom integer values drawn from a discrete uniform distribution on the interval
[0, 9]. Behaviors obtained for the other ninety-nine realizations are very similar.

Table 2
Mean μ and standard deviation σ of HS (Eq. (1)) for one hundred sequences of
N = 10,000 pseudorandom integer values drawn from a discrete uniform distribu-
tion on the interval [0, 9] with different embedding dimensions and embedding
delay τ = 1.

D = 3 D = 4 D = 5 D = 6

μ 0.991 0.989 0.986 0.979
σ 0.001 0.001 0.001 0.001

and short-term deviations from randomness have been reported 
by several research groups [65,66], however. We tested the alpha-
activity of plutonium-239 (239Pu, half-life: 24,110 years) looking 
for the expected random dynamics. A signal of length N = 10,000



Fig. 11. A surrogate data analysis with one thousand independent shuffled realiza-
tions for the first 10,000 digits of the decimal expansion of a) π , b) e, and c)

√
2.

The normalized PE (Eq. (1)) has been estimated with different embedding dimen-
sions, D ∈ {3, 4, 5, 6}, and embedding delay τ = 1. Black circles indicate the values
estimated for the original time series while boxplots are used to display the distri-
butions of estimated values for the shuffled realizations.

(∼2.8 hours) recorded at a sampling rate of 1 Hz by a shielded 
Geiger counter has been examined. A small segment of the whole 
record is shown in Fig. 12 and, once again, the occurrence of equal-
ities in the time series is visually verified. The relative frequencies 
of the ordinal patterns for embedding dimension D = 3 and em-
bedding delays τ between 1 and 100 are depicted in Fig. 13a). In 
Fig. 12. Alpha-activity of plutonium-239. A small segment of the whole record is
shown for a better visualization.

Fig. 13. a) Relative frequencies of the ordinal patterns for the alpha-activity of
plutonium-239 with D = 3 and 1 ≤ τ ≤ 100. Motifs are labeled following the con-
vention displayed in Fig. 9 (top). b) The same analysis for a sequence of N = 10,000
normally distributed pseudorandom numbers. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this arti-
cle.)

this case we have varied the embedding delay in order to check 
the behavior of the experimental data for different time scales, i.e.

for different sampling times. It is concluded that, independently 



Fig. 14. Relative frequencies of the ordinal patterns for one thousand independent
shuffled realizations of the original 239Pu alpha-activity record. Mean and standard
deviation (displayed as error bars) of the estimated probabilities with D = 3 and
1 ≤ τ ≤ 100 are shown. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

of the time scale, the ordinal pattern probability distribution is ir-
regular. In fact, the motif indexed as 1 is clearly more frequent 
while motif labeled as 6 is less frequent in the temporal sequence. 
We have also included, in Fig. 13b) and for comparison purpose, 
the relative frequencies of motifs associated with a sequence of 
N = 10,000 normally distributed pseudorandom numbers (by us-
ing the randn function of MATLAB with the Mersenne Twister gen-
erator algorithm). As it was expected, in this continuous case, the 
six ordinal patterns are equiprobable independently of τ . These 
results could be taken as an astonishing proof of the presence of 
non-random structure in radioactive decay. In order to confirm or 
reject this early interpretation, a similar analysis with one thou-
sand independent shuffled realizations of the original record has 
been performed. As it is shown in Fig. 14, irregular profiles are 
also obtained for the shuffled realizations. Hence, the randomness 
hypothesis can not be rejected. The initial apparent evidence of 
non-random temporal structure is thus a spurious effect due to 
the way equal values are handled with the BP algorithm. Although 
we could not detect non-random behavior in decay data, and our 
results are in agreement with previous findings about the ran-
domness of radioactive decay [67–71], a non-random behavior of 
radioactive decay (even in short time-intervals, i.e. minutes) were 
observed by other research groups [65,72–74] employing different 
data analysis techniques compared to the ones we used. Besides 
this, our results also not refute the observation of oscillatory [66,
75,76] or transient [77] deviations from the exponential decay in 
radioactive decay as observed by other studies. The origin of the 
reported deviations of nuclear decay from randomness is currently 
controversially discussed in the literature and no final conclusion 
has been reached.

5. Conclusions

In this paper, we have analyzed the incidence that a significant
occurrence of equalities in the time series under study has on PE 
estimations. Through numerical analysis, it has been shown that 
PE obtained values are biased as a consequence of the presence 
of ties in the records. Equal values are usually ranked according 
to their order of appearance. This way of dealing with ties intro-
duces non-negligible spurious temporal correlations that can po-
tentially lead to erroneous conclusions about the true underlying 
dynamic nature. Particularly, we have found that lower PE values 
than those expected are estimated from highly discretized pseu-
dorandom time series. We have also confirmed that experimen-
tally recorded observables digitized with low amplitude resolutions 
could be especially affected by this PE limitation. Finally, the com-
parison between the PE calculated from the original time series 
and the distribution of estimated values from shuffled realizations 
seems to be a practical and useful strategy to overcome this draw-
back. Basically, the relative difference between the PE estimated 
from the original sequence and those values computed from the 
shuffled realizations should be taken into consideration in order to 
reliably conclude about the existence of non-trivial temporal dy-
namics. If the PE associated with the original sequence lies inside 
the distribution of values estimated from the shuffled counterparts, 
the null hypothesis that the observed data are temporally uncorre-
lated can not be rejected. Taking into account that the number of 
PE applications has increased a lot during the last years, we con-
jecture that our findings can be of help to reach a more reliable 
interpretation of results when applying this information-theory-
ordinal quantifier to experimentally acquired signals. Furthermore, 
our results might be also useful when using other quantifiers that 
implement the BP symbolic representation for characterizing ex-
perimental records.
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