

INSTITUTO TECNOLÓGICO DE BUENOS AIRES – ITBA

ESCUELA DE INGENIERÍA Y GESTIÓN

Relif: a relation algebra specification tool

AUTOR: Lynch, Marcelo María (Leg. Nº 56287)

DOCENTE TITULAR O TUTOR: Frías, Marcelo Fabián

TRABAJO FINAL PRESENTADO PARA LA OBTENCIÓN DEL TÍTULO DE

INGENIERO EN INFORMÁTICA

Lugar: Buenos Aires, Argentina

Fecha: 19 de diciembre de 2019

Abstract

Relation algebras are algebras arising from the study of binary relations. They form a part of
the field of algebraic logic, and have applications in proof theory, modal logic, and computer sci-
ence. An interesting problem in relation algebras is the representation problem, which is to give a
canonical representation of a given relation algebra, in the form of binary relations. This problem
doesn’t have a solution for all algebras.

This paper presents Relif, a specification tool that allows the user to explore relation algebras
satisfying a set of constraints defined by the user, and provides a way of looking for representations.

Resumen

Las álgebras de relaciones son álgebras surgidas a partir del estudio de las relaciones binarias. For-
man parte del campo de la lógica algebraica y tienen aplicaciones en la teoŕıa de demostraciones,
lógicas modales y ciencias de la computación. Un problema interesante en el marco de las álgebras
de relaciones es el problema de la representación, que consiste, dada un álgebra de relaciones, en
proveer una representación canónica de la misma en forma de relaciones binarias. Este problema
no siempre tiene solución.

Este trabajo presenta Relif, una herramienta de especificación que permite al usuario explorar
álgebras de relaciones que satisfagan un conjunto de restricciones definidas por el usuario, y provee
una forma de buscar representaciones de esas álgebras.

Keywords: relation algebra, model finding, representation, Alloy, Kodkod.

1

Introduction

The importance of relationships in logic has been recognized since the time of Aristotle. In the
second half of the nineteenth century, logicians such as Augustus de Morgan and Charles Sanders
Peirce embarked in the effort of formalizing the characteristics of relations and give them a mathe-
matical framework. In the early 1900s Alfred Tarski decided to give an axiomatic characterization
of relations: thus relation algebras were born [Tar41].

Numerous papers on relation algebras have been published since 1950, including papers in
areas of computer science, and the subject has had a strong impact on such fields as universal al-
gebra, algebraic logic, and modal logic [Giv17]. Extensions of relation algebras also show promise
as tools for program verification and derivation [FVB04].

Relation algebra is an area of active research. Of particular interest is the characterization of
the so-called representable relation algebras, which are a subclass of all relation algebras that can
be given a canonical form (a representation) using binary relations [HH02].

In this paper we present Relif, an interactive tool that allows a user to specify properties that
they wish hold within the elements of some relation algebra and, given a bound on the number
of elements of the algebra, either find an example or assure that no such algebra exists within
those bounds. Relif offers a user experience inspired in light-weight model checkers such as Alloy.
Additionally, Relif can try to build representations of the relation algebras that it finds.

This document is organized as follows:

• Chapter 1 introduces universal algebras, boolean algebras and relation algebras, and gives
the main theoretical results that justify Relif’s implementation details.

• Chapter 2 gives an overview of different techniques in software verification and focuses on
the model finding tools Alloy, which served as motivation for the tool we developed, and
Kodkod, which is the main workhorse behind both Alloy and Relif.

• Chapter 3 describes Relif, both in usage, semantics and inner workings. The correctness
of the implementation is justified based on the results of chapter 1. Finally, an example
problem with interesting conclusions is explored.

• A final Conclusion summarizes the work and points towards possible future developments
and extensions.

2

Chapter 1

Algebras

In this chapter we will develop the theory of relation algebras that is necessary to understand the
project. We begin by briefly describing the topic of universal algebra in general, then introduce
boolean algebras as a mean to pave the way to the main definition that concerns us: relation
algebras. In what follows we assume the reader is familiar with basic set theory.

1.1 Universal algebra

Universal algebra is the field of mathematics that studies the structure of mathematical objects
and operations in and of themselves. Mathematicians and computer scientists do their work with
a variety of theoretical constructions: as different kinds of objects and operations between those
objects arose in history it became clear that certain underlying structures were common between
them. For a simple example: comparing the objects “integer number” with their “integer addi-
tion” operation, and the objects we call “matrix” with their respective “matrix addition” we can
recognize common properties in the structural behavior of the objects with the operation (such as
“the operation is commutative”), even though the nature of the objects is quite different: these
two examples are structurally what we call a ring.

Universal algebra is then concerned with describing these structures, characterizing them and
studying their properties without regard of the actual examples that possess them. Conversely,
given a set of rules (or axioms) for the behavior of certain objects and operations between them,
we can try and find examples of known objects that satisfy this structure.

1.1.1 Basic definitions

Let A be a set and n any non-negative integer. We denote by An the cartesian product with A
with itself, convening A0 = {∅}. An n-ary operation on A is a mapping f : An → A. Note
that a 0-ary (or nullary) operation is fully determined by f(∅), hence we can identify it with a
single element from A and we call them constants. We call 1-ary operations unary and 2-ary
operations binary.

An algebra is a pair (A,F) where A is a set and F is a collection of operations on A. A is
called the universe and the elements of F the fundamental operations of the algebra. When
F = {f1, · · · , fn} we sometimes note (A, f1, · · · , fn) instead of (A,F). If the universe of an algebra
A is finite, we say that A is a finite algebra .

Given two algebras A = (A,F) and B = (B,G), with F = {fi : i ∈ I} and G = {gi : i ∈ I}
(where I is some index set), a homomorphism between A and B is a mapping h : A → B
satisfying, for all i ∈ I:

h(fi(x1, · · · , xn)) = gi(h(x1), · · · , h(xn))

3

Note that we are assuming that for all i ∈ I, fi and gi have the same arity. We say in this case
that A and B have the same similarity type. This is a precondition for isomorphism.

In other words, h is an operation-preserving mapping. We shall abuse notation saying that h
is a mapping between A and B when we mean a mapping between the universes.

Two algebras with the same intrinsic structure are often identified, even though the elements
in the two algebras may in fact be different. As discussed in the previous section, this is at the core
of the subject of universal algebra, where we care only about structure. This identification is made
precise with the notion of an isomorphism. A homomorphism is called an isomorphism when h
is a bijection. In this case, h is a structure-preserving mapping. If there exists an isomorphism
between A and B we say they are isomorphic and we note A ∼= B. Isomorphism is an equivalence
relation.

1.2 Fields of sets and boolean algebras

We call field of sets over U , where U is a set, to a structure (A,∪,∩, · , ∅,U) where

• A ⊂ P(U), where P(U) is the powerset of U

• ∪ is the union of sets

• ∩ is the intersection of sets

• x is the complement of x with respect to U

• ∅ is the empty set

• A is closed under the above operations

Following our previous discussion on universal algebra, we can try to characterize the behavior
of this structure with an abstract algebraic characterization, describing the rules governing the
operations such that the operations in the field of sets satisfy them exactly. This characterization
comes in the form of boolean algebras.

A boolean algebra is an algebra (A,+, ·,−, 0, 1) (in which + and · are binary operations, − is
a unary operation, and 0 and 1 are constants), that satisfies the following axioms for all x, y, z ∈ A:

x+ y = y + x (BA1)

x · y = y · x (BA2)

x+ (y · z) = (x+ y) · (x+ z) (BA4)

x · (y + z) = (x · y) + (x+ z) (BA4)

x+ 0 = x (BA5)

x · 1 = x (BA6)

x+ (−x) = 1 (BA7)

x · (−x) = 0 (BA8)

The class of all boolean algebras is noted BA.

1.2.1 The representation problem for boolean algebras

It is clear from the above definitions that any field of sets is in fact a boolean algebra. A natural
question to ask is: are field of sets the only (up to isomorphism) kinds of structures that satisfy

4

the boolean algebra axioms? This would mean that any boolean algebra can be canonically rep-
resented by a field of sets. To make this question clear, let us give a simple example.

Consider the two-element boolean algebra (B,∨,∧,¬,⊥,>) given by B = {>,⊥}, and the
operations described in Table 1.1.

⊥ >
¬ > ⊥

∨ ⊥ >
⊥ ⊥ >
> > >

∧ ⊥ >
⊥ ⊥ ⊥
> ⊥ >

Table 1.1: Definition of the operations ¬, ∨ and ∧

And consider further the boolean algebra given by the field of sets over a singleton set U = {x},
with A = {∅,U}. The set operations on the field of sets similarly yield Table 1.2.

∅ U
· U ∅

∪ ∅ U
∅ ∅ U
U U U

∩ ∅ U
∅ ∅ ∅
U ∅ U

Table 1.2: Operations on the field of sets

We can see that the two algebras have esentially the same structure, which is preserved if we
“rename” the elements and operations. This is precisely what an isomorphism does: the mapping
h : B→ A with h(⊥) = ∅ and h(>) = U is an isomorphism between the algebras.

Again, our question is: can we find an isomorphic field of sets for any boolean algebra? This
question is known as a representation problem, and it arises in the context of different kind of
algebraic structures (not only boolean algebras). The answer for boolean algebras is positive, and
given by Stone in [Sto38]:

Theorem 1.2.1 (Stone’s representation theorem). Every boolean algebra is isomorphic to the
boolean algebra of a certain field of sets.

1.3 Binary relations

Binary relations are a mathematical way of expressing relationship between objects. These rela-
tionships can be mathematical, like “is a multiple of ” or colloquial “is the mother of ”. In any
case, relationships are everywhere, and the importance of relatives in logic has been recognized
since the time of Aristotle. In the nineteenth century, a calculus of binary relations was developed
mainly through the work of Augustus de Morgan, Charles Sanders Peirce and Ernst Schröder
[Mad91].

This calculus formalizes what we could call natural operations between relations1: for instance,
consider relations M and F described respectively by the phrases is the mother of and is the father
of. We can think of the relation P , described by is the parent of as the union of M and F . There
is also a notion of composition between relations: the relation G, “is a grandfather of ”, can be
expressed by composing the relation P with the relation P (a grandfather is a parent of a parent).
We can also include the intersection and complement of relations.

The calculus of binary relations

Let U be a fixed non-empty set, called the universe of discourse. A binary relation R on U
is a set of ordered pairs of elements of U , this is: R ⊂ U × U .

1We follow the examples given in [Giv17]

5

Operations

The basic operations on binary relations are, for all binary relations R and S:

• Union: R ∪ S = {(α, β) : (α, β) ∈ R or (α, β) ∈ S}

• Intersection: R ∩ S = {(α, β) : (α, β) ∈ R and (α, β) ∈ S}

• Complement : −R = {(α, β) : (α, β) ∈ U × U and (α, β) 6∈ R}

• Converse: R−1 = {(β, α) : (α, β) ∈ R}

• Composition: R|S = {(α, γ) : ∃β ∈ U such that (α, β) ∈ R and (β, γ) ∈ S}

Union, intersection and complement are exactly the set theoretic operations (if we think of
binary relations as sets of ordered pairs). Note that the complement is relative to the relation
U × U . The converse relation is akin to the inverse of a function: it “flips” the ordered pairs of a
relation. Relational composition is akin to the composition of functions.

Special relations

We can also point out some special relations:

• ∅ is a relation, called the empty relation

• U × U is a relation, called the universal relation

• idU = {(x, x) : x ∈ U} is the identity relation on U

Relational laws

A main concern of the calculus of relations as developed in the nineteenth century was to study
the properties of the relational operators. Let’s see some examples of these relational laws. In
what follows R, S, T are binary relations and the universe of discourse is U .

R|(S|T) = (R|S)|T (Associativity of composition)

R|idU = idU |R = R (idU is identity of composition)

(R−1)−1 = R (First involution law)

(R|S)−1 = S−1|R−1 (Second involution law)

(R ∪ S)|T = (R|T) ∪ (S|T) (Right-hand distributive law)

T |(R ∪ S) = (T |R) ∪ (T |S) (Left-hand distributive law)

(R ∪ S)−1 = R−1 ∪ S−1 (Distributive law of converse over union)

(R ∩ S)−1 = R−1 ∩ S−1 (Distributive law of converse over intersection)

These laws can be established by simple set-theoretic arguments.

1.4 Relation algebras

While de Morgan, Peirce and Schröder were interested in the relational operations and their prop-
erties, they didn’t pursue an axiomatic approach to the calculus. It would take several decades
until Alfred Tarski proposed, in 1940, an axiomatization of a fragment of the calculus of rela-
tions. Tarski and his students subsequently developed the theory of relation algebras2, which is
ultimately the universal algebraic version of the calculus of relations. This bears a certain parallel

2A historical account of these developments can be found in [Mad91]

6

with the boolean algebras being the abstract algebraic version of fields of sets: we’ll have some-
thing to say about this shortly, but let’s give the pertinent definitions first.

1.4.1 Definition of relation algebras

A relation algebra, also (abstract relation algebra) can be defined ([Giv17]) as an algebra

A = (A,+,−, ; ,^ , 1′)

where + and ; are binary operations, − and ^ are unary operations and 1′ is a constant,
satisfying the following axioms for all elements r, s, t in A:

r + s = s+ r (R1)

r + (s+ t) = (r + s) + t (R2)

−(−r + s) +−(−r +−s) = r (R3)

r; (s; t) = (r; s); t (R4)

r; 1′ = r (R5)

r^^ = r (R6)

(r; s)^ = s^; r^ (R7)

(r + s); t = r; t+ s; t (R8)

(r + s)^ = r^ + s^ (R9)

r^;−(r; s) +−s = −s (R10)

(R1) is the commutative law for addition, (R2) is the associative law for addition, (R3) is Hunt-
ington’s law, (R4) is the associative law for relative multiplication, (R5) is the (right-hand) identity
law for relative multiplication, (R6) is the first involution law, (R7) is the second involution law,
(R8) is the (right-hand) distributive law for relative multiplication, (R9) is the distributive law for
converse, and (R10) is Tarski’s law.

Readers will note the similarity of axioms (R4) to (R9) with the corresponding laws of the
calculus of binary relations that were described in the previous section.

We can define the special constants 0 and 1, and a binary operation · from the fundamental
operations, by:

1 = 1′ + (−1′)

0 = −1

r · s = −(−r +−s)

Axioms (R1), (R2) and (R3) are actually equivalent to saying that (A,+, ·,−, 0, 1) is a boolean
algebra. The algebra (A,+, ·,−, 0, 1) is called the boolean reduct of A. The operations +, − (and
·) are the boolean operations, while ; and ^ are the relational operations.

We denote the class of all relation algebras by RA.

1.4.2 Proper relation algebras

The classic example of a relation algebra is precisely the one that motivated its definition and study,
that is, the algebra of all binary relations on a set U : the algebra (P(U × U),∪, · , | , ·−1, idU)

7

is a relation algebra.

More generally, a proper relation algebra, also called a set relation algebra or algebra of
binary relations, is an algebra

A = (A,∪,∼, |, .−1, idU)

Where:

• U is any set, called the base set

• ∅ ∈ A and idU ∈ A

• A is a set of binary relations in U , containing a largest relation E (i.e, E =
⋃
A)

• ∼ is the complement with respect to E: ∼ R = {(α, β) : (α, β) ∈ E and (α, β) 6∈ R}

• ∪, | and .−1 are the operations previously defined for binary relations

• A is closed under ∪, |, .−1 and ∼

It can be shown that E is an equivalence relation on U (not necessarily U × U). A proper
relation algebra is called square if E = U × U , and full if A = P(S × S) for some S. The full
(and square) proper relation algebra on U (which, incidentally, is the first example we gave in this
section) is noted Re(U).

The class of all proper relation algebras is noted PRA.

1.4.3 The meaning of the operations

With the introduction of as relation algebras the intended meaning of the operations and constants
in the abstract relation algebra become clear:

• + is analogue to union

• − is analogue to complement

• · is analogue to intersection

• ; is analogue to relational composition

• ^ is analogue to converse

• 1′ is analogue to the identity relation

• 1 is analogue to the unit, the largest relation on the algebra

• 0 is analogue to the empty relation (the empty set)

1.4.4 The representation problem for relation algebras

Any proper relation algebra is a relation algebra: PRA ⊂ RA. When introducing relation alge-
bras, we noted that they arose as an attempt to axiomatize the calculus of binary relations. A
reasonable goal, then, is that the axiomatization is precise in the sense that it captures exactly
the properties of binary relation. This is the representation problem for relation algebras: are all
relation algebras isomorphic to a proper relation algebra?.

An isomorphism h : A → B, where B ∈ PRA is called a representation of A, and we say
that A is representable if such an isomorphism exists. The class of all representable relation
algebras (which is the closure of PRA under isomorphisms) is noted RRA. The representation

problem can then be stated as: RA
?
= RRA.

8

As it turns out, the answer is negative, and it was given by Roger Lyndon in [Lyn50].
Lyndon showed this constructively, building a relation algebra and showing it couldn’t be repre-
sentable.

Theorem 1.4.1 (Lyndon, 1950). There exists a relation algebra which is not isomorphic to any
proper relation algebra:

In other words, there exist non-representable relation algebras, and the immediate corollary is
that RA 6= RRA.

1.5 Some additional definitions and results

We finish this chapter by giving a few more definitions and results that we will refer to in the rest
of the work.

1.5.1 Atomic algebras

A partial order ≤ is defined in the universe of a relation algebra, given by:

r ≤ s if and only if r + s = s

.
Note that in a proper relation algebra ≤ is the same as set inclusion.

An atom in a relation algebra is a minimal non-zero element. In other words: a is an atom if
and only if:

• a 6= 0

• s ≤ a⇒ s = 0 or s = a

The set of atoms of a relation algebra A is noted At(A).

A relation algebra A is atomic if for every non-zero element r exists some a ∈ At(A) such
that a ≤ r. We say in this case that a is under r or that r is above a.

All these definitions apply to boolean algebras (note that ≤ is defined in terms of +, and
thus atomicity is a “boolean” property): the boolean reduct of an atomic relation algebra is an
atomic boolean algebra (with exactly the same atoms). We will use the same terminology and the
notation At(A) also in the context of boolean algebras.

The following theorem is a well known result:

Theorem 1.5.1. Every finite relation algebra is atomic.

In an atomic relation algebra A:

• any element x can be expressed as a sum of atoms. We will express this as x =
∑
X, where

X = {a ∈ At(A) : a ≤ x} (the set of atoms under x).

• if a is an atom, then a^ is also an atom.

• if a is an atom and r any element, a ≤ r or a · r = 0.

• if a and b are atoms, either a = b or a · b = 0.

All operations in a boolean or relation algebra A, except for complement, are completely
additive , meaning that, for all x and y elements of A, and noting X = {a ∈ At(A) : a ≤ x} and
Y = {a ∈ At(A) : a ≤ y}:

9

• x+ y =
∑
X +

∑
Y =

∑
a∈X,b∈Y a+ b

• x · y =
∑
X ·

∑
Y =

∑
a∈X,b∈Y a · b

• x; y =
∑
X;

∑
Y =

∑
a∈X,b∈Y a; b

• −x = −
∑
X =

∑
a∈X −a

• x^ = (
∑
X)^ =

∑
a∈X a^

1.5.2 Consistent triples

A triple of atoms (a, b, c) of some relation algebra A is said to be a consistent triple or a cycle
if c ≤ a; b.

1.5.3 A finite relation algebra is determined by its atoms

The facts presented above suggest that the behavior of the atoms in an atomic relation algebra
determine the behavior of the operations in all of the algebra. We will show that this is the case.

Proposition 1.5.1. Let A be a finite relation algebra and c : At(A)×At(A)→ P(At(A)) defined
by

c(a1, a2) = {a ∈ At(A) : a ≤ a1; a2}.
and consider the structure B = (P(At(A)),∪, · , ◦,^ , Id) where:

• ◦ : P(At(A))× P(At(A))→ P(At(A)) is defined by

X ◦ Y =
⋃

x∈X,y∈Y
c(x, y)

• ^ : P(At(A))→ P(At(A)) is defined by X^ = {x^ : x ∈ X}

• Id = {a ∈ At(A) : a ≤ 1′}

Then B is a relation algebra and the function h : A→ P(At(A)) given by h(x) = {a ∈ At(A) :
a ≤ x} is an isomorphism between A and B.

The proof of proposition 1.5.1 is straightforward, using basic relation algebra arithmetic.

Corollary 1.5.1. A finite relation algebra A is determined by its set of consistent triples, the
behavior of ^ restricted to At(A), and the atoms under 1’.

Characterizing RA only with atoms

A characterization of RA, equivalent to the axiomatization we gave in section 1.4.1, is given by
Fŕıas and Maddux in [FM97]:

Theorem 1.5.2 ([FM97], Lem 2.2). A = (A,+,−, ; ,^ , 1′) is in RA if and only if:

(A,+, ·,−, 0, 1) is a boolean algebra, and

for all v, w, x, y, z ∈ A:

x = x; 1′ (FM1)

(x; y) · z 6= 0 ⇐⇒ x^; z · y 6= 0 (FM2)

(x; y) · z 6= 0 ⇐⇒ z; y^ · x 6= 0 (FM3)

(v;x) · (w; y) 6= 0 ⇐⇒ (v^;w) · (x; y^) 6= 0 (FM4)

10

The following lemma characterizes finite relation algebras with only the behavior of its atoms
with respect to the relational operations. This proves what we were stating before.

Lemma 1.5.2.1. An algebra A = (A,+,−, ; ,^ , 1′) (where +, ; are binary operations, − and ^

are unary, and 1′ is a constant) is a finite relation algebra if and only if:

(A,+, ·,−, 0, 1) is a finite boolean algebra (where ·, 0, 1 are defined as usual)

The operations ; and ^ are completely additive.

For all v, w, x, y, z ∈ At(A):

x = x; 1′ (A1)

z ≤ x; y ⇐⇒ y ≤ x^; z (A2)

z ≤ x; y ⇐⇒ x ≤ z; y^ (A3)

(v;x) · (w; y) 6= 0 ⇐⇒ (v^;w) · (x; y^) 6= 0 (A4)

Proof. (⇒) : Let A = (A,+, ·,−, 0, 1) be a finite relation algebra. Then by theorem 1.5.2
(A,+, ·,−, 0, 1) is a (finite) boolean algebra. Also:

(FM1) implies (A1): If x is an atom, then it is an element of A, then x = x; 1′

(FM2) implies (A2): Let x, y, z be arbitrary atoms. Then:

z ≤ x; y

⇐⇒ (x; y) · z 6= 0 definition of ≤

⇐⇒ (x^; z) · y 6= 0 (FM2)

y ≤ x^; z because y is an atom

(FM3) implies (A3): Let x, y, z be arbitrary atoms. Then:

z ≤ x; y

⇐⇒ (x; y) · z 6= 0 definition of ≤

⇐⇒ (z; y^) · x 6= 0 (FM3)

x ≤ z; y^ because x is an atom

(FM4) implies (A4): Trivially, given that the atoms are elements of the algebra.

(⇐) : For the converse, let A = (A,+, ·,−, 0, 1) be a finite algebra (where +, ; are binary op-
erations, − and ^ are unary, and 1′ is a constant), such that (A,+, ·,−, 0, 1) is a boolean algebra
(where ·, 0, 1 are defined as usual), and ; and ^ are completely additive. We have:

(A1) implies (FM1). If x is an element of the algebra, then because (A,+, ·,−, 0, 1) is a finite
(thus atomic) boolean algebra, x =

∑
X, where X = {a ∈ At(A) : a ≤ x}. Then:

11

x; 1′

=
∑
X; 1′

=
∑

a∈X(a; 1′) (Complete additivity)

=
∑

a∈X a (A1)

= x

(A2) implies (FM2). Let x =
∑
X, y =

∑
Y , z =

∑
Z be elements of A.

(x; y) · z 6= 0

⇐⇒ (
∑
X;

∑
Y) ·

∑
Z 6= 0

⇐⇒
∑

a∈X,b∈Y,c∈Z(a; b · c) 6= 0 (Complete additivity, twice)

⇐⇒ (a′; b′ · c′) 6= 0 for some a′ ∈ X, b′ ∈ Y , c′ ∈ Z (Boolean algebra)

⇐⇒ c′ ≤ (a′; b′) (c′ is an atom)

⇐⇒ b′ ≤ (a′^; c′) (A2)

⇐⇒ (a′^; c′) · b′ 6= 0

⇐⇒
∑

a∈X,b∈Y,c∈Z(a^; c) · b 6= 0 (Boolean algebra)

⇐⇒ (
∑
X^;

∑
Z) ·

∑
Y 6= 0 (Complete additivity, twice)

⇐⇒ x^; z · y 6= 0

(A3) implies (FM3). Analogous to (A2) implies (FM2).

(A4) implies (FM4). Let x =
∑
X, y =

∑
Y , v =

∑
V , w =

∑
W be elements of A. Then:

(v;x) · (w; y) 6= 0

⇐⇒ (
∑
V ;

∑
X) · (

∑
W ;

∑
Y) 6= 0

⇐⇒ (
∑

a∈V,b∈W,c∈X,d∈Y (a; c) · (b; d) 6= 0 (Complete additivity)

⇐⇒ (a′; c′) · (b′; d′) 6= 0 for some a′ ∈ V, b′ ∈W, c′ ∈ X, d′ ∈ Y (Boolean algebra)

⇐⇒ (a′^; b′) · (c′; d′^) 6= 0 (A4)

⇐⇒
∑

a∈V,b∈W,c∈X,d∈Y (a^; b) · (c; d^) 6= 0 (Boolean algebra)

⇐⇒ (
∑
V^;

∑
W) · (

∑
X;

∑
Y^) 6= 0 (Complete additivity)

⇐⇒ (v^;w) · (x; y^) 6= 0

This completes the proof.

1.5.4 Representations as labelled graphs

Given that not every algebra is representable, it is interesting, given an algebra, to try and find a
representation of it. For finite relation algebras, we can build representations by labelling directed
graphs.

The following theorem gives the construction: the idea is to consider the ordered pairs of a
potential base set as edges on a directed graph. The set of all the pairs (x1, x2) labelled with the
same atom a of A will be the corresponding atom in the representation. Of course, the labelling
must respect certain conditions as to constitute a representation of the algebra in question.

12

Theorem 1.5.3. Let A = (A,+,−, ; ,^ , 1′) be a finite relation algebra. If there exists a directed
graph G = (V,E), where V is a set of vertices and E ⊂ V × V a set of directed edges, and a
labelling function λ : E → At(A), such that:

1. E is an equivalence relation on V:

(v, v) ∈ E for all v ∈ V
If (u, v) ∈ E then (v, u) ∈ E
If (u, v) ∈ E and (v, w) ∈ E, then (u,w) ∈ E

2. λ is surjective (i.e, every atom appears in the labelling)

3. λ(u, v) ≤ 1′ ⇐⇒ u = v

4. λ(u, v) = λ(v, u)^

5. If (u, v), (v, w) and (u,w) are edges, λ(u,w) ≤ λ(u, v);λ(v, w)

6. For all a, b ∈ At(A), if λ(u,w) ≤ a; b then there is v ∈ V with λ(u, v) = a and λ(v, w) = b.

Then let h : A→ P(E) such that

h(x) =
⋃
a∈X

λ−1(a),

where λ−1(a) = {(v1, v2) : λ(v1, v2) = a} and X = {a ∈ At(A) : a ≤ x}.

Then A is representable in the proper relation algebra B = (B,∪,∼, |, .−1, idV), where B is
defined as the range of the function h.

Proof. First, let’s note that B truly is a proper relation algebra, according to the definition we
gave in Section 1.4.2.

• h(0) = ∅ (because 0 has no atoms under it) and h(1′) = idV (because of condition (3)), so
both ∅ ∈ B and idV ∈ B.

• B is closed under ∪: if α ∈ B and β ∈ B, then α = h(x) for some x ∈ A and β = h(y) for
some y ∈ A. It is clear from the definition that h(x+ y) = α ∪ β, and so α ∪ β ∈ B.

• B is closed under .−1: If α ∈ B, then α = h(x) for some x ∈ A.

Because of condition (1), given any (v1, v2) ∈ α, the edge (v2, v1) exists. We have that
λ(v1, v2) ≤ x but then, by condition (2), λ(v2, v1) = λ(v1, v2)^ and then λ(v2, v1) ≤ x^,
which in turn means that (v2, v1) ∈ h(x^). Then α−1 ⊂ h(x^).

Next, consider any edge (v1, v2) labelled a, where a is an arbitrary atom under x^ (this
means a^ is an atom under x). Then (because of condition (4)) λ(v2, v1) = a^, and so
(v2, v1) ∈ α: equivalently, (v1, v2) ∈ α−1. This means that h(x^) ⊂ α−1.

We conclude that h(x^) = α−1 (thus α−1 ∈ B).

• B is closed under ∼, the complement with respect to E. If α ∈ B, then α = h(x) for some
x ∈ A. Now, the atoms under −x are precisely the atoms that are not under x. Then
every edge not labelled by an atom under x will be labelled by an atom under −x. Then
h(−x) = E − α = ∼ α, and so ∼ α ∈ B.

13

• B is closed under |: if α ∈ B and β ∈ B, then α = h(x) for some x ∈ A and β = h(y) for
some y ∈ A.

Let (u,w) be an element of α|β. This means that (u, v) ∈ α and (v, w) ∈ β for some v ∈ V .
We know that λ(u, v) ≤ x and λ(v, w) ≤ y. Because of condition (1), (u,w) ∈ E, and,
because of condition (5), λ(u,w) ≤ λ(u, v);λ(v, w). Then (by additivity) λ(u,w) ≤ x; y, and
so (u,w) ∈ h(x; y). This means that α|β ⊂ h(x; y).

Next, consider any edge (u,w) labelled a, with a ≤ x; y. Because of additivity, a ≤ xa; ya
for some atoms xa ≤ x, ya ≤ y. Now, because of condition (6), as λ(u,w) ≤ xa; ya then
there is a v ∈ V such that λ(u, v) = xa and λ(v, w) = ya. This means (u, v) ∈ h(x) = α and
(v, w) ∈ h(y) = β, and then (u,w) ∈ α|β. Then h(x; y) ⊂ α|β.

We conclude h(x; y) = α|β = h(x)|h(y), then α|β ∈ B and so B is closed under |.

Consider the function h̃ : A → B such that h̃(x) = h(x) (in other words, h̃ is just h with the
codomain restricted to its range). Note that whilst proving the closure under operations we have
also proven the following:

• h(1′) = idV

• h(x+ y) = h(x) ∪ h(y)

• h(x^) = h(x)−1

• h(−x) = ∼ h(x)

• h(x; y) = h(x)|h(y)

and thus h̃ is a homomorphism.

Additionally, h̃ is a bijection. It is surjective by definition (B is the range of h), and it is
injective: if x, y ∈ A with x 6= y, then without loss of generality there is an atom a ≤ x such that
a 6≤ y. Because λ is surjective, then some (x1, x2) ∈ E is labelled a. This means (x1, x2) ∈ h̃(x)
but (x1, x2) 6∈ h̃(y), then h(x) 6= h(y).

h̃ is a bijective homomorphism, so it is an isomorphism between A and B, and thus a repre-
sentation of A.

14

Chapter 2

Model finding

In this chapter we describe model finding in the context of software verification, introducing Alloy
and Kodkod as tools for that purpose.

2.1 Software verification

In a world in which software is increasingly present and in which people entrust more and more
of their responsibilities to automatic systems the need to guarantee that software does what we
intend it to do is similarly increasing. We can easily think of many examples in which a software
error (or bug) could cost human lives:

• Avionics

• Nuclear facilities

• Medical equipment software (a notable example can be found in [LT93])

And even when the bug isn’t life-threatening, the financial consequences can be huge [Har03].
In any case, the importance of correctness regarding programs and algorithms is clear. This cor-
rectness must be with respect to some specification: a set of rules about the functionality and
effects of the software that the programmers define.

As software systems become ubiquitous, they become more complex: this in turn means that
their correct, error-free implementation becomes non-trivial. This leads to the necessity of tools
and techniques that can assist the programmer in the task. The theory and development of these
techniques is the setting of the subfield of computer science known as software engineering. This
checking of correctness is the activity called software verification.

2.1.1 Verification techniques

In this section we will give an overview of different software verification techniques. We don’t
pretend an exhaustive analysis but merely a birds-eye view, aiming to contextualize the tools that
are relevant to this work.

Testing and peer review

In practice the most widely used verification methods are testing and peer review. The latter
is simply the acceptance of correctness from both the programmer who wrote the code and her
peers, before checking in the code.

Testing is a way of checking the behaviour of a program at runtime. A test suite exercises
different sections of the code, different components of the system, and checks that it works as
expected in various scenarios, by validating certain assertions of the state of the system after

15

running the component.

Testing is useful to find bugs and for consistency (ensuring that the system’s behaviour doesn’t
change with time), but it’s non-exhaustive, in the sense that there’s usually no way of covering
all possible executions. Naturally, peer review suffers from the same limitation.

Dynamic and static analyisis to find bugs

Besides testing we can name other non-exhaustive techniques, which don’t guarantee correctness
under every possible scenario but are useful for bug finding. These methods can be based on
static analysis of the code (i.e, the analysis is carried out without executing the program) or
dynamic analysis (involving execution with different inputs, as in testing). We won’t describe
these techniques in detail, but as paradigmatic examples we can mention symbolic execution and
fuzzing, respectively.

Formal methods

The need to actually prove correctness of programs instead of only partially exploring the space
of executions leads us to formal methods, which can be described as “the applied mathematics
for modeling and analyzing software systems” [BK08]. The aim is to establish system correctness
with mathematical rigor: this is achieved by providing formal proofs on top of a mathematical
model of the system.

One of the common approaches is deductive verification. These techniques are carried out by
endowing the system with formal semantics (which can be expressed with logical formulae). Spec-
ifications are similarly expressed. Finally, dedicated systems such as theorem provers are used to
formally show that the system is valid with respect to the specification.

A different approach, which will be our focus in the next section, are model based verification
techniques. These are based on models describing the possible system states and behaviors in a
mathematically precise and unambiguous manner. These models are accompanied by algorithms
that systematically explore all states of the model. This leads to various techniques of both
exhaustive exploration (model checking) and partial exploration (simulation, or even testing)
[BK08].

2.1.2 Model checking and lightweight methods

Given a mathematical model of the system, and some property we expect to hold in the system,
we call model checking to the set of verification techniques that can check the property in all
possible states of the system, exploring them in a brute-force (but systematic) manner. Model
checkers can also provide counterexamples when properties do not hold.

It is important to notice that these techniques assume that the model itself (which must pro-
vided by the user) is a faithful representation of the system: any verification using model checking
techniques is only as good as the model of the system, so an essential part of the model checking
process is then the design and refinement of the model [BK08].

When the space of states of the model is large, model checkers may require considerable com-
putational resources (or may fail to terminate). This problem is called state explosion, and arises
because model checkers are often used to analyze models with components that work in parallel,
and thus states that grow exponentially with the number of components. [Jac19]. Motivated by
this, and the practical issues regarding the modeling of systems that are both large and still in
development, the formal method communities have developed lightweight approaches [AL98]
to formal methods. The term lightweight is used in the sense of “less-than-completely formal” or
“partial”, where the methods can be used to perform “partial analysis on partial specifications,
without a commitment to developing and baselining complete formal specifications” [ELC+98].

16

2.2 Alloy

Alloy, developed by Daniel Jackson at MIT [Jac02] was designed as a small specification language
aimed at lightweight formal verification. It was designed as an attempt to provide “the smallest
modelling notation that can express a useful range of structural properties, is easy to read and
write, and can be analyzed automatically” [Jac02]. Together with the specification language comes
an analyzer, that given the specification, can:

• Generate a model that satisfies the specification (simulation)

• Given an assertion that turns out to be false in some model that satisfies the implementation,
generate such model, this is, give a counterexample to the assertion (checking)

We can call Alloy a model finder (or instance finder) [Jac12], in the sense that its primary
use case is to find instances given certain constraints (where the instances can be, given a speci-
fication, models of such specification or counterexamples to an assertion). The latest versions of
Alloy come with an interactive graphic interface which lets the user graphically explore the mod-
els, and not only verify assertions but also iteratively build more and more refined specifications
of their system.

The verification strategy in Alloy is also partial, because it works within a scope: it will search
exhaustively for models or counterexamples but the amount of objects that it considers is always
bounded from above.

2.2.1 An example

Let’s illustrate the characteristics and usage of Alloy and its analyzer with a simple example.
Suppose we want to model a universe of people and dogs, in which every person has a set of
friends and a pet.

Our first attempt at a specification that captures this model could be as follows:

-- The model: a person has a set of friends and an animal pet

-- There are persons

sig Person {

friends : set Person , -- with a set friends

pet : Animal -- and a pet

}

-- ... and animals

sig Animal {

owner : lone Person -- An animal may have an owner

}

-- Show me a model with up to 3 elements

run {} for 3

Figure 2.1: A first attempt at an Alloy model

In Alloy our objects like Person and Animal are called signatures and declared with the
keyword sig. To a signature we can associate fields, like friends, pet and owner, in a style
reminiscing of object oriented programming languages. Associated with this fields are cardinality
constraints: in our example, we are saying that a Person has a set of friends (one or more),
exactly one pet, and that an Animal has one or zero owners (lone stands for less than or equal

17

to one).

Finally, with the command “run {} for 3” we are telling the analyzer to look for models
with up to 3 elements of each signature (3 is the bound of the search).

If we run the analyzer with the specification of Figure 2.1 we get (among other valid instances)
the result shown on Figure 2.2:

Figure 2.2: An instance found by the analyzer

We can see right away that our specification has some problems: there is an issue of consistency
with pets and owners (Animal1’s owner is Person but Person’s pet is Animal0), and we find that
our model allows Persons to be friends with themselves, a situation we may want to avoid. To
solve these problems we add some constraints to our model in the form of facts, as shown in Figure
2.3:

-- Constraints of the model

-- 1. No person is their own friend

fact { all p : Person | p not in p.friends }

-- 2. Ownership and petship consistency

fact { all a : Animal , p : Person | a.owner = p iff p.pet = a}

Figure 2.3: Constraints to the model.

We can see that the constraints are expressed in a straightforward manner in the form of log-
ical formulae, with quantifiers, logical operators such as iff (if and only if) and set-theoretical
predicates (such as not in or equality). Running the same command as before gives us a better
looking result, shown in Figure 2.4. Increasing the scope leads to more complex instances that we
can explore to continue polishing our model: for example, looking at the model shown in Figure
2.5 (found with a scope of 4) we can see that friendship are not always symmetric. If we wish to
correct this, we add another constraint, and the process continues.

This is the value of the style of modelling encouraged by Alloy: the iterative exploration and
refinement of our model leads us to different insights about our design, which are useful not only
for verification purposes but for the actual design and development of the systems [Jac12].

18

Figure 2.4: A better looking model

Figure 2.5: An example found with scope 4 shows that friendship is not symmetric in our specifi-
cation

Finally, we can check assertions in our model. If instead of the run command we give a check

command, like the one given in Figure 2.6:

-- Do different people have different pets?

-- Check this assertion or find a counterexample

-- (within the scope of 4)

check { all p1 , p2 : Person | p1 != p2 implies p1.pet != p2.pet }

↪→ for 4

Figure 2.6: An assertion

the analyzer will try to find a counterexample within the given scope. In this case it can’t find
any, so it shows the message:

No counterexample found. Assertion may be valid.

Where the word may is indicating that there could be counterexamples within a larger scope.

The semantics of Alloy

Alloy uses a form of relational logic for expressing the constraint, which is basically a first-
order logic augmented with operators of relational calculus. Every object in an Alloy model is
ultimately encoded as a relation, and the relational calculus is similar to the one described in

19

chapter 2, with some additional operations and extended to relations of any arity (not just binary
relations). Signatures define sets of objects (unary relations), while fields like the ones we defined
are binary relations: in the previous example Person and Animal are sets, and pet is a binary
relation, pairs (p, a) where p is an element of Person and a an element of Animal.

To actually find the instances, Alloy uses a relational model finder engine called Kodkod,
which we will describe next. Alloy translates the specifications to Kodkod problems, and, when a
solution comes back from Kodkod, presents it to the user in the manner that we shown.

2.2.2 Kodkod

Kodkod [TJ07] is the solving engine used as back end for the Alloy analyzer. Kodkod was developed
by Emina Torlak for her doctoral thesis at MIT [Tor09], and it ultimately replaced the original
back end (i.e., the constraint solver) of the Alloy analyzer. As described in Torlak’s thesis (the
emphasis is ours):

Kodkod extends the relational logic of Alloy with the notion of relational bounds.
A bounded relational specification is a collection of constraints on relational variables
of any arity that are bound above and below by relational constants (i.e. sets of tuples).
All bounding constants consist of tuples that are drawn from the same finite universe
of uninterpreted elements. The upper bound specifies the tuples that a relation may
contain; the lower bound specifies the tuples that it must contain. [Tor09]

A Kodkod problem consists of a universe declaration, a set of relation declarations, and a
formula in which the declared relations appear as free variables [TJ07]. The universe is esentially
a set of uninterpreted elements, and solving a Kodkod problem entails constructing relations as
sets of tuples of the elements of the universe in a way that the relational formula is satisfied.
Additionaly, the user specifies a set of bounds for each relational variable, which constraints the
tuples that may or must appear in the relation associated with that variable, as described above.

The possibility of specifying bounds for the relations makes Kodkod more flexible than Alloy,
as it allows expressing partial instances. An illustrative example of a partial instance given in
[TD06] is that of a half-filled Sudoku puzzle: in Kodkod it is straightforward to specify not only
the rules of how a Sudoku puzzle is supposed to be filled, but also information on filled slots (thus
partially realizing an instance of the specification), while doing this in Alloy is more cumbersome
(and inefficient, because it means encoding the partial solution as constraints of the specification,
which makes the final formula more complex).

The solving of the formula itself is carried out by translating the relational formulas into a
propositional formula by means of encoding into propositional variables the statements such as
“the tuple t belongs to relation R”. After this translation the problem becomes a classical boolean
satisfiability problem that can be solved with off-the-shelf SAT solvers [TD06].

The Kodkod engine itself consists of a rich API that allows the user to construct a Kodkod
problem, invoke the solver and ultimately iterate the solutions. This makes Kodkod a valuable
tool to use as back end for any application wishing to make use of relational constraint satisfaction
problems, (such as Alloy itself), and this is precisely what the tool presented in this work, Relif,
does.

20

Chapter 3

Relif

In this chapter we bring together relation algebras and model finding, introducing Relif, a tool
that could be classified as a relation algebra model finder. We describe the usage and inner workings
of the tool in its current state justifying its correctness, and outline possible future work.

3.1 Introduction

The main features of Relif are two:

• The ability for a user to provide a specification, consisting of constraints on relational
variables, and, given a scope on the number of atoms, try to find relation algebras that
satisfy such specification. The relational variables will be bound to elements in the universe
of the algebras.

• Additionaly, given a found instance (which is a relation algebra), the user can instruct the
tool to try to find representations of such instance. The search is bounded by a certain
cardinality of the base set.

Relif provides an interactive experience not unlike Alloy’s, in which the user can iterate through
different specifications, adding and removing constraints and exploring the different results.

3.2 Usage and semantics

// Declarations

rel R, Q // R and Q are relations

atom a // a is an atom

// Facts

a in iden

a in Q

R;(Q + R) = R

// Command

run {} for 3

Figure 3.1: A simple Relif specification

A Relif specification consists of:

• One or more declarations of relational variables

21

• A list of facts, formulas in which the relational variables are free variables

• A command, which can be one of two

A run command, which instructs the tool to try and find instances that satisfy all of
the facts and an optional additional predicate

A check command, which given an assertion tries to find a counterexample

• A set of bounds, which will limit the number of atoms of the relation algebras that the tool
will find

Figure 3.1 shows a simple example of a specification. In this example, the user declares three
relational variables, R, Q and a. R and Q will be bound to arbitrary elements of the universe,
while a will be bound to an atom.

3.2.1 Semantics

Let us briefly outline the grammar of the Relif specification language by giving the different
statements that can be written and their semantics.

Declarations

The user can declare variables that will represent relations or single atoms, as shown in table 3.1

Statement Meaning
rel R R is a relation
atom a a is an atom

Table 3.1: Declarations

Relational expressions

A relational expression is either a previously declared relational variable or an operation between
relational expressions. Table 3.2 describes the meaning of the operators, where R and S are
relational expressions. The meaning is given with the notation of chapter 2 for the operations of
relation algebras.

Expression Meaning
R + S R+ S
R & S R · S
R;S R;S
R.S R;S
-R −R
~R R^

R - S R+ (−S)

Table 3.2: Relational expressions

Facts

The facts can either be comparison facts, which predicate about equality and ≤ (i.e., atomic first-
order formulas with those predicates), or formulas with the usual logical connectives. Table 3.3
shows the possibilities for comparison facts, where R and S are relational expressions. Table 3.4
shows the different connectives (where P and Q can be any fact).

22

Formula Meaning
R = S R = S
R != S R 6= S
R in S R ≤ S

R not in S R 6≤ S
no R R = 0

Table 3.3: Comparison formulas

Formula Meaning
not P ¬P
! P ¬P

P and Q P ∧Q
P && Q P ∧Q
P or Q P ∨Q
P || Q P ∨Q

P implies Q P ⇒ Q
P => Q P ⇒ Q
P iff Q P ⇐⇒ Q
P <=> Q P ⇐⇒ Q

Table 3.4: Formulas with connectives

Special constants

Relif has special constants corresponding to the relation algebra constants. Table 3.5 shows the
different keywords corresponding to such constants. These constants are also relational expres-
sions.

Expression Meaning
iden 1′

univ 1

Table 3.5: Special constants

There is no special constant for 0, but it can be bound to any relational variable Z by stating
the fact “no Z”, as described in table 3.3.

Commands

As mentioned above, there are two types of commands, run commands and check commands.
Both commands have the form

type { F } for bound

Where:

• type is one of run or check,

• F is an optional formula (with the same syntax as outlined before for facts),

• bound is a bounding expression, which will be described next

If the type of the command is run, the formula F (if present) is added as a fact of the
specification, and an instance satisfying the resulting constraints (and within the bounds) will be
searched. If the command is check, then the negation of F is added to the specification: if an
instance is found, it serves as a counterexample for the assertion F .

23

Bounding expressions

Relif bounds the search by bounding the number of atoms of the solutions that it will consider.
The bound is specified separately for three types of atoms: identity atoms are atoms under the
1′ relation, symmetric atoms are all atoms a such that a^ = a but are not under the identity.
Finally, asymmetric atoms are the atoms a such that a^ 6= a.

The most general bounding expression is then:

x id, y sym, z asym

This tells Relif to look for algebras with at most x identity atoms, at most y symmetric
atoms and at most z asymmetric atoms.

If the keyword exactly appears before the numbers x, y or z, then the number of atoms of
that type in the solutions (if any) will be exactly that (the bound is tight).

A bounding expression can be also a single number x, which is shorthand for x id, x asym, x sym,
or the keyword default, which is shorthand for 1 id, 3 asym, 3 sym.

Finally, these shorthand expressions can be partially overridden using the keyword but. For ex-
ample, the bounding expression “3 but 1 sym” is equivalent to “3 id, 1 sym, 3 asym”, and the
expression “default but exactly 2 sym” is equivalent to “1 id, 3 asym, exactly 2 sym”.

3.3 Implementation

Relif uses Kodkod as its solving back-end. This means that the Relif specification is translated to
a Kodkod problem, which is then solved by the Kodkod engine as described in chapter 3. Recall
that a Kodkod problem consists of a universe declaration, a set of relation declarations, a formula
which the engine will try to satisfy, and bounds on the different relational variables.

3.3.1 “Relation algebra finding” as a relational algebra problem

Ultimately, what we must ask Kodkod is for a set of relations that satisfy a given formula. We will
see how, using the results from chapter 2, we turn the problem of finding a relation algebra
that satisfies a Relif specification into the problem of finding certain (n−ary) relations
that satisfy a Kodkod formula.

We only need to speak about atoms

Proposition 1.5.1 lets us turn the problem of describing a relation algebra by just describing its
set of atoms, how ^ acts upon the atoms, and the set of consistent triples (this is, how ; acts upon
the atoms). On the other hand, we proved with Lemma 1.5.2.1 that we can axiomatize a finite
relation algebra using only statements that speak of atoms (provided that they already form
a boolean algebra).

This two facts are the key to the translation, and with them in mind we can describe what the
Kodkod problem resulting from a Relif specification looks like:

• The universe will consist of elements which we will interpret as the atoms of a relation
algebra.

• Our relation declarations are as follows:

A binary relation conv, which we will interpret as relating an atom to its converse.

24

A ternary relation cycles. This relation will contain the consistent triples: we will
interpret a tuple (e1, e2, e3) ∈ cycles as the statement a3 ≤ a1; a2, where ai is the atom
that we associate to the element ei.

Unary relations (sets) named Ids, Syms and Asyms, which will hold the identity, sym-
metric and asymmetric atoms.

A unary relation At, which corresponds to the unit relation 1 in relation algebra, and
will hold all the elements that correspond to atoms of the solutions. Thus At = Ids + Syms

+ Asyms.

One unary relation (set) for every relational variable in the Relif specification: every
element of the relation algebra is determined by the set of atoms under it, which will corre-
spond to the elements in these sets in the Kodkod solution. Additionally, Ids is the Kodkod
relation that corresponds to the Relif relation iden, and At corresponds to the Relif relation
univ.

• Our formulas must express both the axiomatization which will result in a correct set of atoms,
consistent triples, etc., and the constraints expressed by the user in the Relif specification.
We also make use of Kodkod’s relational bounds for this purpose. We will describe this at
length below.

Translating expressions

In what follows we will write Kodkod formulas with the Alloy syntax: even though Kodkod itself
doesn’t have a language (the formulas are built through its API), the translation is direct, as the
API was designed specifically to work with Alloy’s grammar.

Every statement in a Relif specification will have its counterpart in the Kodkod translation.
Table 3.6 summarizes the translation of the relational expressions, (E, E1, E2 are arbitrary re-
lational expressions). In the translation we use the special Kodkod relations that we described
above and are common to all Relif problems (Ids, At, conv, cycles). Every relational expres-
sion results, after translation, in an expression that reduces to a Kodkod set included in At, this
is, in a set of atoms. Thus, we characterize an element of the algebra with the atoms under it
(which is sound in finite relation algebras).

Relif expression Kodkod translation
e t(e)
R R’

(a relational variable) (a corresponding Kodkod relational variable)
iden Ids

univ At

E1 + E2 t(E1) + t(E2)
E1 & E2 t(E1) & t(E2)
E1;E2 cycles[t(E1),t(E2)]
-E At - t(E)
~E conv[t(E)]

Table 3.6: Translating the expressions to Kodkod

An expression of the form R[E1, · · · , En], where R is a (n+ 1)−ary relation and E1 · · ·En are
expressions which reduce to a set, is equivalent to the set (unary relation):

{y : (x1, · · · , xn, y) ∈ R, where xi ∈ Ei for 1 ≤ i ≤ n}

With this in mind (and that our elements are atoms) we can interpret conv and cycles applied
this way as totally additive operations on the atoms (i.e, of the underlying boolean algebra given
by the sets and set-theoretic operations of Kodkod).

25

Translating facts

The facts are translated to corresponding formulas in Kodkod in the obvious manner (Kodkod
can construct formulas with the same logical connectives that are used in the Relif facts).

Enforcing the relation algebra conditions

To ensure that we will end up with a valid relation algebra we impose the conditions from Lemma
1.5.2.1. The condition that the set of atoms with the boolean operations will constitute a boolean
algebra, and that ; and ^ will be completely additive are guaranteed by our translation and the
relational semantics of Kodkod: the + will correspond to set unions, − to complement with re-
spect to At (the unit), And ^ and ; will be given by the conv and cycle “operations” (which, as
we mentioned, behave additively).

The conditions (A1) to (A4) from lemma 1.5.2.1, which complete the characterization, are
added as part of the Kodkod formula.

Axiom Kodkod Formula
x = x; 1′ x = cycles[x, Ids]

z ≤ x; y ⇐⇒ y ≤ x^; z z in cycles[x,y] iff y in cycles[conv[x], z]

z ≤ x; y ⇐⇒ x ≤ z; y^ z in cycles[x,y] iff x in cycles[z, conv[y]]

(v;x) · (w; y) 6= 0 ⇐⇒ (v^;w) · (x; y^) 6= 0 some (cycles[v,x] & cycles[w,y]) iff

some (cycles[conv[v],w] & cycles[x,conv[y]])

Table 3.7: Kodkod formulas expressing the conditions from lemma 1.5.2.1

The variables on the left column in Table 3.7 are quantified over all atoms. We respectively
quantify the variables in the Kodkod formulas of Table 3.7 over the set At, which is the one that
will include all the atoms in the Kodkod solution.

By including these formulae in every translation from Relif to Kodkod we can guarantee that
the solution that comes back from the solver will effectively represent a relation algebra.

Describing the converse relation

When we described Relif’s bounding expression we noted that the identity, symmetric and asym-
metric atoms are bound separately: the reason for this is that internally we explicitly differentiate
the atoms in those categories. The reason is that this lets us determine ^ on the atoms beforehand:
we know that a^ = a for any identity and symmetric atoms, and we explicitly relate elements of
the asymmetric group as converses.

For example, given a bounding expression “1 id, 2 sym, 4 asym”, the Relif backend gener-
ates three different groups of atoms: {I0}, with the sole element we will interpret as the identity
atom, {S0, S1}, interpreted as the symmetric atoms, and {A0, A1, A2, A3}, the asymmetric
atoms. We then explicitly determine the converses:

I0^ = I0

S0^ = S0

S1^ = S1

A0^ = A2

A1^ = A3

A2^ = A0

A3^ = A1

26

The universe of our Kodkod problem will then have the elements I0, S0, S1, S2, A0, A1,

A2, A3. As the Relif bound is not exact, it is acceptable if some of these elements are not present
in the solutions, so what we do is bound from above the conv relation with the corresponding
tuples: (I0, I0), (S0, S0), (S1, S1), (A0, A2), (A1, A3), (A2, A0), (A3, A1). This
will guarantee that the conv relation in every solution will be faithful to our (external) convention
of converses.

Putting it all together

Table 3.8 summarizes the bounds imposed to the different relations. Ids, Syms, Asyms and conv

are bounded as discussed, with the explicit categorization of the atoms and its converses. If the
Relif bounding expression specifies tight bounds (with the use of exactly), then they are also
bounded from below. The relation Ids is always bounded from below with a single element, be-
cause the identity relation in any relation algebra must have at least one atom under it (1′ 6= 0).

The relation At, (which will be the unit of the relation algebra found as a solution) may have
any element of the universe, as can the relations associated with the user-defined variables.

Kodkod relation Upper bound
At (none)
Ids Identity atoms
Syms Symmetric atoms
Asyms Asymmetric atoms
conv Externally defined converses
cycles (none)

User defined relational variables (none)

Table 3.8: Upper bounds for Kodkod relations

The final Kodkod formula is a conjunction of

• The formulas for (A1)-(A4) given in table 3.7

• Formulas expressing the fact that At is the unit:

A formula expressing At = Ids + Syms + Asyms

Formulas expressing the fact that the tuples of conv and cycles must have elements of
At (which means the closure of the solution under ; and ^)

For every user-defined relational variable R, a formula expressing that R is included in
At (which surmounts to say R ≤ 1).

• Every formula resulting from a Relif fact, i.e., the actual user’s specification

Finding and showing solutions

With the previous explanation the description of the translation from a Relif specification to a
Kodkod problem is complete. The resulting problem is promptly given to the Kodkod solver,
which returns an iterator of the solutions (which can be empty). Any solution found will form
a relation algebra with universe At, identity element Ids, the converse defined by conv, and the
consistent triples found in the ternary relation cycles. Together, the algebra and the user-defined
relations, which are elements of the algebra (and are represented by the atoms under them) satisfy
the specification.

The user is presented with this information in the form of a table representing the composition
of atoms (the consistent triples), and information on the user-defined elements and converses.

27

The identity atoms always named starting with an I, symmetric atoms with an S and asymmetric
atoms with an A. For the example specification of Figure 3.1, one of the solutions found is
presented as shown in Figure 3.2.

Figure 3.2: A solution to Figure 3.1 found by Relif.

3.3.2 Finding representations

The second main feature of Relif is the ability to search for representation of the instances found
from specifications. This is done with a different invocation to Kodkod, where the problem is now
the representation of the graph labeling problem of Theorem 1.5.3.

The problem is bounded by setting a maximum cardinality for the base set of the representa-
tion, that is, a maximum number of vertices for the graph to be labelled.

Graph labelling as a Kodkod problem

Specifying the graph labelling problem is fairly simple:

• The universe will consist of the atoms of the relation algebra (for labelling purposes) and
the possible elements of the base set X_1, ... , X_k where k is the upper bound for the
cardinality of the base set.

• The relation declarations are as follows:

The relations At, cycles, conv that we carry from the relation algebra instance. We
need these relations in the problem to express the labelling constraints, but we already know
the tuples they contain, so we bound them exactly with those tuples.

A unary relation X, which represents the base set. It is bounded from above by
{ X_1, ... , X_k } which are the possible elements of the base set.

A ternary relation labels. This relation will represent both the edges of the graph and
the labelling: if (x1, x2, a) ∈ labels, then we will know that (x1, x2) is an edge of the graph
and it is labelled with a. In the upper bound for labels we put all the triples (x, y, a) with
x, y ∈ X, and a ∈ At.

• The formulas express all the conditions given in Theorem 1.5.3, such that the labelling
corresponds to a representation.

28

There may be multiple solutions for a given bound (and some of them may be isomorphic).
The user can iterate through the solutions, and is presented with all the information of the
representation, associated with the original specification: not only the elements of each atom are
shown but also the elements from all the user-defined relations. Figure 3.3 shows one of the
solutions found for the relation algebra given in Figure 3.2.

Figure 3.3: A representation of the algebra in Figure 3.2.

3.3.3 Technical notes

Relif is implemented in Java, and it requires JRE 8 or superior. The scanner/lexer was imple-
mented with JFlex (https://www.jflex.de/) and the grammar was written for the LALR parser
generator Java CUP (http://www2.cs.tum.edu/projects/cup/).

The code is open source and available on GitHub at http://github.com/marcelolynch/

relif.

3.4 A non-trivial example

We conclude this chapter with an example that shows that Relif can find instances of specifications
that Alloy could never find.

3.4.1 The problem: an unbounded total order

Figure 3.4 shows a specification in Alloy of the fact that the relation R is a total order on some set
A. The domain ofR is conveniently defined as the pairs (x, x) ∈ A where (x, y) ∈ R for some y. The
analyzer is then asked to find counterexamples to the assertion “some iden - Dom[R - iden]”,
which is equivalent to the statement “the total order R has a maximum element” (because there
is some element outside of the non-reflexive domain of R).

29

; I < >
I I < >
< < < I <>
> > I <> >

Table 3.9: The point algebra, a representable relation algebra

Naturally, there are total orders for which neither minimum nor maximum elements exist. An
example is the ≤ ordering on the integers. Nevertheless, if the Alloy Analyzer is supplied with such
specification and a scope, it will not succeed in finding a counterexample because finite total or-
derings always have maximum elements, and Alloy is only capable of constructing finite instances.

The same specification is given in Relif in Figure 3.5. This time a counterexample is found,
and in the form of a relation algebra with only three atoms. In fact, this relation algebra is called
the point algebra, and is representable. Table 3.9 shows the composition table for the point alge-
bra, where I is the identity element (which is an atom) and the atoms < and > are converses of
each other. This algebra is representable, for example considering < as the usual ordering on the
rational numbers (that makes I+ < = ≤, which is an unbounded total order!) It is clear that the
algebra found by Relif is isomorphic to the point algebra, and that the relation R could in fact
express the unbounded total order ≤.

As a final remark, it is a known fact that the point algebra has no finite representations, and
thus Relif, when asked, and even though the algebra is representable, will never be able find a
representation for the instance in Figure 3.5, because the base set for the representations is always
finite. This situation is depicted in Figure 3.7.

sig A {

-- R is a relation on A

R : set A

}

-- Unit is AxA , the universal relation

fun Unit[] : set A->A { A->A }

-- This function gives the domain of a

-- binary relation on A

fun Dom[r : set A->A] : set A->A { r.~r & iden }

-- Specification: R is a total order

fact { iden in R } -- Reflexivity

fact { R & ~R in iden } -- Antisymmetry

fact { R.R in R } -- Transitivity

fact { ~R + R = Unit[] } -- Totality

-- Alloy can never find a counterexample

check { some iden - Dom[R - iden] } for 5

Figure 3.4: An assertion on a total order, in Alloy

30

rel R, dom

iden in R // Reflexivity

R & ~R in iden // Antisymmetry

R.R in R // Transitivity

R + ~R = univ // Totality

// Bind dom to the domain of R - iden

dom = ((R - iden).~(R - iden) & iden)

// The same assertion

check { some iden - dom } for 2

Figure 3.5: An assertion on a total order, in Relif

Figure 3.6: Relif finds an algebra from the specification in Figure 3.5.

Figure 3.7: Relif will never find a representation for the algebra in Figure 3.6.

31

Conclusions

Summary

We have presented the Relif tool and justified the correctness of its implementation. Relif’s user
experience, inspired by Alloy’s, has proven useful even for developing and debugging purposes.
We have also seen that the expressive power of the specification tool is enough to solve problems
intractable by Alloy, which is encouraging.

Another interesting (though tangential) insight gained during the development was the power
and flexibility of Kodkod as a problem-solving tool (fittingly based on relational semantics), with
a very well documented and well designed API.

Future work

There seems to be little work done with relation algebras and SAT solvers. During the devel-
opment of Relif we explored the possibility of translating directly to SAT (ultimately opting for
going through Kodkod because of the generality of our problem). The boolean nature of SAT
solving provides an interesting framework for future work, perhaps with more specific purposes.
In particular, the graph labelling problem as a way to find representations seems to be very well
suited for an efficient straight-to-SAT implementation.

There is also room for improving Relif. Possible improvements and extensions include:

• Symmetry breaking: reducing the number of isomorphic instances found from a specification
and the isomorphic representations given by the representation finder.

• Optimizations, such as better bounds on the cycle relation in the Kodkod problem.

• Provide a format for importing and exporting the relation algebras.

• Extend the representation finder to allow searching starting from arbitrary relation algebras
and not only the ones found via specifications.

• Add support for other algebras of relational type with different or additional operations
(Kleene closures, fork algebras).

32

References

[AL98] Sten Agerholm and Peter Gorm Larsen. A lightweight approach to formal methods. In
International Workshop on Current Trends in Applied Formal Methods, pages 168–183.
Springer, 1998.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT press, 2008.

[ELC+98] Steve Easterbrook, Robyn Lutz, Richard Covington, John Kelly, Yoko Ampo, and
David Hamilton. Experiences using lightweight formal methods for requirements mod-
eling. IEEE Transactions on Software Engineering, 24(1):4–14, 1998.

[FM97] MF Frias and RD Maddux. Non-embeddable simple relation algebras. algebra univer-
salis, 38(2):115–135, 1997.

[FVB04] Marcelo Frias, Paulo Veloso, and Gabriel Baum. Fork algebras: past, present and
future. Journal on Relational Methods in Computer Science, 1:181–216, 2004.

[Giv17] Steven Givant. Introduction to Relation Algebras: Relation Algebras, volume 1.
Springer, 2017.

[Har03] John Harrison. Formal verification at intel. In 18th Annual IEEE Symposium of Logic
in Computer Science, 2003. Proceedings., pages 45–54. IEEE, 2003.

[HH02] Robin Hirsch and Ian Hodkinson. Relation algebras by games, volume 147. Elsevier,
2002.

[Jac02] Daniel Jackson. Alloy: a lightweight object modelling notation. ACM Transactions on
Software Engineering and Methodology (TOSEM), 11(2):256–290, 2002.

[Jac12] Daniel Jackson. Software Abstractions: logic, language, and analysis. MIT press, 2012.

[Jac19] Daniel Jackson. Alloy: a language and tool for exploring software designs. To Appear)
Communications of the ACM, 2019.

[LT93] Nancy G Leveson and Clark S Turner. An investigation of the therac-25 accidents.
Computer, 26(7):18–41, 1993.

[Lyn50] Roger C Lyndon. The representation of relational algebras. Annals of mathematics,
pages 707–729, 1950.

[Mad91] Roger D Maddux. The origin of relation algebras in the development and axiomatization
of the calculus of relations. Studia Logica, 50(3-4):421–455, 1991.

[Sto38] Marshall H Stone. The representation of boolean algebras. Bulletin of the American
Mathematical Society, 44(12):807–816, 1938.

[Tar41] Alfred Tarski. On the calculus of relations. The Journal of Symbolic Logic, 6(3):73–89,
1941.

[TD06] Emina Torlak and Greg Dennis. Kodkod for alloy users. In First ACM Alloy Workshop,
Portland, Oregon, 2006.

33

[TJ07] Emina Torlak and Daniel Jackson. Kodkod: A relational model finder. In International
Conference on Tools and Algorithms for the Construction and Analysis of Systems,
pages 632–647. Springer, 2007.

[Tor09] Emina Torlak. A constraint solver for software engineering: finding models and cores
of large relational specifications. PhD thesis, Massachusetts Institute of Technology,
2009.

34

