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Abstract

In the present work a new empirical model for the phase-resolved body forces of an DBD
(Dielectric-Barrier-Discharge)-plasma actuator is developed. Therefore planar body forces
have been derived from existing PIV (Particle-Image Velocimetry) measurements. A new
approach is introduced that makes use of the similarity of fluid dynamic and electrostatic
potential theory. The body forces are derived with the gradient of a scalar potential field
that consists of superimposed single body force potentials. A system of linear equations
describes the relation between the gradient field, the magnitude of the single potentials and
the resulting body forces. A least-square fit of this equation system to the experimental
body forces approximates the local magnitude of the potentials.
The modeling results are compared to the experimental data regarding their phase-averaged
and phase-resolved integral body force, the spatial body force distribution and the phys-
ical plausibility of the potential magnitudes. Centering around a baseline state, different
numeric configurations of the model and their results are presented and discussed.
This baseline state strongly indicates the validity of the developed approach, particularly
regarding the resulting values of phase-resolved integral body forces. A future improvement
of the numeric setup of the model is expected to prove the similarity of the distribution
of body force potentials and free charges in the discharge area. This could lead towards a
model that is independent from experimental validations. Finally, the new model is drawn
into comparison with former modeling approaches by Shyy et al. [28], Suzen et al. [31]
and Maden et al. [23]. Here it asserts itself with its unique capability to represent both
components of phase-resolved body forces with good accuracy.
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Kurzfassung

In der vorliegenden Arbeit wird ein neues empirisches Modell der phasenaufgelösten Volu-
menkräfte entwickelt, die mit einem DBD (Dielectric-Barrier-Discharge/Dielektrische Bar-
riereentladung) Plasma Aktuator erzeugt werden. Dazu wurden zuvor die zweidimen-
sionalen Volumenkräfte aus vorhandenen PIV (Particle-Image Velocimetry) Messungen
abgeleitet.
Das neue Modell nutzt die Gemeinsamkeiten der Anwendung der Potentialtheorie, sowohl
in der Strömungsmechanik als auch der Elektrostatik. Die Volumenkräfte werden dabei
als der Gradient eines skalaren Potentialfelds definiert, das aus der Überlagerung einzel-
ner so genannter Volumenkraftpotentiale besteht. Das Gradientenfeld, die Ergiebigkeit
der einzelnen Potentiale und das resultierende Volumenkraftfeld werden durch ein lineares
Gleichungssystem verbunden. Daraus werden anschließend mit Hilfe der Methode der
kleinsten Fehlerquadrate die Ergiebigkeiten der Potentiale an die experimentellen Volu-
menkraftdaten angenähert.
Die Ergebnisse der Modellierung werden anhand ihrer Übereinstimmung mit den exper-
imentellen Daten validiert. Dabei werden die räumliche Verteilung der Volumenkräfte,
als auch ihre phasengemittelten sowie phasenaufgelösten integralen Werte verglichen. Ein
weiteres Kriterium für die Güte des Modells ist die physikalische Plausibilität der Ergiebig-
keiten der Potentiale. Ausgehend von einem Grundzustand werden verschiedene nu-
merische Konfigurationen des Modells sowie die dazugehörigen Ergebnisse vorgestellt.
Bereits der Grundzustand deutet stark auf die Gültigkeit des entwickelten Ansatzes hin,
insbesondere im Hinblick auf die phasenaufgelösten integralen Volumenkraftwerte. Ein
Beweis des Zusammenhangs zwischen der Verteilung der Volumenkraftpotentiale und der
Verteilung der geladenen Teilchen im Plasma ist im Laufe zukünftiger Weiterentwicklungen
des Modells zu erwarten. Dies könnte zu einem erweiterten Modell führen, das unabhängig
von experimentellen Daten ist. Abschließend wird das neue Modell mit den bestehenden
Modellierungsansätzen von Shyy et al. [28], Suzen et al. [31] und Maden et al. [23]
verglichen, dabei besticht es durch die Fähigkeit, beide Komponenten der Volumenkräfte
phasenaufgelöst und mit zufriedenstellender Genauigkeit darzustellen.
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1. Introduction

Within the past decades the influence of air-based logistics on global climate change have
begun to gain importance. Inter alia, the necessity of reducing the negative impact of
aviation on the global climate is driven by the foresight of future generations characterized
by growth of population and increasing globalization.
Regardless of the specific form of drive technology, a key towards more energy-efficient
flight is the reduction of drag that is induced in the boundary layer of the aircraft surface.
In addition and especially when regarding future performance improvements, including
higher ascent rates and larger end-speeds, it is essential to avoid so called stall effects
on the airfoil. Stall occurs when the flow is not able to follow the surface and detaches
instead, resulting in the interruption of momentum transfer, the increase of drag and the
decrease of lift.
Throughout the history of aerodynamics different methods of avoiding stall effects on air-
foils have been studied. Three main effects can be manipulated: laminar-to-turbulent
transition, flow separation and induction of turbulence [24]. In order to regulate these
effects, methods of active flow control as mechanical flaps or synthetic wall jets are applied
on a large scale. They show clear advantages over passive flow control methods like delta
shaped airfoils or vortex generators, as those cause a further increase of drag and can not
be specifically activated when needed, as for take-off and landing for instance [10].
In the beginning of the 21st century researchers found promising results in the application
of non-thermal plasma discharge actuators for active boundary layer flow control. The
AC-driven dielectric barrier discharge (DBD) actuators consist of two electrodes, which
can both be integrated into the airfoil. One is exposed to the surface, the other is located
slightly downstream and is embedded into a dielectric sheet to inhibit a direct discharge.
Ions are generated and accelerated by the strong electric field between the electrodes and
induce momentum in the surrounding gas, resulting in a flow field with velocities up to
around 10 m/s [2, 15, 24].
The essential advantage this active flow control method has over prior ones is the mini-
mal mechanical impact on the shape of the airfoils, as the electrodes of the actuator have
a nearly negligible height or can be integrated into the surface of the airfoil. They are
rather easy to manufacture, operate with relatively low power consumption, exhibit high
frequency responses and have no moving parts. On the other hand, precise flow induction
is challenging and becomes even more difficult for higher Reynolds numbers as compiled
by Kotsonis [15]. In addition, the high voltages applied for the ionization of the gas and
acceleration of ions require a high operation stability due to safety considerations.
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2 1. Introduction

1.1. Motivation

To improve the operation stability and thus leading to a reliable control of the DBD actua-
tor, its modes of action must be understood. For analyses independent from experimental
examinations, the effects of the plasma actuator are integrated into computational fluid
dynamics (CFD) simulations. This is achieved with boundary conditions in form of body
forces. There have been several approaches to modeling these body forces generated by
the DBD:
Shyy et al. [28] found a simplistic approach that is capable of convincing computations
of the integral and phase averaged body force, but is not able to resolve its spatial dis-
tribution. A more physical model by Suzen et al. [31] computes the body forces with an
estimation of the external electric field and location of charged particles. Yet the corre-
sponding CFD simulations of both models generate unsatisfactory results. A more recent
and solely empirical model was presented by Maden et al. [23]. They found a mathemat-
ical description of the phase-averaged body forces in horizontal direction that is able to
resolve the induced velocity profile in CFD simulations. Nevertheless, its applicability on
other actuator configurations is limited.
Above all, DBD actuators are driven by AC and Kuhnhenn et al. [19] confirmed a highly
phase-dependent behavior of the body forces with PIV measurements. All previously
mentioned models are focused on phase-averaged body forces and are therefore not able
to compute the phase-resolved body forces at all, or only to some extent. Summariz-
ing, a phase-resolved model of the body force is needed for an accurate phase-resolved
computation of the flow field generated by a DBD plasma actuator.

1.2. Objective

The objective of this thesis is the development of a new empirical phase-resolved model of
the body forces generated by the plasma actuator that can be used as boundary conditions
in CFD simulations. To achieve this, a new approach based on the analogies of fluid
dynamics and electrostatic fields is introduced and discussed. The new model will be able
to represent the phase-resolved body forces based on PIV (Particle-Image Velocimetry)
measurements by Hehner et al. [12, 13].
It will then be compared to former models by Shyy et al. [28], Suzen et al. [31], as well
as Maden et al. [23] in order to estimate its performance in further CFD simulations.

1.3. Thesis Outline

First, the principles of plasma discharge are described. For the following presentation of
the new model, potential theory is introduced in an electrostatic context, as well as in a
fluid dynamic one. A brief outline describes the electrohydrodynamic link between both
scientific fields. With this background the working principles of DBD plasma actuators
are characterized up to first estimations of its phase-resolved behavior. Subsequently,
the modeling approaches mentioned before are elucidated and evaluated. As the PIV
measurements by Hehner et al. [12, 13] provide the data for the new empirical model,
their experimental setup is presented briefly and the determination of body forces from
velocity fields is discussed.
Next, the new empirical model is introduced. Its rationale, implementation as well as the
fitting to the experimental data is described and different configurations of the model are
shown and discussed.
Finally, the strengths of the new model are highlighted and brought into context to the
phase-resolved distribution of free charges. For further classification, the new model is
compared to the former approaches mentioned before. As the new model opens up vast
opportunities for further examinations, a detailed outlook for future research topics is
given.

2



2. Theoretical Background

Following, the theoretical background of the thesis is highlighted. A brief introduction
in the vast field of plasmas leads towards the discharge effects that cause the induction
of ionic winds. Subsequently potential theory is introduced the context of fluid dynamics
as well as electrostatics. The field of electrohydrodynamics does not provide a lot of
literature, hence only a brief introduction into the topic is given. This leads towards the
description of the DBD plasma actuator. It is focused on the electric and phase-resolved
characteristics of the discharge. Finally, three modeling approaches are introduced and
discussed thoroughly as their methods and results will be compared to the new model.

Note that in this thesis two terms are used that are worth clarifying beforehand. The
first one is topography with a meaning similar to its use in geography. Here, it describes
the spatial distribution of body forces. The terminology results from the 3D view of the
body force field, where regions of high body forces are displayed as elevations and low body
forces similar to a vale. It was introduced to avoid confusion with the term ”distribution of
body force potentials”, that refers to the exact position of the potentials. The second term
is potential field. Potentials are defined as scalar field, as will be introduced. Sometimes
its gradient field is named ”potential field”, but here the term refers to scalar values in the
numerical grid that are the result of superimposed potentials.

A second annotation concerns the notation of the direction of vectorial values. In this
thesis capital letters (X and Y , mostly superscripted) refer to the respective direction
vector. This will improve the distinction against location vectors in the coordinate system
(lower letters x and y).

2.1. Physics of Plasmas

The word plasma describes matter of partly or fully ionized gases. Besides gaseous, liquid
and solid, plasma is commonly referred to the fourth state of matter. It is described by
its kinetic temperature T and the density of charged particles n. The kinetic temperature
T is linked to the charge of an electron temperature T ′ by Boltzman’s constant k and the
electron charge e:

kT = eT ′ (2.1)

Hence, an elementary charge in a potential difference of n·1 V (means with a kinetic energy
of n ·1 eV) refers to a kinetic temperature of n ·11 604 K according to the fraction k/e [16].
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4 2. Theoretical Background

This leads to an important classification of plasmas into equilibrium and non-equilibrium
plasmas. In an equilibrium plasma all electrons, ions and neutrals have the same kinetic
temperature Te = Ti = Tn. In a non-equilibrium plasma the electrons have a kinetic energy
in the range of 1 to 10 eV(equals 1 to 10 times 11 604 K) whereas the temperature of ions
and neutrals stays approximately the same as the ambient temperature: Ti ≈ Tn ≈ 300 K
[16].

Another important characterization of plasmas is the degree of ionization α. It is defined
by the charge density of ions ni and neutrals nn:

α =
ni

nn + ni
(2.2)

Due to random motions of particles in the plasma, collisions happen with the exchange of
momentum (respectively kinetic temperature). In the presence of an uniform electric field
~E, these random collisions are superimposed by a systematic motion due to the direction
of the field. This superimposed motion is known as drift, and is described by the drift
velocity ~vd. The sign of the velocity depends on the charge of the particle, m describes
the mass of the particle and νm the frequency of collisions.

~vd = ± e

mνm

~E (2.3)

For a better understanding of the discharge principles in plasmas, we take a look at a
nearly evacuated tube that contains two electrodes facing each other. By applying the
voltage Vsupply, a uniform electric field ~E builds up between the electrodes.

VsupplyR

V
I

Figure 2.1.: An evacuated tube as a simplified model for the understanding of plasma
discharge (based on Francis [9]).

The DBD actuator described later is operated under atmospheric pressure and driven by
AC in contrary to the DC in the discharge tube. Furthermore, the electrodes do not face
each other as in fig. 2.1 but mounted in one plain on a bench to create a surface discharge.
The main difference on a molecular basis between discharges in low and ambient pressure
is the mean free path length of particles, which is larger at low pressure. This influences
the frequency of collisions between particles νm and therefore the particles are decelerated
less in low pressure. Nevertheless the behavior of the electric current and the voltage in
the described setup are widely studied and are qualitatively comparable to the discharge
that is examined in this work.
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2.1. Physics of Plasmas 5

Figure 2.2.: Voltage versus current for DC discharges at low pressure based on Roth [25]
and compiled by Kriegseis [16]

.

At low, negligible voltages the ions in the gas originate solely from background radiation.
Up to point B, these ions drift towards the electrodes. The electric current stays the same
between B and C, as only the stated ions in the gas are moved, relating to the ionization
rate by background radiation.

Beyond point C, the electric field provides enough energy for these electrons to ionize other
atoms as they collide. These collisions release new electrons that are accelerated and cause
new collisions themselves. This ”snowball effect” leads to a non-linear relation between
voltage and current and is the main mechanism in the so called Townsend regime (C-E).
Up until point E, all ions in the gas (with exception of those generated in the snowball
effect) originate from background radiation, making the discharge non-self-sustaining. For
the sake of completeness is it said that a special form of discharge can occur at sharp edges
of the electrodes. The local electric field becomes particularly high and causes corona-
discharges. For specific geometries of the electrodes at ambient pressure, this effects can
lead to a behavior as indicated by the dashed line in fig. 2.2.

At point E the electrical breakdown voltage of the gas is reached, causing the resistance
of the gas to decrease dramatically. The current increases and the voltage drops to point
F. Following, the plasma covers the cathode and the current increases independently from
the voltage. Thus the voltage has to increase significantly up to reach point H. Beginning
from F the electric field is strong enough to ionize the gas. This glow discharge is not
longer depending on the background radiation and is therefore called self-sustaining. Once
established, the glow discharge maintains even for a slightly reduced current and therefore
shows the hysteresis indicated by point F’

For increasing currents, the electrodes are heated up by Joule heating and additionally
to the effects described before, electrons are emitted from the electrodes by thermionic
emission. The current increases due to the additional electrons and visible discharge arcs
are formed, leading to dramatic voltage drops [11].

5



6 2. Theoretical Background

Due to collisions in the gas, the atoms are excited and then go back to ground state under
the emission of light. As the name ”glow regime” indicates, around point E the emitted
light gets visible by naked eye can be seen in fig. 2.6.

Ionic Wind

Up until now, the detailed mechanisms that cause ionic winds are not yet understood. In
accordance to the drift velocity mentioned before, the ions and electrons are accelerated in
the discharge. By transferring momentum to neutral particles, they create a so called ”ionic
wind”. Because of further collisions between neutral particles the flow field propagates even
to regions that are not affected by the discharge. Although the electrons reach much higher
velocities than the ions, they are not able to transfer a significant amount of momentum
to the neutral particles due to their small mass. Yet the velocity of ions can reach up to
a few thousand m/s according to Moreau [24].

The principle directions of the ionic wind around a surface discharge is shown in fig. 2.3.
At the upstream side, the surrounding air is sucked towards the discharge and accelerated
nearly parallel to the surface. This accelerated flow is referred to as the wall jet.

HV

Figure 2.3.: Flow directions around the
discharge without external
flow

HV

Figure 2.4.: Boundary layer manipula-
tion of an external flow field
through discharge

Figure 2.4 sketches how the boundary layer of an external flow field can be manipulated.
The upstream flow shows the well-known boundary layer that is formed to viscous effects
close to the wall. Due to the wall jet, this layer is manipulated, even outside the bounds
of the discharge.

2.2. Potential Theory in Fluid Dynamics

The introduction of a potential-based theory was found to be a valid method of describing
certain phenomena in fluid dynamics, for example the flow around solid objects [29]. For
incompressible flows potential theory is an exact solution to the Navier-Stokes equations.
Yet this solution is mostly of theoretical nature as potential theory is not able to describe
friction effects. To compensate this lack, the combination of potential and boundary layer
theory was found to show good approximations for real-life applications.
The essence of potential theory states that a flow can be described by overlaying single
velocity potentials φ. Their gradient describes the velocity field as shown in equation 2.4.

~u = −∇φ (2.4)

Inter alia, these potentials can describe so called sources and sinks. A potential sink
absorbs flow in one point. In contrast, source describes a point of emerging flow. A quite
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2.2. Potential Theory in Fluid Dynamics 7

intuitive analogy is shown in 2.5 by comparison with a straw, through which a fluid is
sucked or expelled. Comparable to a potential sink, the fluid is sucked symmetrically to
the orifice of the straw and absorbed. Unfortunately the opposite flow direction, with the
straw acting as source, is not feasible in reality.

Figure 2.5.: Analogy of a source and sink in fluid dynamics to the orifice of a straw. While
the suction of fluid is comparable to a sink, the expelling of fluid does not
resemble a source, adapted from Spurk and Aksel [29]

Similar analogies exist in electrostatics and electrodynamics as will be described in sec-
tion 2.3, but for simplification reasons this chapter will refer to fluid dynamics. When
referring to electrostatics, the potentials will be named electric potentials.

There are two main mathematical formulations for a sink that are applied and compared
in this thesis: φ = 1/r for a single point sink and φ = ln r for a line sink. These two
formulations will be discussed graphically in the context of the corresponding modeling
results in chapter 5.1.3. For easier numerical handling a third mathematical formulation
one was evaluated: φ = exp (−r2). As later the logarithm-based formulation will stand
out, the characteristics of potentials will be explained with this example:

The decay of a potential is described by a magnitude M and the distance r from the center
of potential.

φ =
M

2π
ln r (2.5)

Due to the nature of the logarithm, the formulation in equation 2.5 describes a sink. A
simple multiplication with −1 results in the equivalent source. The potential at the origin
of the sink (r = 0) is not defined and therefore a singular point. Supported by the analogy
of the straw, it is obvious how the sink violates the continuity equation. For mathematical
applicability, the singular point is therefore usually located outside of the interrogation
area.
To get a description of the flow that is absorbed by the sink, the magnitude M is defined
as the flow that passes through a sphere around the sink, defined with the radius r and
the surface As.

M =

∫∫
As

~u · ~ndAs =

∫∫
As

∂φ

∂r
· ~ndAs (2.6)

The magnitude M is independent from the radius, as the continuity equation is only
violated by the singular point (r = 0).

7



8 2. Theoretical Background

2.3. Electrical and Electrohydrodynamical Background

The described boundary-layer flow originates from electrical forces that interact electro-
hydrodynamically with the fluid. Following, these properties will be outlined.

2.3.1. Electrostatics

The electric potential of a single point charge Q (located at the origin of the coordinate
system) at a distance r from the charge is described with the permittivity of vacuum ε0
by

φ(r) =
1

4πε0

Q

|r|
. (2.7)

By definition and resulting from equation 2.7 a negative charge leads to a negative potential
and vice versa. For multiple charges qk, the local electric potential φ with the distance r
can be expressed by the sum of the single charges:

φ =
1

4πε0

∑ qk
|r − ri|

. (2.8)

The potential difference between two points is called voltage.
The presence of at least one charge forms a vector field called the electric field. The electric
field ~E is defined by the electrostatic force ~Fe acting on a hypothetical small test charge q.
Also the electric field can be described by the negative gradient of the electric potential.

~E =
~Fe

q
= −∇φ (2.9)

2.3.2. Electrohydrodynamics

The barely investigated field of electrohydrodynamics (EHD) deals with the dynamics of
electrically charged and neutral fluids and their interactions with electric fields. Most
assumptions can only be made for very dilute fluids, where a single charged molecule is
not affected by the field generated by other molecules, only by the applied external electric
field. In real life applications, the generation and decay of charges and their interaction has
to be taken into account. Nevertheless, Landau and Lifshitz [20] found an analogy that was
developed further by Castellanos [3]. They derive the body force generated by an electric
field into a fluid with the analogy of a parallel plate capacitor. The fluid is confined within
the plates. The distance between the plates is increased marginally at constant potential
of the electrodes, resulting in a change of the electric field. This electric change is brought
into the fluid as mechanical stress due to the expansion. With the electric field ~E and
the displacement vector ~D, this change of a thermodynamic potential F̃ in relation to the
thermodynamic potential in the absence of the electric field F0 can be expressed as:

δF̃ = δF0 − ~D · δ ~E (2.10)

Applying Maxwell’s equations, Gauss theorem and mass conservation, an isotherm process
leads to the relation of the body force ~fb to the electric field ~E:

~fb = qc
~E − 1

2
E2∇ε+∇pst (2.11)

8



2.4. DBD Actuators 9

The first term containing the charge density qc is called the Coulomb force and usually
dominates the body force as its the strongest EHD force term. The dielectric force 1

2E
2∇ε

describes the force exerted on a non-homogeneous dielectric fluid by an electric field and
can be neglected if the AC period is longer than the charge relaxation time. The last term
refers to the electrostrictive force with the electrostrictive pressure pst = (1/2)εaE2 with
the permittivity ε. It is treated as a modification to the fluid pressure and can be neglected
for the assumption of an isobaric discharge. This leads to the electrohydrodynamic link
between fluid mechanical body forces and the electric field:

~fb = qc
~E (2.12)

This relation is equivalent to the definition of the electric field in equation 2.9 and there-
fore indicates the accordance of the electric field and body force. Castellanos does not
comment on this relation, but it can be estimated that the direct equation of electric and
mechanic force is the result of gross simplifications.
Even disregarding this contradiction, equation 2.12 clarifies the difficulties of the deter-
mination of body forces: It calculates the influence of the electric field on a single charge
while this charge is also part of the electric field itself.

2.4. DBD Actuators

Using ionic winds to manipulate the boundary layer of a flow field was first mentioned in
the 1990s by researchers from the University of Poitiers in France and the University of
Buenos Aires (Argentina). Subsequently, the first group to establish a stable surface DBD
was directed by Roth in the beginning of the 2000s at the University of Tennessee (USA),
as summed up by Moreau [24].

The actuator consists of two electrodes with an applied electrical potential difference in
orders of kV. The electrodes are separated by a dielectric sheet to inhibit direct discharge
and therefore the actuator is driven by AC with a frequency up to a hundreds of kHz.
Figure 2.6 shows a photograph of a DBD actuator where the discharge area glows in a
paint lilac.

Figure 2.6.: Photograph of DBD discharge recorded by Maden et al. [21]

Although the boundary layer manipulation resulting from DBD actuators has already
proven its functionality in several studies (e.g. [18, 24]), the phase-resolved mechanisms of
charge distribution and momentum transfer still has to be investigated. Nevertheless, sev-
eral electrical characteristics of the actuator have been observed that lead to an estimation
of the phase-resoved charge distribution.

9



10 2. Theoretical Background

Electrical Characteristics of a DBD Plasma Actuator

Kriegseis [16] investigated the DBD actuator regarding its discharge characteristics and
describes the relation between the charge of the electrodes (Q) and the applied voltage
(V ) as shown in fig. 2.7. This Q-V cyclogram is called a Lissajous figure and will be a
base for further explanations of the DBD actuator as well as the determination of later
examination phases in the cycle. The gray enclosed area is the electrical power of the
actuator.

Figure 2.7.: Lissajous figure of a DBD plasma discharge found by [16].

The actuator capacitance Ci for discrete points i is displayed in the Lissajous figure as
Q-V-slope and can be approximated as following:

C(ti) =
∆Q

∆V

∣∣∣∣
i

(2.13)

As already marked in 2.7, two characteristic capacitances of the DBD actuator can be
distinguished: the cold capacitance C0 and the effective capacitance Ceff . In phases of cold
capacitance, the actuator behaves like a pure passive component (the value of C0 remained
the same for a simple multimeter measurement of an actuator that was disconnected from
the electric supply). For phases before the maximum voltage is reached, the capacitance
reaches maximum values of Ceff . Therefore Kriegseis [16] adapts the theory of Enloe et al.
[6], stating that the free charges generated by the actuator act similar to an enlargement of
the exposed electrode. This leads to an increased capacitance of the actuator as sketched
in fig. 2.8.

ΔL

Figure 2.8.: Scheme of the virtual, adapted from Steffes [30]. The free charges on the
actuator surface behave similar to a downstream enlargement of the exposed
electrode by the length ∆L

10



2.4. DBD Actuators 11

The effect is displayed in fig. 2.9 for multiple AC-phases. Here the regions of cold and ef-
fective capacitance are marked in gray. Starting from the passive actuator, the capacitance
rises up to the effective value. Briefly after the maximum voltage, the virtual electrode
collapses and the capacitance drops again to the value of C0. The peaks towards infinitive
values are due to the discrete calculation as shown in eq. 2.13. Note how the values of Ceff

are slightly higher for an applied negative voltage than for positive voltages, indicating
different effects for each maximum voltage.

Figure 2.9.: Voltage and capacitance measurements of a DBD by Kriegseis [16].

Though observations as presented before result from effects of free charges, their exact
spatial distribution in relation to the phase of the voltage supply is not yet understood.
Intricate and highly dynamic interactions between the alternating electric field and the
charged particles take place. In addition, the typical spatial and temporal scales of the
discharge are 4-8 orders of magnitude smaller than those of the resulting airflow [16]. The
main impacts which affect the distribution of charges are:

� The applied voltage and therefore the electric field

� The virtual length of electrodes

� Repulsion between electrical charges

� The inertia of ions compared to the inertia of electrons

� Emission and recombination of electrons on exposed electrode

� Emission and recombination of electrons with gas molecules

These interactions hamper a phase-resolved physical modeling of the charge distribution.
Nevertheless, a possible sequence of charge distributions will be described as suggested by
Steffes [30]. It is reduced to its main effects for simplification.

Negative Exposed Electrode

For an easier understanding of the discharge principles the actuator surface is presumed
without free charges. In reality there will still be few charges on the dielectric originating
from former half-cycle.
The major ionization of air molecules is located at the downstream edge of the exposed
electrode, as the electric field reaches its maximum at this point of minimal distance be-
tween the electrodes. Some of the liberated electrons will react with air molecules, resulting

11



12 2. Theoretical Background

in negatively charged ions with a mass comparable to the mass of the positive ions. The
charged ions are accelerated by the electric field as sketched in fig. 2.10. Collisions with
neutral molecules result in a downstream facing force while the momentum transferred by
ions is higher than by electrons due to their mass differences.

V

t

Figure 2.10.: Generated ions and their direction of movement in relation to the applied
voltage. For simplification reasons the electrons and negative ions are sum-
marized. Adapted from Steffes [30].

Positively charged ions recombine on the surface of the exposed, negatively charged elec-
trode and are neutralized. Negative ions and electrons accumulate on top of the dielectric
thus they can not be neutralized (fig. 2.11). These resulting negative charges act like an
extension to the exposed electrode. According to the previous chapter, this effect is called
a ”virtual electrode” [16]. The electric field strength increases at the downstream end of
the virtual electrode until new free charges are generated. The following movements of
the charged particles are comparable to those at the beginning of the half-cycle. These
effects take place until they reach the end of the bottom electrode, or in the present case
of an AC-voltage until the electric field strength does no longer support the generation of
charges.

V

t

V

Figure 2.11.: Ions of the same charge as the exposed electrode accumulate on the dielectric
and therefore act similar to a prolonged electrode. The electric field between
these accumulated charges and the embedded electrode generates new charges
that are accelerated. Adapted from Steffes [30].

At this point the charges at the surface start to degrade. This process is not yet under-
stood. It is suggested that recombination with positive ions could neutralize the electrons.
Another possibility is that with decreasing voltage, the electric potential of the upper elec-
trode drops under the potential of the charges on the surface. Thus, the charges would
start moving back towards the exposed electrode. Depending on the velocity and magni-
tude of these effects in relation to the frequency of the voltage there could still be negative
charges on the surface at the beginning of the positive half-cycle.

Positive Exposed Electrode

In the case of remaining negative charges on the dielectric, these charges influence the dis-
charge behavior particularly at the beginning of the positive half-cycle. They can initiate
the generation of free charges that move towards the upper electrode. These avalanches due
to the remaining electrons of the negative half-cycle occur additionally to the avalanches

12



2.5. Modeling Approaches 13

due to background ionization. Therefore the charge density and resulting force can be
larger than in the negative half-cycle.

Apart from the avalanches due to remaining charges the discharge behavior of the actuator
in the positive half-cycle is similar to the one in the negative half-cycle: Positive ions and
electrons are generated, some of the electrons might ionize air molecules to negative ions.
First, the negative charges move towards the upper electrode and have the chance to
recombine and neutralize. Following the positive charges move in the direction of the
bottom electrode where they accumulate, prolonging the upper electrode into a positively
charged virtual electrode.

Enloe et al. [7] found quantitative proof of a different amount of induced momentum by
the negative and positive voltage. This results from the different average mass of positive
and negative charges, as the negative ones are partly electrons. A description of their
investigations will be given in the context of the phase-resolved body forces in chapter 3.3.

2.5. Modeling Approaches

The flow field induced by the actuator is described with the continuity equation, the
two-dimensional Navier–Stokes equations and the energy transport equation for a steady
incompressible flow. The continuity equation has to be solved for every species in the flow
(the variable i corresponds to the species: electrons, ions or neutral particles). The variable
Ri describes the rate of production and therefore contains the chemical transformation be-
tween species. For low-energy non-thermal plasmas the energy transport equation is often
neglected to reduce calculation complexity and is therefore not listed here.

∂ρi
∂t

+∇ · ρi ~ui = Ri (2.14)

ρ(
∂~u

∂t
+ ~u∇~u) = −∇p+∇τ + ~f (2.15)

The effects of the discharge are brought into the Navier-Stokes equations by the body force
term. There have been several physical approaches to estimate this electroyhydrodynamic
force for further applications in CFD simulations. This is one of the main causes for the
difficulties of modeling the discharge on a physical basis.

In the modeling approaches presented here the electrohydrodynamic force is estimated to
be equal to the Coulomb force with the charge density ρc as shown in equation 2.12. Yet,
the local charge densities are not known for the phase-averaged nor for the phase-resolved
field. A phase-resolved and qualitative estimation of charge densities was given by Steffes
[30] as described in section 2.4. Nevertheless, the Coulomb force approximation proved to
show first reasonable results, as will be shown in the description of the single approaches,
and is in accordance to its dominance in equation 2.11.

2.5.1. Model by Shyy et al.

The first model described here was presented by Shyy et al. [28] and Jayaraman et al. [14].
The phase-averaged body force field is derived from a linear decrease of the electric field
strength from a maximum value at the lower downstream corner of the exposed electrode
in both spatial directions.

13



14 2. Theoretical Background

While the authors derive the wall shear stress and velocities out of the computed body
forces with a numerical model, the present thesis focuses on the model of the body forces.
The reconstruction of the resulting flow field was not possible in the time frame of this
thesis.

The body force f i is calculated by the combination of the local electric field strength Ei,
charge density of electrons ρc and the elemental charge ec. The charge density is simplified
by setting the value of 1.0× 1011 1/cm3.

fX = EXρcec

fY = EY ρcec

(2.16)

Although the electrons scarcely contribute to the momentum transfer of the plasma to
the surrounding air due to their small mass, the electric field for the present calculations
is formed by electrons. The maximum electric field strength E0 is defined by the voltage
amplitude applied to the upper electrode Vmax divided by the horizontal distance d =
0.25 mm between the electrodes.

E0 =
Vmax

d
(2.17)

The model by Shyy suggests a linear decrease of the maximum electric field strength in
both spacial directions:

E(x, y) = E0 − k1x− k2y (2.18)

The coefficient of decrease is constant for each direction and is calculated with the maxi-
mum electric field strength E0, the breakdown field strength Eb and the geometry factors
a and b.

k1 =
E0 − Eb

b
, k2 =

E0 − Eb

a
(2.19)

These coefficients are used to calculate the electric field in both directions:

EX(x, y) =
E(x, y)k2√
k2

1 + k2
2

, EY (x, y) =
E(x, y)k1√
k2

1 + k2
2

(2.20)

For discharge formation, the local electric field strength E must exceed the breakdown
field strength Eb. The spatial boundary of this discharge region is estimated to resemble a
triangular shape with a height of a = 1.5 mm and b = 3 mm as shown in 2.12. The values
of a and b is estimated from a picture of the plasma discharge [26].

14
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b

Figure 2.12.: Boundaries of the area where the local electric field strength exceeds the
breakdown field strength Eb, based on Shyy et al. [28].

In later applications, a numerical model of the body force field should be able to estimate
the behavior of the actuator for varying configurations. Yet, the investigations of Kriegseis
(2016) show a strong dependency of the actuation frequency and voltage on the spatial
boundary of the discharge area. Thus, the geometry factors would have to be estimated
for each configuration.

Figure 2.13 displays the body force field as suggested by Shyy. The maximum body force is
located at the downstream edge of the exposed electrode and decays in a triangular shape.
Already on first sight, the extreme simplification of the experimental phase-averaged body
force field (as in fig. 2.18a) is visible.
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Figure 2.13.: Body forces, computation based on the model by Shyy et al. [28].

Nevertheless, for an actuation with 7 kV, the integral body force is computed with a
relative error of about 20 % compared to experimental results according to Jayaraman et
al. [14]. For lower actuation voltages the relative error decreases. Considering the rather
rudimentary approach, the model by Shyy and Jayaraman offers remarkable accuracy.

2.5.2. Model by Suzen et al.

Suzen and his team [32] presented a model that is closer to physical reality. The body
force is determined with applying electrostatic potential theory (eq.2.9) into the electro-
hydrodynamic link between the body force and the electric field (eq.2.12):

~f = −ρc∇Φ (2.21)
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16 2. Theoretical Background

The potential Φ is separated in two parts: The external electric field generated by the
electrodes (φ), and the other one resulting from the ionized particles in the fluid (ϕ):

Φ = φ+ ϕ (2.22)

The first part of the equation is the potential resulting from the external electric field can
be written with the relative permittivity ε = εr · ε0 as following.

∇ · (εr∇φ) = 0 (2.23)

The boundary conditions to solve these equations for the numeric are shown in fig. 2.14a.
The exposed electrode has a given potential φ(t) that depends on the given voltage. The
potential of the downstream electrode is set to zero. The permittivity of the respective
medium distinguishes air (εr = 1.0) from the dielectric material(εr = 2.7). At the dielectric-
air interface the permittivity is set to the mean of both adjacent values.

(a) Boundary conditions for computation of the
external electric field

(b) Boundary conditions for computation of the
electric field generated by free charges ρc

Figure 2.14.: Boundary conditions for the determination of the potential φ resulting from
the external electric field and ϕ describing the influence of the charged par-
ticles in the field, according to Suzen et al. [31]

The potential due to free ionized particles is described by

∇ · (εr∇ϕ) = − ρc

λ2
d

(2.24)

The modeling of the potential of an electrode is possible as described above, yet local charge
densities (ρc in the upper equation) and the Debye length λd are unknown. Following
experimental observations, Suzen assumes that the free charges behave similar to charges
located in the embedded electrode. Therefore he set up the boundary conditions to solve
eq. 2.24 as shown in fig. 2.16 with the time-dependent value ρc(t) = ρmax

c f(t).

The value of ρmax
c as well als λd are calibrated with experimental PIV data. Therefore the

value was fitted in such a way that the flow pattern and maximum velocity of the model was
consistent to the experiment. It should be noted that Suzen refers to an actuator powered
by a square wave with a frequency of 4.5 kHz and an amplitude of 5 kV. He observed a
maximum velocity of approximately 1 m/s, leading to a value of ρmax

c = 0.0075 C/m3 and
λd = 0.000 17 m. f(t) was synchronized with the variation of the applied voltage.

16



2.5. Modeling Approaches 17

The results of the modeling process can be seen in fig. 2.15 to 2.17. As predetermined by
the boundary conditions and illustrated in fig. 2.15, the highest potential is located at the
exposed electrode, dropping downstream until it reaches zero at the embedded electrode.
The steepest decrease of potential (and hence highest electrical field strength) is located
in between electrodes, indicating high body forces. Furthermore the flow streamlines show
the suction of surrounding air as well as the acceleration into a wall jet as expected. On
the right hand side the density of free charges is resolved according to equation 2.24. As
Suzen models the free charges located on the embedded electrodes, the maximum charge
density ρmax

c is not visible.

Figure 2.15.: Computed electric potential
and flow streamlines induced
by the external electric field
according to Suzen et al. [31]

Figure 2.16.: Computed charge density due
to free charges according to
Suzen et al. [31]

With the solutions illustrated above, the body force field is computed with equation 2.21
and is displayed in fig. 2.17. Here the magnitude of the body force shows a maximum at
the upstream edge of the embedded electrode. This is the region where both φ and ρc show
major changes and again Suzen observes a good accordance to experimental observations.

Figure 2.17.: Body force field, modeled by Suzen et al. [31]
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18 2. Theoretical Background

Suzen does not give a quantitative evaluation of his results. This hampers the direct
comparison to the other models.

2.5.3. Model by Maden et al.

Maden et al. [21, 23], was the first to develop a phase-averaged body force model on an
empirical basis. He refers to the PIV measurements by Kriegseis [16] at 12 kV and with
a frequency of 11 kHz. The body force field is derived out of the phase-averaged velocity
measurements via the Navier-Stokes equations as suggested by Wilke[33] and is shown in
fig. 2.18.

(a)

-1 0 1 2 3 4 5 6

x [mm]

0

1

2

3

y
[m

m
]

0

5

10

f
X

[k
N

/m
3
]

(b)

-1 0 1 2 3 4 5 6

x [mm]

0

1

2

3

y
[m

m
]

-1

0

1

f
Y

[k
N

/m
3
]

Figure 2.18.: The time-averaged body force field found, based on the experiment by Krieg-
seis [16]. The forces in x-direction are one order of magnitude larger than in
y-direction.

Maden developed a mathematical formulation that is able to approach the topography of
an experiment-based body force field. The body forces in vertical direction is neglected
(fY = 0), as the phase-averaged body forces horizontal direction (fX) are one magnitude
larger.

Equation 2.25 describes the value of every point of the body force field with the multipli-
cation of two independent equations X(x) and Y (y) with a variable c0.

f(x, y) = c0X(x)Y (y) (2.25)

A good accordance to the experimental data was found with following equations:

X(x) = (cx1x+ cx2x
3)e−cx3x(1 + tanh(cx5x− cx6)) (2.26)
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2.5. Modeling Approaches 19

Y (y) = (cy1y + cy2y
2)e−cy3·y

1
2 (2.27)

With all coefficients ci ∈ R and x, y ≥ 0.

Subsequently, all coefficients ci in 2.25, 2.26 and 2.27 are approximated to the experimental
data with a least-square fit. Thus, the phase-averaged body force field in x-direction can
be described by eight coefficients. Maden found an integral phase-averaged body force of
F/L = 25.45 mN/m with his model, compared to a value of F/L = 25.28 mN/m from the
PIV measurement. A surface plot of the empirical model is shown in fig. 2.19:
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Figure 2.19.: Body force field, based on the model by Maden et al. [21]

Although the topography of the model matches the experimental data fairly well and sets
a good benchmark for the integral body force, it shows clear deficits: The equations 2.26
and 2.27 are of pure mathematical nature, meaning they show no relation to the geometry
or operation parameters of the actuator. As will be displayed in 3.3, the topography of
the phase-resolved body force fields differs highly from the phase-averaged one. Hence
new equations X(x) and Y (y) have to be found, as well as a time-dependent equation to
describe each phase. In his PhD thesis, Maden provides the coefficients for a model of
the body force field investigated by Kriegseis[16]. During the reconstruction of the model
shown in fig. 2.19, some minor flaws of the model appeared: For example, the equations
X(x) and Y (y) are only defined for positive values of the coordinates x and y. As shown
in fig. 2.18a, the body force shows appearance also for negative x-values, meaning the
position of the model relative to the coordinate system has to be evaluated in retrospect.
Furthermore, the integral body force varies up to 10 % with the size of the grid cells that
it is based on.

2.5.4. Comparison of Existing Models

All described models aim for a formulation of the body force field generated by a plasma-
actuator that can be used as boundary conditions for CFD applications.

First, the models are discussed regarding their ability to describe phase-resolved and phase-
averaged body force fields:
Only the model by Suzen provides the possibility for a phase-resolved description. Yet the
according experiment was actuated with a square-wave AC voltage, so the usability for
sine-wave actuation is questionable. Suzen estimates a linear relation between the actua-
tion voltage and the magnitude of the electric field. This is in conflict to section 2.4, where
a highly non-linear phase-resolved behavior the actuator is described. For phase-averaging,
Shyy estimated that the discharge only acts for a small time during the cycle and reduced
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20 2. Theoretical Background

the integrated body force value proportional to this time fraction. Maden on the other
hand presented an empirical model that is fitted to experimental, phase-averaged body
forces. As the topography of the phase-averaged body force field differs strongly from the
phase-resolved fields, the equations suggested by Maden can not be applied to the phase-
resolved data.

A further focus is set on the computation the body forces in both spatial directions:
The phase-averaged body force in horizontal direction is clearly dominant compared to
the vertical one, hence the model by Maden neglects their influence and does not suggest
a modeling approach. Shyy computes vertical body forces, yet the results are half as high
as the horizontal body forces. We remember that the phase-averaged values in horizon-
tal direction are one magnitude higher. The model by Suzen should be able to resolve
the vertical direction, but the presented results only demonstrate the norm of both force
directions. As examined by Kuhnhenn et al. [19] and confirmed in chapter 3.3, the phase-
resolved body forces in horizontal and vertical direction are almost of the same order of
magnitude and therefore both have to be considered for a phase-resolved model.

The model by Maden is of solely empirical nature, so only the other two are assessed
regarding their physical plausibility:
As stated before, the model by Shyy calculates the maximum electric field on a physical
basis, yet the further model is a coarse simplification of the discharge behavior. Regarding
the model by Suzen, it should be noted that he centered the electric field originating from
free charges around the embedded electrode. This resolves a plausible electric field, but
it in contrary to a phenomenological explanation, as the charges are generated above the
surface and can not pass through it.

This thesis does not apply the body force field models in CFD simulations to compute the
velocity field. Instead, fig. 2.20 shows a comparison of the wall jets which Maden et al. [22]
simulated with the respective body force models. The result can be seen in fig. 2.20. Here,
the velocity profiles u(y) are displayed for different streamwise positions (the origin of the
coordinate system was set to the upper downstream corner of the exposed electrode). It
is obvious that the accuracy of the wall jet computation differs strongly for the shown
streamwise positions.
Though the model by Shyy was able to compute the integrated body force accurately, the
poor physical causality of the model is visible in the velocity profiles. In the discharge
region, the shape of the velocity profile does not resemble the experimental data, it even
generates a slight back flow at x = 3 mm and y = 2 mm. Yet, downstream of the discharge
it simulates the experimental data quite acceptably. This can be explained with the
accuracy of integral the body force in the discharge area that generates a mostly correct
velocity profile downstream of the plasma.
At x = 0 the model by Suzen results in velocity peak that is approximately twice the
value of the experimental data. For higher values of y, the modeled velocity decreases too
soon and undershoots the experimental velocity. Further downstream, the velocity profile
broadens a bit and therefore represents the experimental data better qualitatively, but the
maximal velocity values are not reached anymore. This can be explained with the modeled
body force maximum that is positioned further upstream and is confined horizontally. The
best accordance to the experimental data for all velocity profiles is archived with the model
by Maden. This is not surprising as the model is designed to reconstruct the body force
field for the given actuation setup as accurately as possible.
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Figure 2.20.: Comparison of the wall jet generated by a body force field according to the
different models. The line for ”new model” refers to the model by Maden et
al. [21, 23]. For ”Wilke”, the body forces were derived from the PIV velocity
data via the Navier-Stokes equations and for ”Albrecht” via the vorticity
equation. Summarized by Maden et al. [22].

Figure 2.20 proves the influence of the topography of the modeled body force field on the
simulated velocity field. The models by Shyy and Maden both compute acceptable phase-
averaged, integrated body force values, yet the model by Shyy does not simulate satisfying
velocity profiles. In future works the influence of the body force field topography has to
be examined, to lay down quantitative requirements for the topography of new body force
models.

The following table gives a summary of the different models, regarding the aspects that
were discussed before. In conclusion, none of the known model formulations fulfills all
requirements. Especially the lack of a phase-resolved model that is able to calculate both
dimensional components of the body force shows the necessity of a new modeling approach.
An evaluation of the new model is included in the last line for a complete overview.

model body force
integrated
and phase-
averaged

body force
topogra-

phy

physical
correctness

both
directions

velocity
profile

phase
resolution

Shyy " % % " % %

Suzen ? " " " " "

Maden " " % % " %

New Model " " " " ? "

Table 2.2.: Summary of the characteristics of the described body force models. Colored
marks indicate good performance, black marks sufficient one. Suzen does not
specify the value of the integrated, phase-averaged body force. For a better
comparison, the new model that is introduced in this thesis is listed as well.
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3. Experimental Setup

The empirical model that will be described later on is based on the data by Hehner et
al. ([12, 13]) For an improved understanding of this basis, their experimental setup will
be outlined. Subsequently, the derivation of body forces out of the velocity measurements
will be retraced and discussed.

3.1. DBD Actuator and PIV Setup

The experiment was set up in a blower-type wind tunnel at the Institute of Fluid Mechanics
at the KIT (Karlsruhe Institute of Technology). The plasma actuator was installed on a
flat plate that features an elliptic leading edge to minimize friction effects upstream of
the actuator. Both electrodes are made out of copper with an area of 2.5 x 10 mm2, and
the dielectric is composed of Kapton tape with a thickness of 0.3 mm. A high-voltage
generator (Minipuls 2, GBS Elektronik GmbH) supplies the actuator with a sinusoidal
waveform with peak-to-peak voltage of Vpp = 12 kV at a frequency of fac = 10 kHz.

z

Figure 3.1.: Sketch of the experimental setup in the test section according to Hehner et
al. [12, 13]. The displayed coordinate system will be referred to in all further
explanations.

The measurement points in relation to the discharge characteristics are displayed in fig. 3.2.
Therefore the slope of the voltage is plotted versus the charge of the actuator (solid black
line). The area within the Lissajous line describes the electrical power of the actuator.
The red line refers to the electric current along the slope. The first and third quarter of
the phase is dominated by high discharges as indicated by the peaks. In contrast the zones
of collapsed discharge are framed by dashed boxes. The yellow dots mark the points of
PIV-velocity measurements.
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24 3. Experimental Setup

Figure 3.2.: Electrical characteristics of the DBD plasma actuator, adapted from Hehner
et al. [12, 13].

The PIV high-speed system consists of a Nd:YLF dual-cavity laser (Quantronix Darwin
Duo) and a Photron Fastcam SA4 camera that is placed outside the test section. The
camera was equipped with a Nikon AF micro Nikkor 200 mm f/4D IF-ID lens, and an
extension of 108 mm total length was additionally applied, in order to simultaneously ob-
tain a suitable object distance and high spatial resolution. It was operated at f# = 8 and
imaged a field of view (FOV) of 9 × 4.5 mm2 yielding a spatial resolution of 114 px/mm.
The used coordinate system is sketched in fig. 3.1.
The flow was visualized with di-ethyl-hexylsebacat (DEHS) tracers, resulting in a Stokes
number of Stk ≤ 6.66× 10−2. For each PIV run 5400 image pairs were recorded, con-
verting into 225 image pairs per phase position. The repeatability of the experiments was
assured taking three independent PIV runs for each tested free stream velocity.
A multigrid/multipass approach processed the pictures, yielding a final interrogation win-
dow size of 32 × 16 px2 with overlaps of 50 %. The accuracy of the PIV-velocity fields
was evaluated with an uncertainty-quantification strategy, as reported by Sciaccitano and
Wieneke [27]. The strategy determines the uncertainty of the time-averaged velocity data
from the standard deviation of the velocity field, being computed with fluctuation compo-
nents and measurement errors. Individual analysis of the uncertainty associated to each
single PIV case with plasma actuation resulted in a maximum uncertainty of < 2 %.

3.2. Derivation of Body Forces

The components fi of body force field were derived from the velocity data with application
of the two-dimensional Navier-Stokes equations as described by Wilke [33] and applied by
Kuhnhenn et al. [19]:

fi = ρ
∂ui
∂t︸ ︷︷ ︸

time
dependency

+ ρuj
∂ui
∂xj︸ ︷︷ ︸

convection

−µ ∂2ui
∂xj∂xj︸ ︷︷ ︸
diffusion

(3.1)

As proposed by Wilke, the air is approximated as a Newtonian, incompressible fluid with
constant dynamic viscosity µ and negligible pressure gradient. The convection and dif-
fusion components of the force are calculated directly from the respective phase velocity
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3.3. Phase-Resolved Body Force Fields 25

ui(x, y, ϕ). It should be noted that the numeric derivation was computed with the gradient
function by Matlab that calculates central differences, resulting in a second-order error.
The time-dependent forces were approximated via central differences in dependence of the
phase step ∆ϕ between two measurements:

∂u(x, y, t)

∂t
≈ u(x, y, ϕ+ ∆ϕ)− u(x, y, ϕ−∆ϕ)

t(ϕ+ ∆ϕ)− t(ϕ−∆ϕ)
(3.2)

As equation 3.2 is a numeric approximation, its accuracy increases with a greater number
of distinguished phases. The body force fi(x, y, ϕ) integrated across the control volume
(CV) is not only assumed to be a good indicator of the quality of body force models (as
applied in section 2.5.4), but is also used to compare the phase-resolved influence of the
different terms in equation 3.1. As the CV approximately consists of a two-dimensional
sheet, the integral body force is described as integral body force F i(φ) per actuator length
L and will be abbreviated only as f iint:

fXint(ϕ) =
FX

int(ϕ)

L
=

∫∫
CV

fX(x, y, ϕ) dA = ∆x ·∆y ·
ymax∑

y=ymin

xmax∑
x=xmin

fX(x, y, ϕ)

fYint(ϕ) =
F Y

int(ϕ)

L
=

∫∫
CV

fY (x, y, ϕ) dA = ∆x ·∆y ·
ymax∑

y=ymin

xmax∑
x=xmin

fY (x, y, ϕ)

(3.3)

For the sake of completeness the latter part of the equations shows the discrete implemen-
tation of the integration for a grid with constant cell sizes of ∆x and ∆y.

Evaluations of the force components as shown in equation 3.1 have proved the clear dom-
inance of the time-dependent term, as it is several orders of magnitude greater as both
the convection and diffusion. In conclusion the model described later will be focused on
reproducing the phase-resolved body force fields.

3.3. Phase-Resolved Body Force Fields

The results of the body force computations are shown in fig. 3.3 and fig. 3.3. The underlying
PIV measurements can be found in the appendix: fig. A.1 and fig. A.2.
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Figure 3.3.: Phase resolved body force fields in horizontal direction (fX) by Hehner et al.
[12, 13].
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Figure 3.4.: Phase resolved body force fields in vertical direction (fY ) by Hehner et al.
[12, 13].

The body force fields were integrated as shown in eq. 3.3. The results are displayed in
fig. 3.5. These results are in accordance to the investigations by Enloe et al. [7]. He
divided the actuation phases in a forward- and a backward stroke (marked in fig. 3.5)
and found differences in their contribution to the jet velocity. He traced this effect back
to the ”self-induced drag” that counteracts the jet formation and is more powerful during
the backstroke. Yet the experiment by Enloe was only able to resolve the influence of the
horizontal jet or rather wall friction. Nevertheless the self-induced drag explains the higher
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3.3. Phase-Resolved Body Force Fields 27

values for positive integrated body forces than for negative ones in x-direction, leading to
a phase-averaged positive body force.
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Figure 3.5.: Phase-resolved integrated and phase-averaged body forces in both directions.
The body forces are based on experimental data by Hehner et al. [12, 13], the
distinction of backward and forward stroke is according to Enloe et al. [7].
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4. Empirical Body Force Modeling

In this chapter a new approach for an empirical model of the body forces originating from
dielectric barrier discharge will be described. First a rationale will introduce the concept of
body force potentials. Subsequently, the positioning of body force potentials is discussed,
which then leads towards the characterization of the potentials and their gradients. These
gradients are implemented in a system of linear equations which is approximated with a
least-square method.

4.1. Potential-Based Approach for Empirical Modeling

The idea of a body force model with the basis of positioning potentials originates from the
phase-resolved body force measurements by Hehner [12, 13] (figs. 3.3 and 3.4). At first
sight, it seems as if there are regions in the CV that act as a source, or sink, of body force.
These sources and sinks move and change their magnitude in dependence of the phase
progression. Thus, describing the body force field by evaluating the position and intensity
of a number of potentials appears evident.
As mentioned before, in fluid dynamics, the gradient of the velocity potential describes the
velocity field, while in electrostatics the gradient of the electric potential is the negative
electric field. The electric field is a value for the force generated by one charge multiplied
with another charge, acting on this first charge.
Hence, a body force potential is introduced, inspired both by the topology of the phase-
resolved body force measurements as well as the analogies to velocity and electric poten-
tials. In these scientific fields, the spatial components of the velocity (or electric field) is
described by the gradient of single, superimposed velocity (or electric) potentials. Follow-
ing this analogy, the gradient of the body force potential computes the spatial components
of the body force:

∇φ =

 fX

fY

 (4.1)

This means, the new model is centered around finding a spatial distribution of body
force potentials. This distribution aims to resemble the experimental body forces through
the gradient of the super positioned potentials. First, three different basic concepts are
evaluated with the position (x0(t), y0(t)) of the potentials in the CV. An additional variable
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30 4. Empirical Body Force Modeling

to describe the potential is its magnitude M(t) that will be introduced later. The concepts
are visualized through the example of the experimental body force in x-direction at the
phase 2π/12 field by Hehner on the left-hand side. Each of the right-hand side pictures
shows an estimation of the resulting potential positions and magnitudes.

1. φ(M(t), x0(t), y0(t)): The potentials in the numeric field that vary their x and y
position and magnitude M .
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2. φ(±M, x0(t), y0 = 0): The potentials with constant positive or negative magnitude
are located on the actuator surface (y = 0), but vary their x-position.
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3. φ(M(t), x0(t) = xk, y0 = 0): A number of kmax potentials are located on the
actuator surface equidistantly, comparable to pearls on a string, and only vary in
their magnitude. (k = 1, 2, 3...kmax)
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The introduced concepts demonstrate different advantages and disadvantages. Concept
(1) promises good accordance with the experimental data, as local body force maxima
and minima can be described throughout the CV. Nevertheless, it shows a lack of physi-
cal correctness as the force-generating, charged particles are not expected to exist in the
whole CV. Also, the gradient of a single potential has a shape that is displayed in fig. 4.2b,
meaning that the formation of a single ”maximum” at one point is not achievable without
generating a ”minimum” next to it. This impedes the intuitive positioning of potentials in
the field.
In a model closer to physical effects, the positions of charges and therefore their corre-
sponding potentials are expected to be located close to the electrodes. As a simplification
they are positioned directly on the actuator surface, as suggested by concept (2) and (3).
These concepts are expected to generate similar solutions. Yet, as will be shown in fig. 4.4,
the topography generated by the superposition of two gradients is highly dependent on
their distance. In order to minimize this difficulty, concept (3) was chosen. As the single
potential is only dependent on one variable (M), the concept is expected to show promis-
ing results, while the implementation is comparatively simple. In addition, this concept
highly reduces the complexity of the description of the body force topography. The whole
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4.2. Characteristics of Positioned Potentials 31

field can be determined only by a single potential line at the actuator surface.

4.2. Characteristics of Positioned Potentials

As mentioned in 2.2, there are different formulations for single point potentials. The ones
found in literature, φ = ln(r) and φ = 1/r show a singular point for r → 0, meaning
that the potential heads for infinity. This causes difficulties in the calculation. First, this
issue was circumvented by implementing the potential φ = exp (−r2) which does not have
a singular point. None the less, this Gaussian formulation was dismissed as it is not as
numerically stable as the other two and shows poorer results when comparing integral
body forces (as will be shown in 5.1.3).
To avoid numerical problems due to the singular nature of the logarithm and broken
rational function, the singular points were not set to the knots of the numerical grid but
insted into the gaps between the knots, as sketched in fig. 4.1. Thanks to this method,
the value of the potential and its gradient is decreased far enough to be computable at the
evaluated grid knots.

computational grid

unfavourable potential position
improved potential position

y

actuator

x

Figure 4.1.: Improved positioning of single point potentials to avoid computational errors
due to the singularity

Figure 4.2 shows the topology resulting in the CV by positioning a single potential as
well as its derivatives, in respect to both directions. Due to the high gradient of the
logarithm close to the singular point, the derivatives display values that are several orders
of magnitude higher than the potential itself on the same computation grid.
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Figure 4.2.: A single potential positioned in CV at x = 2 mm with both derivatives

The potentials described by this new model will be super positioned. To visualize the
effects that occur by overlaying the gradients of potentials, in fig. 4.3, potentials of the
same magnitude are superimposed for different distances in relation to the grid cell length
(∆x = 8.3× 10−2 mm).
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Figure 4.3.: The result of overlaying two potentials at varying distances, in relation to the
grid cell length ∆x = 8.3× 10−2 mm

Figure 4.4 displays the result of the derivation of the super positioned potentials in x-
direction. Note how for the large distance of ten grid cell (4.4d) the derivations are clearly
separated from another. For decreasing distances, the peaks start interacting and form
smaller interference peaks. A distance of one grid cell seems to eliminate these interference
peaks, but this effect could also be due to the relatively coarse numerical grid.
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Figure 4.4.: The result of overlaying the gradients with respect to x of two potentials at
varying distances, in relation to the grid cell length ∆x = 8.3× 10−2 mm

The derivation of the potentials with respect to y is shown in fig. 4.5. Theoretically,
this derivation of the axially symmetrical potential should show a behavior similar to the
derivation in x, with a positive and negative maximum. Yet, as body forces only affect
the air around the actuator and not on the electrodes or dielectric, this negative part of
the derivation field is not relevant. The result is a far more intuitive derivation field, with
single spikes summed up for low distances as shown in fig. 4.5c. For the lowest distance of
one grid cell (fig. 4.5a), it seems that the derivations form one single broadened peak, but
it is expected to see single peaks for a finer numerical grid.
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Figure 4.5.: The result of overlaying the gradients with respect to y of two potentials at
varying distances, in relation to the grid cell length ∆x = 8.3× 10−2 mm

Thus, as a baseline state, the logarithmic potentials will be positioned with a distance of
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4.3. Numerical Setup 33

the length of the measurement grid cells used by Hehner, as shown in fig. 4.1. Adding
at one potential at both ends of the line of potentials was found to be useful, hence the
baseline number of potentials is one more than the number of grid cells in x-direction
(resulting in 118 potentials in this case).

A further note concerns the unit of body force potentials. In accordance to equation 4.1,
the spatial derivation of the body force potential should be in N/m3. This conclusion
leads towards the unit of body force potentials: N/m2. For improved clarity, body force
potentials will be displayed without unit throughout this thesis, yet its meaning will be
contextualized if needed.

4.3. Numerical Setup

As the new model will be fitted to the experimental data by Hehner [12],[13], his measure-
ment grid was taken as a basis for calculations. It comprises 117 cells in x- and 41 cells in
y-direction, with a cell size of 8.3× 10−2 mm x 6.3× 10−2 mm. The numerical process is
derived from the working principles of the finite volume method, but with an evaluation
at the knots instead of at the center of the volume.

First, the formulation of the potential, described by the distance or radius r from the sin-
gular point in an axial-symmetric formulation, is transformed into Cartesian coordinates.
This is done applying the Theorem of Pythagoras, with the position x0, y0 of the single
potential.

r =
√

(x− x0)2 + (y − y0)2 (4.2)

By application to 2.5, a line potential and its derivations are expressed in Cartesian coor-
dinates:

φ =
M ′

2π
ln(
√

(x− x0)2 + (y − y0)2) (4.3)

∂φ

∂x
=
M ′

2π

x− x0

(x− x0)2 + (y − y0)2

∂φ

∂y
=
M ′

2π

y − y0

(x− x0)2 + (y − y0)2

(4.4)

As stated before, the potentials φk are positioned on the actuator surface (y0 = 0) equidis-
tantly, similar to a string of pearls. The gradient of each potential spreads into the CV
individually. As shown in equation 4.5 and 4.6, the resulting body force in one cell fx,y in
the grid is a superposition of the gradient of every potential of the string of pearls on this
cell:

fXx,y =
∂

∂x

max∑
k=1

φk =

max∑
k=1

∂φk
∂x

=

max∑
k=1

1

2π

x− x0

(x− x0)2 + (y − y0)2︸ ︷︷ ︸
AX

Mk,x,y

M ′k (4.5)

fYx,y =
∂

∂y

max∑
k=1

φk =
max∑
k=1

∂φk
∂y

=
max∑
k=1

1

2π

y − y0

(x− x0)2 + (y − y0)2︸ ︷︷ ︸
AY

Mk,x,y

M ′k (4.6)
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34 4. Empirical Body Force Modeling

For further simplification the constant 1/2π was included in the magnitude Mk: Mk =
M ′k/2π. In conjunction with the unit of the body force, the unit of the magnitudes can be
derived from eq. 4.3 and is equal to the unit of the body force potential: N/m2.
Theoretically, the gradient of one string of potentials should resolve both components of
the body force f X and f Y . This will be investigated in chapter 5.1.2, but first the X-
and Y-dimensions are decoupled. This results in two vectors that contain the magnitudes

of every body force potential on the string of pearls: ~MX and ~MY . The goal of further
calculations then becomes the determination of these body force potential magnitudes.
Therefore the latter equations 4.5 and 4.6 are summed up as shown in eq. 4.7. The force

in every point (x,y) is the sum of the influence (A
X/Y
Mk,x,y

) of each single potential M
X//Y
k :

fXx,y =
max∑
k=1

AX
Mk,x,y

MX
k

fYx,y =
max∑
k=1

AY
Mk,x,y

MY
k

(4.7)

With the information above, a system of equations is set up to relate the body force
potentials to the empirical body force measurements by Hehner (~fX , respectively ~fY ),
in the common form as shown in equation 4.8 with the solution vector ~MX (respectively
~MY ):

AX ~MX = ~f X

AY ~MY = ~f Y
(4.8)

Inserting 4.7 in 4.8, the full equation system is shown. It is noted independent from the
direction and can be mapped to either direction by inserting the respective values of Ai

and ~f i.



AM1,x1,y1
AM2,x1,y1

· · · AMmax,x1,y1

AM1,x2,y1
AM2,x2,y1

· · · AMmax,x2,y1

...
...

. . .
...

AM1,xmax,y1 AM2,xmax,y1 · · · AMmax,xmax,y1

AM1,x1,y2
AM2,x1,y2

· · · AMmax,x1,y2

...
...

. . .
...

AM1,xmax,ymax AM2,xmax,ymax · · · AMmax,xmax,ymax




M1

M2

...

Mmax

 =



fx1,y1

fx2,y1

...

fxmax,y1

fx1,y2

...

fxmax,ymax


(4.9)

This matrix A in its baseline-state as in 4.9 has the dimension 41 x (41 · 118). The
number of columns depends on the number of potentials. As stated in section 4.2, the
baseline state comprises 118 potentials. Every line in the equation system describes a
single cell in the numerical grid, thus the matrix A comprises 41 · 118 = 4838 lines.
Consequently, the equation system is highly overdetermined and the solution vector ~M
has to be approximated.
The equation system was implemented in Matlab R2020a and approximated with by the
LSMR code by Fong and Saunders [8]. It is related to least-square algorithms, but is
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4.3. Numerical Setup 35

numerically more robust and generally terminates faster. In the basic configuration it
minimizes the value of

‖Ai ~M i − ~f i‖2 (4.10)

In chapter 5 different configurations of the new model are evaluated. Unless otherwise
stated, the x- and y- directions are always computed independently using the same LSMR-

function, but varying in the derivation of the potential field ( ~AX , respectively ~AY ) and
the experimental body force vector (~f X, respectively ~f Y) of course.
The full body force field generated by the new model is computed by multiplying the

matrix Ai to the solution vector ~M i:

~f X
newmodel = AX ~MX

solution

~f Y
newmodel = AY ~MY

solution

(4.11)

The potential field can be computed in the same way. The graphic result for a line of
constant potential magnitudes is shown in fig. 4.6. The potential field 4.6a shows a major
minimum in the center of the potential line as the single potentials accumulate most at this
point. In figure 4.6b, the derivation of the outer potentials show their last minimum and
maximum. These structures will be referred to as flaps. Due to the linear increasing nature
of the logarithm the plane between these points is inclined. As a result of positioning the
potentials exactly on the actuator surface, the derivation of superimposed potentials with
respect to y does not show the same interference behavior as the derivation with respect
to x (shown in 4.4). This means that the derivation with respect to y (4.6c) can be derived
more intuitively from the potential field, as the positive magnitude of a single potential
leads to a positive derivation for y > 0 and vice versa.
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Figure 4.6.: The potential and its derivations, resulting from a line of potentials of constant
magnitude The potentials are positioned with a constant distance of one grid
cell along the whole abscissa at y = 0. Note that in contrast to the figures
in the previous section, here the field dimensions resemble the experimental
CV and the ordinate of the derivation in y-direction does only display positive
values.

35





5. Results and Discussion

In this chapter the new model is applied. First, a baseline state of the model is evaluated.
On this basis, various configurations are computed and discussed. As this is the first
attempt at a potential-based empirical model for the plasma-induced body forces, different
configurations are recorded, despite not directly improving the model. This will enhance
insight into the model behavior, in order to facilitate future investigations. A complete
documentation of all configurations and phase-resolved results is attached in the appendix.
The model was compared to the experimental data regarding its ability to reproduce the
topography of the body force field and the integral body force (phase-averaged as well as
phase-resolved). The computed magnitudes of the body force potentials themselves are
evaluated regarding their validity, as they are expected to resemble a plausible distribution
of charged particles in the CV. Finally, the new model will be brought into context with
existing modeling approaches.

5.1. Modeling Results

Hehner et al. [12, 13] examined 24 AC-phases. In order to maintain a comprehensive
overview, not every phase is displayed and evaluated. Instead, six phases were chosen: 0,
2π/12, 8π/12, 12π/12, 14π/12 and 20π/12. These display a representative mix of phases
with strong positive or negative values (relating to a high discharge) as well as nearly neu-
tral phases. For simplification, the abbreviation EBFs will describe the experimental body
forces by Hehner et al. [12, 13], PMs the computed potential magnitudes and MBFs the
new, modeled body forces. The unit of body force potentials was discussed in section 4.2
and will contextualized further in section 5.2.2. Yet, especially for configurations with
implausible PM courses, the units do not refer to physical quantities. Therefore, the PMs
will be indicated without unit.

5.1.1. Baseline State

This configuration of the numerical setup is the most puristic. The x-and y-direction
are computed independently and the logarithmic line potentials are positioned along the
actuator surface with a distance of one grid cell.

X-Direction

A comparison of the experimental data to the new model is shown in fig. 5.1. The left
column comprises the EBFs for the chosen phases. The central column displays the com-
puted magnitudes of the body force potentials that are positioned in a single line on the
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actuator surface as discussed in 4.1. The MBFs in the right column are computed by
inserting the PMs into the equation system, as shown in eq. 4.11.
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Figure 5.1.: Baseline state: Comparison of the experimental data, the computed magni-
tudes of positioned potentials and the resulting body force field in x-direction
for chosen phases. EBFs according to Hehner et al. [12, 13].

A primary discussion of the new model is done on the basis of the first line of figures,
referring to phase 0π/12. The PMs show a nearly continuous course with a clear zeropoint
at x ≈ 1.5 mm. This zeropoint is slightly shifted compared to the respective one in the
EBFs (x ≈ 0.5 mm). Yet this position of the zeropoint is resolved quite accurately in the
MBFs.
Both outer values of the PMs are about twice as high as the other maxima. The reason
for this behavior can be found in 4.6b. The outer potentials result in a flap-like shape
of the derivation field. The fitting algorithm tries to balance these flaps, resulting in the
displayed outer peaks of the PMs. A slight yellow shadow on the left side of the MBFs
indicates an influence of these peaks. The flaps in the MBFs are displayed more clearly in
the 3D-plot of the MBFs, to bee seen in fig. 5.4. These peaks will occur in various PM sets
in the following chapter and will be cut off when required for an improved visualization of
the remaining PMs.
Comparing the EBFs and MBFs, a clear disadvantage of the chosen positioning of the
potentials is obvious: The new model is not able to resolve topographies as the second
local maximum in the body force that is located at x ≈ 1 mm and y ≈ 1 mm. Never the
less it is able to generate body force maxima with a slight skewness as shown for 14π/12.
Here an otherwise symmetric maximum is skewed with the neighboring minimum.
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When regarding the PMs for different phase progressions, it becomes evident how a strong
body force field generates higher PMs, compared to phases with low experimental body
forces. Intuitively, this connection seems inaccurate, as the computed MBFs only depend
on the slope of the potential field. Here, it should be kept in mind that the body force field
rises from values close to zero at the edges of the CV to its maximum within. In order to
follow this ascent, the derivatives of the PMs must have high values as well, resulting in
higher values of the PMs themselves.

Y-Direction

While first correlations of the PMs in x-direction to spatial charge distributions can be es-
timated in x-direction, the results of the y-direction in fig. 5.2 are not straightforward. For
most phases, the PMs show peaks altering in different directions (eg. 2π/12 and 22π/12).
Yet the resulting MBFs show the expected correlations to the EBFs, caused by the enve-
lope of the peaks. Never the less, especially these strongly implausible PMs indicate the
numerical failure of the modeling in y-direction. Further evaluations offer reasons for this
failure in chapter 5.1.6.
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Figure 5.2.: Baseline state: Comparison of the experimental data, the computed magni-
tudes of positioned potentials and the resulting body force field in y-direction
for chosen phases. Note that the potential magnitudes spread over two orders
of magnitude due to numerical flaws. Therefore the ordinate axes are not
uniform. EBFs according to Hehner et al. [12, 13].
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Integrated Phase-Resolved and Phase-Averaged Results

In fig. 5.3, the integrated body forces of the MBFs are compared to those of EBFs. It is
evident that the MBFs represent the original data quite accurately for phases with low
integral body forces. For high integral body forces, the MBFs overshoot the EBFs slightly.
This can be explained with the example of phase 14π/12 in fig. 5.1 as the EBFs shows a
local minimum at x ≈ 0.5 mm and y ≈ 0.4 mm. The new model is not able to resolve these
structures, hence the equivalent spot in the MBFs is filled with higher values, leading to
a higher integral value.
Never the less, the relative error of the phase-averaged integral body forces of new model
in its baseline state is as low as 4 % in the x-direction and 10 % in the y-direction.
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Figure 5.3.: Comparison of the integrated body forces. The left hand side describes the
phase-resolved values, the right hand side shows their mean value. The dashed
gray line refers to the voltage slope and is only drawn qualitatively. Experi-
mental body forces according to Hehner et al. [12, 13].

Another performance evaluation of the new model is the attempt to compute the phase-
averaged MBFs by averaging the PMs computed in 5.1.1. The result can be seen in fig. 5.4.
A 3D-plot was chosen, as the resemblance of the experiment and MBFs can be displayed
more intuitively (a 2D-plot of a comparable experiment can be found in fig. 2.18). The
PMs show a reasonable course, with the exepteion of the two peaks on either end. The
MBFs do not reach the maximum values displayed by the EBFs. This is counter intuitive,
as fig. 5.3 shows a higher integrated and phase-averaged body force for the MBFs than for
the EBFs. Phase-averaging each PM seems to cancel out the high values. The influence
of the peaks on both ends of the PMs are clearly visible in the MBFs. Yet, the new model
is able to approximate the topography of the EBFs. For instance, the skewness of the
positive maximum to the right side is maintained in the MBFs.
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Figure 5.4.: The left column shows the phase-averaged EBFs in x-direction. The PMs in
fig. 5.2 were phase-averaged to generate the displayed set and calculate the
MBFs. EBFs according to Hehner et al. [12, 13].

The same calculation was made for the y-direction. Although neither the phase-resolved
PMs nor the phase-averaged PMs show physical plausibility, the MBF topography resem-
bles the EBFs. It can therefore be concluded that the topography of the phase-averaged
new model can in fact be computed with the phase-resolved PMs. Yet, the correctness of
the phase-averaged body force topography does not verify the course of the phase-resolved
PMs themselves.
In contrast to the x-direction, the MBFs in y-direction rather exceed the maximum val-
ues. Furthermore, the new model is not able to resolve structures such as the ridge-like
maximum at the actuator surface between x ≈ 2 mm and x ≈ 4 mm.
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Figure 5.5.: The left column shows the phase-averaged EBFs in y-direction. The PMs in
fig. 5.2 were phase-averaged to generate the displayed set and calculate the
MBFs. EBFs according to Hehner et al. [12, 13].

Calculation of the Body Force Field in y-Direction with the PMs in x-Direction

The physical background of the model predicts the existence of a single set of PMs that
is able to describe the EBFs in both directions with the components of the gradient. As
the PM vector in y-direction lacks correctness, the MBFs were calculated with the PM
vector in x-direction, but by multiplication with the derivation with respect to y. Here as
aforementioned, the position of sign change along the actuator surface is resolved within
the new model. An example of this can be seen for phase 0π/12 at x ≈ 1.5 mm. The
accuracy of resolving the right position of the sign change is good for phases of high
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discharge and body forces as 0π/12, 2π/12. On the second half of the cycle, the region
of negative body forces seems detached from the actuator surface (12π/12 and 14π/12).
To reiterate from beforehand, the new model is not able to accurately show minima or
maxima that are not centered on the actuator surface.
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Figure 5.6.: Modeling results in y-direction, with the input of PMs in x-direction. EBFs
according to Hehner et al. [12, 13].
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5.1.2. Computation of One PM Vector for Both Directions

In addition to the previous section, the new model was also tested on its ability to compute
a single sets of potentials that are able to describe both spatial directions. In order to do
so, equation system 4.9 was extended as following, with the upper indices resembling the
respective direction:



AX
M1,x1,y1

AX
M2,x1,y1

· · · AX
Mmax,x1,y1

AX
M1,x2,y1

AX
M2,x2,y1

· · · AX
Mmax,x2,y1

...
...

. . .
...

AX
M1,xmax,y1

AX
M2,xmax,y1

· · · AX
Mmax,xmax,y1

AX
M1,x1,y2

AX
M2,x1,y2

· · · AX
Mmax,x1,y2

...
...

. . .
...

AX
M1,xmax,ymax

AX
M2,xmax,ymax

· · · AX
Mmax,xmax,ymax

AY
M1,x1,y1

AY
M2,x1,y1

· · · AY
Mmax,x1,y1

AY
M1,x2,y1

AY
M2,x2,y1

· · · AY
Mmax,x2,y1

...
...

. . .
...

AY
M1,xmax,y1

AY
M2,xmax,y1

· · · AY
Mmax,xmax,y1

AY
M1,x1,y2

AY
M2,x1,y2

· · · AY
Mmax,x1,y2

...
...

. . .
...

AY
M1,xmax,ymax

AY
M2,xmax,ymax

· · · AY
Mmax,xmax,ymax




M1

M2

...

Mmax

 =



fXx1,y1

fXx2,y1
...

fXxmax,y1

fXx1,y2
...

fXxmax,ymax

fYx1,y1

fYx2,y1
...

fYxmax,y1

fYx1,y2
...

fYxmax,ymax


(5.1)

The results can be seen in the following figures. The courses of the PMs in fig. 5.7a are
similar to the baseline state. However, especially the PMs in the latter three phases are
half as high as the corresponding PMs in the baseline state. An explanation is found by
regarding the integral body forces in y-direction (fig. 5.7b) that exhibit lower values for
these phases. This leads to a damping in the common PMs.
The computed EBFs in y-direction (fig. 5.7b) show satisfactory results, despite the maxi-
mum body forces not being reached. Never the less, the positions of the maxima, minima
and zero crossings are resolved accurately.
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(b) Y-direction

Figure 5.7.: Modeling results in for a common set of PMs in both directions. EBFs ac-
cording to Hehner et al. [12, 13].
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Subsequently, the integrated body force values are compared in fig. 5.8. It is clearly visible
that the shared PMs impair the performance of the MBFs in x-direction. Especially
phases of high discharge and therefore high integrated body forces are only modeled with
half of their experimental value. The results in y-direction on the other hand, show good
accordance to the experimental data. This can be ascribed to the generally lower body
force values that damp the common PM values, but are less affected themselves.
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Figure 5.8.: Comparison of the integrated body forces for a common set of PMs. The left
hand side describes the phase-resolved values, the right hand side shows their
mean value. The dashed gray line refers to the voltage slope and is only drawn
qualitatively. EBFs according to Hehner et al. [12, 13].

Summarizing, it can be said that a modeling process as presented by the equation sys-
tem 5.1 is desired, as it is in accordance to the physical background of the new model.
Particularly, the course of the phase-resolved, integrated body forces in fig. 5.8 and the
plausibility of the PMs themselves indicate the validity of a common set of PMs. Yet, the
absolute values of the integral body forces do not meet the requirements.

5.1.3. Comparison of Different Potential Formulations

As described before, different potential formulations are examined. The detailed figures
can be found in the appendix: C to D. The comparison of integral body forces in fig. 5.9
and fig. 5.10 show the clear dominance of the chosen logarithmic approach as it models
both components of the integrated body force best, especially for phases with high values.
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Figure 5.9.: Integral body force in x-direction for different formulations of the potential
decay. EBFs according to Hehner et al. [12, 13].
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Figure 5.10.: Integral body force in y-direction for different formulations of the potential
decay. EBFs according to Hehner et al. [12, 13].

The broken rational potential description does not resolve the integral body forces for
high discharge, nor does it for low discharge phases. Yet, here, information that confirms
a previous explanation can be found in the PMs in D: The first and last five values of the
PMs are set zero. In conclusion, the numerical process is theoretically able to null the
PMs on the outer bounds and additionally, the peaks of the outer baseline state PMs in
fact relate to the flaps of the derivation.
Nevertheless, the MBFs of the broken rational potential description show clear overshoots
in regions that are neutral in the EBFs (eg. C, phase 1π/12), leading to a lower integral
body force. The PMs and MBFs in y-direction show less peaks in the broken rational
formulation than in the baseline state, and their integral values perform better in y- than
in x-direction, but their integral values lag behind.

A physical explanation for the better performance of the logarithm-based approach is
found in fluid dynamics, as well as electrodynamics. In both scientific fields the loga-
rithmic formulation describes two-dimensional problems with constant potential values in
z-direction as displayed in fig. 5.11b. The broken rational formulation on the other hand
describes a single point potential in thee dimensions (5.11a). The extension of the elec-
trodes in z-direction (coordinate system as in fig. 3.1) is large compared to the width in
x-direction. Thus, the electric field is uniform in z-direction and reasons the logarithmic
potential formulation.

x

y

z

(a) A single point potential described by
φ = −1/

√
x2+y2+z2.

x

y

z

(b) A line potential described by

φ = ln
√
x2 + y2. The extension is inde-

pendent from the z-direction.

Figure 5.11.: Spatial description of a single point and a line potential. In accordance to the
coordinate system in the experimental setup (fig. 3.1), the z-coordinate refers
to the length of the electrodes. The discharge is uniform in this direction and
therefore irrelevant for the experimental measurements.
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The integrated body force values of the exponential potential formulation nearly reach
the experimental data in x-direction. Nevertheless, the PMs in x-direction consist of non-
physical peaks. These peaks can be softened through numerical tricks in the LSMR-code,
as it has the option to extend equation 4.10 with a ”damping factor”λ according to 5.2. Yet
this damping causes lower integral body forces and is therefore not a promising practice.

‖Ai ~M i − ~f i‖2 + λ2‖ ~M i‖2 (5.2)

In y-direction a clear lack of accuracy is shown for nearly all phases. The reason for this
behavior can be seen in the MBFs in fig. D.19. The derivation with respect to y of poten-
tials positioned on the actuator surface show their influence for values of y ≈ 0.8 mm due
to the nature of the Gaussian distribution. This proves the non-physical performance of
this approach. Still, the exponential formulation contributed highly to the development of
the numerical setup as it does not have a singular point. Therefore, it was used to debug
the model.

5.1.4. Extension of the Numerical Grid

The next evaluated configuration of the numerical model addresses the non-physical peaks
of the outer PMs in the baseline state. In accordance to the previous chapter, these peaks
originate from the derivation of the logarithm in x-direction of the outermost potentials ,
which in turn results in flaps. These outer potentials still influence the body forces inside
the CV. In order to provide incentives for the least-square algorithm to lower the values
of the outer potential magnitudes, the experimental body force field was extended by 20
grid cells up- and downstream. These additional grid cells were assigned to contain body
forces of the value zero.

A complete list of the respective solutions is found in the appendix (E). For simpler visual-
ization, the PMs are shown in their fully extended length whereas the MBFs are shortened
to the experimental CV. As the extension does not significantly affect the integrated body
force values, the evaluation of this model configuration concentrates on the plausibility of
the PMs.

In fig. 5.12, the PMs for the first phase 0π/12 in x-direction without extension as well as
those extended by 20 grid cells, are singled out. The positive effect of the extended field
quarters the upstream peak of the PMs and generally lowers the PMs close by, while not
affecting the maximum values in the discharge area. On the downstream side this improve-
ment does not eventuate. The extension of the numerical grid improves the plausibility of
the solution, though the peaks could not be lowered by further extensions.
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Figure 5.12.: X-direction: Comparison of the PMs in baseline state and for a numerical
grid, extended by 20 grid cells for phase 0π/12

The influence of the extension in y-direction is best visible in the comparison of the phases
with the highest amplitude of PM peaks: 2π/12 (5.13). Here, the baseline state leads to

47
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a magnitude amplitude of up to 20. This value is decreased dramatically, by an entire
order of magnitude, by extending the numerical grid. Just as in x-direction, an extension
of more than 20 grid cells did not enhance the solution further.
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Figure 5.13.: Y-direction: Comparison of the PMs in baseline state and for a numerical
grid, extended by 20 grid cells for phase 2π/12

5.1.5. Extension of the Numerical Grid and Additional Potentials

For further reduction of the outer split peaks, body force potentials were placed outside
of the experimental CV. The expectation is that these potentials are able to smooth the
peaks on the borders of the CV. They are influenced less by the body forces inside the
CV and decreased by the extended grid cells that contain the value 0. Therefore the
numerical grid of the baseline state is extended by 40 grid cells as shown before and 20
additional potentials were placed up- and downstream of the numerical grid. These values
were chosen in accordance to the results of the last section. The logarithmic potential
formulation is sensitive for changes of the numeric grid up to 20 cells, thus the influence
of 20 additional potentials on either side was investigated, with a numerical grid extended
by 40 cells. Likewise, the full set of figures is included in the appendix (F), but the essence
of the impact of additional potentials can be visualized by considering certain PMs.

The left-hand side of figure 5.14 shows the PMs for a numerical grid extended by 40 cells
up- and downstream and is similar to the result of the previous section. The right hand
side shows the same numerical grid as the left one, but with additional 20 potentials in
each horizontal direction. Note that due to the additional potentials, the abscissa in the
following figures reaches further than in previous sections.
A first examination draws attention to the original boundaries of the numerical grid at
x = −2.1 mm and x = 7.5 mm. The, by now well-known, peaks are visible in fig. 5.14a and
still exist in the PMs in fig. 5.14b, yet their height is extremely reduced. All the same, the
influence of the flaps is only shifted to the new boundaries, despite these accrued peaks
being slightly lower than the original ones.
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(a) Extension of the numerical grid by 40
cells on each side.

(b) Extension of the grid by 40 cells and 20
additional potentials on each side.

Figure 5.14.: X-direction: Impact of the extension of the numerical grid with 40 grid cells
and 20 additional potentials up- and downstream for phase 0π/12

In continuing in the improvement of the PMs in y-direction for phase 2π/12, fig. 5.15
compares the sole extension of the numerical field on the left side with the positioning of
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additional potentials on the right side. While the overall peaks are further diminished,
the only additional impact on the upstream half of the PMs are the small values for x <
−2.1 mm. On the contrary, the peaks in the downstream half show values very close to
zero, between x = 4.5 mm and x = 7 mm, but start alternating again for higher x-values.
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(a) Extension of the numerical grid by 40
cells on each side.
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(b) Extension of the grid by 40 cells and 20
additional potentials on each side.

Figure 5.15.: Y-direction: Impact of the extension of the numerical grid with 40 grid cells
and 20 additional potentials up- and downstream for phase 2π/12.

Concluding, the extension of the numerical grid and additional potentials enhance the
plausibility of the PMs and thus should be considered in future modeling activities. Even
so, it should be said that the PMs that are computed with the extended grid should not
simply be multiplied with the original, non-extended matrix Ai. This would lead to an
unbalanced influence of the flaps and therefore to unsatisfactory results.

5.1.6. Influence of the Distance of Potentials

As described in chapter 4.2, an increased distance is expected to compute insufficient
results due to interference effects (shown in fig. 4.4b). A future workaround not examined
in this thesis could be an approach that does not simply overlay two single potentials,
but instead builds upon broader potentials, as sketched in fig. 5.16. Early new model
formulations on the basis of the exponential approach (that does not involve singular
points) showed promising results for ten single potentials in the numerical grid. This
means, a potential formulation similar to the one displayed on the right hand side could
lead towards a simplified model that is numerically more efficient and stable. Nevertheless,
the Nyquist Theorem should be kept in mind: Horizontally, the closest distance between
two body force maxima are found at 11π/12 for the y-direction with a distance of roughly
1 mm. This refers to about 12 grid cells. Hence, to avoid alialising effects, the distance
between two potentials should not exceed 6 grid cells or around 0.5 mm.

(a) Superposition of potentials as applied in
this thesis. Prone to interference effects
if the distance between the potentials is
to large.

(b) Suggested new concept. The numerical
behavior close in the singular area has to
be examined.

Figure 5.16.: Sketch of suggestion for an alternative formulation of super positioned po-
tentials. The new concept on the right is promising not to create undesired
interference effects.
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The importance of further examinations regarding an optimized distance between the single
potentials becomes apparent in the results shown next. As expounded before, a simple
increase in the distance between potentials in the current formulation does not make
sense. Instead the distance was decreased in relation to the experimental grid distance ∆x
= 8.3× 10−2 mm. For distances below 0.9 ·∆x, the PMs in both directions solely consist
of spikes and are therefore not physically plausible.

Interesting effects can be found for distance close to the original grid cell size, for example
for 0.9999·∆x. Here, the PMs in x-direction show a spiky behavior very similar to the PMs
of the baseline solution in y-direction. Yet, with the new distance, the PMs in y-direction
form a plausible course disregarding the normal peaks of the outer values. This confirms
the former assumption that numerical flaws cause the implausible spiky behavior of the
respective PMs.
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Figure 5.17.: Comparison of EBFs, computed PMs and the resulting MBFs in x-direction
for a potential distance of 0.9999 ·∆x. Note that the ordinate limits for the
PMs vary due to the described numerical flaws. EBFs according to Hehner
et al. [12, 13].
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Figure 5.18.: Comparison of EBFs, computed PMs and the resulting MBFs in y-direction
for a potential distance of 0.9999 · ∆x. EBFs according to Hehner et al.
[12, 13].

5.1.7. Additional Potential Rows Above the Actuator Surface

The state examined next gives unprecedented insights into the determination of the maxi-
mum vertical distance from the actuator, where free charges induce body forces. Therefore,
potentials are not only placed on a string on the actuator surface, but are also located
equidistantly up to certain grid cells. Just as before, the singular points were set between
the computational knots of the numerical grid.

First, the results of placing 10 rows of potentials, up to a height of y ≈ 0.65 mm, are
displayed in fig. 5.19 and fig. 5.20. In comparison to former figures, the abscissa of the
PMs in these figures does not directly represent the horizontal position in the numeric
grid, but refers to the respective row.

On first sight the lack of plausibility in the PMs of both fig. 5.19 and fig. 5.20 is obvious.
Even though the course of the PMs in x-direction could be compared to the courses seen
before, the magnitudes of the first two rows of potentials are several orders of magnitude
above former results. Despite the magnitudes decreasing for higher row numbers, it is not
until the eighth row that the PMs are comparable to previous results.
In the MBFs in x-direction the highest row is clearly visible with a horizontal cut in the
continuous topography of the field. Never the less, local maxima are resolved accurately
even slightly outside the area of positioned potentials.
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Figure 5.19.: Modeling results in x-direction for 10 vertical rows of potentials above the
actuator surface. Note that the abscissa of the PMs refers to the respective
row number and the limits of the ordinate are not uniform. EBFs according
to Hehner et al. [12, 13].

The PMs in y-direction in fig. 5.20 do not exceed the orders of magnitude like the PMs
in x-direction They are more comparable to the baseline state, as each row of PMs is of
a triangular shape which results from the spiky behavior seen before. Furthermore, the
rows alter between two orders of magnitude, meaning a row of high magnitude is followed
by a row of lesser magnitude and so on.
The MBFs are similar to the results in x-direction: The position of the last row of potentials
is visible and local maxima that are located further away from the actuator can be resolved.
A complete figure list of the model with ten potential rows is found in the appendix (H).
It is clearly visible that an increasing number of rows improves the new model topography,
while the PMs still lack plausibility. A further point to considerate is that by positioning
potentials solely at y = 0, the symmetry of the potentials inhibits body force to act through
the actuator surface and therefore meet the experimental data. With the positioning of
potentials further above, this advantage is gone. An approach for future investigations
could be the implementation of a stream function as done in fluid dynamics. This stream
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function could mimic the actuator surface.
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Figure 5.20.: Modeling results in y-direction for 10 vertical rows of potentials above the
actuator surface. Note that the abscissa of the PMs refers to the respective
row number and the limits of the ordinate are not uniform. EBFs according
to Hehner et al. [12, 13].

While the configuration above improves the MBF topography, it is at the expense of the
computational run time. Every additional potential enlarges the system of equations by
one line, thus, the additions above greatly increase the complexity of the fitting process. As
a consequence, the constituted configuration could be considered in future investigations,
if combined with a general decrease of the number of potentials as described in the last
section.
In the end, this configuration was included in the thesis to prove the ability of the new
model to resolve the EBFs accurately. The positioned body force potentials are expected
to associate with free charges above the actuator. Therefore, it seems logical to locate
potentials only as high es they are expected in the discharge. It should be kept in mind
that one huge advantage of the new model is the reduction of the complexity of modeling
two components of body forces towards a single set of potentials. This advantage shrinks
as the number of potential rows increases.

5.2. Discussion of Results

The results presented in the previous section will be contextualized here. The baseline
state offers the best possibility for interpreting the PMs in x-direction in the context of the
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phase-resolved charge distribution and also gives an understanding for future approaches
of PM interpretations.

5.2.1. Discussion and Interpretation of the Baseline State

The figures 5.21 and 5.22 display the PM course for all phases. Note that, contrary to
presentations in previous chapters, the phases now start from the respective maximum
voltage, as practiced by other authors (Enloe[7], Kriegseis[16]). This order allows the
observation of discharge formation from the collapsed state, which is observed around the
maximum voltage. Still, the phases are named as before and one figure line comprises two
PM courses. They are phase-shifted by π for a direct comparison with the opposite phase.
Additionally, the figures show the respective course of potential magnitudes (blue/purple
line) and their derivation in x-direction (pink line) in spatial relation to the newly computed
body forces in x-direction. This compilation visualizes the link between the potential
magnitudes and the new model. Especially for phases of high discharge, it is obvious how
the derivation of the potential magnitudes refers directly to the topography of the new
model.
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Figure 5.21.: First part: Summary of all PMs in x-direction for the baseline state. The
Lissajous figure is based on Hehner et al. [12, 13]. The red line marks phases
of high discharge and hence large body forces. The gray line marks phases
with collapsed discharge. The PMs on either side of the Lissajous refer to
the phase marked in the same color. The ordinate is displayed without value,
as it specifies the y-coordinate in [mm] for the surface plot and the potential
magnitude for the line plots (displayed without units). EBFs according to
Hehner et al. [12, 13].
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Figure 5.22.: Second part: Summary of all PMs in x-direction for the baseline state. The
Lissajous figure is based on Hehner et al. [12, 13]. The red line marks phases
of high discharge and hence large body forces. The gray line marks phases
with collapsed discharge. The PMs on either side of the Lissajous refer to
the phase marked in the same color. The ordinate is displayed without value,
as it specifies the y-coordinate in [mm] for the surface plot and the potential
magnitude for the line plots (displayed without units). EBFs according to
Hehner et al. [12, 13].
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At this time, the computation of the new model out of the potential magnitudes is described
with the example of phase 12π/12 and 0π/12 (last line in fig. 5.21). The zero crossing of
the MBFs results from local maxima in the PMs. It is clearly visible how the location of
the zero crossing of PMs correlates with the local maxima of the MBFs for phases with
high discharge. This fact is not as intuitive as it seems on first sight. A high modeled
body force stems from a high gradient of PMs and not necessarily from a zero crossing.
Yet the computation of the PMs yields a zero-crossing at this point. This is of interest
considering the location of the zero-crossing in the experimental body forces in y-direction,
as displayed in fig. 5.23 for the same chosen phases as evaluated in the previous section.
Especially for the first three phases, the zero crossing in the PMs in x-direction coincides
with the zero crossing in the experimental body forces close to the actuator in y-direction.
The body force minima in the latter three phases are located above the actuator surface
and seem to have a slight downstream drift. In accordance to previous evaluations, the
new model in its current state is not able to resolve these topographies.
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Figure 5.23.: Compilation of experimental body forces in y-direction (surface plot) and
potential magnitudes for the x-direction (blue line). Note that the ordinate
is displayed without units. It represents the y-coordinate in [mm] for the
surface plot and the potential magnitudes for the line plot. EBFs according
to Hehner et al. [12, 13].

Up until now, no direct physical link between potential magnitudes and charge densities
as suggested in 2.3.2 could be found. Still, the course of the PMs for different phases can
be compared to the expected charge densities causing capacitance changes as described in
2.4.
Following this theory, one can interpret the course of the PMs for the different phases.
The principle is explained regarding the forward stroke (as suggested by [7]), displayed
in the left column of fig. 5.21 and fig. 5.22. The suggested effect begins in phase 12π/12,
briefly before the voltage sign change. Hereinafter, outer PMs resulting from flaps will be
neglected.
The main zero crossing of PMs is located at x ≈ 0.7 mm, between the upstream global
maximum (magnitude ∼ 2.8) and the downstream global minimum (magnitude ∼ −1.3).
For proceeding phases, the zero crossing of PMs moves downstream, accompanying the lo-
cation of the body force maximum. While doing so, the sequence of a maximum, followed
by a zero crossing and then a minimum in the PMs is maintained. Yet the maximum has
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the highest value at the phase 12π/12 and widens and decreases for the following ones.
The last PM set of a comparable sequence is computed for 17π/12 with a zero crossing at
x ≈ 2.9 mm.
At this point the sign of the potentials can be related to the respectively applied voltage.
For all phases described in the last paragraph, the potential magnitudes at and adjacent
to the exposed electrode are positive, while the voltage is negative. Hence, in compliance
with the nature of the logarithmic potential formulation, a positive potential magnitude
relates to negative charges.
This accordance leads to the conclusion that the course of the PMs indicates the spatial
distribution of free charges. Subsequently, the afore-mentioned phase-resolved course of
PMs will be compared to the capacitance changes as in 2.4. According to Kriegseis [16]
in figure 2.9, the actuator has the cold capacitance C0 slightly after every positive and
negative voltage maximum. This would mean that no charges are in the electric field,
yet the measurements reveal non-zero body force and hence the new model computes low
potential magnitudes. Yet, these body forces can be traced back to measurement errors in
the PIV and hence associated phases are considered to be significant. The zero crossing of
the PMs moves downstream with the phase progression, as described before, correspond-
ing to a virtual prolonging of the exposed electrode and hence an increased capacitance.
The phase with the clearest and longest virtual electrode is 16π/12 and is approximately
in accordance to the measurements. Afterwards, the virtual electrode collapses and also
the interpretation of the PM courses becomes vague.

All of the interpretations above can also be applied to the forward stroke. Yet, due to the
different masses of the involved charges, the course of the PMs, the maximum values and
the position of the zero-crossing will differ from the backward stroke.

5.2.2. Approaches for a Relation Between Potential Body Force Magnitudes and
Electric Charges

So far, the new model is only able to describe effects that are already contained in the
experimental body forces. Yet the approach could lead towards a more profound under-
standing of the phase-resolved charge distribution of the actuator. Therefore a direct link
between the computed potential magnitudes and the net charge of the associated numerical
grid cell has to be found.

Following, a few approaches will be described to facilitate further considerations. Building
on the basic electrohydrodynamic relation as shown in section 2.3.2, takes up the idea of
the direct link between fluid mechanic body forces and the electric field:

~f = qc
~E (5.3)

The latter part of the equation describes the influence of the electric field (a superposition
of all charges) on a single charge. The new model builds upon the idea to describe the
influence of the body force field (a superposition of all body force potentials) on a single
potential. Therefore the upper equation can be transformed into a parallel definition of
body force potentials φf and electric potentials φe:

PM(x) ∇φf = −qc(x) ∇φe (5.4)

As before, the electric field is simplified as a single line charge at the actuator surface and
observe a discrete grid. Inserting the definition of the body force and electric potential
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(with the permittivity of vacuum ε0) leads towards a relation between the PM or charge
density at a certain point k to the respective sum of all PMs or charges.

PMk ∇
max∑
i=1

PMi ln (ri − rk) = −qc,k∇
max∑
i=1

qc,i

2πε0
ln (ri − rk) (5.5)

This equation could pave the way to a coefficient α that directly links the PM to the local
charge density:

PM = α · qc (5.6)

If future investigations do not reveal an algebraic solution to the relation above, a different
approach for the determination of α could start from a calibration of the PMs.
A first idea did not suceed: The nearly constant positive PMs at the exposed electrode
(−1.8 mm < x < 0.8 mm) for phases 12π/12 to 16π/12 in fig. 5.21 and fig. 5.22 could
refer to the charge of the electrode. This would mean that the corresponding PMs in the
backwards stroke should show constant negative values. This is not the case.
Further concepts could involve the separation of potential as suggested by Suzen et al.
[32, 31] into the influence of electrodes and free charges. As the relation between the
voltage and potential of the electrodes is understood at that point, the PMs could be
separated in the same manner to investigate the distribution of free charges.

5.2.3. Applicability of the New Model for Free Stream Velocities

An important step for a body force model of a DBD actuator is its integrability to nu-
merical simulations of real-life applications. Most examples of these applications, with an
airfoil being the most prominent one, involve free stream flow fields.
Hehner et al. ([12, 13]) run PIV measurements, equivalent to those in chapter 3.1, with
free stream velocities ranging from 5 m/s to 30 m/s. As described before, Hehner applied
the Navier-Stokes-equations to compute the body force field. The resulting body forces
can be seen in fig. 5.24. It is obvious how the free stream has only slight influence on the
topography of the body forces.

Figure 5.24.: The body forces in x-direction derived from PIV measurements with different
free stream velocities by Hehner et al. [12, 13].
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Until now, the new model is based on the positioning of potentials that originate from
electric charges. A free stream, on the other hand, is solely of fluid dynamical nature.
Both electrostatics and fluid dynamics describe similar fields, known as uniform electric
field (e.g. found in a parallel-plate capacitor) and parallel flow field. The underlying
potential for a parallel flow field in x-direction has the following form :

φ = U∞x (5.7)

An extended model which is able to compute the effects of a free stream, could be build
up on the same equation system as the current model (4.9), but with the superposition of
the free stream potential that is included in the equation system as an additional row.
Yet, fig. 5.24 shows the low influence of the free stream on the body forces, while a
formulation as in eq. 5.7 resolves in constant body forces in x-direction. A better, but not
physically correct approach could be the application of the new model in its basic state to
the experimental body forces measured with a free stream. This could reveal an influence
that can not be estimated yet, such as a constant offset in the PMs.

5.3. Comparison to Existing Models

The idea of the derivation of the body forces from the electric quantities was already ap-
plied by Shyy et al. and Suzen et al. as shown in 2.5. In contrast to these two approaches,
the new empirical model builds upon the same physical framework, yet does not give a
detailed input of the charge distribution. It rather suggests possible positions, as the
line of potentials, but lets the model dictate the magnitude of each potential. The clear
advantage of this proceeding is that the new model does not make estimations about the
resulting potential magnitudes. The only constraint that was made is the general potential
position. In comparison with the model by Maden, it can not compete with the accuracy
of the phase-averaged body force topography. Yet the model by Maden is only able to beat
the new one in this aspect, whereas the new one offers a basis for a variety of numerical
configurations.
Table 2.2 summarized the characteristics of the described modeling approaches. The new
model did already prove its proficiency regarding the integrated body forces, especially in
a phase-resolved consideration. The velocity profile will be part of future numerical stud-
ies and can therefore not be evaluated in this thesis. The remaining aspects ”body force
topography”, ”physical correctness” and a straightforward calculation of ”both directions”
show promising results as described above. On a further note, the influence of the bound-
ary layer should be taken into consideration, as potential theory is not able to describe
viscous effects in flows. It is estimated that further investigations will improve the model
in order to meet all requirements adequately.
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6. Conclusions

In this thesis a new approach for an empirical model of the body forces induced by a DBD
plasma actuator has been established and different parameter configurations have been
evaluated with respect to their numerical impact.

Initially, the physical background of DBD actuation and the application of potential theory
in fluid dynamics and electrostatics have been introduced in order to elaborate the con-
cept of the new model. Subsequently, the phase-resolved PIV velocity measurements by
Hehner ([12],[13]), which were used to parameterize the new model and validate its quality,
have been described. The derivation of the required two-dimensional body forces out of
the PIV measurements with the Navier-Stokes equations have been retraced and discussed.

The new empirical model is based on the idea of positioning body force potentials of
varying magnitudes in a numerical grid. The superposition of these potentials forms a
scalar potential field, whose gradient represents the two dimensions of the body force. A
least-square fitting process determines a set of potential magnitudes with gradients that
approximate the experimental body force field. The modeled body force field has been
validated through comparison with the experimental data, regarding the accuracy of the
phase-averaged and phase-resolved integral body force and the spatial body force distribu-
tion. Additionally, the physical plausibility of the potential magnitudes has been discussed.
Beginning from a base-line state, different configurations of the numerical setup have been
presented.

Although none of these configurations was able to meet all requirements, the physical
validity of the empirical model based on body force potentials is clearly indicated. In
particular the integrated phase-resolved body forces show good accordance to the exper-
imental data and thus are expected to meet the requirements as boundary conditions in
CFD applications. The new model comprises a line of body force potentials on the ac-
tuator surface. This means that the complexity of modeling the body force field in two
dimensions is reduced to the determination of a comparatively low quantity of potential
magnitudes. Another benefit of the new model is anticipated regarding the phase-resolved
spatial distribution of body force potentials, as similarities to the estimated distribution
of free charges have been found. This could lead to an improved understanding of the
phase-resolved discharge behavior of the actuator.
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A comparison to previous models by Shyy et al. [28] and Jayaraman et al. [14], Suzen et
al. [31] and Maden et al. [23] demonstrates the strengths of the new model. It is the only
one with the ability to describe both dimensions of the phase-resolved body force distri-
bution. In addition, though the current new model is solely of empirical nature, the links
to the physical behavior of the plasma actuator promise further developments towards a
future model that will be independent from experimental validations.

Further investigations could take a step back from the modeling process itself and start
with the definition of quantitative requirements that the body force model must meet.
Therefore the influence of the spatial distribution of body forces on the resulting flow field
has to be analyzed.
In any case, the new model offers a basis for a vast field of examinations, aiming for im-
proved and numerically stable potential magnitudes. Hence the numerical flaws leading
to non-physical peaks of potential magnitudes, either in x- or y-direction, should be ad-
dressed. Another issue to deal with is the incorrect sign in the body forces in vertical
direction. This will pave the way for a set of potential magnitudes that is able to resolve
both dimensions and is expected to correspond even better to estimations of the phase-
resolved charge distribution. In a next step the approach for the presented new model
should be extended by the capability of reproducing different actuator configurations, as
the actuation voltage and frequency or the geometry of the electrodes.
An important future step towards the integration of the new model in CFD applications,
is the investigation of the effects of free stream velocities on the body force potentials. The
corresponding experimental measurements have been performed by Hehner et al. [12, 13]
and are available at the institute for further application.
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Symbols and Abbreviations

Latin Formular Signs

SYMBOLS DIMENSION MEANING

AS m2 surface of a sphere

A m2 surface of grid cell

Ai
Mk,x,y

1/m relation between local potential and local body force

Ai 1/m relation between potentials and body forces

a – electrostriction parameter

a m height of discharge area

b m length of discharge area

ci – coefficients applied by Maden et al. [21, 23]

C/C(t)/Ci F capacitance

C+
eff F effective capacitance of positive half-cycle

C−eff F effective capacitance of negative half-cycle

C0 F cold capacitance

~D – displacement vector

~E/E V/m electric field

Eb V/m breakdown field strength

E0 V/m maximum electric field strength

e C electron charge

~Fe N electrostatic force

F̃ J thermodynamic potential

F0 J
thermodynamic potential in the absence of an electric
field

F i
int N integrated body force for the whole actuator

f iint N/m integrated body force per actuator length

~f/~fb N/m3 body force

fX N/m3 body force in x-direction
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fY N/m3 body force in y-direction

f# – f-number

I A electric current

i, j – control variables of the coordinates

k – control variables of the potential position

k kg m2/s2K Boltzmann’s constant

k1/k2 V/m2 coefficients applied by Shyy et al. [28]

L m length of electrodes (z-direction)

M – potential magnitude

m kg mass

~n – surface normal

n 1/m3 charge number density

ni 1/m3 density of ions

nn 1/m3 density of neutrals

pst N/m2 electrostrictive force

Q C electric charge

qi C single electric charge

qc C m3 charge density

R Σ electric resistance

Ri kg/m3 s chemical production rate of component i

r m radius

Stk – Stokes number

T K temperature

Te K temperature of electrons

Ti K temperature of ions

Tn K temperature of neutrals

T ′ eV kinetic temperature

t s time

U∞ m/s free stream velocity

~u/u m/s velocity

ti s time step i

V/V (t) V voltage (peak-to-peak)

Vmax V maximum operating voltage (peak-to-peak)

Vsupply V supply voltage

~vd m/s drift velocity
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X – chordwise direction

x m chordwise coordinate

x0 m chordwise position of the potential singularity

xmin/xmax m
lowest/highest chordwise coordinate in the numerical
grid

Y – wall normal direction

y m wall normal coordinate

y0 m wall normal position of the potential singularity

ymin/ymax m
lowest/highest wall normal coordinate in the numeri-
cal grid

Greek Formular Signs

SYMBOLS DIMENSION MEANING

α – degree of ionization

α –
coefficient for a relation between potential magnitudes
and charge density

∆L m length of virtual electrode

∆ϕ – discrete phase step

∆x m chordwise grid cell length

∆y m wall normal grid cell height

ε C/Vm permittivity

ε0 C/Vm permittivity of vacuum

εr C/Vm relative permittivity

λd m Debye length

µm N s/m2 collision frequency

νm 1/s collision frequency

ρ kg/m3 density

τ N/m2 stress tensor

Φ V
sum of electric potential of the external electric field
and free charges

φ V electric potential of the external electric field

φ – electric/velocity/body force potential
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ϕ V electric potential of free charges

ϕ – phase

Abbreviations

SYMBOLS MEANING

AC alternating current

CFD Computational Fluid Dynamics

CV control volume

DBD Dielectric Barrier Discharge

DC direct current

DEHS di-ethyl-hexylsebacat

EBFs experimental body forces

EHD electrohydrodynamic

FOV field of view

HV high voltage

KIT Karlsruhe Institute of Technology

MBFs modeled body forces

Nd:YLF eodymium-doped yttrium lithium fluoride

PhD Doctor of Philosophy

PIV Particle Image Velocimetry

PMs potential magnitudes
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A. Phase-resolved PIV velocity measurements
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Figure A.1.: Phase resolved velocity measurements in horizontal direction (u) by Hehner
et al. ([12],[13]). The coordinates are in [mm]
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Figure A.2.: Phase resolved velocity measurements in vertical direction (v) by Hehner et
al. ([12],[13]). The coordinates are in [mm]
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Figure B.3.: Baseline state: Modeling results in x-direction, phases 0 to 11π/12. Experi-
mental body forces according to Hehner et al. [12, 13].
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Figure B.4.: Baseline state: Modeling results in x-direction, phases 12π/12 to 23π/12.
Experimental body forces according to Hehner et al. [12, 13].
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Figure B.5.: Baseline state: Modeling results in y-direction, phases 0 to 11π/12. Note
that the ordinate limits of the PMs are not uniform. Experimental body
forces according to Hehner et al. [12, 13].
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Figure B.6.: Baseline state: Modeling results in y-direction, phases 12π/12 to 23π/12.
Note that the ordinate limits of the PMs are not uniform. Experimental
body forces according to Hehner et al. [12, 13].
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Y-Direction computed with PM x-vector
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Figure B.7.: Modeling results in y-direction with the input of PMs in x, phases 0 to 11π/12.
Experimental body forces according to Hehner et al. [12, 13].
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Figure B.8.: Modeling results in y-direction with the input of PMs in x, phases 12π/12 to
23π/12. Experimental body forces according to Hehner et al. [12, 13].
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X-Direction for a common PM vector for x and y
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Figure B.9.: Modeling results in y-direction with common PMs for x and y, phases 0 to
11π/12. Experimental body forces according to Hehner et al. [12, 13].
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Figure B.10.: Modeling results in y-direction with common PMs for x and y, phases 12π/12
to 23π/12. Experimental body forces according to Hehner et al. [12, 13].
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Y-Direction for a common PM vector for x and y
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Figure B.11.: Modeling results in y-direction with common PMs for x and y, phases 0 to
11π/12. Experimental body forces according to Hehner et al. [12, 13].
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Figure B.12.: Modeling results in y-direction with common PMs for x and y, phases 12π/12
to 23π/12. Experimental body forces according to Hehner et al. [12, 13].
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C. Complete figure list for a broken rational potential formulation

X-Direction: Phases 0 to 11π/12
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Figure C.13.: Broken rational potential formulation in x-direction, phases 0 to 11π/12.
Experimental body forces according to Hehner et al. [12, 13].
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Figure C.14.: Broken rational potential formulation in x-direction, phases 12π/12 to
23π/12. Experimental body forces according to Hehner et al. [12, 13].
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Y-Direction: Phases 0 to 11π/12
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Figure C.15.: Broken rational potential formulation in y-direction, phases 0 to 11π/12.
Experimental body forces according to Hehner et al. [12, 13].
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Figure C.16.: Broken rational potential formulation in y-direction, phases 12π/12 to
23π/12. Experimental body forces according to Hehner et al. [12, 13].
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D. Complete figure list for an exponential potential description
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Figure D.17.: Exponential potential formulation, x-direction, phases 0 to 11π/12. Experi-
mental body forces according to Hehner et al. [12, 13].
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Figure D.18.: Exponential potential formulation, x-direction, phases 12π/12 to 23π/12.
Experimental body forces according to Hehner et al. [12, 13].
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Figure D.19.: Exponential potential formulation, y-direction, phases 0 to 11π/12. Experi-
mental body forces according to Hehner et al. [12, 13].
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Figure D.20.: Exponential potential formulation, y-direction, phases 12π/12 to 23π/12.
Experimental body forces according to Hehner et al. [12, 13].
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E. Complete figure list for a numerical grid extended with 20 grid
cells
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Figure E.21.: Numerical grid extended by 20 cells, MBFs shortened to original length,
phases 0π/12 to 11π/12 in x-direction. Experimental body forces according
to Hehner et al. [12, 13].
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Figure E.22.: Numerical grid extended by 20 cells, MBFs shortened to original length,
phases 12π/12 to 23π/12 in x-direction. Experimental body forces according
to Hehner et al. [12, 13].
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Figure E.23.: Numerical grid extended by 20 cells, MBFs shortened to original length,
phases 0π/12 to 11π/12 in y-direction. Experimental body forces according
to Hehner et al. [12, 13].
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Figure E.24.: Numerical grid extended by 20 cells, MBFs shortened to original length,
phases 12π/12 to 23π/12 in y-direction. Experimental body forces according
to Hehner et al. [12, 13].
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F. Complete figure list of body force fields with an extension of 40
grid cells and 20 additional potentials
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Figure F.25.: Numerical grid extended by 40 cells and with 20 additional potentials on
each side, phases 0π/12 to 11π/12 in x-direction. Experimental body forces
according to Hehner et al. [12, 13].
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Figure F.26.: Numerical grid extended by 40 cells and with 20 additional potentials on
each side, phases 12π/12 to 23π/12 in x-direction. Experimental body forces
according to Hehner et al. [12, 13].
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Figure F.27.: Numerical grid extended by 40 cells and with 20 additional potentials on
each side, phases 0π/12 to 11π/12 in y-direction. Experimental body forces
according to Hehner et al. [12, 13].
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Figure F.28.: Numerical grid extended by 40 cells and with 20 additional potentials on
each side, phases 12π/12 to 23π/12 in y-direction. Experimental body forces
according to Hehner et al. [12, 13].
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G. Complete figure list of body force fields for an decreased potential
distance
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Figure G.29.: Distance between the potentials: 0.9999·∆x, modeling results in x-direction,
phases 0 to 11π/12. Note that the ordinate limits of the PMs are not uniform.
Experimental body forces according to Hehner et al. [12, 13].
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Figure G.30.: Distance between the potentials: 0.9999·∆x, modeling results in x-direction,
phases 12π/12 to 23π/12. Note that the ordinate limits of the PMs are not
uniform. Experimental body forces according to Hehner et al. [12, 13].
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Figure G.31.: Distance between the potentials: 0.9999·∆x, modeling results in y-direction,
phases 0π/12 to 11π/12. Experimental body forces according to Hehner et
al. [12, 13].
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Figure G.32.: Distance between the potentials: 0.9999·∆x, modeling results in y-direction,
phases 12π/12 to 23π/12. Experimental body forces according to Hehner et
al. [12, 13].
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H. Complete figure list of body force fields for multiple potential
rows
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Figure H.33.: 10 potential rows above the actuator, phases 0π/12 to 11π/12 in x-direction.
Note that the ordinate limits of the PMs are not uniform. Experimental body
forces according to Hehner et al. [12, 13].

113



114 6. Appendix

-50 -40 -30 -20 -10 0 10 20 30 40 50

fX [kN/m3]

Experimental Body Forces Potential Magnitudes New Model

1

2

y
[m

m
]

12:
12

-4
-2
0
2
4
6
#108

12:
12

1

2

y
[m

m
]

13:
12

0

10

20
#108

13:
12

1

2

y
[m

m
]

14:
12

-1
0
1
2
#109

14:
12

1

2

y
[m

m
]

15:
12

-1

0

1

#109

15:
12

1

2

y
[m

m
]

16:
12

-4
-2
0
2
4
6
#108

16:
12

1

2

y
[m

m
]

17:
12

-4
-2
0
2
#108

17:
12

1

2

y
[m

m
]

18:
12

-10
-5
0
5
#108

18:
12

1

2

y
[m

m
]

19:
12

-4
-2
0
2
#108

19:
12

1

2

y
[m

m
]

20:
12

-4
-2
0
2
#108

20:
12

1

2

y
[m

m
]

21:
12

-3
-2
-1
0
1

#108

21:
12

1

2

y
[m

m
]

22:
12

-4
-2
0
2
#108

22:
12

-2 0 2 4 6

x [mm]

0

1

2

y
[m

m
]

23:
12

1 2 3 4 5 6 7 8 9 10

row number

-4
-2
0
2
#108

-2 0 2 4 6

x [mm]

23:
12

Figure H.34.: 10 potential rows above the actuator, phases 12π/12 to 23π/12 in x-direction.
Note that the ordinate limits of the PMs are not uniform. Experimental body
forces according to Hehner et al. [12, 13].
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Figure H.35.: 10 potential rows above the actuator, phases 0π/12 to 11π/12 in y-direction.
Note that the ordinate limits of the PMs are not uniform. Experimental body
forces according to Hehner et al. [12, 13].
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Figure H.36.: 10 potential rows above the actuator, phases 12π/12 to 23π/12 in y-direction.
Note that the ordinate limits of the PMs are not uniform. Experimental body
forces according to Hehner et al. [12, 13].
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Main Script

1 %% Import experimental data: coordinate system , PIV -data , body

forces derived via the NSE; for all 24 Phases

2
3 import_data( ' body_force_quiescent_air ' );

4
5 %% Variables for some of the model configurations

6
7 distance = 1; % Distance between potentials , in

relation to the grid cell length 1 -> 1 * 8.3e-2 mm

8 extension = 40; % The numerical grid is extended up-

and downstream by this amount of cells

9 addition = 20; % Number of additional potentials

which are positioned up- and downstream

10
11
12 %% Main for -loop: Each phase is calculated seperately. Solely

the calculation matrix is reused for each iteration

13 for phase = 1:24

14
15 % % Selection of body force data of the current phase

16 F_x = fx_Wilke (:,:,phase);

17 F_y = fy_Wilke (:,:,phase);

18
19
20 % % Storage of the original body forces and coordinates

21 F_x_org = F_x;

22 F_y_org = F_y;

23
24 x_org = x;

25 y_org = y;

26
27
28 % % Extension of the experimental body forces (if

extension > 0)

29
30 % Initialization of an empty matrix

31 zeros_x = zeros(size(F_x ,1), size(F_x ,2) + 2*

erweiterung);

32 zeros_y = zeros(size(F_y ,1), size(F_y ,2) + 2*

erweiterung);

33
34 % Copying of experimental data into empty matrix

35 for j = 1:size(F_x ,1)

36 for i = 1:size(F_x ,2)

37 zeros_x(j,i+erweiterung) = F_x(j,i);

38 zeros_y(j,i+erweiterung) = F_y(j,i);

39 end

40 end

41
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42 % Renaming body force matrix to the exptended one

43 F_x = zeros_x;

44 F_y = zeros_y;

45
46
47 % % The matrix is transformed into a line vector for the

fitting process

48 F_line_x = F_x ';

49 F_line_x = [F_line_x (:)];

50
51 F_line_y = F_y ';

52 F_line_y = [F_line_y (:)];

53
54
55 % % Storage of the dimensions of the numerical grid

56 % % (41 x 117 for the original state

57 y_dim = size(F_x ,1);

58 x_dim = size(F_x ,2);

59
60 y_dim_org = size(F_x_org ,1);

61 x_dim_org = size(F_x_org ,2);

62
63
64 %% Creation of the matrices A_x and A_y for the fitting

process

65 % % To save run time , the matrices are only computed for

the first phase and re -used for the other phases

66
67 if phase == 1

68 [A_x , A_y , x, y, amount_potentials] =

design_matrix(x, y, extension , addition ,

distance , x_dim , y_dim);

69 disp( ' New matrices ' )

70 end

71
72
73 %% Fitting of the respective equation system compilation

with the LSMR function

74
75 % % PMs_x contains the potential magnitudes for the

current phase

76 [PMs_x] = LSMR_fitting(teil , A_x , F_line_x);

77
78 % % Computation of the respective modeled body

forces within

79 % the bounds of the experimental CV

80 matrix_x = (A_x * PMs_x);

81 matrix_x = reshape(matrix_x ,[x_dim ,y_dim]);

82 matrix_x = matrix_x ';

83 matrix_x = matrix_x(:,extension +1:end -extension);

84
85 % % summary of the body forces of all phases
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86 newmodel_x (:,:,phase) = matrix_x;

87
88 % % summary of PM vectors for all phases

89 all_solutions_x(phase ,:) = PMs_x;

90
91
92 % % PMs_y contains the potential magnitudes for the

current phase

93 [PMs_y] = LSMR_fitting(teil , A_y , F_line_y);

94
95 % % Computation of the respective modeled body

forces within

96 % % the bounds of the experimental CV

97 matrix_y = (A_y * PMs_y);

98 matrix_y = reshape(matrix_y ,[x_dim ,y_dim]);

99 matrix_y = matrix_y ';

100 matrix_y = matrix_y(:,extension +1:end -extension);

101
102 % % summary of the body forces of all phases

103 newmodel_y (:,:,phase) = matrix_y;

104
105 % % summary of PM vectors for all phases

106 all_solutions_y(phase ,:) = PMs_y;

107
108
109
110 % % %% Computation of a common PM vector for both

directions

111 % %

112 % %

113 % % % % PMs_both contains the common potential

magnitudes for the current phase

114 % % [PMs_both] = LSMR_fitting_common_PMs(A_x ,

A_y , F_line_x , F_line_y);

115 % %

116 % % % % Computation of the respective modeled

body forces within

117 % % % the bounds of the experimental CV

118 % % matrix_x = (A_x * PMs_both);

119 % % matrix_x = reshape(matrix_x ,[x_dim ,

y_dim]);

120 % % matrix_x = matrix_x ';

121 % % matrix_x = matrix_x(:,extension +1:end -

extension);

122 % %

123 % % % % summary of the body forces of all

phases

124 % % newmodel_x (:,:,phase) = matrix_x;

125 % %

126
127 % % % % Computation of the respective modeled

body forces within
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128 % % % the bounds of the experimental CV

129 % % matrix_y = (A_y * PMs_both);

130 % % matrix_y = reshape(matrix_y ,[x_dim ,

y_dim]);

131 % % matrix_y = matrix_y ';

132 % % matrix_y = matrix_y(:,extension +1:end -

extension);

133 % %

134 % %

135 % % % % summary of the body forces of all

phases

136 % % newmodel_y (:,:,phase) = matrix_y;

137 % %

138 % %

139 % % % % summary of PM vectors for all phases

140 % % all_solutions_both(phase ,:) = PMs_both;

141
142 end

Creation of Matrices

1 function [A_x , A_y , x, y, amount_potentials] = design_matrix(x

, y, extension , addition , distance , x_dim , y_dim)

2
3 %% Extension of coordinate vectors

4 delta_x = x(1,2) - x(1,1);

5
6 % % Extension of x-vector

7 for i = 1: extension

8 new_line_x1 = (x(1,1) - delta_x) * ones(size(x

,1) ,1);

9 new_line_x2 = (x(1,size(x,2)) + delta_x) *

ones(size(x,1) ,1);

10 x = [new_line_x1 x new_line_x2 ];

11 end

12
13 % % Extension of y-vector

14 for i = 1:2* extension

15 y = [y y(:,end)];

16 end

17
18 %% Positioning of potentials according to chapter 5.2

19 % % Distance between two potentials in [m]

20 distance_real = distance * delta_x;

21
22 % % Distance between original last potential and last

added potential

23 distance_end = addition * delta_x;

24
25 % % Vector contains the positions of the potential

26 lx_knot = (x(1,1) - distance_end - 0.5 * distance_real :

distance_real : x(1,end) + distance_end + 0.5 *

120



I. MATLAB Code 121

distance_real);

27
28 % % Counter for set up of matrix

29 amount_potentials = (1: length(lx_knot));

30
31
32 %% Set up of the matrix.

33 % % The variabel r defines the current line in the matrix

34 % % (each line refers to a single position in the grid)

35 r = 1;

36
37 % % Counter for y-position in grid

38 for j = 1:y_dim

39
40 % % Counter for x-position in grid

41 for k = 1:x_dim

42
43 % % Counter for position of the potential

44 for i = 1: length(amount_potentials)

45
46 % % Distance between the current potential and

current position in grid

47 radius = sqrt( (lx_knot(teil(i)) - lx(k))^2 +

(ly(j) - 0) );

48
49 % % Set up of matrices according to eqn. (5.5)

and (5.6)

50 A_x(r,i) = (lx(k) - lx_knot(teil(i))) / radius

^2;

51 A_y(r,i) = (ly(j) - 0) / radius ^2;

52
53 end

54 r = r + 1;

55 end

56 end

Fitting Process for Each Spatial Direction

1 function [PMs] = LSMR_fitting(teil , A, F)

2
3 %% Initialization of variables for fitting

4
5 lambda = 0;

6 iter_max = 1600;

7 atol = 0;

8 btol = 0;

9 conlim = 0;

10 itnlim = iter_max;

11 localSize = Inf;

12 show = true;

13 x0 = zeros(length(teil) ,1);

14
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15 %%

16 [PMs] = lsmr(A, F, lambda , atol , btol , conlim , itnlim ,

localSize , show , x0);

17 %%

Fitting Process with a Common PM Vector for Both Spatial Directions

1 function [PMs_both] = LSMR_fitting_common_PMs(A_x , A_y ,

F_line_x , F_line_y)

2
3 % % This script is mostely equivalent to the basic fitting

script , but

4 % % joins the computed matrices and the experimental data

first

5 A = [A_x; -A_y];

6 F_all = [F_line_x; F_line_y ];

7
8 %% Initialization of variables for fitting

9
10 lambda = 0;

11 iter_max = 1600;

12 atol = 0;

13 btol = 0;

14 conlim = 0;

15 itnlim = iter_max;

16 localSize = Inf;

17 show = true;

18 x0 = zeros(length(teil) ,1);

19 %%

20 [PMs_both] = lsmr(A, F_all , lambda , atol , btol , conlim , itnlim

, localSize , show ,x0);

21 %%
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