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A novel design procedure for switched linear parameter-varying (LPV) controller is proposed. The new
procedure, based on the Youla parameterisation ideas, decomposes the controller design into two steps. One
focuses on ensuring global stability and the other on fulfilling the local performance specifications. This scheme
allows the design of each local controller independently of each other, which may achieve higher performance
without compromising the global stability and also simplifies the synthesis and the implementation of the local
controllers. Any standard LPV synthesis procedure can be used to design these controllers. On the other hand,
the stability during switching is ensured with convex constraints and no restrictions are imposed on the switching
among controllers. The use of the proposed procedure is illustrated with an active magnetic bearing example.
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1. Introduction

Since the appearance of the first synthesis results
(Becker and Packard 1994; Apkarian, Gahinet, and
Becker 1995; Wu, Yang, Packard, and Becker 1996;
Apkarian and Adams 1998), linear parameter-varying
(LPV) tools have gradually replaced the traditional
gain scheduling techniques. This new concept provides
not only a formal framework ensuring stability and
performance but also a systematic design procedure.
To design the global control strategy, it is sufficient to
solve only one optimisation problem with LMI con-
straints. The gain scheduling is now implemented
without resorting to complex ad hoc algorithms
because the synthesis procedure itself provides the
interpolation formula. Nevertheless, the LPV formu-
lation presents certain limitations. The optimisation
problem in systems with large number of parameters
demands a prohibitive computational effort with the
current linear matrix inequality (LMI) algorithms (Lee
1997). On the other hand, a single LPV controller may
not be effective in cases of plants with drastic dynamic
changes or when highly demanding specifications must
be fulfilled only in certain sectors of the parameter
space. Usually, in these situations, the LPV synthesis
focuses on the global behaviour at the expense of
sacrificing the local performance.

Probably, the first attempt to overcome these
limitations can be found in Lee (1997). The authors

propose to divide the parameter space into overlapped
subsets and to design one LPV controller for each

subset. The global strategy is then constructed by
interpolating the local controllers. A different
approach is suggested in Wu (2001), Lu and Wu
(2004) and Lu, Wu, and Kim (2006), putting the
problem in the context of the recently introduced
switched LPV systems (Lim and Chan 2003). In this
context, the synthesis procedure differs from the

traditional LPV techniques in the search for piecewise
or multiple parameter-dependent Lyapunov functions.
However, although these approaches put more empha-
sis on the local performance, the designs are still
connected by a global stability condition that limits the
maximum performance achieved.

In this article, we propose a different approach to
the synthesis problem of switched LPV controllers

partly inspired by the LTI works (Hespanha and
Morse 2002; Blanchini, Miani, and Mesquine 2009).
Based on the separation principle of the Youla
parametrisation, the controller design is decomposed
into two steps, one focused on ensuring global stability
and the other on achieving the desirable performance
in each subset. The appeal of this new scheme is that

each local controller can be designed independently
from the other subsets. This feature leads to higher
performance designs without compromising the global
stability, but it also makes the local controller synthesis
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more tractable and simplifies its implementation. The
global stability is guaranteed by convex constraints
with no restrictions imposed on the switching among
controllers.

The article is organised as follows. Section 2
provides a brief introduction on switched LPV systems.
Section 3 introduces the problem formulation and the
novel design procedure for switched LPV controllers.
Some implementation aspects are discussed at the end
of this section. In Section 4, the application of the new
procedure is illustrated with an active magnetic bearing
(AMB) example. Finally, Section 5 summarises our
conclusions.

Notation: R is the set of real numbers andR
n�m the set

of real matrices of n�m. For a symmetric matrix
H2R

n�n, H40 (H50) denotes positive (negative)
definite and H� 0 (H� 0) represents a positive (nega-
tive) semi-definite matrix. Given G a 2� 2 block-
partitioned matrix and a matrix Q such that
det(I�G22Q) 6¼ 0, the lower linear fractional trans-
formation is defined as F l (G,Q) ¼

4
G11þ

G12Q(I�G22Q)�1G21. For matrices H1, H2, . . . ,Hn,

diagðH1,H2, . . . ,HnÞ ¼

H1 0 � � � 0

0 H2 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � Hn

2
66664

3
77775:

2. Switched LPV systems

In this section, we present a brief introduction on
switched LPV systems for a better understanding of the
contributions. A more complete discussion can be
found in Lu (2004).

A switched LPV system depends on a scheduling
parameter �, but the set P �R

n� where the parameter
ranges is divided by means of a set of switching
surfaces Sij into closed subsets {Pi}i2Zn

such that
P ¼

S
Pi, where Zn¼ {1, 2, . . . , n}. The subsets can be

either overlapped or not, and in this last case Sij¼Sji.
The system dynamics in each subset is given by

Gcl,ið�Þ :
_xcl ¼ Acl, ið�Þxcl þ Bcl, ið�Þw

z ¼ Ccl, ið�Þxcl þDcl, ið�Þw

�
8� 2 Pi, ð1Þ

where xcl2R
nx is the state, w2R

nw is the disturbance
and z2R

nz is the controlled signal. The evolution of
the index i describes a piecewise constant function �(t)
taking values in Zn. This switching signal indicates the
active Gcl,i (�) system at any time and permits us to
express the dynamic behaviour as

Gcl,�ð�Þ :
_xcl¼Acl,�ð�ÞxclþBcl,�ð�Þw

z¼Ccl,�ð�ÞxclþDcl,�ð�Þw

�
8�2P: ð2Þ

The switching logic imposes the change of system
depending on the parameter value. Therefore, it also
states the set of switching signals and the stability
characteristics of the switched system. Under arbitrary
switching signals, the proof of exponential stability
requires finding a common Lyapunov function
V�ðxcl, �Þ ¼ xTclXclð�Þxcl such that

Xclð�ÞAcl,ið�Þ þ AT
cl,ið�ÞXclð�Þ þ _Xclð�Þ5 0

8� 2 Pi 8i 2 Zn, ð3Þ

where _Xclð�Þ ¼ dXclð�Þ=dt and � l � _�l � �l for
l¼ 1, 2, . . . , n�.

This strong condition can be relaxed by limiting the
set of switching signal with particular logics, such as
hysteresis or average dwell time (Lu and Wu 2004).
With a smaller set of switching signals, it is possible to
employ piecewise or multiple Lyapunov functions.
Nevertheless, these functions are not completely inde-
pendent of each other. The functions must also satisfy
additional constraints in the switching surfaces in
order to guarantee global stability (Lu and Wu 2004;
Lu et al. 2006).

3. Switched LPV control based on the Youla

parametrisation

3.1 Problem statement

Consider an open-loop LPV system described by

Gð�Þ :

_x ¼ Að�Þxþ B1ð�Þwþ B2ð�Þu,
z ¼ C1ð�ÞxþD11ð�ÞwþD12ð�Þu,
y ¼ C2ð�ÞxþD21ð�Þw,

8<
: ð4Þ

where x2R
ns is the state, u2R

nu is the control input
and y2R

ny is the measured output. The system
matrices are continuous and bounded functions of a
parameter � measurable in real time. It is assumed that
� takes values in a compact set P�R

n� and no bounds
are imposed on the parameter rates. As usual, the
pairs (A(�),B2(�)) and (A(�),C2(�)) are assumed
quadratically stabilisable and detectable, respectively
(Wu et al. 1996).

The parameter set P is divided into a finite number
of closed subsets {Pi}i2Zn

with P ¼
S
Pi. These subsets

are considered non-overlapped, i.e. Sij¼Sji. The objec-
tive is to formulate a methodology to design a family of
n LPV controllers

Kið�Þ :
_xK ¼ AK,ið�ÞxK þ BK,ið�Þ y,
u ¼ CK,ið�ÞxK þDK,ið�Þ y,

�
i 2 Zn ð5Þ

with xK2R
nk. Each controller must fulfil the perfor-

mance specifications in the corresponding subset Pi
whereas stability is guaranteed during the controller
switching. Notice that the resulting closed-loop system
fits the switched LPV system definition in (2).



The partition of the parameter range P provides
additional flexibility during the controller design.
For example, in the cases of LPV plants with sub-
stantial dynamic changes, a suitable partition of P
may produce a higher performance controller and it
may even be decisive for finding a solution. On
the other hand, in situations with a considerable
number of parameters, a clever subdivision of the
parameter envelope can produce more tractable prob-
lems that would require less computational effort
(Lee 1997).

3.2 Switched LPV controller design

Synthesis procedures for the previous problem have
been proposed in Wu (2001), Lu and Wu (2004) and
Lu et al. (2006). These procedures basically involve
satisfying the set of LMI conditions used in the single
controller case for each region plus a new set of
constraints that the Lyapunov functions must fulfil in
the switching surfaces. In general, these constraints are
nonconvex due to the fact that these synthesis proce-
dures address the stability and performance simulta-
neously. Furthermore, the n LMI sets must be solved
simultaneously which may result in a highly demand-
ing computational problem.

We propose a different approach based on the

Youla parametrisation ideas. The new control scheme

can be seen in Figure 1, where

Mð�Þ :

_xM ¼ ðAð�Þ þ B2ð�ÞFð�Þ

þLð�ÞC2ð�ÞÞxM � Lð�Þ yþ B2ð�Þv,

u ¼ Fð�ÞxM þ v,

h ¼ �C2ð�ÞxM þ y,

8>>><
>>>:

and

Q�ð�Þ :
_xQ ¼ AQ,�ð�ÞxQ þ BQ,�ð�Þh,

v ¼ CQ,�ð�ÞxQ þDQ,�ð�Þh

�
ð6Þ

is any stable switched LPV system. As will be shown
next, this control structure presents similar stability
properties to other Youla parametrisations. That is,
the stability of

Jð�Þ ¼ F l Gð�Þ,Mð�Þð Þ

is not affected by the inclusion of any stable switched
LPV system Q�(�). This property allows the decom-
position of the controller design into two steps. Firstly,
a pre-compensator M(�) is found in order to guarantee
stability in the entire operating range P. Then in the
subsequent step, the parameters Qi (�) for achieving
the desirable performance in each subset are designed.
Observe that in this control scheme only Q�(�) is a
switched LPV system.

To formalise the previous ideas, the exponential
stability of the switched closed-loop system

Gcl, �ð�Þ ¼ F l Jð�Þ,Q�ð�Þð Þ

needs to be proved. With this aim, a matrix function
Xcl40 such that

XclAcl, �ð�Þ þ AT
cl, �ð�ÞXcl 5 0 ð7Þ

for all �2P must be found (Lu and Wu 2004).1

After some system manipulations and a similarity
transformation, it can be shown that

(see e.g. Xie and Eisaka 2004). According to LemmaA.1
(see the Appendix), due to the triangular structure of
Acl,�(�), if there exist three positive definite matricesY1,
XQ and X2 such that

Y1 Að�Þ þ B2ð�ÞFð�Þð Þ þ Að�Þ þ B2ð�ÞFð�Þð Þ
TY1 5 0,

ð8Þ

X2 Að�Þ þ Lð�ÞC2ð�Þð Þ þ Að�Þ þ Lð�ÞC2ð�Þð Þ
TX2 5 0,

ð9Þ

for all �2P and

XQAQ,ið�Þ þ AQ,ið�Þ
TXQ 5 0, ð10Þ

for all �2Pi and i2Zn, the constraint (7) is satisfied
with Xcl¼ diag(Y1,XQ,X2).

The simple change of variables Y1 ¼ X�11 ,
V(�)¼F(�)X1 and W(�)¼X2L(�) turns (8) and (9)
into the following convex constraints:

Að�ÞX1 þ B2ð�ÞVð�Þ þ Að�ÞX1 þ B2ð�ÞVð�Þð Þ
T 5 0,

ð11Þ

X2Að�Þ þWð�ÞC2ð�Þ þ X2Að�Þ þWð�ÞC2ð�Þð Þ
T 5 0,

ð12Þ

Kσ(ρ)

G(ρ)
w z

yu

M(ρ)

h v

Qσ(ρ)

Figure 1. Proposed switched LPV control structure.

Acl, �ð�Þ ¼

Að�Þ þ B2ð�ÞFð�Þ B2ð�ÞCQ,�ð�Þ ðB2ð�ÞFð�Þ � B2ð�ÞDQ,�ð�ÞC2ð�ÞÞ

0 AQ,�ð�Þ �BQ,�ð�ÞC2ð�Þ

0 0 Að�Þ þ Lð�ÞC2ð�Þ

2
4

3
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for all �2P. Notice that the plant (4) always satisfies

these LMI constraints since by hypothesis it is

quadratically stabilisable and detectable (Wu et al.

1996).
On the other hand, there is no need to compute the

parameters Qi (�)’s simultaneously to fulfil the condi-

tion (10). Actually, the LMI in (10) is held automat-

ically if each Qi (�) is chosen quadratically stable

8�2Pi, a condition that it must also fulfil to preserve

stability in the subset Pi. This fact is a consequence of

Lemma A.2 (see the Appendix) which, using similar

arguments to those introduced by Hespanha and

Morse (2002), proves that it is always possible to find

state transformations Ti such that the switched LPV

system associated with

Qið�Þ :
_xQ ¼ TiAQ,ið�ÞT

�1
i xQ þ TiBQ,ið�Þh,

v ¼ CQ,ið�ÞT
�1
i xQ þDQ,ið�Þh,

(
ð13Þ

is exponentially stable. Therefore, each Qi (�) can be

designed independently of the other ones and thus the

performance achieved in each Pi is not affected by the

Qi (�) corresponding to other subsets.
Each parameter Qi (�) can be designed by applying

any standard LPV synthesis procedure to the plant

Jð�Þ :

_xJ ¼ AJð�ÞxJ þ BJ1ð�Þwþ BJ2ð�Þv,

z ¼ CJ1ð�ÞxJ þDJ11ð�ÞwþDJ12ð�Þv,

h ¼ CJ2ð�ÞxJ þDJ21ð�Þw,

8><
>: ð14Þ

where the values of � are restricted to the subset Pi
during the design of Qi (�) and xTJ ¼ ½x

T xTM�,

AJð�Þ ¼
Að�Þ þ B2ð�ÞFð�Þ B2ð�ÞFð�Þ

0 Að�Þ þ Lð�ÞC2ð�Þ

" #
,

BJ1ð�Þ ¼
B1ð�Þ

�ðB1ð�Þ þ Lð�ÞD21ð�ÞÞ

" #
,

BJ2ð�Þ ¼
B2ð�Þ

0

" #
,

CJ1ð�Þ ¼ C1ð�Þ �D12ð�ÞFð�Þ D12ð�ÞFð�Þ
� �

,

CJ2ð�Þ ¼ 0 �C2ð�Þ
� �

,

DJ11ð�Þ ¼ D11ð�Þ, DJ12ð�Þ ¼ D12ð�Þ,

DJ21ð�Þ ¼ D21ð�Þ:

The Youla parameter Qi (�) is computed as a standard

LPV controller valid in the subset Pi. According to

Theorem 1 in Xie and Eisaka (2004), the structure of

M(�) ensures that any Qi (�) quadratically stabilising

J(�) is also quadratically stable.

The particular synthesis procedure employed in the

design of Qi (�) depends on the performance objectives.

For example, measuring the performance as

kzk25�kwk2, the LPV system Qi (�) can be obtained

from solving a convex optimisation problem with the

following constraints:

N
T
Ri

RiAJð�Þ
T
þAJð�ÞRi RiC

T
J1ð�Þ BJ1ð�Þ

CJ1ð�ÞRi ��iInz DJ11ð�Þ

BT
J1ð�Þ DT

J11ð�Þ ��iInw

2
664

3
775N Ri

50,

ð15Þ

N
T
Si

AJð�Þ
TSi þ SiAJð�Þ SiBJ1ð�Þ CT

J1ð�Þ

BT
J1ð�ÞSi ��iInw DT

J11ð�Þ

CJ1ð�Þ DJ11ð�Þ ��iInz

2
64

3
75N Si

50,

ð16Þ

Ri InJ

InJ Si

� �
� 0, ð17Þ

with N Ri
¼ ker½BT

J2ð�Þ D
T
J12ð�Þ 0� and N Si

¼ ker[CJ2(�)
DJ21(�) 0], and the values of � restricted to the

subset Pi, i2Zn. Then, the system matrices of Qi (�)
are computed from Ri and Si (see Wu et al. (1996)

and Apkarian and Adams (1998) for more details).

In order to obtain the n Youla parameters, the

previous synthesis procedure must be repeated n

times but there is no need to solve them

simultaneously.
Once these Youla parameters are computed, it just

remains to find the state transformations Ti to modify

the realisations in order to guarantee the exponential

stability of Q�(�) and Gcl,�(�) (see Lemma A.2). These

transformations do not depend on the parameter � and
thus they do not affect the stability and performance

characteristics achieved during the computation of

the Qi (�)’s.
To sum up, the proposed design procedure reduces

to the following two steps:

(1) Find two positive definite matrices X1, X2 and

matrices V(�) and W(�) such that LMIs (11)

and (12) are satisfied. Then, compute Fð�Þ ¼
Vð�ÞX�11 and Lð�Þ ¼ X�12 Wð�Þ and construct

the pre-compensator M(�).
(2) Find one quadratically stable Qi (�) for each

subset Pi such that the performance specifica-

tions are fulfilled. Each parameter Qi (�) can be

designed by applying any standard LPV syn-

thesis procedure to the plant J(�) for all �2Pi.
Finally, compute the state transformations Ti

according to Lemma A.2.



With the parameters Qi (�) previously obtained, the

system matrices of the controllers (5) are given by

with �2Pi, i2Zn. These controllers can be
arbitrarily switched without affecting the stability
of Gcl,�(�).

It is worth emphasising that the particular choice of
Xcl does not limit the existence of a stabilising M(�)
since (8)–(10) always hold by hypothesis. On the other
hand, the local performance in each subset Pi is not
affected by the particular choice of F(�) and L(�)
because the parametrisation K(�)¼F l (M(�), Q(�))
describes all quadratically stabilising controllers.

3.3 Implementation aspects

The most considerable difference with previous results
is the decomposition of the design into two steps in
order to reduce the solution to a couple of convex
optimisation conditions. By separating the stability
from the performance problem, a set of synthesis
procedures that can be solved with available tools is
obtained. Another positive point of this decomposition
is the reduction of the number of variables and
constraints in each optimisation problem, which
allows its application to LPV plants with more
parameters.

Furthermore, the new procedure does not force the
use of parameter-dependent Lyapunov functions in
each subset. Since Qi (�) must be quadratically stable,
the parameterisation

Kið�Þ ¼ F l Mð�Þ,Qið�Þð Þ

describes only those controllers that quadratically
stabilise the plant G(�) for all �2Pi. Therefore, the
existence of a constant Lyapunov matrix is guaranteed
after finding each Qi (�). As a consequence, the online
computations needed to obtain the control signal are
substantially simpler than the parameter-dependent
versions. Note that in previous results (Wu 2001; Lu
and Wu 2004; Lu et al. 2006), the use of parameter-
dependent Lyapunov functions is essential, otherwise
the synthesis reduces to the single LPV controller
design. Therefore, the online implementation in these

cases becomes more complex than in the procedure

presented here. On the other hand, the simplicity

gained on the synthesis and on the implementation
may produce a lower performance, in cases where a
larger class of Lyapunov functions is considered.
Recall that in LPV synthesis the achieved performance
depends on the type of Lyapunov matrices employed
(Wu et al. 1996).

The number of states of the resulting controller
may become large in the cases of high order plants.
Using standard LPV synthesis algorithms to design the
Qi (�)’s, the final order can reach 4ns. However, the
order can be lower if the plant in (4) includes stable
non-controllable or non-observable states, such as
those added to consider performance specifications.
Typically, the plant G(�) includes weighting functions
in order to translate the performance specifications
into the LPV synthesis format. In this circumstance,
only the controllable and observable states need to be
considered during the computation of F(�) and L(�)
and thus the order of M(�) can be lower than ns. In the
extreme case where the plant is quadratically stable, the
matrix gains F(�) and L(�) can be chosen equal to zero
and the pre-compensator reduces to

Mð�Þ :

_xM ¼ Að�ÞxM þ B2ð�Þv,

u ¼ v,

h ¼ �C2ð�ÞxM þ y:

8><
>:

With this pre-compensator, in cases such as mixed
sensitivity problems, it is possible to formulate an
equivalent version of J(�) of order ns with the only aim
of computing the Qi (�)’s. Due to this reformulation,
the order of the parameter Qi (�) is ns and thus, the
order of the resulting controller is 2ns.

4. AMB example

In order to illustrate the proposed methodology, we
analyse the control of an AMB system. The example is
borrowed from Lu and Wu (2004) and a detailed
description of the system can be found in Mohamed
and Busch-Vishniac (1995).

AK,ið�Þ ¼
Að�Þ þ B2ð�ÞFð�Þ þ Lð�ÞC2ð�Þ � B2ð�ÞDQ,ið�ÞC2ð�Þ B2ð�ÞCQ,ið�ÞT

�1
i ð�Þ

TiBQ,ið�ÞC2ð�Þ TiAQ,ið�ÞT
�1
i ð�Þ

" #
,

BK,ið�Þ ¼
B2ð�ÞDQ,ið�Þ � Lið�Þ

TiBQ,ið�Þ

� �
,

CK,ið�Þ ¼ Fið�Þ �DQ,ið�ÞC2ð�Þ CQ,ið�ÞT
�1
i ð�Þ

� �
,

DK,ið�Þ ¼ DQ,ið�Þ,



The AMB system consists of a rotor suspended by

four pairs of electromagnets. The opposite electromag-

netic forces maintain the rotor levitating in the centre
line allowing high rotation speeds without mechanical

contact and lubrication. The dynamic behaviour can
be described, after some simplifications, by the follow-

ing LPV model:

Gð�Þ :
_x ¼ Að�Þxþ Bu,

y ¼ Cx,

�
ð18Þ

where the state-space matrices are

Að�Þ ¼

0 0 1 0 0 0

0 0 0 1 0 0

� 4c2
m 0 0 �

�Ja
Jr

2c1
m 0

0 � 4c2
m

�Ja
Jr

0 0 2c1
m

2d2
m 0 0 0 � d1

m 0

0 2d2
m 0 0 0 � d1

m

2
6666666664

3
7777777775
,

B ¼
1

N

04�2

I2

� �
,

C ¼ I2 02�4
� �

:

The state vector is xT ¼ l� l l _� l _ �� � 
� �

,
the disturbance is wT

¼ [ fd� fd ], and the control action

is uT¼ [e� e ]. The angles � and  indicate the
orientation of the rotor centre line, and �� and �
denote the differential fluxes produced by the electro-

magnetic pairs. The disturbance w is consequence of
imbalances, modelling errors, etc. The orientation of

the centre line can be controlled by means of the
differential voltages e� and e applied to the electro-

magnet pairs. The symbol � represents the rotor speed,
which ranges from 350 rad/s to 1100 rad/s and is

assumed measurable in real time. A detailed explana-
tion of the rest of the parameters can be found in

Mohamed and Busch-Vishniac (1995).
The system is open-loop unstable; therefore, the

first control objective is to stabilise it. The second
objective is to minimise the gap displacements caused

by the disturbances with a reasonable control effort.

These control specifications are translated into the
performance constraint kzk25�kwk2 by augmenting

the plant with weights as shown in Figure 2 where

WyðsÞ ¼
10ðsþ 8Þ

sþ 0:001
I2, WuðsÞ ¼

0:01ðsþ 100Þ

sþ 100000
I2,

WwðsÞ ¼ 0:001I2:

The parameter set P has been divided into two sets

P1¼ [315 720] and P2¼ [720 1100]. Following the

proposed procedure, firstly we found the matrix gains
F(�) and L(�) by solving the LMI optimisation

problem (11)–(12) and then the pre-compensator

M(�) is constructed. In this case, F(�) and L(�)
cannot be zero because the plant is not quadratically
stable. Once the stability is guaranteed, the parameter
Qi (�)’s are obtained by solving two independent
convex optimisation problem given by (15)–(17). The
achieved performance levels were �1¼ 3.31 and
�2¼ 3.32, respectively. By comparison, the application
of traditional LPV synthesis procedures for the whole
parameter space (P ¼ [315 1100]) gives a performance
level of 6.66, a worse result as compared with the
switched option.

The simulation results in Figure 4 show the
response to steps of 0.001 amplitude applied at the
disturbance inputs, whereas the parameter trajectory
follows the profile shown in Figure 3. It is worth noting
the absence of glitches, even though the parameter
trajectory crosses the switching surface at 2.9 s and
6.1 s. This is due to the fact that the parameters Qi (�)’s
are only active during the transient and in Figure 4
the system has reached the stationary state before the
switching occurred. In this situation, only the pre-
compensator focused on preserving stability is active,
which is never switched. This is another difference with
previous switching strategies where the whole control-
ler is switched and then the glitches always arise.

In Figure 5 the closed-loop system has been excited
with persistent signals of the form

w1 ¼ ~w sinð�tþ �1Þ,

w2 ¼ ~w sinð�tþ �2Þ,

where �i are initial phases and ~w ¼ 1:3� 10�6, which
represent small imbalances. The parameter trajectory
corresponds to the same signal shown in Figure 3.

G(ρ) Wy

Wu

Ww uyw

⎫⎪⎬
⎪⎭

z

Figure 2. Control scheme for the controller design.
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Figure 3. Parameter trajectory used in the simulations.



It can be seen that due to the persistency of the
excitation the signal v is always non-zero and the effect
of the controller switching is now visible on the output
signal. However, the simulation shows that the stability
is preserved and the transient due to the switching
vanishes in a reasonable time.

A new synthesis procedure for switched LPV control-
lers has been discussed. Based on the separation
principle provided by the Youla control structure, the
design is divided into two steps. Firstly, the global
stabilising pre-compensator is obtained and then a set
of Youla parameters is designed to achieve the
desirable performance in each subset in which the
entire scheduling parameter envelope has been parti-
tioned. Compared with previous results, the offline and
online computational procedure in the proposed con-
trol structure is less demanding, but in certain situa-
tions may result to be more conservative. The
controller computation is decomposed into several
convex optimisation problems with a smaller number
of variables and constraints, which makes the design
more tractable for plants with large number of
parameters. On the other hand, the use of constant
Lyapunov matrices in the computation of the Youla
parameter simplifies the controller online implementa-
tion. The new controller structure also exhibits a better
behaviour during the switching. Due to the fact that
only the parameter Qi (�) switches, the presence of
glitches is now less visible.

Acknowledgements

The first author has been supported by the Juan de la Cierva
Program of the Ministry of Science and Innovation (MCI) of
Spain, and the second author by CONICET and the PRH
program of the Ministry of Science and Technology of
Argentina. This research has been financed by CICYT
Project No. DPI2008-00403 of MCI.

Note

1. The Lyapunov function is considered parameter inde-
pendent because no bounds are assumed on the param-
eter rates.
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Appendix. Some useful results

Some technical results used through the article are presented
in this section.

Lemma A.1: If there exist X140 and X240 such that

X1A11ð�Þ þ AT
11ð�ÞX1 5 0

X2A22ð�Þ þ AT
22ð�ÞX2 5 0

then there exists X40 such that

XAð�Þ þ ATð�ÞX5 0, ðA1Þ

where

Að�Þ ¼
A11ð�Þ A12ð�Þ

0 A22ð�Þ

� �
with A12(�) a bounded function of �2P.

Proof: With X¼ diag(	X1,X2) and using Schur comple-
ments, the condition (A1) is equivalent to

	Mð�Þ ¼ 	ðX1A11ð�Þ þ AT
11ð�ÞX1Þ5 0, ðA2Þ

X2A22ð�Þ þ AT
22ð�ÞX2 � 	X2A12ð�ÞM

�1ð�ÞAT
12ð�ÞX2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Nð�Þ

5 0:

ðA3Þ

The X2A12(�) is a possibly rectangular or singular matrix but
a bounded function of �. Since M�1(�)50, it can be stated
that N(�)� 0. Then, it is always possible to find a 	40 such
that (A2) and (A3) are satisfied. This proves the existence of
a X such that (A1) holds. œ

Lemma A.2: Given the set of LPV systems

Gið�Þ :
_x ¼ Aið�Þxþ Bið�Þw

z ¼ Cið�ÞxþDið�Þw

�
8�i 2 Pi ðA4Þ

If all Gi (�) are quadratically stable, there always exist state-
space transformations Ti’s such that the switched LPV systems
formed by the Gi (�)’s is exponential stable under arbitrary
switching.

The proof is similar to the LTI case addressed in
Hespanha and Morse (2002) and is sketched here in order
to illustrate the computation of the state-space transforma-
tions. As Gi (�) is quadratically stable there exist constant
Lyapunov matrices Xi40, i2Zn such that Xi ¼ ST

i Si. Then,
defining X¼STS40 and ~Aið�Þ ¼ TiAið�ÞT

�1
i , with Ti¼

S�1Si, the quadratic stability of each Gi (�) ensures that

XiT
�1
i

~Aið�ÞTi þ TT
i

~AT
i ð�ÞT

�1
i Xi 5 0 8� 2 Pi 8i 2 Zn,

which is equivalent to

X ~Aið�Þ þ ~AT
i ð�ÞX5 0 8� 2 Pi 8i 2 Zn

after applying the congruence transformation S�Ti S. Hence,
the existence of a common Lyapunov function V(x)¼ xTXx
has been proved and thus the exponential stability of the
switched system.

Unfortunately, this result cannot be extended to para-
meter-dependent quadratically stable systems. This would
lead to parameter-dependent state transformations which
would modify the input–output characteristics of the original
LPV systems.




