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Abstract. Numerous parameter estimation techniques exist for characterizing the arterial
system using electrical circuit analogs. However, they are often limited by their requirements
and usually high computational burdain. Therefore, a new method for estimating arterial
parameters based on Monte Carlo simulation is proposed. A three element Windkessel model
was used to represent the arterial system. The approach was to reduce the error between the
calculated and physiological aortic pressure by randomly generating arterial parameter values,
while keeping constant the arterial resistance. This last value was obtained for each subject using
the arterial flow, and was a necessary consideration in order to obtain a unique set of values
for the arterial compliance and peripheral resistance. The estimation technique was applied
to in vivo data containing steady beats in mongrel dogs, and it reliably estimated Windkessel
arterial parameters. Further, this method appears to be computationally efficient for on-line
time-domain estimation of these parameters.

1. Introduction
With the intent of practical use, this work aims to estimate the parameters of the arterial system,
at a low calculation cost, prioritizing speed and simplicity. We chose the Windkessel model, a
lumped model [1, 2], over tube models [3–5] and anatomically based distributed models [6–8],
because it provides a quantitative point of view of the main parameters of a vascular system.
Therefore it can be used for the systemic arterial system and the pulmonary arterial bed of all
mammals.

The three-element Windkessel models the arterial system represented as analogous to an
electric circuit, as shown in Figure 1. From this model we deduced the two parameters that
we sought to estimate, the peripheral resistance Rp and the peripheral compliance Cp. There
are numerous widely used and accepted methods for the estimation of these parameters [9].
The most common ones are: the decay time method [10], the stroke volume over pulse pressure
method [11–13], the area method [14], the two-area method [15], the pulse pressure method
[16,17], the transient method [18].
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The estimation of the parameters of the Windkessel offers a wide range of applications [9].
These include: calculating the ambulatory arterial stiffness index, calculating the load in artificial
heart and valve studies [19–27], obtaining cardiac otuput from aortic pressure measurements [28]
and theoretical analyses where a heart model and arterial system are coupled [29,30].

2. Materials and Methods
Measurements of pressures from the left ventricle and the aorta arterial were taken to a group
of mongrel dogs. Aortic (Pao) and left ventricular (Plv) pressures of the Windkessel model were
registered with a sampling rate of 100 Hz during 4 seconds per measurement. Simulations were
performed in Scipy [31] using a computer with an Intel Core i5 2.53 GHz processor, with 4 GB
DDR3 RAM.

2.1. Windkessel Model
The three-element Windkessel model is a way to characterize part of the arterial system as an
electrical circuit, the electrical diagram is shown in figure 1.

Figure 1. Three-element Windkessel model and its parameters, Ra, Rp, and Cp. Sw simulates
de aortic valve by being closed during systole and open during diastole.

The three-element Windkessel employs equations derived from the analysis of the electrical
circuit. Below are the final forms for the calculation of aortic pressure. These equations require
three parameters and the left ventricular pressure as input data in order to simulate an aortic
pressure curve. The equation for the simulation of aortic pressure Pao during systole is:

Pao[n+ 1]|sistole = αPlv[n] + βPao[n] (1)

where:

α =
∆t

CpRa
(2)

and

β = 1− ∆t(Ra +Rp)

CpRpRa
(3)

And the equation for the simulation of aortic pressure Pao during diastole is:

Pao[n+ 1]|diastole = (1− γ)Pao[n] (4)
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where:

γ =
∆t

CpRp
(5)

2.2. Monte Carlo Parameter Estimation and Curve fitting
The Windkessel model used in this case generates a Pao with three inputs, which are the model’s
parameters. Generating a Pao vector requires only the three input parameters, and considering
that the flow is not taken into account in these calculations, there are infinite solutions for the
three impedances (Cp, Ra and Rp) that would yield the same Pao, each corresponding to a
different flow.

In order to have a determined system, the aortic flow was taken into account calculating
Ra as a function of it. To find this relation, Ra can be computed by means of equation (7),
obtaining the difference between mean left ventricular pressure and mean aortic pressure during
systole, divided by the measured aortic flow. This could also be approximated by using the
Hagen–Poiseuille equation. This calculation, though hindering an optimal calculation of Ra,
allows a much more precise approximation to the real values of the peripheral impedances, Cp

and Rp. Moreover, another alternative allows Rp to remain constant, and computing Rp as the
difference between mean arterial pressure and mean right atrial pressure, divided by the mean
aortic flow. In this case, Ra could be calculated more precisely, if that is desired.

The aortic flow during systole results in:

Fao[n]|sistole =
Pvi[n]− Pao[n]

Ra
(6)

then Ra is:

Ra =
Pvi|sistole − Pao|sistole

Fao|sistole
(7)

The Monte Carlo method was used to generate pseudo-random values for the peripheral
parameters Rp and Cp. These pseudo-random values are generated within a fixed interval
limited by the physiological boundaries for these parameters [15,32]. The initial intervals we set
for Rp and for Cp were [1, 20] and [0.1, 5] respectively, selected in a way that the physiological
values were included,and with some additional range in case of any anomaly.

An ammount of N sets were randomly generated and input into equations 1 and 4 along
with experimental data for Plv. This resulted in a set of N simulated aortic pressure curves as
a function of time. Then, the curve which best fitted the experimental aortic pressure curve
was selected employing the least squares method. Also, the sixth best curve was selected and
compared with the best curve using an algorithm that shortened the interval that limits the
pseudo-random variables generated.

During several iterations, the original parameter intervals were subsequently shortened to
obtain a determined parameter value. To do so, the following algorithm was used:

i f (6bv−bv)>0:
i f abs (bv−6bv)<=abs (bv−maxv ) :

maxvalue=tbv
i f (bv−abs (bv−6bv))>minv :

minvalue=bv−abs (bv−6bv )
else :

i f abs (bv−6bv)<=abs (bv−minv ) :
minvalue=6bv
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i f ( bv+abs (bv−6bv))<maxv :
maxvalue=bv+abs (bv−6bv )

The value of the parameters of the best fit curve bv were set as midpoints. Those
corresponding to the sixth best fit curve 6bv determined the distance from the midpoint to
the upper limit and from the midpoint to the lower limit. If the new upper limit surpassed the
upper physiological boundary, the former was set as the upper limit. The same was done for
the lower limit.

The process of generating N curves and narrowing the parameter intervals was repeated until
the top and bottom values of the intervals were within range of desired precision, we set it to
ten decimal points. The estimated optimal values for the parameters thus correspond to the last
iteration of the process.

3. Results
The estimated parameter values obtained with a precision of 10−4 for three different data sets
are presented in Table 3. Here, the error is computed as the sum of the squares of the errors in
each point and N represent the number of curves generated that allowed achieving the desired
precision. Figures 2, 3, and 4 present the experimental data plotted against the best fit curve
obtained, corresponding to the optimum values for Rp and Cp.

Table 1. Estimated peripheral resistance and capacitance with the proposed method.

Data Set Rp (mmHg s/mL) Cp (mL/mmHg) Error N

1 8.83463 0.2011 2.0880 1000
2 9.72960 0.1908 4.0660 1000
3 13.2225 0.1421 6.3319 1700

Figure 2. Estimated Pao (red), experimental Pao (blue) and Plv (green) for Data Set 1.

Table 2 presents the computation time for all data sets varying the number of initial curves,
N . Observing the calculation time for each data set, it was observed they had similar duration,
with variations attributed to signal characteristics of each data set, specially the signal noise. It
should be noted that, considering three heartbeats, the desired precision is achieved faster for
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Figure 3. Estimated Pao (red), experimental Pao (blue) and Plv (green) for Data Set 2.

Figure 4. Estimated Pao (red), experimental Pao (blue) and Plv (green) for Data Set 3.

the less-noisy signals (30 s for Data Sets 1 and 2, and 55 s for Data Set 3), thanks to a lower
signal variability.

Table 2. Approximate calculation times for different number of Montecarlo runs (N).

N
time (s)

Data Set 1 Data Set 2 Data Set 3

100 5 4 5
200 9 10 8
500 19 20 18
1000 32 28 30
1700 65 80 55
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4. Discussion
The aortic pressure curves were approximated with a relatively low error, implying that the
parameters obtained should be close to the real values. However, we were not able to take any
physical measurements of the arterial parameters to compare to our results. An alternative
would involve estimating this parameters with other methods, but it is important to note that
most of them are useful for estimating only Cp.

These physical measurements also have errors themselves which would be something to be
compared with much attention. Our data also lacked the mean flow, which forced us to calculate
the arterial resistance, Ra, using numerical methods. By creating an error function, which
resulted being unimodal, we found the Ra which provided the minimum of the error function
for several trials of our method.

Using the Monte Carlo method implies that results are subject to probability and could
provide varying results. By increasing the number of generated pseudo-random values, N , this
variation is reduced. Moreover, Pao curves with noise and higher frequency components required
a higher N value, and therefore, a higher computation time to reach a certain precision, as
evidenced by the fact that the third data set (Data Set 3) required higher N values to reach the
same precision than the first two sets (Data Sets 1 and 2).

It was also observed that when N is too large, precision is lost, because of an inherent
complication of our interval limiting algorithm. When too many random aortic pressure curves
are generated, the best and sixth best curve end up being too close and thus drastically
shortening the interval limits for the next iteration. Sometimes this shortening is so drastic that
it cuts the ideal curve out and the algorithm converges to parameters outside logical boundaries.

The desired precision was achieved for different number of starting sets depending on the
quality of the signal. We choose N = 1000 to avoid any extreme variations of the Monte Carlo
method and the issues that arise with large N . In order to improve the performance of our
method when facing noisy signals, filtering the noise frequency component could be useful, and
therefore a smaller N should achieve the desired precision.

For Data Sets 1 and 2, an approximate time of 7.5 s was required for estimating the
parameters of a single heart-beat, which makes this method a good alternative for estimating
these parameters on a clinical environment, and using these results as a diagnostic tool.
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