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Abstract— Modifying neural activity is a substantial goal
in neuroscience that facilitates the understanding of brain
functions and the development of medical therapies. Neu-
robiological models play an essential role, contributing to
the understanding of the underlying brain dynamics. In
this context, control systems represent a fundamental tool
to provide a correct articulation between model stimulus
(system inputs) and outcomes (system outputs). However,
throughout the literature there is a lack of discussions
on neurobiological models, from the formal control per-
spective. In general, existing control proposals applied to
this family of systems, are developed empirically, without
theoretical and rigorous framework. Thus, the existing con-
trol solutions, present clear and significant limitations. The
focus of this work is to survey dynamical neurobiological
models that could serve for closed-loop control schemes or
for simulation analysis. Consequently, this paper provides
a comprehensive guide to discuss and analyze control-
oriented neurobiological models. It also provides a poten-
tial framework to adequately tackle control problems that
could modify the behavior of single neurons or networks.
Thus, this study constitutes a key element in the upcoming
discussions and studies regarding control methodologies
applied to neurobiological systems, to extend the present
research and understanding horizon for this field.

Index Terms— Closed-loop, control systems, dynamical
systems, feedback, neurobiological models, neuron

I. INTRODUCTION

N eurobiological models have been actively developed dur-
ing the past decades. In general, these models aim to

describe the dynamical behavior of different nervous system
structures at cell or circuit-level.

In this sense, the study of these complex systems and
processes requires that the proposed models capture the
fundamental dynamics for simulation, prediction, or control
purposes either in silico, in vitro, or in vivo monitored envi-
ronments. Such models range from highly detailed 
descriptions, involving thousands of coupled differential 
equations for large networks, to greatly simplified structures, 
which are useful for studying the mean population response in 
a computationally efficient manner. Given the broad variety of 
approaches and models, choosing the most appropriate level of 
description for a particular application (e.g. research, 
interfacing or disorder treatment), requires a careful assess-
ment of the experimental information available as well as the 
technical specifications.

 Oversimplified models can produce misleading results, 
whereas excessively detailed models, with a massive degree 
of complexity, can mask essential results and/or produce 
computational and numerical problems. By way of 
example, the renowned Hodgkin-Huxley model [1] 
describes the dynamics of a spiking neuron in a biologically 
detailed way that could be unsuitable for network-level closed-
loop applications due to its complexity, numerical problems, 
and associated delays.

Neurobiological models can be essentially separated into 
two main categories: 1) single neuron models; and 2) global 
population models. On the one hand, the former characterise 
the behavior of a neuron, usually describing the interplay 
of ionic currents, that affect the cell potential. Next, in 
order to increase its range and applicability, these single 
models consider different functional interactions (excitatory 
or inhibitory) and connectivity, so that they can be used to 
construct network models to describe large neurobiological 
populations. Beyond the fact that a single neuron could be 
modeled as multi-compartmental, and thus requiring multiple 
equations on its own (e.g. pyramidal cells in [2]), using simple 
point neurons to model networks, by itself, can scale the 
equations (generally non-linear) to a huge number imposing 
a significant computational burden [3]. On the other hand, 
population models are generally employed to describe the 
behavior of massive arrangement of neurons. Thus, simplified 
descriptions, resulting on a reduced number of differential 
equations, can be used to model the dynamics of the entire 
ensemble. Temporal evolution and/or spatial variation of states, 
like local field potentials (LFPs), or global firing rates, are 
typically described by this family of models.

During the past decades, new technological developments 
have opened new opportunities related to experimental re-
search [4], [5]. In particular, temporo-spatial precision and ac-
curacy have been markedly improved, due to new acquisition, 
sensing, and actuation systems. This is the case of optogenetic 
approaches, which extend the possibility to perform control 
of neuronal activity with high temporo-spatial accuracy and



selectivity. Analogously, these light-based techniques have in-
spired new strategies to measure the synaptic/electrical activity
of neurons, at both single-cell or circuit scales. Traditional
systems, based on electrical actuation or sensing mechanisms,
have been also improved during the past years. Efficient,
micro-electrode arrays have been adapted to a number of
different applications using several geometrical structures,
materials, and also new and advanced manufacturing processes
[6], [7].

Within this context, a correct articulation between high-
precision actuation and sensing systems in neurobiological
systems, can consequently provide an effective tool to enrich
the understanding of complex neural processes and mecha-
nisms. Similarly, as it has been shown throughout the litera-
ture, correct interaction of actuation and sensing systems can
result in promising treatments of a wide range of neurological
diseases [8]–[11]. Thus, control systems, mainly feedback
control systems, can play a significant role, systematizing this
interaction. By way of example, recent studies have presented
results implementing control routines in neurobiological struc-
tures [12], [13]. However, in most cases, the proposed control
systems are designed, either using simple assumptions and
control laws not based in the theoretical background about
the process, or without any a-priori knowledge of the system
dynamics, i.e. lacking a model that describes the underlying
dynamical behavior of the process. It is worth mentioning that,
as a general rule in control systems, the more knowledge there
is about the system, the more accurate the results can be.
To this end, a model that captures the essential dynamical
behavior of the neurobiological system, directly contributes to
improving the resulting performance. However, to the best of
the authors knowledge, to date there is no literature review that
analyses neurobiological models from the control perspective,
covering its dynamical features, and describing the inputs
and outputs of these systems. In particular, the translation
between model inputs and outputs into a practical, feasible
technology, represents another key challenge for an effective
model consideration regarding any neurobiological control
problem.

The motivation of this study is to provide an analysis of
the most relevant neurobiological models available in the
literature, from a control-oriented point of view. Thus, to
standardise the discussion, the main features of the most
representative models are presented, highlighting those el-
ements that are relevant for control purposes. Taking into
consideration the vast existing theory of control systems, and
the increasing interest in closed-loop applications in the area
of neurosciences, this work aims to fulfill the existing gap
in the literature regarding the rigorous approach to control-
oriented neurobiological models and its applications. It goes a
step further, and also describes implementation characteristics
as sensors and actuators.

The remainder of this paper is organised as follows. Sec-
tion II discusses the main features related to single neuron
models and Section III provides a general perspective re-
lated to population models. The control perspective vision
in these previous sections is further explained and deepened
in Section IV, along with references from state-of-the-art

applications. Finally, in Section V the main features of the
presented models, are discussed from an overall perspective.

II. SINGLE NEURON MODELS

From the fundamental observation that a neuron performs
a summation (also interchangeably referred to as integration)
of incoming inputs, and then a comparison with a certain
threshold, a process that determines if the neuron fires a
spike, several models for this computational property has been
proposed. From an engineering point of view, as in many areas
of application, there is an inherent trade-off between simplicity
and level of description; when both qualities are balanced,
the model is said to be parsimonious. For example, a simple
model to predict this all-or-none response is the McCulloch-
Pitts model [14], seminal in the development of Artificial
Neural Networks [15]. Although this model is computationally
efficient in its discrete-time, binary-output formulation, it
does not account for the neuron dynamics (e.g the capacitive
property of the membrane), nor the time-course of the input
post synaptic potentials (PSPs) or their relative timing.

Towards a time description of a neuron potential (voltage),
and based on several observations including the net current
flow through ion channels (conductances), and the aforemen-
tioned dielectric nature of the lipidic bi-layer that conforms
the membrane (capacitance), an R-C circuit analogy can be
proposed. The resultant model is often referred to as Leaky
integrate-and-fire (LIF) model [16], [17] and describes, with
a linear differential equation, the relation between these three
electrical properties according to Ohm’s law. Here, the system
is characterized by a one dimensional physically-meaningful
state, i.e. the voltage

CM V̇ = I − gleak(V − Eleak), (1)

where CM is the capacitance, I the current, gleak the con-
ductance, and Eleak the equilibrium potential given by Nernst
equation for that ion species. This differential equation can be
rescaled or normalized as

v̇ = a− v. (2)

Whereas the sub-threshold variation can obey this simple form,
the spike is modeled with a reset condition:

if v = 1, then v ← 0, (3)

that is, when the voltage reaches a threshold (usually 1 if
the parameters are normalized), the spike occurs and the
membrane voltage is instantaneously set to an hyperpolarized
value associated with the repolarizing effect of the outward
potassium current. It should be noted that this model does not
produce spikes per se, since it lacks a mechanism to that end,
but it can handle excitatory and inhibitory inputs for positive
or negative values for I , with a spike frequency response based
on the level of that stimulus (class I excitability)1. A simple
model capable of producing spikes is the quadratic integrate-
and-fire model [19], simplified as

V̇ = I + V 2. (4)

1For inputs that surpass the threshold, the spiking frequency grows contin-
uously with the applied intensity [18].



Now, the rate of change of the voltage depends on squared
voltage, not linearly as before. This leads to interesting proper-
ties, such as the fact that V̇ ≥ I for I > 0, where the quadratic
term makes the rate increase in a positive-feedback fashion that
resembles the regenerative mechanism of the sodium current
in charge of the spike upstroke. When the voltage reaches a
peak level, its value is reset to an appropriate base value

if V ≥ Vpeak, then V ← Vreset. (5)

Without these conditional step, the voltage would tend to
infinity (an exclusive nonlinear-system characteristic known
as finite-time escape) which, of course, it has no biological
plausibility [20]. An extension that explicitly incorporates the
dynamics for persistent potassium-like currents, that could be
modulating the membrane potential at rest, is the resonate-and-
fire (RF) or generalized integrate-and-fire model (GIF) [21],
[22]. With the addition of a state variable that represents the
magnitude of that current, the two-dimensional system can be
described as

CV̇ = I − gleak(V − Eleak)−W,

Ẇ = (V − V1/2)/k −W,
(6)

with V1/2 and k a shifting and a scaling constant parameters,
respectively. Some important aspects of this model include the
ability to show sub-threshold damped oscillations (although
it cannot produce sustained oscillations), and a preferential
frequency of the input, which resonates with the neuron own
sub-threshold oscillation, encoding spectral content more than
strength or input level, and also, a relatively narrow frequency
response (class II excitability)2. The Adaptive exponential
integrate-and-fire model (AdEx) [24],

CV̇ = I − gleak(V − Eleak)+

gleak∆T exp(
V − Vthresh

∆T
)− w

τwẇ = a(V − Eleak)− w,

(7)

with ∆T , the slope factor, and Vthresh, the threshold po-
tential, introduces an adaptation variable w, an exponential
voltage dependence, and a reset condition if t = tfire then
V ← Vreset, that provides a plethora of electrophysiological
features such as spike-frequency adaptation, regular/fast spik-
ing, phasic spiking, and damped oscillations to name a few.

Perhaps the most widespread model of a neuron is the
Hodgkin Huxley model (HH) [1]. Interestingly, a feedback
control strategy, the now ubiquitous voltage-clamp [25], [26],
was what enabled Hodgkin and Huxley to record, study and
later isolate and identify the ionic currents without fluctuations
on membrane potential. In this approach, by maintaining
a constant voltage (variable to be controlled) at different
desired levels (input or reference), they ruled out the capacitive
currents across the membrane, since V̇ = 0, and were able
to investigate the voltage sensibility and kinetics of activa-
tion/inactivation of ion channels. Introducing auxiliary gating
variables n, m, and h, which were fitted to experimental data

2Neurons of this type present a discontinuous F-I curve, i.e. they cannot
fire at arbitrarily slow rates, and when they fire, the frequency is relatively
insensitive to increases in the applied stimulus intensity [23].

(and later associated with open channel probabilities, since
these mechanisms were not directly observed at that moment),
they derived the equations:

CM V̇ = I − gKn4(V − VK)−
gNam

3h(V − VNa)− gl(V − Vl),

ṅ = (n∞(V )− n)/τn(V ),

ṁ = (m∞(V )−m)/τm(V ),

ḣ = (h∞(V )− h)/τh(V ).

(8)

with, τi, the variable time constants, n∞,m∞, the steady-state
(voltage dependent, or sensitive) activation functions, and h∞
the inactivation function. In this formulation, the total current I
is described on a space-clamped preparation, i.e. the potential
does not propagate as only depends on time. To describe the
action potential propagation along axons, the axial currents
along the membrane need to be accounted for, which, using
cable theory [27], leads to the partial differential equation

C
∂V

∂t
=

r

2R

∂2V

∂x2
+ I − IK − INa − Ileak, (9)

where r is, usually, the radius of the axon, R is the resistance
of the axon medium, and x is the position along the nerve fiber.
This conductance-based, biologically detailed formalism can
be extended to include another ion species as well as external
current sources, and predicts the principal aspects of spike
generation [28]. The high interpretability and detail achieved
comes at the expense of complexity: the system (8) evolves in
a four-dimensional state space described by a set of coupled
nonlinear differential equations. Firstly, several phase-portrait
based graphical analyses for up to three-dimensional systems
are no longer available (typically carried out in offline com-
puting) [19], [29] , and secondly, the increased computational
cost can hinder real-time, large-scale simulations in a closed-
loop application (online computing) [30]. These drawbacks are
addressed in many simplified, reduced-order models [31]. By
focusing on a voltage-like variable and a recovery variable,
and based on the relaxation oscillator proposed by Van der
Pol [32], FitzHugh was able to capture the basic excitability
properties of neurons with only two state variables:

V̇ = I − V (a− V )(V − 1)−W,

Ẇ = bV − cW,
(10)

where I is the injected current, the constant a shapes the
cubic V nullcline, i.e. the trajectory where V̇ = 0, shifting
the system equilibrium points, and the non-negative constants
b and c control the kinetics of the recovery variable W .
The solutions of this planar system, known as FitzHugh-
Nagumo (FHN) model [33], [34], considered in the complex
network syncronisation control problem presented in [35], can
be analyzed with geometrical tools, which give an insight
on biologically observed phenomena such as spike accommo-
dation, anodal break excitation, and the absence of a fixed
threshold. The Morris-Lecar model [36], also makes use of
a recovery variable and assumes the existence of two non-



inactivating voltage-sensitive conductances

CV̇ = −gCam(V − ECa)− gKn(V − EK)−
gleak(V − Vleak) + I,

ṁ = (m∞(V )−m)/Tm(V ),

ṅ = (n∞(V )− n)/Tn(V ),

(11)

where the variables m and n are analogous to the same
parameters in the HH model, and symbolize the instantaneous
fractions of open ion channels. The reduced order compared to
the HH model, and the feasibility of fitting parameters based
on measurements, allows the description of several excitable
systems (e.g. muscle fibers) as well as networks of neural
oscillators [37]. Based upon the FHN model, Hindmarsh and
Rose [38] introduced a model of neuronal activity composed
of three coupled differential equations

ẋ = y − ax3 + bx2 − z + I,

ẏ = c− dx2 − y,

ż = r(s(x− xR)− z),

(12)

where I is the external current, x is the membrane potential
and xR its resting value, y a recovery current variable used
to model the spiking behavior, and z the adaptation variable
used to induce bursting. The constants a, b, c, d are tuned to
match observed trajectories, and the constants r and s are used
to control the number of bursts. These equations are used,
primarily, as a reference model for spiking-bursting behavior
of membrane potential, since the addition of the third state
equation allows for a number of dynamic behaviors (including
chaotic dynamics) that has been observed experimentally.

Most of the current dynamical models used today in single-
cell simulations and experiments are based upon, or share
similarities with the models mentioned above. Some partic-
ular features are key for a closed-loop approach. When the
objective is to modulate voltage, for example, not only an
appropriate stimulus is needed (by potential means described
in subsection IV-B), but also a setup capable of measure
or estimate that signal of interest (common approaches are
summarized in subsection IV-A). The model, if correctly
fitted, will predict the preparation change in response to an
exogenous input.

Another application of single-cell models is to use them
as building blocks of neural circuits. From the simple case
of two coupled neurons to the construction of much more
complex networks, these models can be interconnected aiming
to describe population dynamics. The large-scale end of the
approach, requires extremely detailed physiological knowledge
in terms of parameters and connections, and also, high com-
puting power. The models presented in Section III could, in
an eventual closed-loop application, circumvent the mentioned
drawbacks.

Table I, shows a selection of modeled regions/applications
where the presented models were used.

III. POPULATION MODELS

The understanding of the collective properties of neurons,
in terms of functional interaction, is of paramount importance

Model Applications/Used to study Refs Eqn.

Leaky
integrate-and-fire

Excitation of sciatic nerve on the frog.
[16]

(1)Firing in Limulus polyphemus visual cell.
[39]

Optimal control of spike timing.
[40]

Plasticity in closed-loop stimulated net-
works. [13]

Quadratic
integrate-and-
fire

Neurons with low firing rates.
[41]

(4)

Resonate-and-fire Cells of rat entorhinal cortex (layer II and
III). [42]

(6)

Adaptive
exponential
integrate-and-fire

Layer V pyramidal neurons of rat neocortex.
[43] (7)

Inter-neuronal gamma oscillations in hip-
pocampus. [44]

Anesthesia-like slow waves in spiking net-
works. [45]

Hodgkin-Huxley

Squid giant axon. [1]

(8)Control of repetitive firing in bistable
modes. [46]

Proportional control of spiking dynamics.
[47]

FitzHugh-
Nagumo

Cardiac cells action potentials and abnormal
myocardial activity. [48] (10)
Robust control of neuronal chaotic be-
haviour with electrical stimulation. [49]

Predictive-control suppression of periodic
regimes in pathological heart and brain con-
ditions.

[12]

Morris-Lecar

Barnacle giant muscle fiber.
[36] (11)

Open- and closed-loop control of firing rate.
[50]

Developing starburst amacrine cells.
[51]

Hindmarsh-Rose
Control of synchronicity in coupled neu-
rons, via 1) delayed feedback and 2) sliding
mode control.

[52],
[53]

(12)

Control of neuronal behavior by Takagi-
Sugeno fuzzy observer-controller. [54]

TABLE I
SUMMARY OF COMMONLY USED SINGLE NEURON, OR COUPLED

NEURON MODELS.

in neuroscience. For instance, the firing pattern of a given pop-
ulation can offer more physiological insight of the processes
involved than the time-course of a single neuron voltage [55].
This properties can arise, or emerge3, from models of pop-
ulations or ensembles of single neuron models. Whereas the
interconnection of individual neuron models is possible, the
problem addressed by connectomics [56], the computational
cost associated can be huge and thus not suitable for closed-
loop applications. In general terms, the population models

3Emergence occurs when a system shows properties its constituent parts do
not have on their own, this characteristics appear only as a collective behavior.



aim to describe statistical properties of dynamical states that
characterize the whole ensemble, such as mean firing rate or
mean soma membrane potential. Typically, this description is
circumscribed to a physical region in which, the function of the
neurons is assumed almost identical. In this sense, the principal
appeal/advantage and possible weakness/disadvantage of the
approach, lies on the same feature, the volume simplification.
This way of characterize the dynamics, from a many-body
problem (many individual neurons whose correlations are ne-
glected) to a one-body problem (averaged effective interaction)
is within the framework of mean-field techniques. The strategy
is analogous to apply statistical thermodynamics to link the
complex Brownian motion of particles to a mean macroscopic
description of a gas volume [57].

Within the homogeneous mass under study, different types
and proportions of neurons can be considered. Most significant
distinction is the excitatory and inhibitory type. The resulting
interaction then, modeled as dynamical activity, could be
interpreted as: rate of change of the proportion of active (i.e.
spiking) cells, mean firing rate, or even a voltage-like activity
depending on the particular model and formulation.

Regarding the feasibility of driving a population with a
external stimulus (which it will ultimately depend on the
effective internal coupling of the ensemble), the prospect
of regulate its activity enables exploratory and treatmental
approaches. Moreover, this population models can be used
in conjunction with widespread non-invasive neuroimaging
techniques such as electroencephalogram (EEG) and
functional magnetic resonance imaging (fMRI) [58], [59].

A. Neural mass models

The term neural mass refers to an ensemble of neurons
belonging to a certain class, depending on function, location
and/or morphology. Describing the dynamical behavior of the
whole with properties such as mean firing rate, for example,
comprises a mesoscopic modeling scheme focused on the
reproduction of measurable signals or levels. In this time-
series description, there is no need for large-scale simulations
of complex individual models in the network. The first attempt
to characterize population activity is probably attributed to
Beurle [60], who proposed a simple dynamical model for a
mass of neurons. Although, in that formulation, only excitatory
neurons having a fixed firing threshold were assumed, several
concepts introduced were pivotal for the later development of
more realistic models, like mean integrated inputs and synaptic
feedback and delays.

In most neural mass models, the system is characterized
by activity variables or rates, i.e. the proportion of neurons
activated per unit time in certain compact tissue volume.
The inputs of the system mimic the synaptic inputs of the
individual neurons that conform the ensemble. Additionally,
a nonlinear function models the input-output relationship,
analogously to a gain function (FI curve) of single neurons.

The first mean-field theory of neural activity is attributed
to Wilson and Cowan [61]. They derived coupled nonlin-
ear differential equations for spatially localized excitatory

an inhibitory sub-populations. The local redundancy supports
that similar properties and responses can be found in small
volumes. Applying a process of coarse-graining [62], which
consisted in replacing the time integrals in the original formu-
lation by moving time averages led to the system

τe ˙aE = −aE + (1− rEaE)fE{c1aE − c2aI + P},
τiȧI = −aI + (1− rIaI)fI{c2aE − c3aI +Q}.

(13)

Each subpopulation receives inputs from the other, weighted
by coefficients ci, i ∈ {1, 2, 3, 4} (the average number of
synapses per cell of the E-E, I-E, E-I, or I-I type respectively),
that drive the rate of change of each activity, ˙aE and ȧI .
The response function f{·} is typically sigmoidal and im-
plies monotonic growth of activation given sufficient stimulus
level. In fact, this smooth approximation can be seen as the
superposition of many Heaviside step functions for individual
neurons whose firing thresholds distribute normally [63]. The
term 1−riai denotes the proportion of cells that can fire since
it is used to account for the spiking refractory period (with
ri, a constant that results from the averaging), and P,Q are
external current-like inputs. The model exhibits properties like
multistability and hysteresis, which could be used to address
memory [64].

The Jansen-Rit model [65], [66], introduces a third class
of neurons, and thus it comprises three different coupled sub-
populations. One represents the pyramidal projection neurons
and the other two, the excitatory and inhibitory interneu-
rons, functioning in a feedback-loop fashion. For each sub-
population, mean-voltage and mean firing rate states variables
are used. Also, there are two operators that relate these relevant
variables: a rate-to-potential, second-order ordinary differential
operator, which maps the mean input firing rate into the mean
membrane potential, and a potential-to-rate nonlinear function
which transforms this potential into output firing rate. Thus,
the system is described by

ẍ0 = Aaf{x1 − x2} − 2aẋ0 − a2x0,

ẍ1 = Aa(P + C2f{C1x0})− 2aẋ1 − a2x1,

ẍ2 = BbC4f{C3x0} − 2bẋ2 − b2x2,

(14)

or alternatively, as the equivalent six-dimensional first-order
system

ẋ0 = x3, ẋ1 = x4, ẋ2 = x5,

ẋ3 = Aaf{x1 − x2} − 2ax3 − a2x0,

ẋ4 = Aa(P + C2f{C1x0})− 2ax4 − a2x1,

ẋ5 = BbC4f{C3x0} − 2bx5 − b2x2.

(15)

The x0, x1 and x2 variables describe the mean PSPs of
each neuron sub-population. The input P could be used to
model external stimulus to the system, -or inputs from other
active neural populations-, constants A and B determine the
maximum amplitude of the EPSP and IPSP, respectively, and
constants a, b are used to account for delays associated with
the passive membrane and dendritic network. The constant
weights Ci, i ∈ {1, 2, 3, 4} represent the number of synapses
between interneurons and the neurons of the cortical column.



The nonlinear function is usually sigmoid,

f{x} = νmax

1 + exp(r(v0 − x))
, (16)

where νmax is the maximum firing rate, and v0, r, denote the
input for which half of the maximum firing rate is reached,
and the slope of the sigmoid, respectively. This model can
reproduce several dynamic behaviors including, constant
outputs, harmonic oscillations and non-harmonic oscillations
of large amplitude. Also, is capable of describe multistability
and quasiperiodic responses depending on amplitude and
frequency of the input [67].

B. Neural field models

Since the neurons are distributed in brain tissue, the popu-
lation activity unfolds in a spatial domain. Neural field models
are a spatiotempral description of this evolution under the as-
sumption of certain level of coarse graining, i.e. the ensemble
is characterized by the mean dynamics and the fluctuations
around the mean are neglected. The added complexity of
the spatial variable to the already complex behavior of a
neural mass, naturally calls for a simplification scheme, where,
hopefully, the relevant dynamics are retained by arguments
of self-consistency and redundancy. The resulting models of
interconnected masses or populations avoid the treatment of
individual neurons and usually take the form of integro-
differential equations. Moreover, as pointed out by Sholl [68]
and Beurle [60], the description of single neurons probably
cannot encompass higher-level phenomena such as sensory
integration, memory and learning.

After Griffith established the effect of inhibition [69] and
proposed his reaction-diffusion equation for the population
activity [70], [71], several models followed. Wilson and Cowan
introduced their dynamical model for two-dimensional sheets
of tissue [72], under the assumptions of homogeneous dis-
tribution of excitatory/inhibitory type neurons with lateral
connections. As in their neural mass model, the redundancy
and dense interconnection of neurons supports the description
of the ensemble net activity. The system is described by the
partial-differential equations

τe
∂aE
∂t

(x, t) = −aE(x, t)+

(1− rEaE(x, t))fE{wEE ∗ aE − wIE ∗ aI + P},

τi
∂aI
∂t

(x, t) = −aI(x, t)+

(1− rIaI(x, t))fI{wEI ∗ aE − wII ∗ aI +Q},
(17)

where wjk ∗ ak denotes a convolution given by the operator

wjk ∗ ak =

∫
D

wjk(x− y)ak(y, t)dy (18)

that is the net drive to the sub-population j at location x
originated from sub-population k, and D is the physical
domain where the activity evolves. This operation models the
spatially distributed synaptic connections, and the weighting

functions (which depend only on the distance x−y) are usually
Gaussians

wjk(x− y) = αjk exp(
−(x− y)2

σ2
k

), (19)

where αjk, σ2
k denote the amplitude and the area of influence

of the kernel, repectively, accounting for the distance-decaying
sub-population impact.

The Amari model [73], [74], is a neural field description
that includes excitatory and inhibitory effects, similarly to
the Wilson-Cowan model, played by the corresponding-type
neurons and coupled with typical cortical connectivities. The
single-layer, one-dimensional form, i.e. the average membrane
potential of the neurons located at position x is described by

∂u

∂t
(x, t) = −u(x, t)+

∫
D

w(x, y)f{u(y)}dy+P (x, t), (20)

where f{·} is the activation function mapping voltage to firing
rate, and w is the connectivity function weighting the strength
of propagation from point y to point x, in the domain D and
P is an exogenous input. This model typically considers local
excitation and distal (lateral) inhibition, as weighted by the
“Mexican hat” connectivity function, i.e.

w(x− y) = Ke−k(x−y)2 −Me−m(x−y)2 , (21)

where the positive constants K, k,M,m determine the shape
of the kernel. Using a two-layer distinct excitatory/inhibitory
version of the model, oscillatory and traveling wave patterns
can be predicted.

A model that is used to describe, particularly, the dy-
namics of cortical macrocolumns is the Liley model [63].
Inhibitory and excitatory sub-populations are considered, be-
ing locally coupled with each other in feedforward and
feedback local connections. Then, macrocolumn to macro-
column interaction is exclusively excitatory and is carried
out by long-range axonal fibers. The mean-field descrip-
tion is obtained from spatially-averaged neurons (individual
conductance-based models)

τk
∂hk

∂t
(x, t) = hr

k − hk(x, t) +
∑
l=e,i

heq
lk − hk(x, t)

|heq
lk − hr

k|
Ilk(x, t),

(22)
where x is the position on the sheet of tissue, l, k ∈ {e, i}
denote excitatory and inhibitory sub-populations, respectively,
the first subscript being the presynaptic source and the second
the postsynaptic target. The parameter hr

k is the mean resting
membrane potential, and Ilk, the inputs to the system weighted
by the fraction shown. These postsynaptic potentials have
dynamics described by damped oscillators driven by the mean
firing rate of input excitatory/inhibitory axonal pulses Alk,
according to(

1

γlk

∂

∂t
+ 1

)2

Ilk =
eΓlk

γlk
Alk,

Aek = Nβ
ekSehe +Nα

ekΦek + pek,

Aik = Nβ
ikSihi.

(23)

For excitatory postsynaptic conductances, three sources of
axonal pulses can be present, local (Se), cortico-cortical (Φek),



Model Applications/Used to study Refs Eqn.

Wilson-Cowan

Kalman-filter based control of cor-
tical neuronal activity. [75]

(13)Firing rate regulation of sub-
thalamo-pallidal loop via P con-
troller.

[76]

Disruption of pathological beta
band oscillations. [77]

Deep brain stimulation treatment
for essential tremor. [78]

Spatially
distributed
Wilson-
Cowan

Closed-loop induced Gamma
rhythm in visual cortex. [79]

(17)

Jansen-Rit

Epileptic activity suppression via
closed-loop PI controller. [80] (14)

Validation of model predictive con-
trol applied for seizure suppression. [81]

Amari

Language processing and brain
waves. [82] (20)

Dynamic cognitive modeling.
[83]

Liley

Description of electroencephalo-
gram patterns associated with anes-
thesia.

[84] (22)

Closed-loop suppression of epilep-
tiform activity via optogenetic
stimulation.

[85]

TABLE II
SUMMARY OF COMMONLY USED NEURAL MASS/FIELD MODELS.

and sub-cortical (pek). In the inhibitory case, only local source
is considered (Si). The firing rates Se and Si are a function
of the the potential hk, and are usually ruled by sigmoidal
activation. Nα

ek and Nβ
lk represent the number of synaptic

connections, and the propagation of the pulses is described
by the damped wave equation[(

1

vek

∂

∂t
+

1

λek

)2

−∇2

]
Φek =

1

λ2
ek

Se{he}. (24)

Table II summarizes several studies of neurobiological re-
gions and closed-loop applications, including their correspond-
ing equations.

IV. CONTROL FRAMEWORK

The main focus of this work, besides presenting a state-
of-the-art of different single and population neuron models,
is to insert these models in the structure of identification
and automatic control. The purpose of these techniques is
to provide significant and relevant dynamics to produce a
control-oriented model (COM). The latter can be tuned to
the particular neurobiological system under study by means
of identification and (in)validation4. Next, a controller (see

4The term (in)validation refers to the fact that a theory, or in this case
a model representing a physical or biological phenomena, can only be
invalidated or falsified with certainty, but not validated [86], because future
data could prove the theory or model is incomplete.

Fig. 2, bottom) could be designed and analysed based on
this COM, to control the behaviour of the neurobiological
system. The complete procedure, from the theoretical model
to the experimental control implementation is depicted in
Fig. 3. Particularly, in Fig. 3 (d), a description of the system
components is presented from a general perspective. A control
system implementation in a neurobiological system comprises:
1) biological unit; 2) acquisition interface; 3) acquisition
conditioning; 4) computer hardware; 5) actuation condition-
ing; and 6) actuation interface over the biological unit. The
biological unit (1), defines the neurobiological system under
study, such as a single neuron, a circuit of interconnected
neurons, or even a complex neurobiological structure as, for
example, the hippocampus. The acquisition interface (2) is
essentially composed of the acquisition technology (sensors).
The acquisition conditioning (3) is simply the signal adaptation
stage, to prepare the measured signal to be acquired by the
computer hardware. The computer hardware (4) is where the
control signal is computed, based on the particular control
methodology. Once the control signal is computed, it is
conditioned in the actuation conditioning stage (5). Finally, the
control actuation is applied to the system using the actuation
interface (6). By way of example, in [87] a closed-loop system
applied to epilepsy treatment in humans is described, detailing
these complete required instrumentation.

The closed-loop methodology has been used in recent years
( [46], [47], [49], [50], [52]–[54]) in particular cases in a very
basic way. The purpose of this work is to provide a structured
framework in which to apply identification and control to
modify the behavior of brain regions in order to modulate
its activity in a principled way.This has an enormous potential
field of applications in the treatment of several brain diseases,
e.g. Parkinson, epilepsy, and essential tremor. Nonetheless,
two fundamental aspects must be kept in mind. Firstly, it
must be noted that there are legal regulations and formalities
that strongly distinguish applications allowed for animals or
humans, regardless of whether they are research or clinical
applications. For animal applications, in compliance with legal
formalities and ethical protocols, there are virtually no limits
for allowed experimental interventions, which includes sensing
or actuation techniques. As a matter of fact, all the allowed
experimental interventions already tested in humans (clinical
stage), have been previously studied and tested using animal
models (pre-clinical stage). Thus, general human applications
have been first thoroughly studied using animal models, even
in those cases of testing trials using volunteer human subjects.
By way of example, the cases in [87] and [88] can be
cited as cases of human experimental interventions. Secondly,
when considering research applications using animal models,
where some cognitive hypotheses, e.g. memory mechanisms,
are subjected to validation, the conclusions can be relatively
straightforwardly extrapolated to humans. This is the case,
for example, of primitive structures, such as the hippocam-
pus. Techniques such as optogenetics, which application is
currently forbidden in humans mainly for ethical reasons, are
generally used in research, for validating biological hypothe-
ses. By way of example, the results presented in [89] can
be mentioned, where cognitive hypotheses are studied, which



results can be extrapolated to humans, even though still under
analysis.

In the following subsections a brief presentation is made of
the main issues to be considered when applying this frame-
work to a neurobiological system: sensors, actuators, model
identification (to compute model parameters), (in)-validation
(to compute uncertainty bounds), and model-based control
analysis and design.

A. Sensors

Being able to perform appropriate measurements, and there-
fore knowing the status of the system, is the first step to modify
its behavior in a closed-loop approach. The devices in charge
of providing information, in the form of representative signals
related to the system, are the sensors [90]. Several sensor
characteristics are cross-cutting the areas of application, and
they need to be accounted for in the process of its selection,
and the closed-loop design.

Regardless the setting, any sensor is subject to measurement
noise. Some situations can be more or less hampering, because
the signal level is too low (e.g. voltage measurement of
10–100 µV in EEG [91]) and/or the sensor is receiving
mixed/filtered signals from the environment [92]. In any case,
the noise introduced will impose constraints on the feedback
design. Moreover, the sensors themselves often have non-
negligible dynamics, i.e. they do not respond instantaneously
to the change of the variable of interest. For example, there are
optical voltage sensors in the form of dyes that offer a slow
response (e.g. merocyanine 540), making them inadequate to
track fast transients as action potentials [93].

So far, disturbances and lags pertaining to sensors were
described. In some cases, the state of the system cannot
be directly determined. Whether these states do not have a
physical meaning, and therefore are impossible to measure,
or the number/cost of the associated sensors are prohibitive,
they can be inferred from the knowledge of the system inputs
and outputs. This process is encompassed in the concept of
observability [94], and is carried out with estimators known
as observers (see Fig. 2, bottom). An ubiquitous state observer,
that has been widely used in many engineering applications, is
the Kalman filter [95], [96]. Briefly, model output and avail-
able measurement are recursively combined in a prediction-
correction manner, in order to obtain an estimate of the
states that result more accurate than any of the approaches
alone (since they have associated model uncertainty and mea-
surement noise, respectively). Several extensions have been
developed specifically for application to nonlinear systems,
most notably, the unscented Kalman filter [97] can achieve
superior performance and efficiency in some circumstances
[98]. Whether it is a single spiking neuron dynamics or
a network-of-neurons state to be observed, the estimation
problem is nontrivial. Some progress was made in this area
and its potential application to closed-loop approaches is
promising. In [99], the authors reconstruct the dynamics of
the HH model gating variables describing a pyramidal cell,
using a Kalman filter and membrane potential measurements.
In [100], an ensemble Kalman filter [101] is applied to an

oscillator network of neurons described by a grid of Wilson-
Cowan equations, in order to track its states, using voltage-
sensitive dye measurements.

Regarding sensors, it has to be kept in mind that the
goal is to measure neuronal activity. Neurons, express in a
constantly interacting loop of transmembrane potential and
metabolic changes. Both electrical and metabolic changes
could be measured and taken as proxies for neuronal activity
but the nature of the sensors required in each case is different.
Overall, electrical signals could be measured by electrodes
and depending on the type of measurements different consid-
erations should be accounted for. Metabolic changes could be
expressed as changes in intracelullar concentration of calcium,
glucose consumption or blood-flow. Each of them require
a different type of sensor. Because of technical simplicity,
electrical sensors are the most implemented when it comes
to measure neuronal activity in most clinical or interfacing
applications. A detailed discussion of all these aspects is
described next.

• Electroencephalography (EEG). EEG measures electric
activity mainly evoked during synaptic excitation. The
procedure is carried out with noninvasive electrodes
placed on the scalp and can be used for online analysis
and stimulus triggering. Since the signals have to traverse
through several layers including skull and scalp, they are
heavy filtered versions at electrode level showing weak
amplitude, and thus, low signal-to-noise ratio (SNR). The
method offers a temporal resolution in the 1-5ms range,
and a spatial resolution constrained in part by inter-
electrode distances of ≈2.5cm, in the case of over 100
multichannel configurations (multiple outputs). Due to
these characteristics, EEG is probably the most common
sensing technique applied to humans. EEG is being used
in several closed-loop applications from sleep waves
reinforcement [102], motion decoding [103], to epilepsy
treatment [104].

• Electrocorticography (ECoG). ECoG is an invasive
technique, with consequently health risk, for measuring
cortical activity that employs electrodes placed on the
surface of the brain. Compared to EEG, the resulting
signal is more robust to artifacts whereas spatio-temporal
resolution is improved. Current high-density array config-
urations present shorter inter-electrode distances as 700
µm. An ECoG-reading based closed-loop approach is
presented in [105], and a biomedical setup in [106].

• Intracortical Neuron Recording. This technique mea-
sures electrical activity at gray-matter level of the brain.
Performed by means of implanted microelectrode arrays,
it is being capable of the acquisition of three types of
signals: discrete-like single-unit activity (SUA) and multi-
unit activity (MUA), by high-pass filtering (>300Hz) the
responses of nearby single of multiple neurons respec-
tively. The third type is LFPs, which are electric poten-
tials recorded in the extracellular space in tissue from
relatively localized populations of neurons, extracted by
low-pass filtering (<300Hz) the measurement. The spatial
resolution ranges from ≈0.1mm to ≈0.5mm in MUA and



LFP modalities, respectively. ECoG is being currently
used in both animal and human applications. A closed-
loop stimulation setup based on recorded LFP beta-band
power, used to Parkinson disease treatment, is presented
in [107]. In [108], LFP readings are used to predict and
terminate seizures by delayed stimulation.

• Magnetoencephalography (MEG). MEG register the
magnetic activity of the brain. The intracellular currents
flowing through neural circuits induce magnetic fields
that are collected in a noninvasive way with external
probes. The signals measured via MEG are less prone to
distortion (although severely affected by electromagnetic
interference) and tissue filtering compared to EEG acqui-
sition, and offer a better spatial resolution (≈5mm). This
technique is commonly used in humans, and to a lesser
extent, in animal models. In [109], nonparalyzed subjects
MEG readings are used to control a neuroprosthetic hand,
as a brain–machine interface assessment approach.

• Functional Magnetic Resonance Imaging (fMRI).
fMRI is based on electromagnetic detection of changes
in localized blood volumes in the brain, since the blood
flow and its oxygenation varies its levels upon neural
activation. This correlation is captured by the blood
oxygen level dependent (BOLD) signal, which metabolic
effect introduces a delay of several seconds, and thus
must be accounted for in an eventual closed-loop design
[110]. fMRI is being currently used in humans. In [111],
fMRI signals are used as neurofeedback in order to
correct, via visual stimulus, attentional-related biases in
depressed patients. A pilot study for fMRI-based closed-
loop modulation, in conjunction to transcranial electrical
stimulation (tES) is presented in [112].

• Functional near-infrared spectroscopy (fNIRS). Simi-
larly to fMRI, detecting changes in blood properties can
be performed by the noninvasive method fNIRS. Apply-
ing light in the near-infrared portion of the spectrum,
and based on the differential absorption of two blood
chromophores, relative concentrations can be determined
and thus, indirectly, fluctuations in brain activity. This
technique is being currently used in humans, e.g., in
[113], a device capable of perform fNIRS for imaging in
conjuction to tES for closed-loop stimulation is presented.

Some optical sensing approaches are a growing alternative
for neural activity imaging, and can overcome some of its
electrical counterparts limitations in terms of measurement
specificity, since they can be chemically or genetically tuned
to a specific target population. Common optogenetic-based
reporters include

• Genetically encoded calcium indicators (GECIs).
GECIs allow the measurement of the activity of large
ensembles of neurons indirectly, using the intracellular
calcium concentration as indicator. They can be used for
in vivo imaging with a high SNR, at varying resolutions,
e.g. for sub-cellular scale monitoring and to track po-
tential changes slower than spikes, due to its relatively
slow kinetics. This technique has been applied in animal
models only. In [114], the authors propose a closed-

loop setup for neural activity modulation based on GECI
(GCaMP6) real-time readout.

• Genetically encoded voltage indicators (GEVIs).
GEVIs are capable of report spikes and sub-threshold
fluctuations of membrane potential. Compared to
electrophysiology methods, GEVIs still offer lower
temporal resolution but improved spatial resolution.
Due to sensor progressive degrading process known as
photobleaching, the technique requires calibration and
correction for repetitive use. This technique has been
applied in animal models only. In [115], a closed-loop
real-time protocol for cell membrane potential control,
based on GEVI (ArcLight Q239) is presented.

In any case, the choosing of the measurement/estimation
method is usually multifaceted. Single electrode methods may
work well for single neuron or neural masses whereas multi-
electrode arrays are more appropriate for space-distributed
neural field models. In both cases, the relevant state is assumed
to be the electric potential. Optical sensors, e.g. GECIs, can
provide information about the neural activity, whether lumped
or distributed, as described by population rate in the selected
models of Section III.

B. Actuators

The term actuator refers to instruments or devices that have
the ability to affect the system in order to drive the process
from a current state to a desired state [116]. Before choosing or
designing actuators, a goal must be stated in order to formulate
proper control objectives. This typically includes what is to be
achieved in the first place, what variables need to be controlled
to that end, and what are the performance specifications (in
terms of tracking error or speed for example). The assessment
of actuators properties also have importance in the modeling
process, as it will be highlighted below.

One potential source of limitation in a closed-loop perfor-
mance can be attributed to the response of actuators. This
response can be highly nonlinear, imposing constraints in the
form of saturation limits on actuation level. For instance, a
reference input too far from the actual state of the system
can induce a control signal beyond the actuator handling
capabilities. Moreover, the effect of a given actuator can only
drive the system in one direction. For example, considering an
excitatory light-activated channel as actuator, the manipulated
input to the system can only depolarize the membrane, lacking
the possibility of steering the potential toward hyperpolarized
values.

Additionally, actuator dynamics can dominate over certain
system features. Specifically, when a closed-loop application
is said to operate on a millisecond scale, for example, it
is implicitly assumed that the actuators respond much faster
than that. This temporal scale characteristic will impose upper
bounds to the achievable closed-loop bandwidth. In any case,
these characteristics can be addressed in the modeling stage,
and/or be included in the closed-loop simulation framework.

A fundamental question that naturally arises from the stimu-
lation of a system is whether or not we can steer it from a given



initial state, via a control input, to any location in the phase
space. This issue can be formally analyzed (at least in LTI or
linearized models) and it regards to the controllability of the
system [90]. Of course, in biological applications, as in many
others, some states have natural bounds usually imposed by
physical interactions. For example, a neuron firing rate cannot
surpass ≈1KHz, since it is constrained by a ≈1 ms absolute
refractory period. So any desired state must be interpreted as
any underlying-process abiding, reasonable state.

Any stimulation approach can be used in conjunction
with others, including pharmacological, thermal, sensory, and
electrical/optical technologies. The actuators resolution will
impose practical constraints in terms of the minimum targeted
area and fastest achievable response, operating at different
spatial and temporal scales, respectively.

The most widespread methods of stimulation are based on
electric or electromagnetic principles and date back as early
as the 18th century with the famous Galvani experiments
on frog nerves [117]. In most cases, the process involves
electrode(s) delivering current or voltage stimulation at neuron
or neural-network level, exciting directly or indirectly the
cells membranes [118]. A large number of stimuli parameters
can be modulated, e.g. amplitude, pulse width and frequency,
signal waveform, etc. and thus, qualitatively and quantitatively
different effects can be achieved [119].

One way of categorize the actuation techniques is in invasive
or non-invasive procedures. Some non-invasive approaches,
currently used in humans, include the following forms of
stimulation:

• Transcranial magnetic stimulation (TMS). This tech-
nique delivers a magnetic pulse that induces stimulating
currents in nerve cells in large regions. TMS has a limited
depth influence (≈30mm) and a spatial resolution of
≈5mm. Some closed-loop applications can be found in
[120] and [121].

• Transcranial Direct Current Stimulation (tDCS). With
low intensity current flowing through electrodes placed
over the head, two modes of operation are used anodal
and cathodal, exciting or inhibiting neural activity respec-
tively. A proof-of-concept of a potential implementation
in humans is found in [122], and in [123], a closed-
loop modulation for a network in the prefrontal cortex
is presented.

• Transcranial Alternating Current Stimulation (tACS).
Low frequency (<100 Hz) alternating current is applied,
tuned to interact with cortical brain oscillations. A seizure
triggered closed-loop application of tACS is presented in
[87], and a potential setup for feedback control is detailed
in [124]. For a comprehensive review of the method
see [125].

Invasive techniques require physical contact between the
device and the tissue, typically by microelectrode arrays
(MEAs), that could serve also as recording devices, and
through implantation, can be used in in vivo applications. The
following modalities are currently applied to human patients:

• Cortical electrical stimulation (CES). Besides the use
of cortical stimulation for mapping functions and pre-

surgical aid, CES, or ICMS (intra-cortical micro stimula-
tion), has also been used for therapeutic and neuromodu-
lating applications. To this end, electrodes are implanted
in epidural or subdural places inducing currents through
the distribution of the electrical field, with horizontal
fibers being excited preferentially by cathode tip and
perpendicular fibers by the anode tip [126].

• Deep brain stimulation (DBS). Currently used as treat-
ment for neurological disorders in humans including
Parkinson’s disease and dystonia, most DBS systems are
operated in open-loop manner, with efficacy subjected
to the choosing of stimulation settings in contrast to
adaptive parameters. Usually comprising stimulation and
recording electrodes, the actuation is achieved upon the
generation of electrical fields in the surrounding contact
areas, which could lead to the generation of spikes and/or
neurotransmitter release [127].

Complimentary to electrical interfacing, optical methods
have been actively developed and offer improved recording
and stimulation capabilities. In optical actuation methods, the
application of light modifies properties of a portion of the
cell membrane in order to induce currents and therefore,
shifting its potential. This approach is based on optogenetic
techniques [128]. In its most common form, some alterations
are introduced via genetic manipulation in targeted neurons
that express light-sensitive channels (opsins) as mechanism
for stimulation [129]. The high selectivity of the method
should be highlighted, since it is capable to solely alter
some sub-populations of neurons based on genetic parameters
that correlate with specific cell type. Additionally, several
sub-populations can be stimulated from different constructs,
based on wavelength selectivity. Although, in more complex
combinations, considerations must be taken in terms of their
action spectra to avoid overlapping, similarly for the use of
optical sensors and actuators simultaneously. Since the opsins
photocycle dynamics could introduce restrictions to the loop,
their model can be included in the general dynamical model
used for simulations, in order to achieve more detailed descrip-
tions [130]. A key feature of the technique is that the actuation
can be performed bidirectionally, since there are certain classes
of optogenetic tools that enable outward currents, promoting
hyperpolarization. This property can drastically improve the
performance of a closed-loop approach. On the other hand, the
method introduces several challenges. In terms of the delivered
input, the targeted tissue can scatter and absorb the applied
light, broadening the bounds of the region of interest. Also, this
region can exhibit differential protein expression that could
result in heterogeneous activation, and more important, the
density of the deployed actuators may not be high enough to
effectively drive the entire network to a desired state. This
controllability-related issue is explored in [131].

C. Model-based control

The analysis and design of closed-loop control systems can
be performed in basically two different ways, according to the
use or not of a model representing the dynamical system under
study.
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Fig. 1. Primary difference between pre-designed stimulus application,
often an empirically derived fixed-level input, and a graded control
signal, that is based on both system and controller, to achieve a desired
behavior.

Among the model-less methods, the popular propor-
tional (P), proportional-integral (PI) and proportional-integral-
differential (PID) controllers are based usually on time re-
sponses of the system dynamics and implicitly assume a
Linear Time-invariant (LTI) model that represents it. They
come from a long tradition of control systems successfully
used in industrial applications since the 1940’s [132]. At
the end of the 90’s, other methods not based on models
appeared, known as unfalsified controllers [133], [134], based
on Popper’s falsification theory [86]. The latter performs an
online optimization and selection of the best controller based
solely in real-time input/output data, but has still certain
difficulties for practical applications [135] and exceeds the
scope of this work.

On the other hand, the best use of the information relative
to the system is achieved by model-based controllers. First, a
model usually originated in the full mathematical description
of the system or in an identification procedure, is obtained.
The latter will be described in subsection IV-D. The full
model, which is usually described by nonlinear differential
equations, could be used as a simulator to test the performance
of the closed-loop system. Next, a simplified version, defined
as control-oriented model, is used to design a controller. This
simplification is performed by a linearization of the full model
in order to obtain LTI dynamics and possibly a model order
reduction of the latter [136]. This model is used to design
the controller which will be tested in conjunction with the
simulator in closed-loop.

More recent developments in the area of control systems
describes the dynamics as a set of models so that model un-
certainty can be accommodated. This provides a more realistic
description of the system and is known as robust control theory
[137], [138]. In this framework, a more adequate procedure to
compute the set of models is by means of (in)validation [139],
possibly combined with identification. Here, a nominal model

is obtained from apriori information or from an identification
procedure, and the bounds on the sets of external perturbations
and model uncertainty are minimized in order to reproduce the
experimental data. Some guidelines to apply (in)validation to
biological systems can be found in [140] and [141].

In addition, due to difficulties associated to complex sys-
tems and under-actuation, other approaches based on neural
networks, could be useful in this stage, as discussed in [142]
and [143], and also, modern strategies based on fuzzy logic
and adaptive control as in [144] and [145].

In any case, the first step in order to obtain a model or
set of models of the system dynamics is the location of their
inputs and outputs (I/O). These will be excited and measured
by the actuators and sensors, respectively, as described in
the previous sections. The resulting model can be classified
upon the definition of relevant I/O and, consequently, the
possible control strategies can be elucidated. The simplest case
is single-input single-output (SISO) configuration. Much of the
existing control theory is developed for SISO systems. Inter-
mediate complex setups include single-input multiple-output
(SIMO) and multiple-input single-output (MISO) models. The
most general type is multiple-input multiple-output (MIMO),
which contemplates the multiple interfacing variables that the
system might possess.

It should be highlighted that many applications, where
biological phenomena such as habituation and plasticity are
common, could benefit from adaptive automatic control, as op-
posed to pre-defined, manually-tuned input stimulus. In Fig. 1,
a side by side comparison between a modulation problem
and a more complex, control specific task in presented. In
both cases the same interfacing is assumed, i.e. electrical
sensing and optical actuation, in order to standardize the
comparison. Here, the adaptation of the control signal, based
on the system state (as predicted by the chosen model) and
the controller (as resulting from the chosen control strategy)
is key. In this way, this system input achieves the desired
behavior of the system, in the example, a specific pattern
tracking. Even though much of the pursued laboratory or
clinical outcomes are empirically achieved by simplistic (On-
Off control), brute force (stimulating at maximum level) or
trial and error basis (tedious and expensive tests), the model-
based paradigms are gaining ground, becoming a systematic
implementable procedure [146].

This general control framework presents several advantages,
particularly in these type of complex systems. Firstly, compli-
cated dynamics can be modeled as nonlinear models. These
can in turn be linearized at a particular working condition,
or dynamically linearized, e.g. feedback linearization [147]–
[149]. Very seldom, complex systems can be modelled as
linear. Nevertheless in some cases they can be modeled as lin-
ear and time-variant, also known as Linear Parameter Varying
(LPV) models [150]–[152]. Different methods are specifically
suited for all these dynamics, which provides more flexibility
to the control framework.

Secondly, uncertainty in the models and external perturba-
tions can also be dealt with. Model uncertainty comes from
unmodeled internal dynamics and/or parametric uncertainty.
Nonlinear models can also be presented as a linear (possibly



time-varying) model with (bounded) model uncertainty. In
addition, external unknown signals, unwanted and/or hard
to describe inputs to the system can be considered. These
can be quantified in terms of their energy bounds and/or
bandwidth (spectral characterization). Bounded disturbances
and model uncertainty can be dealt with by adding dynamical
weights in the design and analysis of the closed-loop in the
framework of robust control [137], [138]. For some fully
known disturbances, e.g. power grid noise of fixed frequency,
or DC biases, there is the possibility of total rejection in the
closed-loop as another merit.

There exist, however, some difficulties that affect the control
design. When dealing with complex neurobiological systems,
the relatively high levels of both uncertainty and measurement
noise hinder the achievement of performance levels. Other
phenomena as qualitative changes in the system, for example,
changes in the type of spiking behavior or the triggering of
internal regulation processes could be impossible to address
with a single controller, adding considerable complexity to
the design.

Depending on the chosen control strategy, the design param-
eters will affect different aspects of the loop. For instance, for
the tuneable parameters of the PI technique, as implemented in
[153], the gain associated with the P term (proportional to the
error signal) will drive the system to react more quickly at the
expense of risking overshoot (unwanted drift from reference).
The gain of the I term (that integrates the error) will tend
to decrease the steady-state error, but introduces an unwanted
effect of accumulating the error, slowing down the response, if
a large change in the reference level takes place. Another well-
established control technique is the Linear Quadratic Regulator
(LQR), as implemented in [154]. In this approach, a state-
feedback control law u(t) = −Fx(t) is applied to the system.
The F gain is such that a quadratic cost function is minimized.
This optimal-control technique can be tuned with weighting
matrices Q,R in the cost function, that penalize the state x(t)
and control energy u(t) vectors, respectively.

Prior to experiments, the proposed control strategy must
be validated in simulation. In this stage, multiple scenarios
could be considered in order to strain the control design, and
strengthen its robustness. For example, model parameters can
suffer variations within certain range, according to the biologi-
cal experiment that this model represents, i.e. these fluctuations
must keep physical sense. Also, reasonable levels of noise, in
compliance with the existing setup, should be added to the
simulated measurements to check for specifications fulfilment.
Once data is available, another way to test and verify the model
is performed through a technique that is explained in next
subsection, known as (in)validation.

In Fig. 2 (top), a potential closed-loop system is depicted,
particularly, based on common electrical sensing (measure-
ments stem from electrodes) and optical actuation methods
(the actuators are the opsins in the cells along with the
light-emitting equipment). In Fig. 2 (bottom), an in-depth
detail of the control block is provided, depicting a standard
combination of estimation and regulation, achieved by the
observer and regulation blocks respectively. Intuitively, when
the actual state is far from the desired behavior, the error
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Fig. 2. (top) Typical setup, using electrical sensors and optical actua-
tors, capable of varying closed-loop control strategies embodied in the
algorithm block, i.e. the controller. (bottom) Detail of the control block.
The chosen model is used to design a regulator and an observer, han-
dling uncertainties and performance specifications in the process. The
actual state of the system is obtained with the estimator, as indicated
with the observer block, affected with a possibly nonlinear function f ,
and then it is compared with the reference. The controller delivers a
control signal accordingly to the difference, i.e. the error signal.

signal e(t) = r(t)−z(t) increases, pushing the response of the
controller u(t), which in turn injects an appropriate command
to the actuators, in pursuit of minimizing e(t).

D. Identification and (in)-validation

The connection between the theory (model) and the appli-
cation (experiment) should be performed by means of an iden-
tification and/or an (in)validation routines, when experimental
data is available. Both procedures relate the model parameters
and its uncertainty bounds with the actual experimental data.

Model identification is a procedure that computes the
particular parameters of a mathematical model that fits the
experimental data from the real-system dynamics. It consists
in the optimization of a vector of n parameters p ∈ Rn that
minimizes the difference between the input/output experiment
on the system provided by input/output vectors (u, y) and
the mathematical model g(·, ·). The latter is the differential
equation, which for simplicity has been represented as an
LTI model in terms of its Laplace transform variable s,
but can be straightforwardly generalised with a nonlinear
description. The resulting (single) model equation is g(p⋆, s)
for the optimal vector of n parameters p⋆. The procedure is



Fig. 3. (a) Model identification: minp ∥e∥, (b) model set (in)validation:
min {∥d∥, ∥∆∥}, (c) controller design, (d) experimental stage: poten-
tial implementation

depicted with a block-diagram in Fig. 3 (a), where the real
system is symbolized as G. A deeper treatment can be found
in [155] and a more recent framework based on subspace
theory is described in [156]. In [157] a general identification
framework for closed-loop stimulation is described, and in
[154], [158], subspace identification is used for learning input-
output dynamical models.

(In)validation instead proposes a nominal model G(s) of
the system, that could originate in apriori information or an
identification process, as the one described before. Next, it
minimizes the two possible causes of differences between the
model and the experimental set (u, y). These differences are
due to (1) external disturbances d and (2) model uncertainty ∆.
Therefore the method minimizes the bounds (γ1, γ2) so that
the input/output data (u, y) fit the nominal model values within
the sets ∥d∥ < γ1 and ∥∆∥ < γ2. The resulting set of models
is the combination {Fu[G(s),∆], ∥∆∥ < γ2}, where Fu[a, b]
is the lineal fractional combination between a and b. This has
been illustrated in Fig. 3 (b) and a complete description can
be found in [139].

Both processes can be used in conjunction, prior to the
experimental application, first to fit the parameters of the
chosen model, and latter to refine and account for model
uncertainty for a closed-loop implementation.

V. CONCLUSIONS AND FUTURE RESEARCH

A comprehensive review of neurobiological models, from
the automatic control perspective, is provided in this work for
both, single neuron and populations. It is important to highlight
that this work arises in a context where, even though to date the
required technologies are available, throughout the literature
most control strategies approaches applied to neurobiological

systems are developed with no a-priori information on the
dynamical behavior of the system. Within this framework, the
main relevant models in the neurobiological field have been
clearly presented and discussed in this study. Consequently,
the existing opportunities related to the use of a theoretical
framework for dynamical models of neurobiological systems
have been presented, always indicating the available techno-
logical platform required to pursue this goal.

Recent actuation and sensing technologies, which are key
components in any closed-loop control implementation, have
been indicated here. Similarly, the connection between the
models presented here with those technologies, has been
precisely discussed. Thus, the feasibility of realistic model
based control routines is shown. This work contributes in
the path towards more efficient control analysis, design and
implementation applied to neurobiological systems, exploring
the existing technologies and models in the field.

As a future aspect to be taken into account, a “gas law”
model should be considered rather than a combination of
millions of particle models, when stated as a thermodynamic
metaphor. In addition, model identification and model-data
(in)validation could be applied, as well as numerical model or-
der reduction techniques to produce a dynamically significant
control-oriented model. Furthermore, control methodologies
that consider uncertain nonlinear and time-varying systems
could also be applied to these complex problems, e.g. neural
networks, fuzzy logic, LPV control.
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