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1. Introduction

The self-organization processes in multi-agent systems have been receiving consid-
erable attention in a variety of contexts, from the routing of messages in information
networks to the behavior of ensembles of economic agents. The models that study
such processes try to understand how and when individual decisions induce collec-
tive effects which show up in the performance of the system as a whole and give rise
to some sort of macroscopic order. A canonical instance of this line of research is the
“Bar Attendance Model” (BAM) (also referred to as “El Farol Model”) proposed
by Ref. 1, which provides a simple illustration of a system where coordination is
achieved through the inductive learning of agents. In that model, a (large) number
of individuals have to decide whether or not to go to a bar at a certain date. The
physical capacity of the shop is taken as given. The prospective customers share the
perception that the bar becomes unacceptably crowded when the number of people
who are present exceeds a critical value, which is smaller than the total population.
Otherwise, if attendance is below that threshold, they derive utility from going to
the bar.

The model is such that agents choose an action individually, based on informa-
tion that can be considered global (i.e. it refers to aggregate values of the system)
and public (i.e. it is available to all the agents of the system). This information
is assumed to be the total attendance in the previous days. In the model agents
are assumed to perform inductive reasoning to predict the number of customers
at the shop in the next day. The system self-organizes in such a way that the
attendance converges to the maximum acceptable level (plus or minus random fluc-
tuations) [14].

In real life, the actions of groups of agents sometimes appear to undergo sudden
changes, as if there was a collective shift to a new mode of behavior [13]. This paper
explores the dynamics in such transitions, when the internal order of a coordinated,
locally stable system breaks down, and a new configuration emerges. We carry out
the analysis with variants of the BAM. In all cases, the learning process of agents
is represented by a genetic algorithms (GA). In the context of the BAM, the basic
assumption is that the actions of an agent are generated by a population of atten-
dance strategies, each of which determines a pattern of presence and absence for a
period covering a certain number of days. Those alternative attendance programs
are revised through the GA in view of the utility that the strategies would have gen-
erated to the agent during the period. The interplay of the strategy revisions of the
ensemble of agents produces a co-adaptive behavior which results in a coordinated
state. We concentrate on instances where that state is disturbed by a shock.

We add several ingredients to the standard BAM. One is the introduction of
a lower bound for utility-generating attendance (so that agents, say, dislike a bar
with too few customers). This opens the possibility of obtaining different macro-
scopic equilibria. In this regard, we show that for some initial conditions, the system
may get trapped in states where the shop remains empty in some days: this corre-
sponds to situations where agents develop the self-fulfilling anticipation that total



attendance will not be sufficient to reach the lower threshold. A zero-attendance
equilibrium in every period generated in this way seems to bear an analogy to an
expectations-driven bank run.

The second variant concerns the learning procedure of agents, by incorporating
information arising from the local environment of a particular individual. This is
done in order to contemplate possible contagion effects.* We assume that agents
have access to information regarding the behavior of others who are close to them,
and can condition their decision on such information when they find that their own
strategies do not generate reliable or satisfactory outcomes.

We first analyze the robustness of the self-organization process in this modified
setting. Then, we consider the effect of a fundamental shock that makes visiting
the shop no longer convenient for agents. In the absence of contagion, no abrupt
transitional dynamics emerges. However, when the imitation channel for modifying
behavior is introduced, the evolution of the system shows definite features. The
simulations that we perform suggest that, in such a situation, the decline in the
quantity of customers is gradual at first, as individuals, based on their own specific
learning procedures, start deserting the shop. This can be interpreted as the diffu-
sion of an awareness of a change in conditions. After a few time periods, the number
of clients starts to fall faster, while contagion becomes widespread. A situation of
panic builds up. If the exogenous shock is reversed soon, the system rapidly returns
to the original, undisturbed state. However, in the case where the new value of the
lower threshold is maintained, a large-scale movement develops, with a drastic fall
in attendance. If now the exogenous parameter returns to its initial level, reversing
the fundamental shift, a gradual reorganization of the system takes place. This can
happen in two ways. If the bad fundamental state has lasted for a long time, the
model generates the possibility that all individuals stay away from the shop, lead-
ing to an autarchic equilibrium. Alternatively, if the crisis is short-lived, the system
again converges to a stationary state with a high level of attendance.

While a “run” in the BAM has only loose analogies with a banking crisis, we
show that the model including the contagion effect can account for some qualitative
characteristics of an actual run, that which took place in Argentina at the beginning
of 1995. This may suggest that the volume of bank deposits in such an episode was
driven both by learning about the fundamental conditions of the system, and by
imitative responses to what other agents where observed to be doing.

2. Coordination through Public Information

In this section we present a modification to the BAM to consider a situation in
which it is common belief that the attendance should not exceed a given value
(denoted by Sp) for customers to be comfortable and, at the same time, it should
not fall below a lower bound (Sp) to make attendance convenient. The adaptation
procedure is based upon the past attendance recorded at the bar, an information

2This type of argument has been used in models of herd behavior; cf. Refs. 2 and 3.



that is assumed to be available to all the agents of the system, the individual
decisions make use only of public, global (aggregate) information. We model the
relaxation to equilibrium using genetic algorithms [10].

The learning procedure works by improving strategies taking into account the
performance during a set of consecutive visits to the bar. Each agent has assigned
a population of N, attendance plans for the subsequent period of Ny days. Each
strategy is encoded in a genome that specifies each day whether the agent goes
to the bar or not. All the initial populations of genomes are selected at random,
and are updated by selection, crossover and mutation [10], so that less successful
strategies are progressively eliminated.

The formal steps of the algorithm are the following:

1. Each agent possesses IV, attendance strategies. Each strategy consist of a chain
of Ny bits where Ny stands for the number of days of the attendance strategy.
The bit P#¢, for the ¢-th day of the p-th strategy, of the k-th agent, takes the
value +1 (—1) in case she chooses to go (not to go) to the bar in that day.”

2. Once each agent has selected one strategy (chosen on the basis of the data of the
preceding period of Ny days), she implements daily the action of either going or
not going to the bar. The bar records the daily level of attendance. Let ¢ be the
current strategy of each agent. The fraction D; of the public who has attended
the bar in the ¢-th day is:

Nag
Dy =3 0 #) (1)
Nag k=1

where 0(z) =1 if © > 0 and 6(z) = 0 otherwise.

3. Each agent calculates the utility obtained that day by comparing the attendance
D; with the two bounds Sy and S;. The agents who have made a correct guess
of the attendance level add a positive contribution to their utility, U} (t + 1) =
U?(t)+ (1+C) regardless whether they have attended the bar or not. The agents
who have made a wrong guess of the attendance level bear a cost that lowers
their utility, UP(t + 1) = UP(t) + (1 — C). The cost is the same whether they
have attended the bar or not. The utility is recorded daily during the period of
Ny days.

4. When the period finishes, the agent compares the performance of all her strate-
gies.® The fitness of each strategy is determined by the utility that could have
been achieved with the corresponding attendance policy. At the end of the
period of N4 days all the available strategies are ranked according to their utility
(fitness).

bThe model only involves pure strategies, i.e. it does not consider the case in which agents attend
the bar with some, possibly time varying probability.

°It is assumed that each individual change of attendance strategy causes a negligible change in
the total attendance of each day, otherwise the coadaptation process requires to test each possible

combination of individual strategies i.e. a total of N,4’ combined situations.



5. The population of strategies associated with each agent is updated according to
the usual procedure of the genetic algorithm. We have used an elitist version
of the genetic algorithm: those genomes ranked within the upper 50% survive
to the next generation, while those in the lower 50% are replaced by new ones
obtained by crossover of the surviving strategies. All the genomes (strategies)
are next subject to random mutations, i.e. a bit is changed from 1 to 0 or vice
versa with probability py..¢. According to the common practice py,.: is chosen
to be small (typically pmue ~ 0.001) since otherwise the evolution process does
not converge to any stable state because successful strategies do not survive.

6. The fittest strategy is selected as the current attendance schedule for the next
period of Ny days and the whole procedure is iterated.

In the usual settings of the BAM (with only an upper bound of tolerable atten-
dance) the outcome is an asymptotic coordinated state in which the agents self-
organize to go to the bar as frequently as tolerated by the upper crowding thresh-
old S7 (see Fig. 1). Its stability is due to the internal diversity of the system: the
agents tend to use complementary strategies that avoid crowding. By contrast, if
all the agents chose the same schedules the resulting attendance level would fall
outside the acceptable range. As a consequence the system evolves an ensemble
of strategies by which different agents go to the bar in different days. Such con-
figurations are dynamically stable. All agents continue to explore new strategies
that correspond to random mutations of their current plans and the system only
visits configurations that are in the close neighborhood of the state that has been
reached.

The case that we consider in the present paper involving an upper and a lower
bound of acceptable attendance, does not give rise to a unique coordinated state. In
addition to the full attendance case it may also happen that the ensemble of agents
gets trapped in a configuration in which, during certain days, the bar receives no
customers (Fig. 1). After few time steps of evolution and simply due to the random
fluctuations of the adaptation process, the attendance at one particular day turns
out to be below the lowest threshold Sy. When this happens all the clients that
choose to go to the bar on those days get a negative contribution to their utility.
The choice of attending the bar is thus progressively discarded in the following
adaptation steps and therefore it becomes a common belief that the bar will be
empty those days. The occurrence of a configuration of this sort is an example of
path dependence in the self-organization process, because it becomes stable in an
early stage of adaptation, conditioning all the future evolution of the system [9].

When the system is confined into one of these configurations, the adaptation
dynamics allows a transition to the macroscopic ordered state of full attendance.
Such transition is however highly improbable because it requires that a large enough
fraction of agents simultaneously coincide in changing their individually chosen
actions for a particular day. In statistical mechanics, this situation is usually referred
to as confination by entropic barriers [17].
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In either of the cases presented above (full attendance or empty days) the sys-
tem visits the neighborhood of a Nash equilibrium. No agent can improve her utility
changing unilaterally her attendance strategy. There is a large multiplicity of equi-
libria: any two configurations in which a client of the bar exchanges her position
with one who has not attended, are equivalent. One can check that the cumulative
attendance of the agents for the whole period of Ny days follows a binomial distri-
bution. In the stationary state the (time) average of the fraction of the clients that
go to the bar Sy, is the same as the probability that a given agent can attend the
bar. Thus the probability to reach a weekly cumulative attendance of A,, days is

Pl = ()i - sy, )
w

3. Coordination in the Presence of Contagion
3.1. The model for local contagion

In the previous section we have prepared the stage to include a new information
channel in the self-organization process. We can now incorporate into the model
the effect of local information, in the sense that it reflects the situation of a small
set of customers belonging to the neighborhood of any given agent. This can be
considered a way to model a contagion mechanism. Here every agent can choose
between two alternatives: (i) to continue with her individual attendance plan or
(ii) to imitate the strategy followed on the average by her nearest neighbors. The
neighborhood is determined by placing the agents in a square grid with periodic
boundary conditions. The label k of each agent is thus replaced by the row and
column indices (3, j).

Each agent is allowed to abandon her current strategy whenever she finds that
her performance is not satisfactory. It may be noticed that, owing to this fact, one
has to distinguish between the current action Ca@y i) taken by the agent located in
the site (4,75), on the t-th day, and her current plan for the same day C#fw’). To
decide a shift away from her plan, the agent determines the daily outcome obtained
with her strategy and compares it with the one obtained if she had imitated her
nearest neighbors. For this purpose each agent calculates the local “mean action”
(field):

1
hiig) = Z(C“fm‘ﬂ) +“af o1y + Ay T C“fz‘fl,ﬁ)' 3)

Once this is known, the agent can determine if she will follow her neighbors.? The
alignment of each agent with the average local attendance policy is however not
entirely deterministic. We assume that there is some noise in the agent’s decision
that is characterized by a control parameter T' = 1/. This is introduced through a

dThe arrangement of agents in a grid is borrowed from the Ising Model of ferromagnetism.



Glauber dynamics [11] in which the probability of either imitating or ignoring the
local policy of her neighborhood is

1

Plaction = +1) = -5

(4)
Thus, each agent computes every day the utility that would have been obtained
following the local mean action. If this is greater than the one computed with her
current strategy, the agent changes her attendance plan for the next day and uses
(with the above probability) the action prescribed by the local field. Otherwise, the
agent sticks to her individual plan, using the next bit of information of her current
strategy.

3.2. Self-organization with local effects

The first question that we have to answer is whether the self-organization process
presented in the previous section does not break down by the addition of local
information into the learning process of the agents. The results that we obtain
are shown in Fig. 3. The self-organization is indeed preserved in the presence of
contagion effects.® However, the new organization process involves larger level of
fluctuations which are to be attributed not only to the random search performed
in the individual optimization, but also to the occasional contagion that is induced
by the Glauber dynamics.

In the first 300 time steps of Fig. 3 we show the evolution of the system when
both information channels are active. We have fixed the random fluctuations of
the Glauber dynamics at T = 0.1. As follows from the figure, for this value of
T and under stationary conditions, approximately 15% of the agents constantly
switch strategies, imitating their neighbors. From the genetic algorithm point of
view, that effect is equivalent to an upward revision of the value of py,q,¢. With
such moderate values of T', the presence of local contagion does not prevent the
system from self-organizing. The learning procedure partially compensates the new
instabilities induced by fluctuations, by promoting attendance strategies with a
somewhat higher attendance than the highest tolerable level. The presence of these
larger fluctuations has, on the other hand, an important consequence, namely the
observed disappearance of metastable states with zero attendance in some specific
days: the buildup of the entropic barriers mentioned in the preceding section is
prevented because in the initial adaptation steps the dynamics forces the system to
explore a wider space of possible strategies.

€It should be noted that the system is initialized with random attendance of agents. Thus the
initial conditions allow for a considerable number of individuals going to the shop at a given day:
it is as if there has been already a trial period in which agents have known the shop, so that
the lower threshold of attendance can be exceeded. The problem of restoring attendance once has
been reduced below Sy is studied in the context of the exercise where the system is disturbed by
a shock.



With the above choice of parameters learning is still possible because the fluc-
tuations are not large enough to destroy the information content of the selected
strategies of each agent. For even larger values of T all agents follow an increas-
ingly random attendance policy that amounts to deciding to go to the bar by
tossing a coin. In this situation learning becomes impossible and the system fails
to self-organize.

4. The Transitional Dynamics

The relevance of the interplay of both coordination mechanisms gives rise to notice-
able effects in the event of an external shock representing a sudden change in the
global conditions. An exogenous disturbance can be simulated by using the lower
threshold Sy as a control parameter and changing it to a value greater or equal to
S1. This compels the whole set of agents to revise their decisions. The crisis can be
finished by returning Sy to its original value some time later.

It is important to compare the behavior of the system with and without conta-
gion. In Fig. 2 we show the evolution during the disturbed period in the absence
of the local informatioon channel. After the shock, the population does not switch
behavior abruptly; rather, agents gradually adapt their strategies to the new sit-
uation as they learn that it is convenient to avoid going to the bar. The rate of
adjustment of the average attendance is governed by the mutation probability of
the genetic algorithm. The evolution has an exponential time constant given by
1/pmut which is long compared with the length of the period of N, days. If the
shift in S, persists, agents eventually learn to desert the bar.

The main effect of the local contagion is to open the possibility of coherent
effects in which agents imitate each other, giving rise to rapid changes in aggregate
behavior. Once the crisis begins, the collective performance of the clients of the
bar displays two features. First, there is a period of awareness in which the agents
who were imitating their neighbors no longer do so, and choose to use their own
strategies (notice the dip in the contagion effect right after ¢ = 300 in Fig. 3). The
intuitive reason for this is that on average agents make more wrong decisions and
get poor utilities; therefore, contagion offers no advantage. For the settings chosen
for the simulations, this process may last for a period of the order of a couple of
business periods of Ny days.

Second, as the threshold Sy is maintained at its new high level, the agents
increasingly learn to avoid going to the bar. A moment is then reached in which
a critical fraction of individuals acting in that way induce an avalanche in which
agents massively imitate the strategy of not going to the bar, because acting in
this way produces a good utility to their neighbors. This has all the features of a
panic wave. Thus, the period of awareness (in which the agents act according to
their own learning) leads at some point to a contagion cascade or panic wave, with
an abrupt decline in the attendance level (see Fig. 3). This collective behavior is
triggered only if a large enough fraction of agents have decided by themselves to



'910J9(| Se awes oY) ale sI1vjourered oY) [[y "UOISRIUOD JNOYIIM SISLID SNOULSOXS ® SULIND UOIIN[OAY ‘g "S1q

uuL],

8 004 009 006 00¥ 00€ 00¢ 00} 0

L A AL AL

UBPUINY



‘sporad A10A0001 pue otued ‘ssousreme oY} 921j0N ‘9In3Y snotasid
91} JO 9SOY} Sk owes 9y} aIe siojowrered oy, ‘P[eY [B20] oY) 03 SUIPIOIIE o€ JeY) SIUSSe S} JO UOIDRIJ o) '9'T UOIFRIUOD JO 1090 oY) SoAI3 [oued
Iomo[ oY, T'0 = [ )M pUR 9AI}OR dIe S[OUURYD UOI)RULIOJUI YO USYM UMOYS oIr SISLID ® JO S109j0 oy} pue sseoold uolyeziuedio-Jjos oy, ‘¢ Sig

|,

008 004 009 009 0oy 00F 00¢ 00} 0

e
o

| 1 BN _____. T T _:_. ,— : : —ﬂ
20 A
o @
0 =4
50£
80 S
: . 0t
s,
008 00 009 005 00¥ 00€ 002 001 0
. . . 00
20 w
o g
90 m.
i 80 8
: : 0+




avoid going to the bar. When the panic emerges, the transition takes place in a
very short time.

If the disturbance is short-lived, the possibility of reaching a coordinated state of
high attendance remains essentially unaffected because the agents do not stop
considering previously successful attendance strategies. Recovery in this case is also
quite abrupt requiring little re-training of the agents. The reason is that after few
days in which the lower threshold has regained its previous value, most of the agents
have not yet lost memory of old strategies and find that they are again suitable, so
that many of them go back to using those strategies “as if nothing had happened”.
On the other hand, if the crisis is long enough to make agents forget the once
successful strategies, the new equilibrium corresponds to the bar with no clients.

After a longer time the only successful overall strategy that survives is never
going to the bar. In this stage both (genetic) learning and contagion mechanisms act
coherently to generate the same behavior. In the model, once attendance collapses, it
is highly difficult to reconstruct it. The system finds itself trapped again between
high entropic barriers. A very improbable circumstance has to occur to escape this
situation, namely that many agents decide by chance and at the same time to go to
the bar again. If this happens that strategy would produce a high utility and
stabilize again a regular attendance. As already observed, such barriers can only be
overcome allowing a high level of fluctuations (setting for instance T'to a high value),
S0 as to induce the system to visit configurations which are far from the current state.

5. An Application of the Model: Stylized Features of a Bank Run

In this section we show how some of the above discussed qualitative features can
be found in the case of a severe banking crisis that took place in Argentina in
the aftermath of the Mexican devaluation by the end of 1994. This is a
particu-larly interesting case because a quantitative record of the transitional
dynamics is available.

Banking panics have been interpreted in two ways (c.f. Refs. 7, 8, 12 and 19): as
events based on the diffusion of information about economic fundamentals, which
induces a revision of beliefs about the prospects of the banks, or as pure coordination
phenomena in a system with multiple potential equilibria, when some extraneous
shock causes agents to change the state on which they focus their expectations. Both
explanations need not be mutually exclusive. It may happen, for example, that some
macroeconomic news, which modify the perceived return on deposits,

f Once the shock has taken place and before zero attendance is reached, its value stays for a long time

at a value that is close to 1 — S1 (0.2 in the case shown). This is so because all successful strategies
required that all clients, at least 20% of the time, should not go to the bar. Thus at least 20% of the
time the agents would follow their strategy (and mistakenly go to the bar at some future date)
instead of imitating the neighbors. This effect is reinforced by the fact that the neighborhood
strategy is followed only if it is strictly better than one’s own.



induce a response which in turn triggers a self reinforcing avalanche of withdrawals,
thus amplifying or accelerating the effect of the impulse. In this case, the panic is not
simply generated by a sunspot (since without the news, agents would disregard the
multiplicity of equilibria) but it does have a component whereby the observation
that people are drawing their assets from the banks leads to a cascade of more
withdrawals.

Although the environment that we depict is highly schematic, it is tempting to
use it to consider instances for which an actual quantitative record is available such
as is the case with bank deposits. As we see below, the model can capture stylized
features of the collective behavior that is found in a crisis episode and its aftermath.

At a certain level, one can find intuitive analogies between the action of going
to the bar in the BAM, and that of making a deposit in a bank. It seems clear
that people space their visits to banks in such a way that, in a stationary state,
the aggregate attendance level remains more or less constant while the identity of
the individuals who decide to go changes from day to day. This behavior could be
rationalized, by analogy with the BAM, by defining a maximum attendance level
beyond which, given the physical capacity of a bank, customers would incur some
congestion costs. However, that somewhat strained analogy would provide a weak
basis for a representation of the behavior of financial activities. In any case, our
interest in the use of this self-organization model in a financial context has little to
do with the way in which customers routinely choose the days in which they will be
physically present at banks. Rather, what we want to consider is how the system
reacts to a fundamental shock that creates doubts about the solidity of banks. In
this regard, the existence of strategic complementarity in the decisions to place
resources in banks is a standard feature of the relevant literature.

One may well assume, as a simplifying hypothesis, that there is a lower bound
in the volume of bank deposits such that, if the aggregate value goes below that
bound, prospective depositors suffer losses due to the inability to fully recover their
funds; that lower limit would be a function of parameters such as the profitability
of banks. Thus, bad news would correspond to an increase in that lower bound
of deposits such that an individual deposit is no more profitable. In the limit, the
value of the bound would be so high that well informed agents would desert the
bank. This is the scenario that we want to analyze. As stressed before, the self-
organization in the timing of attendance (and thus, the nature of the upper bound
on attendance) is of very secondary importance for our purposes: nothing would be
changed if we just predetermined the days in which a given agent would go to the
bank in case he wished to make a deposit; the issue is whether he would want to
trust the bank at all.

Our experiment consists in shocking the system so that making deposits in the
bank is fundamentally inconvenient, and investigating the dynamics of the process
through which agents learn to abstain from making deposits, and how (and if) they
again return to the bank if the fundamental parameter goes back to its initial value.
Within this picture the attendance schedule of each agent, reflects the planned



deposit schedule for the next N; market days, i.e. it would reflect the planned
decision of making a deposit in the bank or not doing it. It is implicitly assumed that
at the end of each day the agent gets back her deposit, collects the corresponding
interests and continues with her investment schedule for the following day. The
fact that the level fluctuates reflects the random events that occasionally induce
one agent to retain the money or make a deposit. When an agent changes a 0 into
a 1 in her attendance schedule, she switches programmed action so as to make a
deposit that day, and the opposite when the change is from 1 to 0. In either case
there is a (small) change in the aggregate value of the deposits for that day.

The origin of the crisis may be attributed to the arrival of an exogenous infor-
mation that casts doubt on the fundamental reliability of the financial system; the
end of the disturbance can be associated to news (e.g. of government actions) which
in some way determine an enhancement of the ability of the banks to honor deposit
contracts.

A severe banking crisis took place in Argentina in the aftermath of the Mexican
devaluation by the end of 1994 [15]. In Fig. 4(a) we plot the total daily level of
deposits (in current accounts, savings and time deposits, aggregating accounts in
Argentine pesos and foreign currencies) during the period between November 1994
and October 1995. The picture also shows values generated with the present model.
The free parameters have been calibrated as explained in the figure caption. The
vertical scale has been normalized in such a way that the upper level corresponds to
the volume of deposits at the beginning of the crisis and the lowest to the amount
of funds at the banks on the day when the government announced that deposits
were guaranteed. Each day of the time series is equivalent to a computer day of the
attendance model.

The phases of normal performance, gradual withdrawal of deposits (awareness),
panic and recovery can be clearly identified in the figure. The simulated series
describes quite well the first stages of the crisis, but not the recovery. This happens
because in the mean, agents have not forgot completely strategies that were suc-
cessful prior to the crisis and quickly start using them again. This can therefore be
attributed to the fact that no memory is built into the artificial system to account
for the asymmetry in the data which displays a sudden run and a slower return of
deposits to the banks.

In order to include this kind of long term memory, we have elaborated a slightly
modified algorithm. We first choose a situation in which new initial strategies are
drawn, letting the genetic algorithm start again with its adaptive work in a funda-
mentally new state of the system. This modification would correspond to the intro-
duction of new rules of behavior. For the purpose of the simulation, this procedure
was triggered whenever more than half of the agents act according to contagion.
The second variant that we introduced is to assume that in a certain number of
cases (say, 40%), agents are cautious, i.e. they decline to follow contagion when
the action suggested by the neighborhood is to trust the banking system and make
a deposit. The evolution obtained by introducing these changes is presented in



(a) 1~.l T T T
1.0 1

0.8t
0.7r T
0.6 1
05T T
0.4} 1
03F 1

0.2 1 H( — Actual Data
0.1 —~ Numerical Experiment

0.0
o 3

0 50 100 150 200 250
Time

(b) 1.1 T T T
1.0 %
0.9
0.8
0.7
0.6
0.5
0.4
0.3

— Actual Data
—— Numerical Experiment

0.0
-0.1 | ! .

0 50 100 150 200 250
Time

Fig. 4. Normalized deposits during the Argentine banking crisis. The numerical experiment has
the following parameters: Nqg = 256, Np = 20, T' = 0.001, the mutation probability of the genetic
algorithm is 0.005. The crisis begins in ¢ = 30 (December 20th, 1994) and finishes in ¢t = 120. We
overlapped the numerical experiment and the series of the total daily level of deposits. In the panel
(b) we have included in the experiment two threshold effects: (i) if the fraction of agents acting
by contagion is greater than 50%, a new population of strategies is drawn again, and (ii) 60% of
the agents are inhibited to deposit when induced by contagion.



Fig. 4(b): it can be observed that there is a reasonably good fit, both in the period
where deposits declined and in the upswing.

6. Conclusions

We have considered several extensions of the BAM in which individual agents mutu-
ally adapt their individual actions to reach a coordinated, macroscopically ordered
configuration. In these models agents learn to adjust their attendance schedules to
avoid exceeding and staying below certain limits of attendance. The multiagent sys-
tem displays several possible collective orderings. One is an equilibrium in which all
agents coordinate their individual attendance schedules to saturate the maximum
accepted capacity of the bar. Another is a kind of autarchic equilibrium in which
agents refuse to go to the shop. There is also a family of suboptimal, metastable
configurations in which the bar is deserted in some specific isolated days. All these
states can be connected to the full attendance configuration, but moving from one
to the other would require the highly improbable situation of a simultaneous change
of behavior of a large collection of agents. This is a qualitative feature that can be
recognized in a wide number of everyday situations in which overcoming the barriers
amounts in practice to a global reorganization of the system [18].

We have also considered the use of information that concerns the immediate
neighborhood of each agent. This provides a local perspective in the decisions of
the agents. We found that the self-organization mechanism based only on public
information (i.e. the aggregate attendance level) can be considered robust in the
sense that addition of contagion effects does not modify the end result of the adap-
tation process. However the presence of the two alternative information channels
was found to play an important role in shaping the transitions between regimes. The
adaptation in the original version of the BAM can only give rise to gradual changes.
The interplay between the two information channels can instead generate abrupt
changes, which are commonly observed in real circumstances. The composite effect
of the two alternative mechanisms is to turn the ensemble of multiple agents into
what is known as an ezcitable system. These are complex systems found in a wide
variety of fields that encompass social, biological and physical situations displaying
a special kind of bounded homeostasis (or “corridor effects” as named by Ref. 16).
They are stable against small perturbations, but if the shock is larger than a given
threshold the system only turns back to its original equilibrium after performing a
long excursion away from that situation. We found that such excursion (or transi-
tional dynamics) in the present framework clearly displays differentiated moments
that may be taken to correspond to awareness, panic and recovery.

It is important to remark that the same learning (adaptation) rules are capable
of describing the widely different situations that correspond to the self-organization
leading to an equilibrium on the one hand, and the out-of-equilibrium transition
that follows exogenous shocks of various intensities on the other. It is not necessary
to make any other particular assumption about the behavior of the agents with



reference to any particular global situations that may arise either before, during
or after the crisis; neither is necessary to tailor the model for a specific duration
or intensity of the shock. The rules that govern the adaptation and the processing
of information are the same before, during and after the transition episode and
constitute an essential part of the multiagent system.

We have also used the model to understand on purely qualitative grounds, the
transitional dynamics generated during the bank run that took place in Argentina
as a consequence of the devaluation of the Mexican peso. It is abundantly clear
that the metaphor of the BAM should not be stretched: the model can certainly
not be taken to describe the workings of a financial system. However the ability
of the model in reproducing stylized features of the empirical quantitative data of
the transitional regime, and the enormous complexity of the interactions that are
involved in the real world dynamics, suggests that the transitions between regimes
may be roughly described by simple schemes of self-organization in spite of the fact
that the real life, detailed internal mechanisms may be very intricate.

In that application the emergent collective pattern of behavior could be
described with a simple structure that involves the interplay of only few degrees
of freedom concerning public (global) information and the contagion of individual
decisions. If considered as arising from a learning or adaptive mechanism, abrupt
changes can emerge in a natural way by including this second information channel.
On the other hand the interpretation of the gradual recovery after the crisis may
have different interpretations; as either a long term memory of events that happened
before the crisis or as a co-adaptative, recovery of confidence in the banking system.
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