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Abstract We revisit modulation instability in optical fibers, including all

relevant effects, such as higher-order dispersion terms, self-steepening, and the

Raman response. Our analysis allows us to calculate the spectral evolution of a small

perturbation to a continuous pump, and thus obtain an analytical expression for the

small-signal spectral dynamics, showing excellent agreement with numerical sim-

ulations. We apply the expression for the spectral evolution to the case of white

Gaussian noise and calculate some relevant metrics of the resulting signal, such as

its coherence and signal-to-noise ratio. These calculations might shed some light on

the nonlinear phenomena of supercontinuum generation.

1 Introduction

The phenomenon of modulation instability (MI) has been known and thoroughly

studied for many years in a vast number of different areas of science, see e.g. [1–4],

just to cite a few. In the realm of optical fibers [5, 6], in particular, MI plays a funda-

mental role as it is intimately connected to the appearance of optical solitons, which

have had a strong impact on applications to high-capacity fiber optics communica-

tion. In recent years, nonlinear phenomena such as supercontinuum generation [7]

and rogue waves [8] in optical fibers have rekindled the interest in MI. Supercontin-

uum generation refers to the phenomenon by which a narrowband input to an optical
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fiber, such as a continuous wave, spreads to become a wideband signal, compris-

ing several octaves, due to the fiber nonlinearity. Rogue waves, also known as freak

waves, are high-amplitude pulses which occur with very low probability. These rare

pulses have been studied in several areas, including oceanography, where they are

associated to large waves that ‘appear from nowhere’.

In Sect. 2, we tackle the problem of the spectral evolution of a small perturbation

to a continuous wave. Our results include molecular Raman scattering and higher

orders of the nonlinearity, such as self-steepening. To the best of our knowledge,

such a complete description has been only presented by Béjot et al. [9] in a more

general context.

In Sect. 3, we apply the results on spectral dynamics to the case of additive white

Gaussian noise and relate it to the generation of supercontinua. We must observe

that the relation between MI and supercontinuum generation has been extensively

studied in the literature (see, e.g., [7, 10–18]). The literature on the influence of

diverse noise sources on modulation instability, supercontinua and rogue waves is

also extensive (see, e.g., [19–25] and references therein). In this work, we derive

some interesting formulas on the relation of modulation instability and some metrics

such as coherence [7] and signal-to-noise ratio [26, 27]. Although these results are

limited to the undepleted pump and perturbative approximations, they might provide

some insight on the onset of supercontinuum generation.

2 Spectral Dynamics of Modulation Instability

Wave propagation in a lossless optical fiber can be described by the generalized

nonlinear Schrödinger equation [28],

𝜕A
𝜕z

− i𝛽A = i�̂�A(z, T)
+∞

∫
−∞

R(T ′) ||A(z, T − T ′)||
2 dT ′

, (1)

where A(z, T) is the slowly-varying envelope, z is the spatial coordinate, and T is

the time coordinate in a comoving frame at the group velocity (= 𝛽
−1
1 ). 𝛽 and �̂� are

operators related to the dispersion and nonlinearity, respectively, and are defined by

𝛽 =
∑

m≥2
im
m!

𝛽m
𝜕
m

𝜕Tm , �̂� =
∑

n≥0
in
n!
𝛾n

𝜕
n

𝜕Tn .

The 𝛽m’s are the coefficients of the Taylor expansion of the propagation constant 𝛽(𝜔)
around a central frequency 𝜔0. In the convolution integral in the right hand side of

Eq. (1), R(T) is the nonlinear response function that includes both the instantaneous

(electronic) and delayed Raman response.



We shall analyze the effect of a small perturbation a to the stationary solution As
of Eq. (1) (see [28])

A(z, T) =
(√

P0 + a
)

ei𝛾0P0z = As + aei𝛾0P0z. (2)

If we keep only terms linear in the perturbation, after some manipulations, substitu-

tion of Eq. (2) into Eq. (1) leads to

𝜕ã(z, 𝛺)
𝜕z

+ Ñ(𝛺)ã(z, 𝛺) = M̃(𝛺)ã∗(z,−𝛺), (3)

where 𝛺 = 𝜔 − 𝜔0, ã, 𝛽, �̃� , and R̃ are the Fourier transforms of a, 𝛽, 𝛾 and R, respec-

tively. Moreover, for the sake of clarity we have defined

Ñ(𝛺) = −i
[

𝛽(𝛺) + P0�̃�(𝛺)
(

1 + R̃(𝛺)
)

− P0𝛾0
]

, (4)

M̃(𝛺) = iP0�̃�(𝛺)R̃(𝛺). (5)

After some straightforward algebra and using the ansatz a(z, 𝛺) = D exp(iK(𝛺)z),
the following dispersion relation is found

K(𝛺) = −B̃(𝛺) ±
√

B̃2(𝛺) − C̃(𝛺), (6)

where

B̃(𝛺) = −
[

𝛽o(𝛺) + P0�̃�o(𝛺)
(

1 + R̃(𝛺)
)]

, (7)

C̃(𝛺) = 𝛽
2
o (𝛺) − 𝛽

2
e (𝛺)+

+P2
0
(

�̃�
2
o (𝛺) − �̃�

2
e (𝛺)

) (

1 + 2R̃(𝛺)
)

− P2
0𝛾

2
0+

+ 2P0𝛾0𝛽e(𝛺) + 2P2
0𝛾0�̃�e(𝛺)

(

1 + R̃(𝛺)
)

+
+2P0

(

𝛽o�̃�o − 𝛽e�̃�e
) (

1 + R̃(𝛺)
)

,

(8)

𝛽e(𝛺) =
∑

n≥1
𝛽2n
(2n)!

𝛺
2n
, 𝛽o(𝛺) =

∑

n≥1
𝛽2n+1

(2n + 1)!
𝛺

2n+1
, (9)

�̃�e(𝛺) =
∑

n≥0
𝛾2n
(2n)!

𝛺
2n
, �̃�o(𝛺) =

∑

n≥0
𝛾2n+1

(2n + 1)!
𝛺

2n+1
. (10)

A simple expression can be obtained by setting 𝛾n = 0 for n ≥ 2 and 𝛾1 = 𝛾0𝜏sh
(accounting for the effect of self-steepening). In this case,

K(𝛺) = 𝛽o + P0𝛾0𝜏sh𝛺
(

1 + R̃
)

±

±
√

(

𝛽e + 2𝛾0P0R̃
)

𝛽e + P2
0𝛾

2
0𝜏

2
sh𝛺

2R̃2.
(11)



Expression (6) agrees with that in Ref. [9], and with the one with 𝛾k = 0 for k ≥ 1
in Ref. [29]. As usual, the MI gain can be found as the imaginary part of K(𝛺). The

resulting equation exhibits many properties of the gain that have been thoroughly

studied in the literature, for instance, the fact that it does not depend on odd terms of

the dispersion relation (e.g., 𝛽3) [6, 29]. However, the derived MI gain also reveals

some interesting aspects related to the self-steepening term 𝛾0𝜏sh. Indeed, it already

has been noted that this term enables a gain even in a zero-dispersion fiber and that,

in general, leads to a narrowing of the MI gain bandwidth [30, 31].

Equation (11) also shows that, for large input power, the MI gain spectrum is

dominated by the Raman response, i.e.,

|g(𝛺)| ≈ 2P0𝛾0𝜏sh|𝛺| ⋅ ||
|
Im

{

R̃(𝛺)
}|
|
|
. (12)

Thus, in the large pump power limit, the modulation instability gain is independent of

the dispersion parameters 𝛽m. Moreover, Eq. (11) shows that, for some values of P0,

the MI gain displays two well-defined maxima, one corresponding to the Raman con-

tribution and the other related to the first term in the square root. This two-maxima

scenario may be of particular relevance, for instance, in the onset of supercontinuum

generation. Indeed, it is well known that modulation instability causes the CW pump

to break-up into pulses with a period given by the frequency by that of the MI gain

peak. In the case of two maxima of similar amplitudes, there is a approximately the

same probability of producing trains of pulses with any of the two corresponding

periods. Randomness is a consequence of the amplification of the input noise.

To portray the influence of the various effects in the MI gain, Figs. 1 and 2 show

two examples where the pump power is 100 W (Fig. 1) and 5 kW (Fig. 2), at a

center wavelength of 5 μm. The dispersion and nonlinear parameters of the fiber

are 𝛽2 = −1 ps2∕km, 𝛽2 = 0.04 ps3∕km, 𝛽4 = −0.0016 ps4∕km, 𝛾0 = 100 (Wm)−1.

Curves labeled G3 and G4 include the effect of self-steepening (𝜏sh = 1∕𝜔0). While

Fig. 1 MI Gain. Pump

power: 100 W. G3 and G4
include the effect of the

Raman response. G2 and G4
take into account the effect

of self-steepening



Fig. 2 MI Gain. Pump

power: 5 kW. G3 and G4
include the effect of the

Raman response. G2 and G4
take into account the effect

of self-steepening

the nonlinear response is R(T) = 𝛿(T) in curves labeled G1 and G3, in G2 and G4 the

response R(T) = (1 − fR)𝛿(T) + fRhR(T), with

hR(T) =
𝜏
2
1 + 𝜏

2
2

𝜏1𝜏
2
2

e−T∕𝜏2 sin(T∕𝜏1)u(T),

where u(T) is the Heaviside step function, fR = 0.031, 𝜏1 = 15.5 fs, 𝜏2 = 230.5 fs
[32]. The chosen set of parameters correspond to those of a typical chalcogenide

waveguide. We chose this particular medium as it is the most appropriate for applica-

tions in the mid IR, a region of singular interest in the are of molecular spectroscopy

[33]. The influence of self-steepening reveals itself in the difference between curves

G1 and G2 in Fig. 2. No relevant gain is observed when the Raman response is

included, but self-steepening is neglected. Indeed, as seen in Eq. (12), in the large

input power limit 𝜏sh acts as a ‘switch’, turning on and off the Raman response.

From Eqs. (2) and (6), the spectrum of the perturbation is given by

ã(z, 𝛺) = D1(𝛺)eiK1(𝛺)z + D2(𝛺)eiK2(𝛺)z
, (13)

where K1(𝛺) and K2(𝛺) are the solutions in Eq. (6) with the plus and the minus

sign, respectively. D1(𝛺) and D2(𝛺) are functions that depend on the nature of the

perturbation at the input end of the optical fiber. Letting ã(0, 𝛺) = 𝛬(𝛺) in Eqs. (3)

and (13), after some calculations we obtain

D1,2(𝛺) =
M̃(𝛺)𝛬∗(−𝛺) −

[

Ñ(𝛺) + iK2,1(𝛺)
]

𝛬(𝛺)
i(K1,2(𝛺) − K2,1(𝛺))

. (14)

Another useful way of writing Eqs. (13)–(14) is



ã(z, 𝛺) =e−iB̃(𝛺)z

KD(𝛺)
{

M̃(𝛺) sin(KD(𝛺)z)𝛬∗(−𝛺)+

+
[

KD(𝛺) cos(KD(𝛺)z)−
−
(

Ñ(𝛺) − iB̃(𝛺)
)

sin(KD(𝛺)z)
]

𝛬(𝛺)
}

,

(15)

where KD(𝛺) =
√

B̃2(𝛺) − C̃(𝛺). Similar expressions can be found in Ref. [9]. It is

interesting to note that, in the case of a small harmonic signal a(0,T) = 𝛼 exp(i𝛺0T),
these equations imply that a second harmonic appears at −𝛺0. In contrast to this

behavior, the optical fiber appears to respond as a linear time invariant system when

the input perturbation is a real function (i.e., a(0,T) ∈ ℝ). In this case, 𝛬
∗(−𝛺) =

𝛬(𝛺) and Eq. (13) becomes ã(z, 𝛺) = H̃(𝛺, z)𝛬(𝛺).

3 Noise as a Perturbation

Although Eqs. (13)–(15) are general and can be applied to any type of perturbation,

in this work we focus on white Gaussian noise. This type of input perturbation is

relevant in real applications where a typical laser has a finite signal-to-noise ratio.

Figure 3 shows the simulated spectra of 200 noise realizations for two different fiber

lengths (10 and 40 mm), with the same parameters as in Figs. 1 and 2. The input SNR

is set to a realistic ∼28 dB. A fourth-order Runge-Kutta in the interaction picture

method was used for the simulations [34]. Spectral dynamics, as given by Eq. (13),

allow us to obtain an accurate estimate for the mean value of the power spectral

density, as shown in Fig. 3 (top). A departure from the analytical model is observed

(cf. Fig. 3 (bottom)) as propagation deeper into the fiber renders a non-negligible

pump depletion.

Fig. 3 Simulated spectral

evolution of 200 noise

realizations (background

cloud of points), its average

(solid line), and its

corresponding analytical

average (dashed line): @

10 mm (top) and @ 40 mm

(bottom)



Fig. 4 Simulated spectral

evolution of 50 noise

realizations: with

self-steepening (top) and

without self-steepening

(bottom). Contour plots

correspond to simulated

averages and solid lines to

analytical mean values

It must be noted that our analysis incorporates higher orders of the nonlinear oper-

ator �̂� , such as self-steepening. The relevance of this term can be observed in Fig. 4,

where results with (top) and without (bottom) self-steepening are presented. All para-

meters are the same as in Fig. 3. Again, we find an excellent agreement between

analytical results and numerical simulations. Moreover, spectral dynamics clearly

depend on the inclusion of the self-steepening term.

We may study the AWGN case by considering 𝛬(𝛺) as an independent circularly-

symmetric normal random variable with variance 𝜎
2

for each 𝛺, i.e., 𝛬(𝛺) ∼ 
(0, 𝜎2).1 In this case, 𝛬

∗(−𝛺) is also an independent and identically distributed

random variable. From Eq. (15), we know that ã(z, 𝛺) is a linear combination of

N1 and N2 and, hence, it is itself a circularly symmetric normal random variable,

ã(z, 𝛺) ∼  (0, 𝜎2
ã ). The variance 𝜎

2
ã may be computed from Eq. (15) as

𝜎
2
ã =𝜎2

|
|
|
|
|

e−iB̃(𝛺)z

KD(𝛺)

|
|
|
|
|

2 {
|
|M̃(𝛺) sin(KD(𝛺)z)||

2 +

+ |
|
|
KD(𝛺) cos(KD(𝛺)z) −

(

Ñ(𝛺) − iB̃(𝛺)
)

sin(KD(𝛺)z)||
|

2
}

.

(16)

Since ã(z, 𝛺) is circularly symmetric, |ã(z, 𝛺)| ∼ Rayleigh(𝜎ã) and |ã(z, 𝛺)|2∕𝜎2
ã

has a 𝜒
2
-distribution with two degrees of freedom. Figure 5 shows a good agree-

1
From a strict mathematical point of view, a process such as 𝛬(𝛺) (𝛺 ∈ ℝ) is not measurable (see,

e.g., example 1.2.5 of is Ref. [35]). However, in simulations we deal only with a discrete set {𝛺k}N−1k=0
for some finite integer N. Under a discrete setting, the definition of the process 𝛬(𝛺k) is correct.

Since we will compare all our analytical results to simulations, we will stick to this definition of

noise in the frequency domain and a more formal presentation will be published elsewhere.



Fig. 5 Histograms of |ã(z, 𝛺)| for z = 10mm, f = 26.758THz (left) and f = −26.758THz (right).
Dashed lines correspond to the probabilities from a Rayleigh distribution with 𝜎ã calculated using

Eq. (16)

ment between simulation results and these distributions. Simulation results are those

shown also in Fig. 3.

It can be argued that, a(z, t) must be a stationary process (at least in the wide-

sense
2
) in t. Intuitively, it is the output of a time-invariant nonlinear system with a

stationary input (CW pump + white noise).

An important metric in supercontinuum generation is the spectral coherence,

defined as [7]

g12(z, 𝛺) =

⟨

ã∗k (z, 𝛺)ãl(z, 𝛺)
⟩

k≠l
√

⟨

|
|ãk(z, 𝛺)||

2
⟩⟨

|
|ãl(z, 𝛺)||

2
⟩
, (17)

where the subscripts k, l correspond to different noise realizations and the angle

brackets denote ensemble averages. Since different realizations are independent and,

from our results, ãk(z, 𝛺) are circularly symmetric normal random variables, the

coherence is zero in the AWGN case. This result agrees well with previous observa-

tions, for example, in Ref. [26].

Another usual metric is the signal-to-noise ratio, defined in this context as

[26, 27]

SNR(𝛺) =
⟨

|ã(z, 𝛺)|2
⟩

√

Var
(

|ã(z, 𝛺)|2
)
, (18)

where Var(X) =
⟨

|X − ⟨X⟩|2
⟩

. Since |ã(z, 𝛺)|2∕𝜎2
ã has a 𝜒

2
-distribution with two

degrees of freedom, SNR(𝛺) = 1 for all 𝛺.

2
A proper proof of this fact needs a correct definition of the stochastic process 𝛬(𝛺).



3.1 A Simple Case

In order to gain some insight on these formulas, let us apply them for the text-

book case where 𝛽2 < 0 (anomalous dispersion), 𝛽k = 0 for k > 2, 𝛾n = 0 for n > 0,

R̃(𝛺) = 1 and KI
D(𝛺) = Im{KD(𝛺)} ≠ 0 (net MI gain). We obtain

𝜎
2
ã = 𝜎

2

{

1 +

(

2𝛾20P
2
0

(

KI
D(𝛺)

)2

)

sinh2(KI
D(𝛺)z)

}

. (19)

Defining 𝛺c = 4𝛾0P0∕|𝛽2| [28] and using (11),

𝜎
2
ã = 𝜎

2

⎧

⎪

⎨

⎪
⎩

1 +
⎡

⎢

⎢

⎢
⎣

2
(

𝛺c

𝛺

)4

(
𝛺c

𝛺

)2
− 1

⎤

⎥

⎥

⎥
⎦

sinh2
⎛

⎜

⎜
⎝

z
|𝛽2|𝛺

2

2

√
(
𝛺c

𝛺

)2

− 1
⎞

⎟

⎟
⎠

⎫

⎪

⎬

⎪
⎭

. (20)

For 𝛺 = 𝛺c∕
√

2 (corresponding to the maximum MI gain),

𝜎
2
ã = 𝜎

2
{

1 + 4 sinh2
(

z
LNL

)}

≈ 𝜎
2 exp

(

2 z
LNL

)

, (21)

where LNL is the nonlinear length conventionally defined as LNL = (𝛾0P0)−1, and

the approximation is valid for z ≫ 0. Equation (21) shows explicitly how the noise

variance increases with distance.

Whenever there is not a net gain (𝛺 such that KI
D(𝛺) = 0), we have

𝜎
2
ã = 𝜎

2

⎧

⎪

⎨

⎪
⎩

1 +
⎡

⎢

⎢

⎢
⎣

2
(

𝛺c

𝛺

)4

1 −
(

𝛺c

𝛺

)2

⎤

⎥

⎥

⎥
⎦

sin2
⎛

⎜

⎜
⎝

z
|𝛽2|𝛺

2

2

√

1 −
(
𝛺c

𝛺

)2⎞
⎟

⎟
⎠

⎫

⎪

⎬

⎪
⎭

. (22)

One relevant conclusion is that the variance is periodic in z. Moreover, there are fiber

lengths for which the variance is equal to that of the input field.

Since it a(z, t) is a wide-sense stationary process, 𝜎
2
ã (𝛺) is the power spectral

density. Thus, the Wiener-Khinchin theorem allows us to find the autocorrelation

function ra(z, 𝜏) =< a(z, t)a∗(z, t − 𝜏) > by computing an inverse Fourier transform.

Although this calculation can be done numerically, it is instructive to find an analytic

approximation.

Such analytic approximation is simple when we consider the case of short dis-

tances (say, z < LNL∕2). In this case,

𝜎
2
ã ≈ 𝜎

2

{

1 + 2
(

z
LNL

)2
}

. (23)



The variance increases quadratically with the distance, but the process is essentially

white. Therefore, the correlation is

ra(z, 𝜏) ≈ 𝜎
2

{

1 + 2
(

z
LNL

)2
}

𝛿(𝜏). (24)

For other values of z, a rough analytic approximation can be obtained by approx-

imating 𝜎
2
ã (𝛺) with a linear combination of bell-shaped distributions,

𝜎
2
ã ≈ 𝜎

2
{

1 + 𝛼z

[

e−
(𝛺−𝛺z)2

Wz + e−
(𝛺+𝛺z )2

Wz

]}

, (25)

where 𝛼z,𝛺z andWz are conveniently chosen constants. It can be shown that, for large

z (>LNL),𝛺z ≈ 𝛺c∕
√

(2) (the position of the maximum MI gain),Wz ≈ (|𝛽2|z)−1 and

𝛼z ≈ 8 sinh2(z∕LNL) lead to reasonable approximations. Then, the autocorrelation is

given by

ra(z, 𝜏) ≈ 𝜎
2

⎧

⎪

⎨

⎪
⎩

𝛿(𝜏) +
8 sinh2

(
z

LNL

)

√

𝜋|𝛽2|z
e−

𝜏
2

4|𝛽2 |z cos

(

𝛺c
√

2
𝜏

)⎫

⎪

⎬

⎪
⎭

. (26)

As it can be readily seen, the coherence increases with z. Note that, as the coherence

time increases, the correlation appears to be periodic. This periodicity reflects the

breakup of the CW pump into pulses with a period ∝
√

2∕𝛺c.

The first term in (26) involves a Dirac’s delta due to the unrealistic assumption of

the white Gaussian input noise. Have we assumed an approximately white noise in

the relevant frequency band, the first term would still correspond to a narrow pulse

with a width of the order of the noise bandwidth BN . In any case, the first term does

not depend on z and corresponds to the input noise power. Thus, for large z, we may

write

Var(a(z, t)) ≈ SN

⎧

⎪

⎨

⎪
⎩

WN +
8 sinh2

(
z

LNL

)

√

𝜋|𝛽2|z

⎫

⎪

⎬

⎪
⎭

, (27)

where SN is the input-noise spectral power density.

4 Conclusions

In summary, we obtained analytical expressions for the spectral evolution of a per-

turbation to a continuous pump propagating in an optical fiber, including all rel-

evant effects such as high-order dispersion, Raman response, and self-steepening.



In particular, we tackled the problem of the evolution of white Gaussian noise, a

relevant case as it deals with the finite signal-to-noise ratio of real laser sources. We

verified our analytical results with simulations of supercontinuum generation in the

mid-IR band, finding an excellent agreement. We also obtained closed expressions

for relevant metrics in the generation of supercontinua such as the spectral coherence,

the signal-to-noise ratio.
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