
Original Research Article
Fast statistical model-based classification
of epileptic EEG signals
Antonio Quintero-Rincón a,*, Marcelo Pereyra b, Carlos D'Giano c,
Marcelo Risk a,d, Hadj Batatia e

aDepartment of Bioengineering, Instituto Tecnológico de Buenos Aires (ITBA), Buenos Aires, Argentina
b School of Mathematical and Computer Sciences, Heriot-Watt University, Edinburgh[4_TD$DIFF], UK
cCentro Integral de Epilepsia y Telemetría, Fundación Lucha contra las Enfermedades Neurológicas Infantiles (FLENI), [6_TD$DIFF]
Buenos Aires, Argentina
dConsejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
eUniversity of Toulouse, IRIT – INPT, Toulouse[9_TD$DIFF],[10_TD$DIFF] France
a r t i c l e i n f o

Keywords:

Generalized Gaussian distribution

Wavelet filter banks

EEG

Epilepsy

[11_TD$DIFF]Leave-one-out cross-validation

Linear classifier

a b s t r a c t

This paper presents a supervised classification method to accurately detect epileptic brain

activity in real-time from electroencephalography (EEG) data. The proposed method has

three main strengths: it has low computational cost, making it suitable for real-time

implementation in EEG devices; it performs detection separately for each brain rhythm

or EEG spectral band, following the current medical practices; and it can be trained with

small datasets, which is key in clinical problems where there is limited annotated data

available. This is in sharp contrast with modern approaches based on machine learning

techniques, which achieve very high sensitivity and specificity but require large training sets

with expert annotations that may not be available. The proposed method proceeds by first

separating EEG signals into their five brain rhythms by using awavelet filter bank. Each brain

rhythm signal is then mapped to a low-dimensional manifold by using a generalized

Gaussian statistical model; this dimensionality reduction step is computationally straight-

forward and greatly improves supervised classification performance in problems with little

training data available. Finally, this is followed by parallel linear classifications on the

statistical manifold to detect if the signals exhibit healthy or abnormal brain activity in each

spectral band. The good performance of the proposed method is demonstrated with an

application to paediatric neurology using 39 EEG recordings from the Children's Hospital

Boston database, where it achieves an average sensitivity of 98%, specificity of 88%, and

detection latency of 4 s, performing similarly to the best approaches from the literature.
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1. Introduction
Epilepsy is a disease that produces brain activity disorders [1–
3]. Its diagnosis relies strongly on the analysis of electroen-
cephalography (EEG) data, a non-invasive andwidely available
biomedical modality that allows neurologists to monitor
abnormal activity and characterize its nature. In particular,
neurologists analyze characteristic waveforms to localize and
quantify the epileptogenic zone. These brain activity disorders
can lead to epileptic seizures that have a sudden onset, spread
quickly, and are very brief.

Epileptic seizure detection methods based on EEG signals
stem from the observation that EEG signal descriptors allow
discriminating between normal and abnormal brain activity.
This practice originated half a century ago with works by
Viglione et al. [4], Liss et al. [5], Ktonas et al. [6] and Gotman
et al. [7]; and continuedwith Iasemidis et al. [8,9] mainly in the
medical literature and by using analogue EEG devices. Later, as
EEG systems adopted digital signal processing capacity, this
stimulated the development of pattern recognitionmethods to
detect and analyse abnormal brain activity automatically. A
main practical advantage of EEG technology is that it is very
economically accessible. This has significantly contributed to
the wide adoption of EEG in developing countries (whereas
other more advanced modalities, such as magnetoencepha-
lography (MEG), are expensive and have not been widely
adopted as a result).

There are currently a wide range of EEG signal processing
methods to detect brain seizures accurately.Mostmethodsuse
classification techniques from the supervised machine learn-
ing literature, such as support vector machines [10–12] and
discriminant analysis [13], and differ mainly in terms of their
feature extraction methods and the features classification
approaches. Many methods use time-frequency descriptors,
either explicitly (e.g., short-term Fourier or wavelet represen-
tations) [14–17,11,18,19], empirical mode decomposition [20–
22], or implicitly by learning neural networks [23–25] or by
using component analysis or common spatial patterns (see for
example [26–28]). Some also use statistical descriptors such as
signal entropy [17,11,29–31] or fractal dimension [32,33].

The main approaches from the state of the art are
summarised in Table 1, together with their detection perfor-
mance on a test dataset. Observe that most modern methods
perform remarkably well and achieve true positive rates (TPR)
or sensitivities of the order of 95–99%, and true negative rates
or specificities of the order of 85–95%, depending on the
specific method and dataset considered. This good perfor-
mance is achieved by using advanced signal processing
techniques that are generally very computationally intensive.
As a result, state-of-the-art detection methods cannot be
incorporated into EEG devices to perform detection in real
time. For example, the method [26] uses common spatial
patterns that require estimating covariance matrices and
performing singular value decompositions at each detection
step. This limitation is motivating the development of
detection methods that use cloud computing technology to
perform detection on a high performance computing server
that is accessed remotely (see for example [28]). This strategy is
potentially very interesting in some settings, but it would be
difficult to implement in developing countries where many
hospitals still have limited Internet access and poor IT
infrastructure.

Another limitation of state-of-the-art methods is that they
pull information from all spectral bands to improve detection
performance [26]. While beneficial in terms of classification
accuracy, this can be problematic in many clinical applications
where thecurrentpractice is todetect seizures independently in
each physiological spectral band or brain rhythm (these bands
are specified inSection 2). Finally, state-of-the-artmethods also
rely increasingly on large trainingdatasets,which is adrawback
in clinical applications where there is limited annotated data
available. Also, many existing methods use feature-based
classification techniques, with a significant number of features
in order to handle the inherent variability of such features.

This paper seeks to address these limitations of the existing
methodology by developing an automatic EEG detection
technique that has low computational cost, that performs
detection independently in each brain rhythm following
current clinical practice, and that can be trained with small
datasets,with a detection performance that is similar to that of
state-of-the-art algorithms. In contrast with existingmethods,
the proposed method adopts a model-based classification
approach. Model-based classification has been used in various
applications [34–36]. The idea is to capture the statistical
properties of the signal using the parameters of a probabilistic
model. This approach is interesting compared to feature-
based classification, especially when features are numerous or
exhibit large variability. It can be viewed as an interesting
dimensionality reduction technique facing the curse of
dimensionality and leading to low computational cost
classification. Despite its interest, this approach has not been
widely investigated in EEG signal processing. Precisely, our
classification method is driven by a parametric statistical
model that captures the statistical properties of the signals
and their evolution in time, with the model parameters acting
as classification features. This approach is an interesting
alternative to the non-parametric features (e.g., signal power
spectrum, variance, entropy, etc.) commonly used in the
literature because the parametric structure of the model acts
as a dimensionality reductionmechanism that regularizes the
classification problem and consequently improves the stabili-
ty and robustness of the classification, and which at the same
time significantly reduces the associated computational cost.
Despite its advantages, to the best of our knowledge this
promising approach has not been investigated for EEG signal
classification. Note however that statistical approaches have
been successfully applied to other challenging EEG processing
problems (see for example [37,38]).

The remainder of the paper is structured as follows.
Section 2 introduces notation and specifies the detection
problem considered. Section 3 presents the proposed method,
with its threemain steps detailed in Sections 3.1–3.3. Section 4
presents a range of experimental results with EEG recordings
from the Children's Hospital Boston database and reports
detection performance in terms of sensitivity, specificity, and
latency. Advantages and limitations, Conclusions and per-
spectives for future work are finally reported in Sections 5 and
6 respectively.



Table 1 – State-of-the-art methods to perform seizure detection automatically in EEG signals, summarised in terms of the
classification techniques and features used and their reported performance on a test dataset. The performance metrics are
the True Positives Rate or Sensitivity (TPR), the True Negative Rate or Specificity (TNR) and the Accuracy (ACC).

Classification method Features Test data Performance Ref.

Learning vector quantization Signal entropy from wavelet
coefficients

400 epochs from 5 normal subjects
and 5 epileptic patients

TPR:98% [17]

Support Vector Machine Matching pursuit algorithm 133 EEG from Rigshospitalet
University Hospital database
(Copenhagen, Denmark)

TPR:78%, TNR:84% [10]

Support Vector Machine Spectral and Entropy Analysis 3 datasets from EEG University
Hospital Bonn database

TPR:90% [11]

Fuzzy classification Amplitude, frequency and entropy
descriptors

56 iEEG from 20 patients from
University of Freiburg database

TPR:95.8%, TNR:74% [18]

Hidden Markov Model Segmentation of topographic maps
of time varying spectral

10 EEG patients from EPILEPSIAE [39] TPR:94.59%, TNR:92.22% [19]

Support Vector Machine Third-order tensor discriminant
analysis: spectral, spatial, and
temporal domains

36 EEG patients from Children's
Hospital Boston database

TPR:98%, TNR:94% [13]

K-means clustering Spatiotemporal Analysis as
morphological filter

10 EEG patients from University of
Florida Hospital database

TPR:87.4% [40]

Logistic classifier Stacked autoencoders neural
network

36 EEG patients from Children's
Hospital Boston database

TPR:100% [23]

Support Vector Machine Fractional linear prediction 100 single channel EEG segments
from The Bern-Barcelona EEG
database

TPR:96%, TNR:95% [41]

Least Squares Support Vector
Machine

Phase space representation 100 segments from the EEG
University Hospital Bonn

TPR:100%, TNR:96% [42]

Support Vector Machine Empirical mode decomposition 51 EEG segments from 17 patients
from University of Freiburg
(Germany)

TPR:98.6%, TNR:88.6% [43]

1-Nearest Neighbor 1D-local binary patterns from bank
of Gabor filters

100 ECoG segments from University
Hospital Bonn database

TPR:98.33% [44]

Support Vector Machine Common Spatial Pattern 36 EEG patients from Children's
Hospital Boston database

TPR:100% [26]

Relevance Vector Machine Multifractal formalism 21 EEG patients from the Epilepsy
Center of the University Hospital of
Freiburg

TPR:92.94%, TNR:97.47% [45]

Regression neural network Statistical descriptors of dual-tree
complex wavelet transform
coefficients

100 segments from University of
Bonn database and 21 patients from
Sir Ganga Ram Hospital (New Delhi)

TPR:92%, TNR:98% [24]

K-Nearest Neighbor, linear
discriminant analysis, naive
Bayesian, logistic regression and
Support Vector Machine

Time, frequency, time-frequency
and nonlinear features

100 segments from University
Hospital Bonn database

TPR:99.25% [46]

1-Nearest Neighbor Convolutional neural network 5 patients from the EEG University
Hospital Bonn

TPR:95%, TNR:88.67% [27]

Random Forest, C4.5, Functional
tree, Bayesian-network, Naive-
Bayes and K-nearest neighbours

Mean of joint instantaneous
amplitude, Mean monotonic
absolute change and Variance of
monotonic absolute change from
Empirical wavelet transform

36 EEG patients from Children's
Hospital Boston database

TPR:97.91%, TNR:99.57% [47]

Multilayer perceptron neural
network

Time-frequency localized three-
band synthesis wavelet filter bank
and subband norm

100 segments from University
Hospital Bonn database

ACC: 99.66% [48]

Support Vector Machine Pyramid of difference of Gaussian
filtered signals and Local binary
patterns

100 segments from the EEG
University Hospital Bonn

TPR:100%, TNR:100% [49]

Support Vector Machine Random subspace ensemble method
and Infinite Independent
Component Analysis

208 ECoG from University of
Pennsylvania and the Mayo Clinic

TPR:98%, TNR:96% [28]

Least-Square Support Vector
Machine

Time-frequency representation
based on the improved eigenvalue
decomposition of Hankel matrix and
Hilbert transform

100 segments from the EEG
University Hospital Bonn

TPR:100%, TNR:100% [50]



2. Problem statement
Let X2RM�N denote a time-discretized EEG signal recorded by
an array composed of M channels over a period of T seconds,
and using a sampling period of T/N seconds. Each row of X is
associated with one channel of the array and contains all the
sampling points corresponding to the EEG signal recorded by
that channel, whereas each column is associated with a
sampling point and contains the vector signal acquired by the
full array at that time instant. Moreover, to analyse the
different frequency components of X, we denote by Xd, Xu, Xa,
Xb, and Xg the spectral components related to the d (0–4 Hz), u
(4–8 Hz), a (8–16 Hz), b (16–32 Hz), and g (32–64 Hz) frequency
bands. Asmentioned previously, each of these bands is related
to different neurological functions and is therefore associated
with specific neurological disorders.

This paper considers the problem of detecting epileptic
seizure activity in EEG signals in real-time, and identifying the
frequency bands where the seizure occurs. Formally, for any
time instant n 2 {1, N}, define band-specific binary labels zd(n),
zu(n), za(n), zb(n), and zg(n) that take value 1 to indicate the
presence of an epileptic seizure at their spectral band, and 0 to
indicate normal activity. Given some expert annotated training
data fXðkÞ

0 gK0k¼1 and fXðkÞ
1 gK1k¼1 corresponding to short EEG record-

ings of healthy and epileptic seizure activity, we consider the
supervised classification problem of estimating the values of
zd(n),zu(n), za(n), zb(n), and zg(n) in real-timeasX is acquiredby the
EEG array. Similarly to [14], becausewe are interested in clinical
applicationswhere this information is required in real-time,we
focus on classifiers that have low computational complexity.
3. Proposed method

This section presents a new method to detect epileptic
seizures in EEG signals and simultaneously identify the
frequency bands where the seizure occurs. As mentioned
previously, the main strengths of the methodology are that it
can be trained with small training datasets, and that it is
computationally very efficient and suitable for performing
detection in real-time.

The proposedmethod has a pipeline structure composed of
the following three steps: a filter bank that separates X into its
Xd, Xu, Xa, Xb, and Xg spectral components, followed by a
statistical dimensionality reduction step that maps these
components into a low-dimensional representation where
pathological brain activity is easily detected, and finally a
classification step based on a thresholding approach. This
structure is summarised in the diagram in Fig. 1.

3.1. Spectral decomposition by wavelet filter bank

We use a Dauchebies (Db4) wavelet filter bank to separate X
into the five spectral components Xd, Xu, Xa, Xb, and Xg [51] (we
use Db4 because it offers the number of vanishing moments
that allow representing the signalwith sufficient smoothness).
Performing wavelet decomposition fits naturally the dyadic
structure of the neurological spectral bands, and provides a
computationally efficient filtering algorithm that can be
implemented straightforwardly on real-time signal processing
hardware. Because our data is acquired at a 256 Hz sampling
rate, in our experiments we use a wavelet filter through tree-
based topology, with six scales. The upper five scales match
with the spectral bands of interest (the remaining scale related
to the 64-128 Hz bandhas very poor signal-to-noise ratio and is
discarded). The output of this stage are 5 sets of wavelet
coefficients Vd, Vu, Va, Vb, Vg (observe that this approach can
be straightforwardly generalized to higher sampling rates
by using or discarding any additional bands).

3.2. Statistical model of the spectral components

Designing a classifier to detect pathological brain activity directly
from the EEG signals (or their wavelet representation) is very
challenging due to the high-dimensionality of the data, and
because it would require a large training set and a complex
classification methodology. To detect abnormal brain activity
with limited annotated training data, particularly in the context
of classifierswith lowcomputational complexitysuitable for real-
time implementations, it is necessary to map the EEG data to a
meaningful compact representation that highlights the informa-
tion able to discriminate normal and abnormal activities. A
successful representation should also provide the low-dimen-
sional structure and favorable regularity properties that enable a
simple classification scheme, such as threshold-basedmethods.

Here we construct this representation by using a parametric
statisticalmodel to summarize the empirical distribution of the
wavelet coefficients associated with each spectral band.
Precisely, we adopt a sliding window approach and fit a
parametric statistical model to the wavelet coefficients associ-
atedwith the last 2 s ofX. Because the signalsweconsider inour
experiments are acquired with M = 23 channel array, the 2-s
window corresponds respectively to the last 8192, 4096, 1024,
512 and 256 coefficients ofVd,Vu,Va,Vb, andVg. Wemodel each
setofwavelet coefficientswithzero-meangeneralizedGaussian
distribution (GGD) with density given by

f ðs; s; tÞ ¼ t

2sGðt�1Þexp �j s
s
j
t� �

(1)

where s 2Rþ is a scale parameter, t2Rþ is a shape parameter
that controls the density tail, and G �ð Þ is the Gamma function
(we estimate the values of s and t for each spectral band by
maximum likelihood estimation, which we solve straightfor-
wardly by using a Newton–Raphson algorithm [52]). Therefore,
at a given time point n, the

P13
j¼92

j ¼ 15872 wavelet coefficients
corresponding to the 2-s window are mapped to a 10-dimen-
sional representation s(n) = [sd(n), su(n), sa(n), sb(n), sg(n)], t(n) =
[td(n), tu(n), ta(n), tb(n), tg(n)]. In addition to bringing significant
dimensionality reduction, the experiments reported in Sec-
tion 4 show that this approach maps each neurological spec-
tral band onto a two-dimensional representation where
seizures are easily discriminated and can be detected accu-
rately with a linear classifier. From a EEG physics viewpoint,
the parameters s(n) and t(n) capture the statistical distribution
of the power of the EEG signal array at time n in each spectral
band; s(n) measures the average power in each band, and t(n)
the deviations of power from these average values [53].

As mentioned previously, parametric approaches are
regularized by their parametric structure and as a result they
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Fig. 1 – Block-diagram representation of the proposed method to detect epileptic seizures in EEG signals. The method consists
of three main steps: separation of brain rhythms using wavelet-bank filtering, statistical model-based dimensionality
reduction using a generalized Gaussian distribution (GGD), and seizure detection using classification through linear
discriminant analysis.
achieve good performance results with smaller datasets
compared to non-parametric approaches. However, non-
parametric strategies tend to be superior when a large amount
of training data is available because they are more flexible and
consequently can better exploit the information provided by
the data (whereas parametric models are constrained by their
structure and hence suffer from intrinsic estimation bias due
to model misspecification). Similarly, over-parameterised
strategies, e.g., machine learning techniques based on neural
networks, also perform very well in data rich settings.

Finally, it is mentioning that we also considered other
statistical models for the wavelet coefficients, namely the
logistic, t-location scale, and symmetric a-stable distributions.
We found that the generalized Gaussian model provided the
bestmodel-fit-to-data (we conducted these comparisons using
real data from theChildren'sHospital Bostondatabase [54,14] –
see results in Appendix A).

3.3. Seizure detection by linear discriminant analysis
classification

The final stage of the proposed seizure detection pipeline
is a classifier that labels the statistical parameters associated
with each spectral band as seizure or non-seizure. Precisely, five
independent two-parameter classifiers are used in parallel to
classify the pairs [sd(n), td(n)], [su(n), tu(n)], [sa(n), ta(n)], [sb(n),
tb(n)], and [sg(n), tg(n)] generated by the statistical dimension-
ality reduction step. This allows to simultaneously identify
seizure activity and the spectral bands where it occurs. For
simplicity we use linear classifiers derived from a linear
discriminant analysis. Precisely, we adopt a supervised
approach where each classifier is band-specific and has been
trained by performing a linear discriminant analysis on expert
annotated data. We perform the discriminant analysis on an
augmented vector ½s; t; n� 2R3, where n = s2[1_TD$DIFF]G(3/t)/G(1/t) is a
variance parameter. Including n in the discriminant analysis
embeds (s, t) in a non-linear manifold in R3 where a better
linear classification is possible (note that n available for free as
a by-product of the Newton-Raphsonmethod that estimates s
and t, hence this augmentation does not introduce any
additional computational cost). The resulting linear classifiers
are specified by three parameters (a, b, c) defining a plane that
splits R3 in two regions related to seizure and non-seizure
events, and which essentially operate as a three-dimensional
threshold for the triplets s, t, n. Lastly, similarly to the choice of
the statistical model, it is possible to consider more advanced
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Fig. 2 – Scatter plots for the statistical parameters s and t for seizure signals (red cross) and non-seizure signals (blue circles)
for each spectral band, showing the good discrimination properties of the proposed representation.



classifications schemes. However, such classifiers also involve
more parameters and hence aremore prone to over-fitting and
more computationally expensive.

4. Experimental results
We now demonstrate the proposed methodology with
experiments with real data and comparisons with other
approaches from the literature. For the experiments we used
data from the Children's Hospital Boston database [54],
previously considered in [14], which consists of 36 EEG
recordings from pediatric subjects with challenging seizures.
(The signals were acquired with a 23-channel array operating
at a 256 Hz sampling rate). From this database, we used 13
seizure signals or epochs selected by an experienced neurolo-
gist, see Table 4. These correspond to 13 seizure events from 9
different subjects, and are between 1 and 5 min long (the other
data exhibited strong artifacts related to muscle activity and
were discarded as a consequence). The neurologist annotated
each signal to indicate the beginning and ending of the seizure
epochs, which we use as ground truth. Moreover, for each
seizure epoch, the neurologist also selected two adjacent non-
seizure signal segments of the same length to represent
challenging non-pathological brain activity. The resulting
dataset consisted therefore of 39 signal segments related to
13 seizures and 26 non-seizure signals, and of variable length in
the range of 1–5 min.

To illustrate the capacity of the statistical parameters s and
t to discriminate seizure events and non-seizure signals, Fig. 2
shows scatter plots for each spectral band constructed using
the signals in the database and the expert annotations (non-
seizure signals are represented using blue circles and seizure
signals using red crosses). Observe that this representation
provides a very good linear discrimination of the seizure and
non-seizure groups. In particular, one notices that the scale
parameter s is particularly useful for discrimination (see also
discrimination tests in Appendix B).

Moreover, to assess the performance of the proposed
methodology, we adopted a supervised testing approach
Table 2 – Seizure detection performance for each brain rhythm
of the Children's Hospital Boston database, in terms of: TPR = T
Rate or Specificity; FPR = False positive Rate; and ACC = Accura

Metric Delta Band (d) Theta Band (Q) Al

TPR 0.97 �0.06 0.99 �0.01
TNR 0.92 �0.07 0.79 �0.23
FPR 0.08 �0.07 0.21 �0.23
ACC 95.13 �4.64 92.69 �7.61

Table 3 – Average latency between seizure onset and detection
band, and for the state-of-the-art methods [13,26,23].

Proposed

Delta band (d) Theta band (u) Alpha band (a) Beta

4.3 3.9 4.1
and used the 39 signal segments described above to train
and test themethod. Because the dataset is relatively small we
used an exhaustive cross-validation technique based on a
leave-one-out approach. Precisely, at each iteration of the
cross-validation process we trained the 5 classifiers (each
defined by 3 parameters) with data from 13 seizure signals and
26 non-seizure signals, and then assessed classification perfor-
mance on the remaining 3 signals (these are 1 seizure and 2 non-
seizure signals). In each iteration of the cross-validation
process the classification performance was assessed by
splitting the test signals into sequences of 2 s and classifying
each sequence individually; these results were then used to
assess classification performance. Precisely, we measure the
method's true positive rate (TPR) or sensitivity, false positive
rate (FPR), true negative rate (TNR) or specificity, and overall
accuracy (ACC), expressed as the percentage of good classifi-
cation. For each figure of merit we report the mean value and
the standard deviation. These results are reported in Table 2.
We also report latency (time delay) between the annotated
seizure onset and the detection by the method in Table 3. We
compare classification accuracy and latency with the state-of-
the-art methods [13,26,23], which also report classification
performance and latency for the Children's Hospital Boston
database. We emphasise again that these state-of-the-art
methods are significantly more computationally expensive
than the proposed method. For example, [13] uses a third-
order tensor discriminant analysis, [23] a stack of neural
networks combined with a logistic classifier, and [26] com-
putes singular value decompositions of covariancematrices at
each detection step. Neither of these methods can be
implemented in real-time in a standard EEG system as a
consequence.

Observe from Table 2 that, despite the computational
simplicity, the proposed method achieves an excellent
sensitivity of the order of 97–99% for all spectral bands on
the test dataset. This is close to the state-of-the-art perfor-
mances of 98–100% reported in [13,26,23] for this dataset.
Moreover, the specificity of the proposed method is approxi-
mately 90%. This is slightly bellow the 94% specificity of [13]
(the works [26,23] do not report specificity). However, notice
and for 39 events (13 seizure and 26 non-seizure)
rue Positives Rate or Sensitivity; TNR = True Negative
cy [average value W standard deviation].

pha Band (a) Beta Band (b) Gamma Band (g)

0.99 �0.02 0.97 �0.05 0.99 �0.01
0.91 �0.08 0.90 �0.10 0.91 �0.08
0.09 �0.08 0.10 �0.10 0.09 �0.08
96.59 �2.99 94.48 �5.77 97.00 �2.88

(in seconds), for the proposed method on each spectral

State-of-the-art

band (b) Gamma band (g) [13] [26] [23]

4.0 4.1 4.5 3.4 7.2



Table 4 – Length of the 18 Seizures used in this study and the corresponding number of 2-s segments. An offset has been
used for each epoch to avoid leading and trailing signals that were noisy. Consequently, the number of windows
is irregular between epochs.

Processing duration in ms

Epoch Seizure Duration Segments Delta Theta Alpha Beta Gamma

01 04 1m30sec 181 7 6 7 7 8
02 05 1m41sec 203 7 7 7 8 9
03 10 1m04sec 129 7 7 7 7 9
04 11 1m07sec 137 7 6 7 7 8
05 12 2m00sec 241 7 7 7 8 8
06 13 1m57sec 235 7 7 7 8 9
07 17 1m26sec 173 7 7 7 8 8
08 18 2m23sec 287 7 7 7 8 9
09 19 3m09sec 321 7 6 6 7 8
10 20 3m46sec 343 7 6 6 7 8
11 21 5m38sec 529 7 6 7 7 8
12 22 1m04sec 129 7 6 7 7 8
13 23 1m03sec 125 7 9 9 7 13
14 26 1m05sec 131 7 9 10 11 35
15 27 1m02sec 117 7 7 7 7 9
16 28 1m16sec 153 7 7 7 8 9
17 29 1m29sec 179 7 6 7 7 8
18 30 0m32sec 65 7 7 7 7 8
that to achieve this higher specificity, the method [13] pulls
together all spectral bands, and as a result it does not
discriminate between seizures in different bands. Our method
performs classification independently on each band because
this is useful in clinical practice, at the expense of a slightly a
lower specificity.

Furthermore, observe from Table 3 that our method
achieves an average latency of approximately 4 s for all
spectral bands, outperforming the state-of-the-art meth-
ods [13,23] and close to the fastest available method [26].
We emphasise at this point that all the latency values
reported in the literature measure the delay of the
detection algorithm offline, without taking into account
any overhead related to the methods' computing times.
Therefore, the fact that different methods achieve similar
latency does not indicate that they have similar computa-
tional complexity.

Note that we do not report computing times for these
experiments for two reasons. First, because we have con-
ducted these proof-of-concept tests in MATLAB, and proces-
sing each 2-s EEG signal window required less than 50 ms.
Second, because we do not have access to the implementa-
tions of [13,26,23], and therefore the comparisonswould not be
fair. However, as explained previously, these methods clearly
have a significantly higher computational complexity because
of the sophisticated mathematical operations involved (e.g.,
third-order tensor discriminant analysis, singular value
decompositions of covariance matrices, stacked neural net-
works, etc.). A real-time implementation of the proposed
method is currently under development.

Finally, we emphase at this point that the sensitivity and
specific values reported above are for the specific test dataset
[54], which is limited in many ways. To reliably determine the
sensitivity and specificity of the method in a clinical setting it
is necessary to conduct a thorough evaluation by using long-
term and continuous EEG signals (see for example the
protocols adopted in [55]). A thorough evaluation of the
performance of the proposed methods is a main perspective
for future work.

5. Advantages and limitations of the proposed
method
Through the use of a statistical model-based classification
technique, the proposed method has three main advantages.
First, it requires only estimating and classifying two scalar
parameters allowing it to be implemented in dedicated real
time hardware. Second, it can be trained using a reasonably
small dataset due precisely to the fact that it used only two
classification parameters. This contrastswithmethods using a
number of features that would require large training datasets.
Third, it allows seizure detection simultaneously in the
different brain rhythms, complying with current medical
practices.

Nevertheless, the proposed method has three main
limitations. First, due to the very high dynamics of epileptic
signals, defining the sliding time-window and the overlap of
epochs is difficult. Second, it needs defining regularization
parameters for the training stage in order to take into
consideration random peaks, noise and artefacts that might
lead to false positives. Third, seizures have variable and
dynamic offsets corresponding to the complex nature of
different epilepsy types. As an example, when brain waves
slow down, change from seizure to non-seizure is difficult to
track and can generate classification errors.

6. Conclusions
This paper presented a new classification method to detect
epileptic brain activity in EEG signals, with a focus on



applications involving real-time constraints and small train-
ing datasets. An additional advantage of the method is that
detection is performed independently for each brain rhythm,
following the current medical practices. Detection is achieved
by first separating the EEG signals into the five brain rhythms
by using a wavelet decomposition, and then using a general-
ized Gaussian statistical model to map signals onto a low-
dimensional representation where classification can be
performed efficiently by linear discriminant analysis. Experi-
ments with 39 signals from 9 patients of the Children's
Hospital Boston database and comparisons with other
approaches from the literature indicate that the method
achieves a very good sensitivity and a good specificity. Future
work will focus on a thorough evaluation of the proposed
method in a pre-clinical setting, by using long-term and
continuous EEG signals and the protocols presented in [55].
Another important perspective consists in studying spatial
EEG source location information to characterize the spatio-
temporal patterns of epileptic activity. A real-time implemen-
tation of the proposedmethod on an EEGmonitoring system is
currently under development[12_TD$DIFF].
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Appendix A. Goodness-of-fit measures for the
statistical models of the EEG wavelet coefficients
Vd, Vu, Va, Vb, Vg.

We assessed the goodness-of-fit of the generalized Gauss-
ian model for the EEG wavelet coefficients Vd, Vu, Va, Vb, Vg by
computing the Kolmogorov–Smirnov (KS) score [59] and the
Cramer-von-Mises (CvM) score [60]. For comparison, we also
computed the goodness-of-fit score for the following other
two-parameter statisticalmodels that are also commonly used
to model wavelet coefficients: logistic, t-location scale, and
alpha-stable distributions. Moreover, we computed the scores
for each spectral band and by separating the data into seizure
and non-seizure groups. The resulting scores are summarized in
Tables 5 and 6, which report respectively the mean and the
standard deviation of the KS and the CvM scores. Observe that
the generalized Gaussian distribution clearly provides the best
model-fit-to-data.
Appendix B. Model based characterization

In order to use the parameters s and t as features to classify
seizure and non-seizure EEG segments,we first propose to assess
estimated with all EEG segments of the 39 events. The GGD
s.

Logistic t-Location alpha-Stable

0.007 0.007 0.007
0.004 0.004 0.004
0.037 0.042 0.042
0.018 0.021 0.021
0.045 0.051 0.051
0.021 0.024 0.024
0.024 0.027 0.027
0.011 0.012 0.012
0.022 0.027 0.027
0.010 0.012 0.012

Logistic t-Location alpha-Stable

< 0.001 < 0.001 < 0.001
0.007 0.006 0.006
0.013 0.016 0.016
0.006 0.008 0.008
0.021 0.027 0.027
0.005 0.006 0.006
0.009 0.012 0.012
0.005 0.006 0.006
0.01 0.016 0.016
0.002 0.003 0.003



Table 6 – Standard deviations of the KS and CvM scores obtained for GGD pdfs estimated with all EEG segments
of the 39 events. The GGD shows the lowest scores with respect to the other distributions.

KS St. deviations GGD Logistic t-Location alpha-Stable

delta Non-Seizure 0.001 < 0.001 < 0.001 < 0.001
Seizure 0.024 0.032 0.031 0.031

theta Non-Seizure < 0.001 0.002 0.002 0.002
Seizure 0.014 0.022 0.023 0.023

alpha Non-Seizure < 0.001 0.005 0.005 0.005
Seizure 0.008 0.007 0.007 0.007

beta Non-Seizure < 0.001 0.004 0.004 0.004
Seizure 0.008 0.014 0.016 0.016

gamma Non-Seizure 0.001 0.004 0.005 0.005
Seizure 0.002 0.003 0.003 0.003

CvM St. deviations GGD Logistic t-Location alpha-Stable

delta Non-Seizure 0.001 < 0.001 < 0.001 << 0.001
Seizure 0.178 0.29 0.258 0.258

theta Non-Seizure 0.001 0.004 0.003 0.003
Seizure 0.013 0.064 0.078 0.078

alpha Non-Seizure < 0.001 0.007 0.008 0.008
Seizure 0.005 0.016 0.015 0.015

beta Non-Seizure < 0.001 0.006 0.007 0.007
Seizure 0.028 0.145 0.174 0.174

gamma Non-Seizure < 0.001 0.007 0.011 0.011
Seizure 0.001 0.004 0.005 0.005

Table 7 – Decision rules to asses the statistical signifi-
cance of the difference of means of the GGD parameters
for seizure and non-seizure signals.

p-Value Observed difference

>0.10 not significant
�0.10 marginally significant
�0.05 significant
�0.01 highly significant
their ability to separate such signals, in each brain rhythm.We
consider a dataset composed of n1 non-seizure EEG segments
and n2 seizure segments.

Let s
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are the scale and shape pa-

rameters of the GGD distributions associated with the wavelet
coefficients from seizure segments. It is assumed that these
four parameters are independent and follow normal distribu-
tions
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A univariate [111_TD$DIFF]T-test was designed to compare the means m
ðNÞ
s

and m
ðSÞ
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The variances of the distributions [112_TD$DIFF](2)–(5) are not equal and not
unknown. Consequently, we designed the test as follows. Let
s
ðNÞ
j and s

ðSÞ
j denote the empirical conditional means of s
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j

and s
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j , and Dsj

¼ s
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s
ðSÞ
j

the unbiased estimators of the variances in each
group of segments (i.e. seizure and non-seizure), the standard
deviation of Dsj

can be estimated as:
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The statistics of the [111_TD$DIFF]T-test associated with (6) [113_TD$DIFF]and (7) is then
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which is distributed according to a Student's [114_TD$DIFF]t-distribution
with n degrees of freedom,
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The hypothesis H
ðsjÞ
0 is rejected if jTðsjÞ

n j>Tt. In this study, we
chose a probability of false alarm t = 0.05. To assess the statis-



Table 8 – Results of the t-tests to assess the ability of s and t to discriminate separately seizure and non-seizure EEG
segments. The Hs

0 hypothesis is rejected for all rhythms, with highly statistical significant (p < 0.01). These scores are
supported by very high Bayes factors. Contrarily, Ht

0 is accepted for all rhythms, except Delta. The associated p-values are
largely greater than 0.1 with Bayes factors lower than the evidence threshold. We conclude that the scale parameter s

is a marker to discriminate seizure and non-seizure with a high statistical significance. The shape parameter t is not a
marker to discriminate seizures and non-seizures.

Delta Band (d) Theta Band (u) Alpha Band (a) Beta Band (b) GammaBand (g)

GGD parameter s t s t s t s t s t

Tn 6.15 3.19 5.86 0.17 6.47 0.50 7.08 0.48 6.40 0.91
Tt 2.09 2.01 2.09 2.03 2.09 2.01 2.07 2.03 2.08 2.01
p <0.001 <0.001 <0.001 0.90 <0.001 0.62 <0.001 0.63 <0.001 0.37
BF >1000 98.31 >1000 0.03 >1000 0.30 >1000 0.08 >1000 0.64
BFt 3.63 2.12 3.70 2.45 3.79 2.09 3.39 2.46 3.51 2.17
tical significance, the p-value of each test has been calculated.
Table 7 shows the decision rules that were applied.

A similar test has also been designed to compare m
ðNÞ
tj

and
m
ðSÞ
tj

for each brain rhythm j. A bi-variate [111_TD$DIFF]T-test has also
been designed for the pair (sj, tj). Its results were not
significant, therefore it is not reported here. In addition, to
further support the statistical significance given by the p-
value, we calculated the Bayes factor indicator following the
method proposed by [115_TD$DIFF][61]. This method establishes a corre-
spondence between frequentist significance tests, such as the
ones designed here, with Bayesian tests. As a result is allows
one to equate the size of the classical hypothesis tests with
evidence thresholds in Bayesian tests. Following this work
(and assuming equal variances), we calculated the Bayes
factor (BF) that provides the same evidence as the p-values
given by our tests

BF ¼ nþ T
ðsjÞ
n

nþ T
ðsjÞ
n � ffiffiffiffiffiffiffiffiffiffiffiðng	Þp� �2

0
B@

1
CA

ðn1þn2Þ=2

(11)

where the hypothesis H0 is rejected when t>
ffiffiffiffiffiffiffi
ng	p

with
g* = g2/(n1+n

2
�1) � 1 and g ¼ ððTðsj Þ

t Þ
2
=n�1Þðn1þn2Þ=2.

The total amount of EEG were n1 = 26 non-seizure segments
and n2 = 13 seizure segments. Table 8 shows the [117_TD$DIFF]T-scores, and
their associated p-values and Bayes factors. The correspond-
ing thresholds are shown. We observe that the [118_TD$DIFF]t-scores (Ts�

n )
are all greater that the threshold (Tt). The corresponding p-
values ( p) are all lower than 0.01. The equivalent Bayes factors
(BF) are also all greater than the threshold (BFt). The Hs

0

hypothesis is therefore rejected for all brain rhythms, with
highly statistical significance according to the decision rules
presented inTable 7. The scaleparameter s is a goodmarker to
distinguish seizure and non-seizure EEG segments. Contrarily, [118_TD$DIFF]
t-scores for t are lower that the threshold, except for the Delta
rhythm. The associated p-values are higher than 0.1. The
Bayes factors are lower than the thresholds. Consequently,Ht

0

hypothesis is accepted implying that t cannot discriminate
seizure and non-seizure EEG segments. Based on these results,
it becomes credible to classify EEG segments into two classes
seizure and non-seizure based on the scale parameter of the
GGD associated to their wavelet coefficients in each brain
rhythm.
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