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HIGHLIGHTS

quantifiers.

This work deals with the characterization of dynamical systems using Horizontal Visibility Graphs (HVG) and Information Theory

e We propose the use of the weight distribution, which is based on the difference of the time series values of connected points.

We study fractional Brownian motion time series and a paleoclimatic proxy record of ENSO taken from Pallcacocha Lake.
The weight distribution allows a better characterization of the studied systems, using considerable shorter time series.
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ABSTRACT

Complex networks theory have gained wider applicability since methods for transforma-
tion of time series to networks were proposed and successfully tested. In the last few years,
horizontal visibility graph has become a popular method due to its simplicity and good re-
sults when applied to natural and artificially generated data. In this work, we explore dif-
ferent ways of extracting information from the network constructed from the horizontal
visibility graph and evaluated by Information Theory quantifiers. Most works use the de-
gree distribution of the network, however, we found alternative probability distributions,
more efficient than the degree distribution in characterizing dynamical systems. In par-
ticular, we find that, when using distributions based on distances and amplitude values,
significant shorter time series are required. We analyze fractional Brownian motion time
series, and a paleoclimatic proxy record of ENSO from the Pallcacocha Lake to study dy-
namical changes during the Holocene.

1. Introduction

In the last few years, methods to transform time series into networks have been proposed, and with them, novel ways
to analyze and characterize time series, have been developed. Among others, these novel methodologies include the use of
disjoint cycles and their distances in the phase space to generate the links in the corresponding network [1,2]. Li and Wang
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[3,4] introduce a method based on n-tuples. Donner et al. [5,6] work with recurrence networks. There are also methods
based on the phase space reconstruction of the time series [2,7,8]. Latora et al. [9] propose a graph based on the recurrence
of time series motifs. Other methods take into account the visibility of elements in a time series, like the Visibility Graphs
or the Horizontal Visibility Graphs [10,11]. Our article focuses on the use of the latter.

Following previous works [12,13], we extract probability distribution functions (PDFs) from the constructed networks
to characterize the topological structure and to capture the dynamics of the transformed time series, using Information
Theory quantifiers. Related works have primarily focused on the network’s degree distribution. We investigate in this work,
alternative probability distributions and we compare their performance with the usual degree distribution. Specifically, we
explore the distance distribution, that despite being poorly explored, it was shown to be efficient in capturing network’s
topological changes [ 14]. We also propose a PDF based on the difference of the time series values (amplitudes) between the
nodes connected by the horizontal visibility algorithm. We find the distance distribution and the one based on amplitude
differences more efficient in characterizing the studied systems as they require significantly shorter time series than the
degree distribution.

We study fractional Brownian motion (fBm) time series generated with different degrees of correlations (different Hurst
exponents), and a paleoclimatic proxy record of the Laguna Pallcacocha used to study the millennial El Nifio/Southern
Oscillation (ENSO) dynamic.

2. Horizontal visibility graph and associated PDFs

The horizontal visibility graph (HVG) is a methodology that transforms a time series into a graph maintaining the inherent
characteristics of the transformed time series [11]. The HVG consists in a geometrical simplification of the firstly proposed
visibility graph (VG) [10]. It considers each point in the time series, a node in the network, connected by the following
consideration: Let {x;, i = 1, ..., N}, be a time series of N data. Two nodes i and j in the graph are connected if it is possible
to trace a horizontal line, in the time series, linking x; and x; not intersecting intermediate data height, fulfilling: x;, x; > x,
foralli < n <j.

In the HVG, the nodes can see at least its nearest neighbors, incorporating in a natural way the time causality. One of the
properties of the HVG is that it is not modified under rescaling of horizontal and vertical axes, as well as under horizontal
and vertical translations [11,15].

2.1. Probability distributions extracted from HVG

Once the graph is constructed, several ways of extracting information about its structure are possible. The most usual
one is to extract the degree distribution that describes the way the node’s degrees are distributed in the graph. The degree
distribution has been used to study several natural and artificial systems, from river flows [ 16], to laser intensity analysis [17].
For a given network G with N nodes, the degree distribution, Py, (), is the fraction of nodes with degree «. This discrete
distribution is defined on the set {0, 1, ..., N — 1}.

Other probability distributions, such as the distance distribution have been still poorly explored, however, one recent
work has shown the distance distribution to be very effective in capturing network’s topological changes [ 14]. The distance
between a pair of nodes is the shortest path between them, thus, the distance distribution, P5(d), is the fraction of pairs of
nodes at distance d. The maximum possible distance is N — 1, and when a pair is disconnected, we consider oo, thus, the
distance distribution is discrete and defined over the set {1,2,...,N — 1, co}.

In this article, we also explore a straightforward modification of HVG, that consists in weighting the edges based on
the difference between two connected values in the time series. The weight of an edge is a real value proportional to the
amplitude difference between two connected points. Considering X = {x1, ..., X,} a sample of n real values, if x; and x; are
connected, the edge (i, j) has a weight w; = x; —x;. It is important noticing that, if we keep track of the first value of the time
series, we could reconstruct the series from the resulting graph. As wj; is a continuous variable, a histogram is constructed to
estimate the probability distribution. P,,(A) represents the fraction of edges with amplitude A. Fig. 1 exemplifies how these
PDFs are obtained from a time series.

3. Information theory quantifiers
3.1. Shannon entropy

When considering discrete probability distributions (P = {p; : j = 1, ..., M}) the Shannon entropy S[P] [18] is defined
as:

M
S[P]:—Z p; - Inp;. (1
=

If S[P] = 0 we are in a position to predict with certainty which of the possible outcomes j whose probabilities are given
by p; will actually take place. Our knowledge of the underlying process described by the probability distribution is, in this
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Fig. 1. Example of the transformation of a time series into a graph (HVG), and the three different probabilities distributions extracted from it. Subfigure
(a) shows the time series, (b) depicts the network after applying HVG, the weights are only considered for P,,, (c) degree distribution Py, (d) distance
distribution Ps and (e) weight distribution P,,.

instance, maximal. On the contrary, our ignorance is maximal for a uniform distribution. For a given distribution P, the
“normalized Shannon entropy” is computed as S[P]/Smax. For the cases here analyzed, Syax = In(M), where M = N for Pgeq
and Ps and M is equal to the number of bins of the histogram for P,,. The Shannon entropy presents a global perspective of
the density, as it is not sensitive to permutations of its bins, however, it will detect changes in their values.

3.2. Fisher’s Information Measure

The Fisher’s Information Measure (F) constitutes a measure of the gradient content of the distribution, being quite sensitive
even to small localized perturbations [ 19,20]. Considering the same probability distribution P, it reads as:

M-1
Pl=F Y [(ps)"? — ()" )
i=1

It has been extensively discussed that this discretization is the best behaved in a discrete environment [21]. Here, the
normalization constant F, reads

B 1 ifpx=1fori*=1ori* =Mandp; =0Vi #i* (3)
1/2 otherwise.

3.3. Shannon-Fisher information plane

The use of the Shannon-Fisher information plane S x F, was initially proposed by Vignat and Bercher [22] and later
applied in several works [23-25]. In this plane, axes are functional of the probability density considered, the normalized
Shannon Entropy (S/Smax) and the Fisher Information measure F. The S x F-plane is a suitable tool to contrast global and
local features of the probability distribution under study.
4. Computational experiments

4.1. Characterization of fBm

The first experiment evaluates the performance of the methodology over artificially created time series. We study
fractional Brownian motion (fBm) time series, that are continuous-time Gaussian processes, self-similar, and endowed with
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Fig. 2. Average results for fBm with different Hurst exponent values and lengths. Each value is the average result of 30 independent runs.

stationary increments [26]. Motion and noise are characterized by the Hurst exponent (H), that describes the raggedness of
the motion. The Hurst’s parameter defines two distinct regions in the interval (0, 1). For H > 1/2, consecutive increments
tend to have the same sign, thus, these processes are persistent. On the contrary, for H < 1/2, consecutive increments are
more likely to have opposite signs, being anti-persistent. The case H = 1/2 corresponds to the classical Brownian motion,
where successive motion increments are as likely to have the same sign as the opposite, presenting no correlation among
them. We generate the fBm time series with Hurst exponent in the range 0.1 < H < 0.9 of different lengths with the
algorithm proposed by Abry and Sellan [27,28], by using its Matlab implementation.

A few works devoted to the study of the characterization of fBm uses HVG related methodologies [11,15,23,29-31].
Lacasa et al. [29] show that the degree distribution of the network constructed from fBm time series is a function of the
Hurst exponent. In Ravetti et al. [23] the Fisher-Shannon information plane is used to discriminate different degrees of
correlations in fBm by considering the HVG degrees distributions.

In a recent publication, [ 15], an analysis is performed on HVG and network features by considering fBm processes. They
use time series length of 10* and they correlate common network features with the Hurst exponent. One curious result is
that the assortativity coefficient! decreases until reaching a turning point around H = 0.6. We reproduced the experiment
performed in the above-mentioned article, finding similar results regarding the relation between the networks quantifiers
via HVG and the fBm, with the exception of the assortativity coefficient. The phase transition claimed by the authors at
H = 0.6 is not real, but a consequence of the time series length. The use of HVG and the computation of network features
for the analysis of fBm time series for H > 0.6 require time series larger than 10* to be accurate, as shown in Fig. 2. Additional
results are described in the Supplementary Information (SI), see Figure S1.

The use of Information Theory with the HVG shows remarkable results. The HVG is capable of capturing the increasing
persistence of the series with increasing values of H. Results are depicted in Fig. 3. In the subfigures, each graph illustrates a
sample of the HVG outcome for each Hurst exponent value. It is possible to visually notice how the persistence of the series
is captured by the HVG and reflected by network features.

Regarding the time series characterization, the three probability densities are able to discriminate all series of a length
of 10° in the S x F-plane. When considering the degree distribution, the highest point in the plane corresponds to the time
series with lower values of H, with H = 0.1 presenting the highest values of Fisher and Shannon entropies. As correlation
increases, the time series begin to present longer sequences with increasing and/or decreasing values, generating bigger
valleys and increasing the visibility of certain points. The networks begin to reflect that effect by increasing the degree of a
small group of nodes. The degree densities present a decrease of peaks, but at the same time, their tails get shorter, moving
apart from the uniform distribution, thus, the entropy values diminish, see Fig. 4(a). It is important mentioning that the
Fisher Information Measure (F) is unable to discriminate time series with higher H values with this series length. However,
results considering time series with a length of 108 show an improved performance of F, see SI Figure S3. These results are
consistent with findings discussed in Ref. [23].

When considering the distance distribution, the locations in the plane change. Small values of H indicate shorter path
lengths (L), the visibility of two points in the time series will be interrupted depending on the correlation level, no correlation
will generate interruptions at an almost regular pace. This structure generates shortcuts between the nodes reducing the
path between them. As H increases, the interruption may happen right away, increasing the number of nodes between the
two points and increasing L (see SI Figure S1).

1 Also known as the Pearson correlation coefficient.



0.1700 4
0.1600 4
0.1500 4

0.1300

Fisher Information F
o
&
B
o
o
1

0.1200

0.1100

0.1145 l 0.1150 l 0.1l55 , 0.1l60 ' 0.1l65 l 0.1l70
Normalized Shannon Entropy S/Spax

b oo018
0.0016 -
0.0014 -

0.0012 ]
0.0010 -
0.0008 -
0.0006
0.0004 4

Fisher Information F

0.0002

0.0000 4

-0.0002 ] : : : :
0.3 0.4 0.5 0.6 0.7 0.8

Normalized Shannon Entropy S/S 5,

T x T T L
C 01200 ®* Pw ]

H=0.9

0.1000 +
0.0800
0.0600 -

0.0400 +

Fisher Information F

0.0200 -

0.0000 +

Il 1 1
T T 2 T 5 T )
0.4 0.5 0.6 0.7 0.8
Normalized Shannon Entropy S/Spax

Fig. 3. Shannon-Fisher plane for each probability density. In each case the average results over 10 independent runs for fBm with different Hurst exponent
values are presented considering a time series length of 10° points. Subfigure (a) considers the degree distribution. Subfigure (b) uses the distance
distribution and (c) the weighted density. The graphs in the figures are subplots of HVG results.

The increase of H causes the distance densities to get closer to the uniform distribution and the Shannon entropy values
get higher, see Fig. 4(b). In the case of F, the measurement is much more sensitive to small localized perturbations. Differently
from the degree distribution, more changes happen in the different states of the distance distribution, increasing the value
of F.

In the case of the weight distribution P,,, for smaller values of H the amplitude differences are higher and the PDFs
present longer tails being closer to the uniform distribution, see Fig. 4(c). As the H value increases, the absolute value of the
amplitude’s differences is smaller, consequently, the central bins increase their frequency, tails get shorter and the Shannon
entropy value decreases. From Fig. 4(c), it is possible to see that as H increases greater perturbations happen near the central
bins, increasing in this way the value of F.
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Fig. 4. Probability distributions extracted from the graph for different values of the Hurst exponent. Subfigure (a) depicts how the degree distribution
changes as H increases Py, (b) depicts the case for the distance distribution P, and (c) for the weight distribution P,,.

It is noticeable how P, is capable of smoothly capturing the dynamical changes of the time series, even needing less
amount of data. Fig. 5, shows the same characterization considering time series with lengths 103, The Figure depicts the
power of the HVG combined with the S x F-plane and P,,. For length 10* see Figure S2 in SI.

4.2. Millennial dynamics of El Nifio Southern Oscillation

The second experiment is devoted to the evaluation of the three proposed probability distributions to study the variability
of the El Nifio-Southern Oscillation during the Holocene (ENSO) (11,000 years BP to present), by using a proxy record of ENSO
from the Pallcacocha Lake sedimentary data [32,33]. The data used in this experiment was obtained through the analysis
of clastic laminae deposition in two 8-m sediment cores retrieved from the Pallcacocha Lake in Ecuador, in which the
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Fig. 5. Shannon-and-Fisher plane for each probability density. In each case the average results over 10 independent runs for fBm with different Hurst
exponent values are presented considering a time series length of 10> points.

light-colored inorganic clastic sediments laminae are known to be correlated with moderate to severe El Nifio events
[32,34]. The time series is constructed from the red color intensity surface of the cores sections, that were digitally scanned.
Then, it was applied an age model based on radiocarbon chronology [35]. Previous works using this data found evidence of
long-range correlations extending to timescales of half a millennium [36], a cyclic behavior of approximately 2000 years,
and a shift in variance around 5000 BP [32,34]. These works use wavelet analysis [32], ordinal analysis and Information
Theory [34] and non-linear dynamic techniques [37].

In this work, the original time series [33] has been interpolated using a cubic Hermite polynomial to a one-year sample,
as in Ref. [34]. HVG is constructed from temporal windows of 1000 years, lagged by 100 years. Then, Shannon entropy and
Fisher information are computed for all windows. Fig. 6 shows the outcomes using the degree distribution (a), distance
distribution (b), and the weight distribution (c). From these figures, it can be observed that the weight distribution detects,
with a more pronounce and smooth behavior, a change in the ENSO dynamic around 5000 BP, moment in which the Shannon
entropy finishes a long period of an increasing trend (the opposite occurs with Fisher Information).

It is also possible to see that the weight distribution better detects a period from around 9200 to 7500 of the early
Holocene (a period that includes the first mayor Rapid Climate Change (RCC)? [37,38]), characterized by a steady behavior
with low entropy values suggesting the presence of more correlated dynamics. This fact can also be seen in Fig. 7, as this
period can be found where more correlated processes are located (see also Fig. 3(c)). This period is also identified in Ref. [34].

The weight distribution clearly points out to the existence of cycles with a period close to 2000 years during the mid-to-
late Holocene. These findings are consistent with that observed by Moy et al. [32] using wavelet analysis, and Saco et al. [34]
using ordinal patterns. This behavior is not captured by Shannon entropy and Fisher information when using HVG computed
with the distance distribution. When using the degree distribution, the cyclic behavior is captured by both quantifiers,
however, it is not as clear and smooth. The weight distribution shows to be more sensitive to dynamical changes than the
other distributions. This result confirms that the weight distribution works better than the degree and distance distributions
with shorter time series, detecting in this case, well-known ENSO features.

5. Discussion and conclusions

In this work, we analyze the performance of a methodology that combines Horizontal Visibility Graph and Information
Theory quantifiers to characterize dynamical systems. Most works rely on the use of the HVG degree distribution, however,
we show through extensive experimentation, that the weight distribution based on amplitude differences, allows a better
characterization with considerable shorter time series, relevant fact when analyzing real systems. Persistent processes
usually require very long time series to be properly characterized, and this fact has caused some confusion, specifically
in the analysis of some networks features, such as the assortativity coefficient.

We study here, fractional Brownian motion generated time series with different degrees of correlations and dynamical
changes of the El Nifio-Southern Oscillation during the Holocene. In both cases, the weight distribution shows a better
performance than the degree and distance distributions, properly distinguishing different degrees of correlations in fBm
time series, and better characterizing the ENSO dynamic.

2 ree periods were identified by Denton and Karlén [38]. These periods have been frequently used as a framework for the examination of Holocene
climate variability.



a 0,30 J = Normaiized Shannon Entropy S/Smax|  Pieq]|
' —a— Fisher Information F
0.28 1
0.25 4 ’r 4
0.23 1
0.20 4 o
0.18 1
0.15 4 ab N Aaf T
07| i

0 2000 4000 6000 8000 10000
Time (cal. yr BP)

b 0.75 4—®— Normalized Shannon Entropy S/Sp,ax ! Ps)
—a— Fisher Information F
P
1] “
0.50 = .
[ o - .
o -f'-ﬁ‘,—‘f n
0.25
0.00 o A R
" T Ld I = T . T LS T
0 2000 4000 6000 8000 10000 \) P
Time (cal. yr BP)
! ~ 7 } 1
L=13.28 C —=— Normalized Shannon Entropy S/Spax " Py : R e
C=0.53 0801« Fisher Information F 1 LD
CC = 7.95e-05 h“. 17 Q) s f%;,_{,r
B =6140.22 060+ awmy r\ o ] N X §
- ‘ % ;N “J
{- o o
“ 0.40 + K] . E
~ .
WOy 3
Twe —t _
¢ o 3/ 0.20 + b Y L L=27.99
{ e prace S et c=0.48
.£->-“ _f,.,,,;, _W CC =3.79e-05
R - 0.00 + b B =13493.38
\ )

T T T T T
".‘ 0 2000 4000 6000 8000 10000

Time (cal. yr BP)

Fig. 6. Shannon entropy (black) and Fisher Information (red) values computed from HVG through (a) degree distribution, (b) distance distribution, and
(c) weights distribution. For each depicted graph, L indicates the average path length, CC Closeness centrality, C Clustering coefficient and B Betweenness
centrality. The gray bands correspond to RCC during the Holocene [37]. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

In summary, we propose an alternative way to extract information from the HVGs based on amplitude differences, and
we demonstrate the higher efficiency in characterizing dynamical systems when compared to more commonly used
techniques.
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