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We propose an original, simple, and direct method
to measure self-steepening (SS) in nonlinear waveg-
uides. Our proposal is based on results derived from
the recently introduced photon-conserving nonlinear
Schrödinger equation (pcNLSE), and relies on the time-
shift experienced by soliton-like pulses due to SS upon
propagation. In particular, a direct measurement of
this time shift allows for a precise estimation of the
SS parameter. Furthermore, we show that such an ap-
proach cannot be tackled by resorting to the NLSE.
The proposed method is validated through numerical
simulations, in excellent agreement with the analyti-
cal model, and results are presented for relevant spec-
tral regions in the near infrared, the telecommunica-
tion band, and the mid infrared, and for realistic pa-
rameters of available laser sources and waveguides. Fi-
nally, we demonstrate the robustness of the proposed
scheme against deviations expected in real-life exper-
imental conditions, such as pulse shape, pulse peak
power, pulsewidth, and/or higher-order linear and non-
linear dispersion. © 2020 Optical Society of America
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Self-steepening (SS) is a nonlinear effect responsible for the
optical shock of ultrashort pulses which acquires singular rel-
evance when analyzing the dynamics of broadband spectra,
such as in the case of supercontinuum generation [1, 2], and
with applications to optical front-induced transitions [3]. Self-
steepening is customarily introduced in pulse propagation mod-
els through a first-order approximation of the frequency depen-
dence of the medium nonlinear coefficient. Known also as the
’shock term’, τsh, its relevance in the context of the modeling of
supercontinuum generation was noted by Kibler, Dudley and
Coen [4]. As it is explained in this work (see also Refs. [5, 6]),
this shock term or SS parameter can be written as

τsh =
1

ω0
+

1
n2

dn2
dω
− 1

neff

dneff
dω
− 1

Aeff

dAeff
dω

where the derivatives are evaluated at ω = ω0, n2 is the non-
linear refractive index, neff is the effective refractive index, and
Aeff the effective mode area. In a first-order approximation,
the nonlinear coefficient of the waveguide is related to the SS
parameter by γ(Ω) = γ0(1 + τshΩ), where Ω is the frequency
detuning with respect to a conveniently chosen reference fre-
quency ω0, and the SS parameter is usually given by τsh = ω−1

0 ,
an approximation that will become clearer in what follows.

In spite of its relevance, and to the extent of our knowledge,
there is not much work in the literature on the direct measure-
ment of the SS parameter. Indeed, most of the work has focused
either on the numerical estimation or the measurement of the
mode effective area, rather than on the direct measurement of
τsh. There are several reasons for this focus of literature on Aeff.
As Kibler and colleagues note [4], the nonlinear refractive in-
dex n2 is approximately constant in many relevant materials.
Indeed, the frequency dependence of n2 is negligible far from
ultraviolet resonances in fused silica [7]. We must remark, how-
ever, that this observation does not hold, for instance, in the
case of plasmonic materials that incorporate metal nanoparticles
(MNPs), as waveguides doped with MNPs may exhibit a zero-
nonlinearity wavelength (ZNW), giving rise to interesting new
phenomena [8, 9]. Moreover, the frequency dependence of the
effective mode index neff is usually neglected as, in general, it is
less relevant than that of the effective area.

Oftentimes, the estimation of the effective mode area disper-
sion is based on extensive numerical simulations or involved
analytical calculations (see, e.g., [4, 10–16]). Nonetheless, the
mode area can also be measured (see, e.g., [17–19]). A typical
experimental procedure measures the spot size, either by reg-
istering the transverse mode with a camera or by some other
method (see, e.g., [20]), and the effective mode area is calculated
by fitting a Gaussian distribution [5, 10, 21], although such a fit
is not valid in general [22].

Let us emphasize once more that the SS parameter is de-
termined not only by the frequency dependence of the mode
effective area, but also by the frequency dependence of the non-
linear refractive index. An interesting example of this type of
dependence is found in the work of Panoiu, Liu and Osgood
on silicon photonic nanowires [23, 24]. These authors show that
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τsh can be more than 20 times greater than ω−1
0 for some wave-

lengths. Moreover, they prove that the frequency dependence of
the third order susceptibility leads to significant changes in the
SS parameter, even to the extent of making τsh < ω−1

0 .
Besides the lack of experimental schemes allowing for the

direct measurement of the self-steepening parameter, a prob-
lem arises with the modeling of its influence. Propagation of
light pulses in waveguides is usually modeled by the nonlinear
Schrödinger equation (NLSE) [5]

∂z Ã = iβ(Ω)Ã + iγ(Ω)F{|A|2 A}, (2)

where A = A(z, t) is the complex envelope of the electric field in
the time domain, normalized such that |A|2 is the optical power,
and Ã = Ã(z, Ω) = F [A(z, t)] where F stands for the Fourier
transform. Coefficients β(Ω) and γ(Ω) are the linear and non-
linear dispersion profiles, respectively, and it is customary to
express these profiles as Taylor expansions. It is worth noting
that although the NLSE has proved to be adequate to model
pulse propagation in a wide variety of cases, it is well known
that it does not necessarily conserve some basic physical quanti-
ties such as the number of photons and the energy [6, 25, 26]. In
particular, the photon number is preserved only if τsh = ω−1

0 , a
fact often overlooked in the literature which poses a severe limi-
tation when applying the NLSE to arbitrary nonlinear profiles
γ(Ω). Let us define s such that τsh = sω−1

0 , i.e., s is a measure of
the deviation from the photon-conserving situation in the NLSE.

In order to overcome the aforementioned limitation of the
NLSE, we have recently introduced a modified NLSE, the
photon-conserving NLSE (pcNLSE) [27], that preserves both
the energy and the number of photons in lossless waveguides.
The pcNLSE reads

∂z Ã = iβ(Ω)Ã + i
ωr(Ω)

2
F{C∗B2}+ i

ωr∗(Ω)

2
F{B∗C2}, (3)

where r(Ω) =
4
√

γ(Ω)
ω , B̃ = r(Ω)Ã, and C̃ = r∗(Ω)Ã.

It can be easily verified that the pcNLSE reduces to the NLSE
when τsh = ω−1

0 (s = 1), i.e., in the only case where the NLSE
preserves physical quantities. For all other values of the SS pa-
rameter, however, the pcNLSE predicts different results. For in-
stance, Fig. 1 shows results of the propagation of a short pulse, in
a waveguide with s = −1, modeled with the pcNLSE (solid line)
and the NLSE (dashed line). Not only the predicted evolution is
markedly different but, also, the NLSE predicts an unphysical
increase of the number of photons upon propagation, as shown
in the bottom panel.

It is interesting to revisit work dealing with the influence of
self-steepening on soliton propagation in fibers [28, 29]. It is
found that the soliton experiences a time shift due to SS but,
most remarkably, no shock occurs (in agreement with Ref. [5]).
Based on this resilience of a soliton to self-steepening, one may
ponder whether such unique feature could be used to measure
the SS parameter itself. Since the NLSE will only conserve the
photon number when s = 1, we turn to explore the effect of
self-steepening on soliton propagation under the much less re-
strictive context of the pcNLSE, keeping in mind that by ’soliton’
we are referring to the fundamental soliton solution of the NLSE
with no self-steepening.

Results obtained with the pcNLSE are shown in Fig. 2 for
different values of s, where we observe that not only the soliton
preserves its shape but it is time-shifted depending upon the
value of the SS parameter. For clearness, the time shift ∆T is
normalized to the pulse 1/e half-width, T0.
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Fig. 1. The effect of self-steepening on the propagation of a
short pulse in a waveguide with s = −1. Results with the
NLSE (dashed line) and the pcNLSE (solid line). The pcNLSE
preserves the photon number while the NLSE does not (bot-
tom panel).
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Fig. 2. Time shift experienced by a soliton due to self-
steepening as predicted by the pcNLSE, and for different SS
parameters: s = −1 (dotted line), s = 0 (dashed line), s = 1
(solid line); input pulse (dashed-dotted line). The time shift ∆T
is normalized to T0 = 100 fs.

In order to find an analytical expression for the time shift, we
must proceed in two steps. First, an approximation of Eq. 3 for
narrowband pulses is developed and written in the time domain.
Second, the method of moments [30–32] is applied assuming a
hyperbolic secant pulse. As a result, it can be shown that (see
Supplement 1 for details)

∆T(z) =
s + 2

3
γ0P0z

ω0
=

s + 2
3

β2z
ω0T2

0
, (4)

where γ0 is the zeroth-order nonlinear coefficient, β2 is the group
velocity dispersion, and we have neglected higher-order dis-
persion. This equation is valid as long as the pulse remains
unchirped along propagation, a condition that was verified, by
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Fig. 3. Time shift experienced by a soliton, at λ = 1550 nm, vs.
peak power and for different SS parameters: s = −1 (circles),
s = −2 (squares), and s = −3 (triangles). Results from Eq. 4
are shown in dotted lines. Since T0 = 100 fs, ∆T ≈ ±1 ps for
s = ±1 and a peak power of 8 kW.

means of extensive numerical simulations, when the input is a
fundamental soliton for the NLSE, i.e., γ0P0T2

0 /|β2| = 1.
Equation 4 suggests a direct and simple way to estimate the

SS parameter, based on measuring the delay experienced by a
soliton upon propagation in a nonlinear waveguide. Note also
that this expression is in agreement with the delay obtained with
the NLSE and from self-phase modulation (SPM) considerations,
and for s = 1, given by ∆T ≈ γ0P0z/ω0 = φmax/ω0, where φmax
is the maximum phase induced by SPM [5]. Although the delay
estimated with the NLSE can be generalized for an arbitrary
s as ∆T ≈ sγ0P0z/ω0, only the case of s = 1 corresponds to
a physically sound photon-conserving situation, and thus the
derived self-steepening parameter will not be reliable for any
other value of s.

Following this line of thought, in Fig. 3 we show simulation
results on the propagation of solitons with peak powers ranging
from 2 to 8 kW, T0 = 100 fs, and central wavelength λ = 1550 nm
(all parameters entirely consistent with those of a femtosecond
fiber laser) along a 500-m long fiber with β2 = −20 ps2km−1

and γ0 = 1W−1km−1, both coefficients typical of a standard
single-mode fiber at 1550 nm. Also shown in the figure is the
linear dependence of the time shift as obtained from Eq. 4. As
we can see, there is an excellent agreement between numerical
simulations and results obtained with the pcNLSE.

In a practical experimental setup, one may envision a scheme
where the time shift ∆T is measured by launching two pulses
into the waveguide: A large amplitude pulse which is time-
shifted due to self-steepening and a small amplitude pulse
which is not, and thus provides a convenient reference. The
delay between pulses can then be measured by techniques such
as GRENOUILLE [33] and/or modern devices based on two-
photon absorption detectors [34].

It is interesting to compare results on the time shift obtained
with the pcNLSE with those from the NLSE. This is shown
in Fig. 4, where the case of s = −1 from Fig. 3 is compared
to its NLSE counterpart. The NLSE predicts a time shift of
significantly different magnitude than that obtained with the
pcNLSE and of opposite sign. This highlights the necessity of
resorting to the latter equation in order to have a reliable estimate
of the SS parameter. Note that when s = 1 both equations will
yield the same results, as this is the only case where the NLSE
preserves the photon number.

Next, we are interested in validating our proposal in different
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Fig. 4. Time shift vs. soliton peak power for s = −1 and
same simulation parameters as in Fig. 3. (Circles) pcNLSE
and (squares) NLSE. Results from Eq. 4 for the pcNLSE are
shown in dotted line. The dashed line (NLSE) is a guide to the
eye. Since T0 = 100 fs, ∆T ≈ 1 ps, for a peak power of 8 kW, in
the case of the pcNLSE.

spectral bands of particular relevance; namely, the near-infrared
(NIR) and the mid-infrared (MIR) bands. In Fig. 5 we show
results of the propagation of femtosecond pulses at λ = 800 nm
(top) and λ = 2400 nm (bottom), in both cases along a 10-m long
fiber with a negative SS slope s = −1. In the NIR the chosen fiber
parameters are those typical of a photonic-crystal fiber (PCF)
with D = 40 ps nm−1km−1 and γ0 = 95 W−1km−1; in the MIR
the chosen parameters are those of a typical ZBLAN fiber with
D = 10 ps nm−1km−1 and γ0 = 1 W−1km−1 [35]. As it can be
readily observed, Eq. 4 makes correct predictions in both cases.

We also explore the robustness of the proposed method
against deviations expected in real-life experimental conditions,
such as pulse shape, peak power, and pulsewidth. In the top
panel of Fig. 5 we show results obtained when considering a
Gaussian-shaped pulse instead of a sech. We observe a power-
dependent departure from the time-shift as given by Eq. 4, but
as the linear trend holds it still allows for an estimation of the
SS parameter. In the bottom panel of Fig. 5 we show results
when considering deviations from the fundamental soliton con-
dition, N = 1; in practical terms, these could be due to either
peak-power and/or pulsewidth uncertainties in an experimental
setup. As it is apparent from the figure, results are still in excel-
lent agreement with the model, thus supporting the applicability
of the proposed method.

It is worthwhile pointing out that there could be an intrinsic
sources of deviations arising from effects such as waveguide
losses, higher-order linear (β3) and nonlinear (γ2) dispersion,
and/or the Raman-induced soliton self-frequency shift (SSFS) [5].
The effect of loss can be neglected by using a waveguide shorter
than its corresponding effective length. The additional delays
produced by β3 and/or SSFS have been calculated analytically
by using the NLSE [5, 32] and these results can be shown to
apply to the pcNLSE as well. As such, these contributions can be
subtracted in straightforward fashion from the total time delay,
leaving only the self-steepening contribution needed to obtain
the SS parameter.

Finally, to assess the applicability of the proposed method
to more general (higher-order) nonlinear profiles, Fig. 6 shows
results for the propagation of solitons along a 500-m-long fiber
with s = 1 (solid line) and s = −3 (dotted line), and γ2 =
−30γ0/ω2

0W−1km−1. The higher-order nonlinear profiles are
shown in the top panel of Fig. 6. Results for the time delay
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shown in Fig. 6 are still in excellent agreement with the model.
In conclusion, we proposed an original, simple, and direct

method to measure self-steepening in nonlinear waveguides
based on results derived from the recently introduced photon-
conserving nonlinear Schrödinger equation. Numerical results,
in excellent agreement with the analytical model, were presented

for relevant spectral regions in the NIR, MIR, and the telecom-
munication band. Finally, we showed the robustness of the
proposed method against deviations expected in real-life ex-
perimental conditions, such as pulse peak power, shape, and
width.
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See Supplement 1 for supporting content.
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