
Temporal SOLAP: Query Language,
Implementation, and a Use Case

Pablo Bisceglia1 and Leticia Gómez2 and Alejandro Vaisman3

1 Universidad de Buenos Aires, Argentina pbisceglia@gmail.com
2 Instituto Tecnológico de Buenos Aires, Argentina lgomez@itba.edu.ar

3 Université Libre de Bruxelles, Belgium avaisman@ulb.ac.be

Abstract. The integration of Geographic Information Systems (GIS)
and On-Line Analytical Processing (OLAP), denoted SOLAP, is aimed
at exploring and analyzing spatial data. In real-world SOLAP applica-
tions, spatial and non-spatial data are subject to changes. In this pa-
per we present a temporal query language for SOLAP, called TPiet-QL,
supporting so-called discrete changes (for example, in land use or cadas-
tral applications there are situations where parcels are merged or split).
TPiet-QL allows expressing integrated GIS-OLAP queries in an scenario
where spatial objects change across time. We also present a prototype
implementation, and show how this application is used in a real-world
scenario: the analysis of protected areas in Uruguay.

1 Introduction and Problem Statement

In Geographic Information Systems (GIS), spatial data are organized in thematic
layers, stored in suitable data structures, while associated attributes are usually
stored in conventional relational databases. On the other hand, OLAP (On-
Line Analytical Processing) [2] provides a set of tools and algorithms that allow
efficiently querying multidimensional repositories called Data Warehouses (DW).
OLAP data are organized as a set of dimension hierarchies and fact tables, and
can be perceived as a data cube, where each cell contains a measure or set of
measures of interest. The problem of integrating OLAP and GIS systems for
decision-making analysis has been called SOLAP [4].

In real-world applications, spatial objects in a layer can be added, removed,
split, merged, or their shape may change. Tryfona and Jensen [1], classify spatio-
temporal applications according with the kind of support of the changes occur-
ring in spatial objects. They distinguish between objects with continuous motion
(e.g., a car moving in a highway), objects with discrete changes (e.g, parcels
changing boundaries), and objects combining continuous motion and changing
shapes (e.g., a stain in a river).

Piet [3], is a data model proposed for SOLAP. In this paper we present
an extension to Piet-QL (a query language associated with Piet) that supports
discrete changes, and show a prototype implementation applied to a real-world

102

2

scenario: the analysis of protected areas in Uruguay4. The International Union
for Conservation of Nature (IUCN) defines a protected area as “..a clearly defined
geographical space, recognized, dedicated and managed, through legal or other
effective means, to achieve the long-term conservation of nature with associated
ecosystem services and cultural values”. The World Database on Protected Areas
(WDPA), a joint venture between the United Nations Environment Programme
and the IUCN, contained 147,897 protected areas in July 2010. Protected areas
evolve across time: new areas are added to the system, management plans are
implemented, and the administrative status of each area changes. This behavior
is sketched in Figure 1. Here, a protected area denoted PA 1 has been created
at time t = 1 and is in the ‘In-process’ status. There is also another protected
area denoted PA 2, also with status ‘In-process’. At t = 2, the shape of PA 1 has
changed, and its area increased. Finally, at t = 4, PA 1 is even larger, and now
the status has changed to ‘Confirmed’. At t = 3, another area, PA 3 has been
created. It changed its shape at t = 4. Information about protected areas can be
stored in a conventional DW, where each spatial object representing an area has
a corresponding element in a dimension Geography, e.g., with a hierarchy where
areaId aggregates over department, which in turn aggregates over region. Other
dimensions for analysis can exist, along with associated fact tables. In a discrete
changes scenario like this, we could display the history of PA 1, or pose queries
like “Protected areas where the average precipitation increased since 2008, for
areas located at less than 100km from Montevideo”. This requires extending non-
temporal SOLAP data models and query languages (like Piet-QL) with temporal
capabilities.

The paper is organized as follows. After an overview of related work (Section
2), we define the temporal data model (Section 3), and present the syntax and
semantics of TPiet-QL in Section 4. We show a prototype implementation and
the protected areas case study in Section 5, concluding in Section 6.

2 Related Work

Rivest et al. [4] introduced the concept of SOLAP (standing for Spatial OLAP),
a paradigm aimed at exploring spatial data by drilling on maps in a way analo-
gous to what is performed in OLAP with tables and charts. Piet [3] is a formal
model for SOLAP, where the integration between GIS and OLAP is material-
ized through a function that maps elements in the DW to elements in the GIS
layers. Piet comes equipped with a query language, Piet-QL, that supports the
operators proposed by the Open Geospatial Consortium5 for SQL, adding the
necessary syntax to integrate OLAP operations through a language based on
MDX6. Piet-QL supports (besides standard spatial and OLAP queries), spatial

4 This use case is part of the project “Monitoring Protected Areas using an OLAP-
enabled Spatio-temporal GIS” (http://piet.exp.dc.uba.ar/laccir), funded by LAC-
CIR(http://www.laccir.org.)

5 http://www.opengeospatial.org
6 http://msdn2.microsoft.com/en-us/library/ms145506.aspx.

103

3

Fig. 1. Evolution of protected areas across time.

queries filtered using OLAP conditions, and OLAP queries filtered by spatial
conditions. Filtering is implemented through a predicate denoted IN. For exam-
ple, the query “Areas crossed by the ‘Uruguay’ river, with precipitation greater
than 100 mm per year” reads in Piet-QL.

SELECT GIS ar.id

FROM pArea ar, rivers ri

WHERE intersects(ar,ri) AND ri.name = "Uruguay" AND ar IN(

SELECT CUBE filter([Geography].[Geography areaId].Members,

[Measures].[precipitation] > 100)

FROM [Weather]);

Here, ‘pArea’ and ‘rivers’ represent two layers containing spatial objects (the
protected areas and the rivers, respectively). There is also a data cube denoted
Weather, such that its Geography dimension is linked to the ‘pArea’ layer in a way
such that there is a function mapping spatial objects in the latter to members
in the areaId dimension level. The OLAP subquery (identified with the keyword
CUBE) is linked to the outer query (a spatial query identified with the keyword
GIS) by the predicate IN. This OLAP subquery returns a collection of identifiers
of spatial objects that satisfy it. The data model and the formal query language
underlying TPiet-QL are discussed in [12].

The Spatio-Temporal Relational data Model (STRM), introduced by Tryfona
and Hadzilacos [5], provides a set of constructs consisting in relations, layers, vir-
tual layers, object classes, and constraints, all with spatial and temporal extent,
on top of well-known models. In this model, a layer is a set of geometric fig-
ures like points, lines, regions or combinations of them, with associated values.
A layer algebra, based on four operations over layers, provides a semantics to
SOLAP.

104

4

3 Spatio-Temporal Piet

In the temporal extension to Piet, each tuple in a spatial relation is timestamped
with its validity interval. Time is introduced as a new sort or domain (we work
with interval-based domains). In temporal databases, the notions of valid and
(transaction) time refer to the instants when data are valid in the real world,
and recorded in the database, respectively [6]. We assume valid time support in
this work. A distinguished variable Now represents the (moving) current time
instant. The lifespan of a GIS layer L, lifespan(L), is the collection of all the time
instants where the layer is valid. The lifespan of a set of layers L, lifespan(L),
is the union of the lifespans of all the layers in L.

Given the above, a Temporal GIS-OLAP Dimension Schema TGsch is a tuple
〈H,A,D, µ〉, where H is a mapping from layers to geometries, A is a set of partial
functions Att that map attributes in OLAP dimensions to GIS layers,D is a set of
dimension hierarchies [7], and µ a dimension level in an OLAP Time dimension.
Elements in µ belong to the temporal domain. Further, H, A and D satisfy
the following conditions: (a) A layer is created when the first object is added
to it; (b) H is constant throughout the lifespan of the GIS; (c) For each layer
L, the function Att is defined only in lifespan(L); (d) The functions Att ∈ A
do not change with time, i.e., Att1(parcelId, Land) will always return Lland;
(e) The schema of the dimensions in D is constant during the lifespan of the
GIS. Associated with a dimension schema, we have a dimension instance, which
consists in: A set of relations rtLi

such that each tuple 〈gi, ext(gi), t)〉 in rtLi
,

represents the existence of an object gi (and its extension) in Li at the instant
t; A collection of functions α that map elements in OLAP dimension levels to
geometric elements in a GIS layer, at a given time; A collection of dimension
instances, one for each dimension schema D ∈ D in TGsch. We assume that
spatial objects have the same attributes throughout their lifespan.

The data structure of TPiet-QL consists of: (a) The DW structure. Contains
dimension and fact tables. (b) The data structure for the map layers (one table
per layer). Temporal attributes FROM and TO indicate the interval of validity
of each object in a layer. (c) GIS-OLAP mapping information. Stores the rela-
tionship between geometric and application information (i.e., the α functions),
including the interval of validity of each mapping.

When new spatial objects are created on the GIS side, the corresponding
objects must be inserted in the DW dimensions, also defining new mappings.
However, when an update occurs (like a change in an object’s shape) the object
identifier does not change and no action needs to be taken on the warehouse
side. If an insertion on the GIS occurs without mapping the new object to a DW
object, incomplete answers may be obtained, due to such incomplete mapping.
In this paper we do not support temporal DWs (e.g., [8, 9]), i.e., dimensions are
static, and only the current state of dimension data is available.

4 TPiet-QL: a Temporal SOLAP Query language

The main element in TPiet-QL is the spatio-temporal object defined next.

105

5

StartsBefore(g,t): G × T → boolean;
Given a spatio-temporal object and an in-
stant, returns True if t > g.FROM.

FinishesAfter(g,t): G × T → boolean;
Given a spatio-temporal object and an in-
stant, returns True if t < g.TO.

BeginsAfter (g,t): G × T → boolean;
Given a spatio-temporal object and an in-
stant, returns True if t < g.FROM.

AT(g,t): G×T → boolean; Given a spatio-
temporal object and an instant, returns
True if t ≤ g.FROM AND t >= g.TO.

BEFORE (g, 〈t1, t2〉): G × T × T → boolean;
Given a spatio-temporal object and an in-
terval, returns True if g.TO < t1.

AFTER(g, 〈t1, t2〉): G × T × T → boolean;
Given a spatio-temporal object and an in-
terval, returns True if t2 < g.FROM.

DURING(g, 〈t1, t2〉): G × T × T → boolean;
Given a spatio-temporal object
and an interval, returns True if
t1 ≤ g.FROM AND t2 ≥ g.TO.

OVERLAPS(g, 〈t1, t2〉): G × T × T →
boolean; Given a spatio-temporal ob-
ject and an interval, returns True if
(t1 < g.FROM AND t2 > g.FROM AND

t2 < g.TO) OR (t1 > g.FROM AND t2 >
g.TO AND t1 < g.TO).

COVERS(g, 〈t1, t2〉): G × T × T → boolean;
Given a spatio-temporal object and
an interval, returns True if t1 ≥
g.FROM AND t2 ≤ g.TO.

MEETS(g, 〈t1, t2〉): G × T × T → boolean;
Given a spatio-temporal object
and an interval, returns True if
t1 = g.TO OR t2 = g.FROM.

Fig. 2. Predicates over spatio-temporal objects, intervals, and instants.

Definition 1 (Spatio-temporal object). We denote by spatio-temporal ob-
ject a tuple of the form 〈objectId , geometry , attribute1 , ..., attributen , interval〉,
where geometry is the geometric extension of the object, attributei are alphanu-
meric attributes, and ‘interval ’ is the interval of validity of the object, of the
form [FROM,TO]. ut

In Definition 1, interval is a single interval. In temporal databases it is usual
to talk about temporal elements, i.e., sets of intervals. For simplicity of presen-
tation, in this paper we work with single intervals instead of temporal elements.
This makes the paper easier to read, without reducing its substance. In what
follows we refer to spatio-temporal objects as ‘objects’, and denote G a collec-
tion of spatio-temporal objects. Based on Allen’s interval set of predicates [10],
in Figure 2 we specify the syntax and semantics of a collection of predicates over
spatio-temporal objects, intervals, and time instants.
Spatio-temporal Joins A key operation in any spatio-temporal query language is
the join. Different kinds of temporal joins have been proposed in the literature [6],
and two main classes can be identified: (a) Disjoint join; and (b) Overlap join. In
the former, given n (timestamped) tuples, it is not required that their time inter-
vals overlap. In the latter, the time intervals must overlap. Disjoint joins provide
more expressiveness to a query language than overlap joins, allowing to query for
asynchronous events (e.g., parcels owned by X before a region changed name).
An example (following Allen) is before-join(X,Y), with condition X.TO ≤
Y.FROM . Let us consider now a predicate Pa, specifying the equality of a
collection of non-temporal attributes. A GT-join (standing for generic temporal
join) corresponds to the expression σPa∧overlap−join(X,Y)(X,Y). Thus, given two

106

6

Fig. 3. A city and its airport (left); Interaction of a1 and c1 along their timelines (right)

tuples, the result of a GT-join are the tuples that have overlapping time intervals
and satisfy the non-temporal predicate Pa. In the presence of spatio-temporal
objects, the GT-join can be defined using the standard topological relationships
[11], like Touches(g1, g2), or Contains(g1, g2). Consider two layers storing the
histories of airports and cities. Figure 3 (left) shows two states of city c1, in the
intervals [0,50], and [51,Now]. Airport a1 was first relocated at instant 100, and
then, due to the city expansion, it was located outside the new city limits. Fig-
ure 3 (right) shows how the two objects a1 and c1 interact along their timelines:
the airport is within the city limits in the intervals [51,100] and [101,200]. The
relational representations are:

cityId the geom ... FROM TO

c1 g1 ... 0 50
c1 g2 ... 51 Now
c2 g3 ... 0 30

airportId the geom ... FROM TO

a1 g1 ... 0 100
a1 g2 ... 101 200
...

The query “pairs city-airport such that an airport was within the city limits”
is the GT-join shown below. The result contains the tuples 〈a1, c1, 51, 100〉 and
〈a1, c1, 101, 200〉, representing (see Figure 3) that between instants 51 and 200,
a1 remained within the city limits of c1.

σφ(Airports× Cities)
φ = contains(Airports.geom,Cities.geom) ∧ overlap−join(Airports, Cities)

The TPiet-QL Query Language A TPiet-QL query has the following syntax:

SELECT GIS [[DISTINCT] SNAPSHOT] list of attributes
FROM [OVERLAP] T1 t1,...,Tn tn
WHERE Φ

T1 through Tn represent thematic layers, t1 through tn range over the spa-
tial or spatiotemporal objects in these layers. The OVERLAP keyword in the FROM

107

7

clause states that the overlap join semantics must be applied. The list of at-
tributes in the SELECT clause defines the schema of the result: a subset of the
union of the attributes of the spatiotemporal objects mentioned in the FROM

clause. The SNAPSHOT keyword is used to return a non-temporal relation, elimi-
nating the interval/s associated with each tuple in the query result. The condition
Φ is composed of conjunctions and disjunctions of the function and predicates
mentioned above, and can also include the Piet-QL predicate IN (and the cor-
responding OLAP sub-query), to provide compatibility with Piet-QL, and to
support OLAP in a spatio-temporal SOLAP scenario. This is why we keep the
Piet-QL keyword GIS in the SELECT clause.

The semantics of the query is defined by the cartesian product of the geomet-
ric objects in all the thematic layers in the FROM clause. If the OVERLAP keyword
is specified, only the tuples whose intervals overlap are considered, (ie., the tu-
ples such that ∩ti.interval,i=1,n 6= ∅), and the overlapping interval are included in
the result, which is coalesced by default using all the non-temporal attributes in
the SELECT clause. The coalesce operation is defined as follows. Given a collec-
tion of objects (G), for all objects that coincide it their non-temporal attributes
and whose temporal intervals are consecutive, Coalesce(G) constructs a sin-
gle spatio-temporal object composed of the non-temporal attributes and the
temporal union of all the intervals. We illustrate this semantics extending the
city-airport example with a layer containing protected areas, described in the
table below (on the right we show the distances between cities and protected
areas during different time intervals, although this information is actually not
recorded, it must be computed):

areaId the geom ... FROM TO

p1 g1 ... 10 20
p1 g2 ... 21 40
p2 g3 ... 30 50
p3 g4 ... 40 100
...

cityId areaId FROM TO distance

c1 p1 10 20 80
c1 p1 21 40 120
c1 p2 30 50 70
c1 p3 40 50 80
c1 p3 51 100 90

Consider the query “pairs city-areas such that the distance between them
is/was less than 100Km”. The query returns tuples of the form 〈ai, cj , Interval〉,
where Interval is the interval when they where closer than 100Km from each
other. The TPiet-QL expression for this query, and the result are depicted next
(note that the tuples in the result have been coalesced).

SELECT GIS c,ar

FROM OVERLAP pAreas ar, Cities c

WHERE Distance(c.the geom,ar.the geom) < 100

cityId arealId FROM TO
c1 p1 10 20
c1 p2 30 50
c1 p3 40 100

108

8

The next example includes an OLAP subquery in the WHERE clause (techni-
cally, in TPiet-QL this is called a GIS-OLAP query): We assume the existence
of an external data cube denoted Weather, with dimensions Geography and Time,
and measure precipitation, representing the precipitation per year.

Query 1 Protected areas with a surface larger than 100 Ha in 1996, currently
larger than at that time, with a precipitation higher than 120 mm in 2010.

SELECT GIS p1.id

FROM pAreas p, pAreas p1

WHERE area(p) > area(p1) AND

COVERS(p1,[1996,1996]) AND COVERS(p,[2012,2012]) AND

p1.id=p.id AND p1.id IN(

SELECT CUBE

filter([Geography].[Geography areaId].Members,

[Measures].[precipitation] > 120)

FROM [Weather]

SLICE [Time].[2010]);

Expressive Power As we already commented, TPiet-QL is based on the formal
model and query language (denoted Lt) described in [12]. Most queries express-
ible in (denoted Lt) are captured by TPiet-QL. For example, Query 1:

Q = {p | (∃ep)(∃ep1)(∃a)(∃prec)
(rtLpArea

(p, ep1 , 1996) ∧ rtLpArea
(p, ep, Now) ∧

area(ep1) = a ∧ a > 100 ∧ area(ep) > a) ∧
Weather(p, 2010, prec) ∧ prec > 120}.

Here, Weather(p, 2010, prec) is represents a fact table, area is a function
computing the area of a spatial object, and rtLpArea

(p, ep, t) are terms representing

the protected areas and their geometric extensions across time (using point-based
semantics, for clarity), corresponding to the elements in the model of Section
3. Now represents the current time. The constructs of Lt are present in the
TPiet-QL expression for Query 1. The main difference is that instead of using
non-temporal functions over the extensions of spatial objects (e.g., ep) like in
Lt, TPiet-QL uses temporal functions over spatio-temporal objects (e.g., p). It
can be shown that queries expressible in Lt can be expressed in TPiet-QL since
there is a translation for each of the terms in one language to the other. We omit
the proof for the sake of space.

5 Implementation and Case Study

We now show how the notions above have been implemented and applied to the
case introduced in Section 1. Figure 4 shows the graphic user interface (GUI)
of the application. Through this GUI, users can edit, save, and execute queries
and, as well as configure options for displaying the results. The interface allows

109

9

Fig. 4. Application Interface

navigating query results through time. To reduce horizontal scrolling, up to three
maps can be visualized per page. In Figure 4 we see that the user is editing
a query, and configuring a visualization of up to two maps per page. In the
background, we see the map of Uruguay, where the protected areas are going to
be displayed. Also, to distinguish objects that are in different layers, the user
chooses which colors are going to be used for each one, selecting a color pallette.

We show typical queries which practitioners would be interested to pose in
this scenario. The first one asks for areas that overlap in time, and are very close
to each other, suggesting that they can be eventually extended and merged into
a single one, or grouped together for administrative purposes. In addition, the
result is filtered using an OLAP query over meteorological data stored in a DW.

Query 2 (Proximity) Pairs of protected areas -expressed in the form (ID,
name, geometry)- with temporal overlap and less than 100 KM from each other.
Return only pairs such that the distance between both areas and a city affected
by temperatures less than 2 degrees Celsius in the last two years (2011 and 2012)
is less than 30km.

SELECT GIS a1.id, a1.name, a1.the geom,

a2.id, a2.name, a2.the geom

FROM OVERLAP area AS a1, area AS a2, city

WHERE a1.id < a2.id and

st distance(a1.the geom, a2.the geom) < 100 and

st distance(city.the geom, a1.the geom) < 30 and

st distance(city.the geom, a2.the geom) < 30 and

city.id IN (SELECT CUBE filter([Geography].[City].Members,

[Measures].[Temperature] < 5)

FROM [Weather]

SLICE [Time].[2011],[Time].[2012])

110

10

Fig. 5. Result of the Proximity query (Query 2).

Figure 5 shows the result. Two pairs of protected areas satisfy the condition:
the ones with ids 20 and 37, and the pairs with ids 6 and 22. The latter appears
only in the map on the right hand side, because protected area with ID 22 was
created on 2010-07-01. Additional information about each tuple in the result
is displayed by clicking over it. Note that, given the temporal semantics, the
history of all tuples in the result is available and can be navigated.

Query 3 (Status) Protected areas that have changed their status, and that were
at a distance of less than 50 km from cities where precipitation in 2010 was
greater than 500 mm.

SELECT GIS a1.ID, a1.the geom, a1.status, a2.status

FROM AREA as a1, AREA as a2

WHERE a1.ID = a2.ID and Before(a1,[a2.from, a2.to])

and a1.status<> a2.status and

st distance(city.the geom, a1.the geom) < 50 and

cities.ID IN(SELECT CUBE filter([Geography].[City].Members,

[Measures].[Precipitation] > 500)

FROM [Weather]

SLICE [Time].[2010]

Figure 6 shows the result. Note that since a Before predicate is used in the
WHERE clause to express changes over time, the overlap join is not used in the

111

11

Fig. 6. Result for Query 3.

FROM clause. The last change of the ‘status’ property occurred in January of
2010. That is the reason why the map on the right hand side, corresponding to
the period between Feb-2010 and Jul-2011 does not display any layer (only the
background map). The last example is a snapshot query.

Query 4 (Snapshot) For protected areas whose boundaries have been defined
by a decree issued before June 1st, 2010, display ID, name, geometry and status
(i.e., omit the temporal attributes).

SELECT GIS DISTINCT SNAPSHOT a1.id, a1.name,

a1.the geom, a1.status

FROM area AS a1

WHERE a1.boundary = ’decree’ and

STARTSBEFORE(a1, ’2010-06-01’)

Fig. 7 shows the result. All tuples are displayed in the same map, since no
temporal information is required due to the use of the SNAPSHOT keyword.

6 Conclusion and Future Work

We have presented a temporal query language for SOLAP, denoted TPiet-QL,
that supports discrete changes in the spatial objects in the thematic layers of
a GIS. We also showed how a prototype implementation is applied to a real-
world use case concerning the analysis of protected areas in Uruguay. Given the
relatively small number of protected areas at this time, the prototype is able to
run in reasonable execution times. However, larger amounts of data will require
more sophisticated query processing. This constitutes the next step of our work.
Acknowledgement: The authors were partially funded by the LACCIR project

112

12

Fig. 7. Result for the Snapshot query (Query 4)

“Monitoring Protected Areas using an OLAP-enabled Spatio-temporal GIS”. A.
Vaisman is partially funded by the “Open Semantic Cloud for Brussels (OSCB)”
project, funded by the Brussels Capital Region, Belgium.

References

1. Tryfona, N., Jensen, C.S.: Conceptual data modeling for spatiotemporal applica-
tions. GeoInformatica 3 (1999) 245–268

2. Kimball, R.: The Data Warehouse Toolkit. J.Wiley and Sons, Inc (1996)
3. Gómez, L.I., Haesevoets, S., Kuijpers, B., Vaisman, A.A.: Spatial aggregation:

Data model and implementation. Inf. Syst. 34 (2009) 551–576
4. Rivest, S., Bédard, Y., Marchand, P.: Towards better support for spatial deci-

sion making: Defining the characteristics of spatial on-line analytical processing
(SOLAP). Geomatica 55 (2001) 539–555

5. Tryfona, N., Hadzilacos, T.: Logical data modelling of spatio temporal applications:
Definitions and a model. In: IDEAS. (1998) 14–23

6. Tansel, A., Clifford, J., Gadia (eds.), S.: Temporal Databases: Theory, Design and
Implementation. Benjamin/Cummings (1993)

7. Hurtado, C.A., Mendelzon, A.O.: OLAP dimension constraints. In: PODS. (2002)
169–179

8. Eder, J., Koncilia, C., Morzy, T.: The COMET metamodel for temporal data
warehouses. In: CAiSE. (2002) 83–99

9. Mendelzon, A.O., Vaisman, A.A.: Temporal queries in OLAP. In: VLDB. (2000)
242–253

10. Allen, J.: Maintaining knowledge about temporal intervals. Communications of
the ACM 26(11) (1983) 832–843

11. Egenhofer, M.J.: Spatial SQL: A query and presentation language. IEEE Trans.
Knowl. Data Eng. 6 (1994) 86–95

12. Gómez, L.I., Kuijpers, B., Vaisman, A.A.: A data model and query language for
spatio-temporal decision support. Geoinformatica 15(3) (2011) 455–496

113

