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Abstract: The prospect of modifying neural activity in a principled way, could facilitate the
understanding of brain functions and the development of medical treatments. To predict the
dynamics that underlie the different brain activities, several neurobiological models have been
proposed, either focusing on individual cells or whole populations. In this context, control
systems are a powerful tool to provide a correct articulation between inputs, i.e. neural stimuli,
and observables, i.e. system outcomes. Based on well-established neurobiological hypotheses, this
study presents a control framework to regulate a neural-mass activity, with potential uses for
pattern tracking, such as, rhythm evoking and phase synchronisation. Being these mechanisms
closely connected with real brain computations, this study is carried out using a meaningful
perspective in terms of biological interpretation. To this end, the Wilson-Cowan model is used,
where the input stimuli is elicited through light signals applied to genetically modified neurons
that express light-gated actuators. Thus, this study states a crucial proof of concept towards a
future experimental application of the control framework for neurobiological systems.
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1. INTRODUCTION

Closed-loop neuroscience is showing a rapid development.
In addition to technical advances, this is mainly driven by
its huge potential for causal investigation of ongoing neural
processes and circuits, as well as, the promise to constitute
effective treatments for disorders and diseases. In recent
years, this boom has gone ’hand-in-hand ’ with advances
in brain imaging (Kim et al., 2018), to probe and measure
neural activity (sensing) and intervention (Deubner et al.,
2019), to physiologically modify the variables of interest
(actuation). A large portion of the existing body of work
has been carried out empirically, from well-documented
observations, in pursuit of neural modulation. By way of
example, the standard deep brain stimulation (DBS) pro-
tocol is based on trial and error procedures (Mirza et al.,
2019). Control system theory can establish a framework,
from both the analysis and design perspectives, for closed-
loop modulation schemes. This approach can provide pow-
erful tools, with proven effectiveness, that have been the
standard in complex areas such as industrial processes,
satellite navigation, energy generation, and medicine, to
name a few.

⋆ This research has been financially supported by grant PICT2017-
2417 from the ANPCyT, Argentina.

Considering complex neurobiological structures as dy-
namical systems with defined inputs and outputs, allows
for tackling different modulation/tracking problems using
control strategies. Most of these approaches are within the
scope of model-based control, i.e. the dynamic evolution
of the system is predicted online with a suitable model
in order to compute an appropriate control signal with a
controller.

The available models range from biologically detailed de-
scriptions, in terms of interactions and connectivity, to
biologically realistic bulk simplifications. The selection of
these models relies on, for example, the circuit under
study and the required detail level, computational cost,
and/or need for online running. Remarkably, for neuron
population modeling, there are simplified models that are
particularly fast to simulate while describing relevant ob-
served phenomena, and thus suitable for a control frame-
work. These are often referred to as neural-mass models
(Coombes and Byrne, 2019). Using ensembles of neurons
that belong to a certain cluster, defined, for example, by
type or function, the dynamical behavior of the whole set
under study is described with properties such as mean
firing rate or voltage. This characterization, wherein many
individual neurons is treated as average interaction, com-
prises a mean-field technique, as the case of the Local Field
Potential (LFP).
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Our goal, specifically, is to transiently replicate a particu-
lar brain rhythm, in a phased-locked way, using a closed-
loop control strategy. Nevertheless, this approach can be
modified based on several observed phenomena. Other
types of synchronizations can be established, for exam-
ple between different oscillators (Faedo et al., 2021), and
also, based on other functional interactions e.g. frecuency-
amplitude (Srinivasan et al., 2013).

The remainder of this paper is organised as follows. In
Section 2, the chosen dynamical model is introduced,
and the principal biological assumptions are highlighted.
Section 3 elaborates on the system structure, and explains
the proposed control strategy. In Section 4, a specific case
study, based on experimental observations and a particular
control methodology, is stated and solved in simulation.
Finally, Section 5 discusses the conclusions from this study,
towards an experimental implementation.

2. BIOLOGICAL HYPOTHESIS AND MODELING

In most neural mass models, the system is described using
nonlinear differential equations to capture the dynamics of
its states, usually, defined in terms of physical interactions.
Common variables of choice include (neural) population
activities or rates. They characterize the proportion of
cells activated per unit time, i.e. the spiking neurons,
in a bounded volume of tissue. The synaptic inputs of
the single neurons that belong to the arrangement are
modeled with the system inputs. In addition, a nonlinear
mapping models the input-output characteristic of each
neural population, similarly to a frequency-current curve
(gain function) of single neurons (Powers and Binder,
2001). Wilson and Cowan proposed a mean-field theory for
neural activity (Wilson and Cowan, 1972), deriving cou-
pled nonlinear differential equations for spatially localized
excitatory an inhibitory sub-populations. The assumption
that local cells share similar properties and responses is
supported by the redundancy of processes, and the dense
interconnection between them. Under these assumptions,
the space-clamped Wilson-Cowan model (W-C), i.e. with-
out considering spatial gradients, can be expressed as:

τEĖ = −E + (1− rpEE)fE{wEEE − wEII + P},
τI İ = −I + (1− rpII)fI{wIEE − wIII +Q}.

(1)

Each subpopulation activity presents an exponential decay
with time constant τi, i ∈ {E, I}, associated with the
propagation of postsynaptic potentials. The nonlinear-
weighting input term gives the proportion of cells for
each subpopulation that would respond to the level of
excitation between curly braces. That expressions high-
light the functional coupling (in a feedback way, i.e. each
sub-population with itself, and in a feedforward way, i.e.
between subpopulations), as weighted by the positive con-
stants wij , i, j ∈ {E, I}, representing the average number
of synapses per cell. In the most general case, each sub-
population receives at least inputs from the other, driving
the rate of change of each activity, Ė and İ. The response
function fi{·}, i ∈ {E, I}, is typically sigmoidal, i.e. the
activation of cells monotonically increases with sufficient
stimulus level. The factors (1 − rpii), i ∈ {E, I}, denote
the proportion of cells that could fire, since it is used
to account for the spiking refractory period, and P and

Q are external current-like inputs. These inputs can be
adapted for optogenetic actuation, considering inhibitory
and excitatory opsins 1 . The light-to-current mappings{

OE : LE −→ P,
OI : LI −→ Q,

(2)

could be algebraic expressions linking, for example, ap-
plied light intensities (LE and LI) with transmembrane
net currents (P and Q), or even differential equations
that describe the opsins own dynamics (Williams et al.,
2013). In this control framework, those dynamics could be
added to the system model. However, and without loss
of generality, in a general case where the mappings in
Eq. (2) are much faster than the system time-constants,
these relationships can be neglected. A complete model,
including the dynamical descriptions in Eq. (2), will be
the subject of an extension of this study.

The W-C model exhibits strongly-nonlinear system prop-
erties. These include multistability, histeresis, and limit cy-
cle behavior, that depend, particularly, on the parameters
choice and inputs. In Fig. 1, a typical open-loop response
of the W-C system is depicted in the I-E phase space, for
varying levels of the excitatory input P . Remarkably, the
system undergoes a qualitative change of behavior, from
a) damped oscillations to c) sustained oscillations.

3. CONTROLLER AND ESTIMATOR ANALYSIS

From equation (1), the W-C model can be reformulated as
follows:

[
Ė(t)

İ(t)

]
=

[ 1
τE

0

0 1
τI

]−
[
E(t)
I(t)

]
+

[
fE(γxE + P )
fI(γxI +Q)

]
︸ ︷︷ ︸

ulti(t)

 , (3)

ulti(t) =

[
ũ1(t)
ũ2(t)

]
=

[
fE(γxe + P )
fI(γxi +Q)

]
△
=

[
fE(up)
fI(uq)

]
, (4)

where the sigmoid activation function is

fi(x) =
1

1 + e−ai(x−θi)
− ki ∈ [−ki, 1− ki],

ki =
1

1 + e−aiθi
constant.

The corresponding inverse sigmoid function is

x = − 1

ai
ln

(
1

fi + ki
− 1

)
+ θi ∈ R,

with i ∈ {E, I} for each case, with gain ai and threshold
θi as indicated in Fig. 2. For the sake of simplification, the
refractory period terms in equation (1) have been dropped,
i.e. rpE = rpI = 0, since they do not affect substantially
the system dynamics (Wilson and Cowan, 2021).

The state is composed of the excitatory E(t) and in-
hibitory I(t) activities. In this case, the output of the
system y(t) is the LFP, which can be modelled as a
summation of both activities (E(t) and I(t)), i.e. a linear

1 The opsins are light-activated ion channels (Deisseroth, 2011), that
could be artificially expressed in the neuron membrane.
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Fig. 1. Open loop response of the W-C system for varying levels of excitatory current stimulus P , and the eigenvalues
of its corresponding jacobian linearization matrices. a) For P = 0, the W-C system shows an isolated equilibrium
point (stable node) at the origin of the phase space. b) The input P = 0.4 shifts the equilibrium point, and changes
its nature to a stable focus. c) For inputs P = 0.8 and above, the equilibrium point becomes an unstable focus,
and the system shows oscillatory dynamics, as depicted with the closed, isolated, stable attractor (limit cycle).
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Fig. 2. The activation sigmoid function and its inverse. The
threshold θi is defined as the input with the maximum
slope of the curve, ai/4, with i ∈ {E, I}

combination through constants c1 and c2 that balance each
contribution:

y(t) = [c1 c2]

[
E(t)
I(t)

]
. (5)

The γxi(t) functions, introduced for Eqs. (3) and (4), are
defined as:

γxE(t)= wEEÊ(t)− wEI Î(t),

γxI(t)= wIEÊ(t)− wII Î(t).
(6)

Here
[
Ê(t), Î(t)

]T
are the estimations of the state, com-

puted by means of an Extended Kalman filter (EFK) (Ribeiro,
2004), as indicated in Fig. 3. Hence, the manipulated-input
signals are obtained as:

[
P
Q

]
=

[
up − γxE
uq − γxI

]
=

[− 1
aE

ln( 1
u1+kE

− 1) + θE − γxE

− 1
aI

ln( 1
u2+kI

− 1) + θI − γxI

]
, (7)

where [u1(t), u2(t)] are the components of usat as depicted
in Fig. 3.

A stabilizing controller KLTI can be computed with input
e(t) and output ulti as indicated in Fig. 3 for the Linear
time-invariant (LTI) model (3)-(5), that can be repre-
sented with a transfer matrix G(s) in the Laplace domain.
It is of particular interest, a controller design focused on a
tracking problem, e.g. the tracking of oscillatory references

to evoke rhythms of biological significance. Uncertainty
plays a crucial role in complex biological systems, there-
fore, robustness and performance should be considered
in order to account for that dynamic uncertainty (Zhou
et al., 1996; Sánchez Peña and Sznaier, 1998). This will be
explained in subsection 3.1.

The controller output is vector ulti in (4) from which the
input signals can be obtained through state estimation and
equation (7). Nevertheless, due to the fact that the pairs
ũ, up and ũ2, uq are related through the inverse sigmoid
function, the values of ũj , should be bounded in the
interval [−ki, 1−ki]. Therefore, the saturated control signal
usat can be defined as:

usat(t) =

{
1− ki if ũj ≥ 1− ki, (j = 1, 2)
−ki if ũj ≤ − ki, (j = 1, 2)

ulti(t) otherwise

Fig. 4 represents the saturation of each LTI signal in
the interval [−ki, 1 − ki] which leads to the saturated
control signal usat. From its the definition, the gain of
this nonlinear operator, as depicted in Fig. 3, is less than
one. Therefore the small gain theorem can be used to prove
closed-loop stability of the nonlinear system (Sánchez Peña
and Sznaier, 1998).

3.1 Stability analysis

The previous LTI model G(s) : ulti → y, is a diagonal
multiple-input multiple-output (MIMO) system. Next, the
closed-loop system represented in Fig. 3 can be trans-
formed into a combination of an LTI model and an ”un-
certainty” 2 block ∆ = diag {∆E , ∆I}, which is defined as
follows,

∆i
△
=

{
uδj = ũj > 1− ki → yδj = 1− ki, (j = 1, 2)

uδj = ũj ∈ [−ki, 1− ki] → yδj = ũj , (j = 1, 2)

uδj = ũj < −ki → yδj = −ki, (j = 1, 2).

The latter represents the difference between signals ulti

and usat, as indicated in Fig. 4 with a dashed line. Hence

2 Actually this is not real uncertainty, it is a convenient interpreta-
tion that replaces a nonlinearity with an LTI model plus a bounded
∆ block.
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Fig. 3. Nonlinear control connected with the Wilson-Cowan equations.
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the gain of the ∆ : uδ → yδ operator according to its def-
inition is ∥∆∥ ≤ 1. Thus, considering the complementary
sensitivity function (LTI closed-loop transfer matrix),

T (s) = KLTI(s)G(s) [I +KLTI(s)G(s)]
−1

, (8)

schematically depicted in Fig. 5, the internal stability of
this connection can be theoretically defined, as discussed
in the following.

-

Fig. 5. LFT structure considered for the nonlinear closed-
loop stability analysis.

The same framework could be used to add actual dynamic
uncertainty represented by a filter Wδ(s) in series with
∆ as in Fig. 5. Hence, based on standard results from
robust control theory (Zhou et al., 1996; Sánchez Peña
and Sznaier, 1998) derived from the small-gain theorem,
the necessary and sufficient condition for stability, is:

∥Wδ(s)T (s)∥∞ < 1. (9)

This represents the nominal closed-loop stability of the
nonlinear saturation, for the case Wδ = 1, and robust
stability of the nonlinear uncertain model when Wδ(s)
has dynamics related to model uncertainty. This analysis
assumes a small estimation error which in turn influences
the value of the control signal usat. Based on the definitions
in equations (6), the error δu = usat−ûsat can be bounded
as follows.

δu= f(δx) =

[
fE [WEEδE(t)−WEIδI(t)]
fI [WIEδE(t)−WIIδI(t)]

]

where δE = E−Ê and δI = I−Î are the estimation errors.
The worst case scenario corresponds to the maximum slope
of the sigmoid function f(x), in this case xwc = θ, i.e.
f(xwc) = 0.5− k. Therefore:

(δu)wc = (0.5− k)

[
WEE −WEI

WIE −WII

] [
δE
δI

]
(10)

Therefore, a simplified implementation should verify that
this value does not influence the control signal usat, i.e.
∥(δu)wc∥
∥usat∥ < ξe, for a (small) predefined value ξe.

Additionally, a more elaborated solution would include an
uncertainty block ∆̂ which adds to usat in Fig. 5 and has
as an input the Kalman filter error δx = δy = (y −
ŷ). The robust stability condition, therefore, would be
based on the structured singular value µ∆ with structure
∆ =diag(∆, ∆̂), instead of the previous one, based on
the H∞ norm in equation (9). However, without loss of
generality, this is out of the scope of this work.

4. ILLUSTRATIVE EXAMPLE

4.1 Controller design

Physiological reasons guarantee that the values τE , τI are
positive, hence, the LTI system G(s) is internally stable
and additionally it has minimum phase. Moreover, since
the coupling between sub-populations is lumped inside
the sigmoid functions (input term ulti), the formulation
introduced in (3) decouples the state variables E, and I.
Therefore, the plant is amenable to synthesis approaches
for open-loop stable systems, as well as independent design
of SISO controllers KI ,KE for each variable. To achieve
the desired output (5), the controllers act on the P
and Q inputs shifting the sub-population activity levels
accordingly.

The structure of the proposed controller is based on the
internal model control (IMC) (Morari, 1987) concept for
stable models:

KLTI(s) = q(s) [I − q(s)G(s)]
−1

, (11)

q(s) = F (s)G(s)−1, (12)

where F (s) is a low-pass filter, that guarantees stability
and realizability of q(s). In this case, the closed-loop
I/O transfer matrix, i.e. the complementary sensitivity
function, using equations (8),(11) and (12) is:

T (s) = q(s)G(s) = F (s).
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The stabilizing LTI controllers, in this case,

KLTI(s)
△
=

[
KE(s) 0

0 KI(s)

]
=

[
5(s+1)

s 0

0 10(s+0.5)
s

]
(13)

were designed as indicated previously and combined with
the inverse sigmoid function and the state estimation to
compute a nonlinear controller whose outputs (P,Q), can
be applied through optical means, as depicted in Fig. 3.

4.2 Simulations

We propose a closed-loop pattern synchronization prob-
lem, in order to show the feasibility of the control frame-
work. The patterns under consideration are brain rhythms,
classified based on their frequency of oscillation. This ex-
ample consists in a cross-frequency coupling (Hyafil et al.,
2015), in the form of a top-down interaction between low
frequency theta (frequencies between 4 Hz and 12 Hz) and
high frequency gamma (up to 100 Hz approximately). The
theta rhythm can modulate the gamma power of the in-
tracortical LFP (Bragin et al., 1995; Lakatos et al., 2005),
and is proposed to be a transient, long-range, coordination
mechanism between different brain areas (Canolty et al.,
2006), for communication in cognitive processing. For in-
stance, the lack of this type of coupling can be linked with
Alzheimer’s disease (Zhang et al., 2016), thus the proposed
strategy can be further developed as a potential treatment.
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Fig. 6. The closed-loop tracking Icl(t) and Ecl(t), in bold
lines, of the desired inhibitory rI(t) and excitatory
rE(t) activities, in dashed lines. This is achieved with
the applied control signals Q(t) and P (t), as obtained
with (7) and fed back to the system.

The local nature of the gamma rhythm (Srinivasan et al.,
2013), allow us to choose a neural mass model of the
Wilson-Cowan type. The interplay of the two intercon-
nected sub-populations E, I in the form of fast excitation
followed by delayed inhibition, showing limit-cycle behav-
ior, may give rise to coherent oscillations in the gamma
band (Buzsáki and Wang, 2012). Our objective is to induce
oscillations in the high gamma range (i.e. ft ≈ 100 Hz)
using the model in a closed-loop manner, according to the
amplitude variations of an ongoing theta rhythm occurring

simultaneously elsewhere. Specifically, we seek to use the
troughs of the theta wave as a phase location window
Tw(t), as indicated with dashed lines in Fig. 7-a, and a
pair of empirically-tuned sinusoidal references for local
excitatory and inhibitory activities

rE(t) = [0.3 sin(2πft t) + 0.45] · Tw(t), (14)

rI(t) = [0.2 sin(2πft t− 0.94) + 0.25] · Tw(t), (15)

to achieve the closed-loop output y(t) = c1Ecl(t)+c2Icl(t)
shown in Fig. 7-b.
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Fig. 7. a) The theta wave is acquired online (and band-
passed between [4 12] Hz) for phase detection. The
troughs found are used to conform a square wave
Tw(t) that modulates the high gamma oscillation for
reference. b) The output of the system is, conse-
quently, phase-locked with the ongoing theta wave.

Since we want to track oscillatory levels of neural ac-
tivity to induce certain rhythms, and these fluctuations
are expected around a baseline level (DC component),
the desired complementary sensitivity function will require
good tracking in the frequency range [0, ft]. That is, ap-
proximately unity gain from DC to the maximum tracking
frequency ft of interest.

The simple, phase-shifted references use parameters tuned
to mimic the natural response of the system to stimula-
tion (excitatory activity of greater amplitude and delayed
inhibitory activity), but in this case, they are precisely
tracked, as depicted in Fig. 6, with a closed-loop strat-
egy. The open-loop response to an arbitrary stimulation
pattern is shown in Fig. 8-c. The resulting trajectories,
correspond to transient oscillations in the gamma range.
The phase-locked, theta-gamma synchronization is shown
in Fig. 8-b. The system alternates between a resting state
of basal activity (the origin), and an oscillatory behavior,
hence the limit cycle resemblance in the phase space. All
trajectories have been processed with a low pass FIR filter
with fc = 300 Hz, for visual clarity.

5. CONCLUDING REMARKS

We have presented a control framework for pattern track-
ing in silico, using a well-established system of excitatory
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a)

c) d)

b)

Fig. 8. System trajectories in the I-E phase space. a)
erratic quasi-oscillatory behavior in the gamma range,
evoked by the trapezoidal, noisy excitatory-input,
shown in c). The closed-loop control signal P (t) in
d) is injected to the system (along with Q(t), not
shown) alternating between the baseline activity level,
the origin, and the structurally stable oscillations of
fixed frequency ft as shown in b).

and inhibitory populations, as described by the Wilson-
Cowan model. Although a particular IMC control strat-
egy has been applied, to demonstrate the feasibility of
the framework, other linear control strategies could be
used as well. Note that a specific rhythm on the system,
analogously to its natural oscillatory response to sufficient
excitation, but on precise time windows, has been induced.
This particular application could be further expanded to
explore the functional phase-amplitude coupling.

For an experimental application, model (in)-validation is
needed to obtain a nominal model and an uncertainty
bound, to fulfill robustness and performance requirements.
Also, as a future aspect to be explored, a more constrained
control strategy using only one opsin can be potentially
advantageous. This is due to technical complexities asso-
ciated with opsins expression. Measuring only one activity,
e.g. the excitatory population rate, can also reduce signif-
icantly the associated costs of the setup.
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