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Resumen

Identificar la actividad cerebral epiléptica utilizando señales de electroencefalografía (EEG) en
tiempo real es un problema difícil. Los métodos modernos de detección basados en técnicas
avanzadas de aprendizaje automático, son efectivos pero requieren grandes conjuntos de datos de
entrenamiento y son difíciles de implementar en sistemas de monitoreo en tiempo real, debido a
su costo computacional relativamente alto. Esta tesis se centra en dos problemas centrales vincu-
lados a la caracterización de las crisis epilépticas con señales de EEG. El primero se relaciona con
la detección de inicio y el otro se refiere al reconocimiento de patrones epileptiformes. Usando
el nuevo método de caracterización presentado en el capítulo 2, ambos problemas pueden imple-
mentarse en tiempo real y lograr un alto rendimiento de detección. En general, esta tesis permitió
aportar cinco nuevas contribuciones para tratar los problemas desafiantes de la epilepsia. Estas
contribuciones se resumen a continuación y se relacionan con sus correspondientes referencias a
nuestras publicaciones.

En el capítulo 2, se presenta la principal contribución de esta tesis: un nuevo método de
caracterización de las crisis epilépticas en señales de EEG, basado en modelos estadísticos. El
enfoque propuesto tiene varias ventajas interesantes. En primer lugar, permite la detección del
inicio de la crisis en los diferentes ritmos cerebrales de forma independiente. En segundo lugar,
el modelo propuesto se basa únicamente en 2 parámetros, lo que hace que su cálculo sea factible
en tiempo real. En tercer lugar, permite el desarrollo de métodos de clasificación automática, los
cuales pueden ser entrenados con conjuntos de datos razonablemente pequeños. Estas propiedades
se demuestran a través de los métodos desarrollados en los capítulos que componen esta tesis. El
método de caracterización propuesto se desarrolla en tres etapas. Primero, las señales de EEG
se separan en cinco ritmos cerebrales diferentes mediante el uso de un banco de filtros usando
la transformada wavelet. Cada señal de cada ritmo cerebral, se representa mediante un modelo
estadístico Gaussiano generalizado, que mapea los datos del EEG en un espacio de baja dimensión
de dos parámetros: escala y forma [1]. Finalmente, las pruebas estadísticas están diseñadas para
demostrar que estos parámetros caracterizan correctamente las crisis epilépticas. Además, en el
capítulo 2, se desarrolla nuestra segunda contribución, un desarrollo analítico de la divergencia
de Kullback-Leibler para medir la discrepancia entre las distribuciones estadísticas de crisis y no-
crisis en las señales epilépticas [2]. El Capítulo 3, presenta la tercera contribución que consiste
en un nuevo algoritmo para detectar en señales EEG, el inicio de las crisis epilépticas junto con
la estimación de su propagación. Se muestra que el parámetro de escala está estrechamente
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relacionado con la variabilidad de la actividad cerebral y, por lo tanto, es un buen descriptor para
realizar la detección y seguimiento de las crisis [3]. Basado en el modelo estadístico desarrollado
en el capítulo 2, el capítulo 4 presenta la cuarta contribución, la cual consiste en desarrollar y
comparar cuatro enfoques de clacificación con alta sensibilidad y especificidad. Este enfoque está
basado en un modelo para detectar si las señales exhiben actividad cerebral normal o anormal en
cada ritmo cerebral. Primero, se propone un clasificador de análisis discriminante lineal que se
basa en estadística univariada de los datos del EEG [4, 5]. En segundo lugar, se generaliza este
enfoque desarrollando un clasificador Bayesiano multivariado [6]. En tercer lugar, un clasificador
de ensamble de conjuntos basado en la entropía de la distribución Gaussiana generalizada [7].
Finalmente, se desarrolla un método de clasificación de regresión logística basado en el mayor
exponente de Lyapunov del análisis de componentes independientes (ICA) de cada ritmo cerebral
[8]. Este último método se usa como referencia, ya que proporciona un excelente rendimiento pero
con costos computacionales significativos. La quinta contribución, en el capítulo 5, está relacionada
con en el reconocimiento de patrones epileptiformes con el propósito de detectar descargas espiga-
onda (SWD) en señales EEG de larga-duración. Se desarrollan y se comparan tres métodos: un
clasificador de vecinos más cercanos (kNN) basado en las distribuciones Gaussiana generalizada y
t-location-scale [9, 10], y un clasificador de árbol de decisión basado en la correlación cruzada [11].
Se demostró que estos métodos logran una precisión muy alta en la detección del patrón SWD.



Abstract

Identifying epileptic brain activity using electroencephalography signals (EEG) in real-time is a
difficult problem. Modern detection methods based on advanced machine learning techniques are
effective but require large training datasets, and are difficult to implement in real-time monitoring
systems because of their relatively high computational cost. This thesis focuses on two central
problems linked to the characterization of epileptic seizures with EEG signals. The first one is
related to onset detection and the other one is about epileptiform pattern recognition. Using the
new characterization method presented in chapter 2, both can be implemented in real-time and
achieve a high detection performance. In general, this thesis brings five new contributions to deal
with challenging epilepsy problems. These contributions are summarized next, with references to
our related publications.

Chapter 2 presents the main contribution of this thesis: a new statistical model-based characte-
rization method of epileptic seizures in EEG signals. The proposed approach has several interesting
advantages. First, it allows the detection of seizure onset in the different brain rhythms, indepen-
dently. Second, the proposed model relies on 2 parameters only, making its computation feasible
in real-time. Third, it allows developing automatic classification methods trainable with reaso-
nably small datasets. These properties are demonstrated through the methods developed in the
subsequent chapters of this thesis. The proposed characterization method proceeds through three
stages. First, EEG signals are separated into five different brain rhythms by using a wavelet filter
bank. Each brain rhythm signal is then represented using a generalized Gaussian statistical model
that maps the EEG data to a low-dimensional space of two parameters: scale and shape [1]. Fi-
nally, statistical tests are designed to show that these parameters characterize correctly epileptic
seizures. In addition, chapter 2 develops our second contribution which is an analytical development
of Kullback-Leibler divergence to measure the discrepancy between the statistical distributions of
seizure and non-seizure epileptic signals [2], confirming the ability of our model to characterize
seizures. Chapter 3 presents the third contribution consisting in a new algorithm for epilepsy seizure
onset detection and spread estimation from EEG signals, where the scale parameter is shown to
be closely related to the variability of the brain activity and makes, therefore, a good descriptor
for performing seizure onset detection and tracking [3]. Based on the statistical model developed
in chapter 2, chapter 4 presents our fourth contribution. This consists of the development and
comparison of four model-based classification approaches to detect whether the signals exhibit
normal or abnormal brain activity in each brain rhythm, with high sensitivity and specificity. First,
we propose a linear discriminant analysis classifier which relies on univariate statistics of the EEG
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data [4, 5]. Second, we generalize this approach by developing a multivariate Bayesian classifier
[6]. Third, an ensemble bagging classifier based on the entropy of the generalized Gaussian distri-
bution [7]. Finally, we develop a logistic regression classifier method based on the largest Lyapunov
exponent from the independent component analysis of each brain rhythm [8]. The latest method
is used as a reference since it provides excellent performance but with significant computational
costs. The fifth contribution, in chapter 5, is related to epileptiform pattern recognition with the
purpose of detecting spike-and-wave discharges (SWD) in EEG long-time signals. Three methods
are developed and compared: k-nearest neighbors classifier based on the generalized Gaussian and
t-location-scale distributions [9, 10], and a decision tree method based on the cross-correlation
[11]. We show that these methods achieve very high accuracy in detecting SWD pattern.
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Chapter 1
EEG and Epilepsy

1.1 Introduction

Electroencephalography (EEG) is a non-invasive and widely available biomedical modality that is
used to diagnose epilepsy and plan treatment. Neurologists trained in EEG are able to determine a
correct diagnostics of epilepsy. They identify visually its onset and presence through the analysis of
characteristic waveforms, known as spikes, associated with epileptic seizures, which include: mode
of onset and termination, clinical manifestations, and abnormally enhanced synchrony. A spike is
characterized by short bursts of high amplitude, synchronized and multi-phasic activity, in which
polarity changes occur in different times, which manifest themselves at or around the epileptic
focus and stand out from the background EEG. The spikes are associated with seizures through
different brain areas and to the relationship with the brain rhythms. These waveforms are usually
depicted according to their morphology (e.g. amplitude, duration, sharpness, and emergence from
the background) to provide more insight into the epilepsy phenomena behind EEG measurements.
This first chapter discusses the medical aspects of seizures, classification and onset detection in
epilepsy, as well as brain rhythms.

1.2 Electroencephalography

The German psychiatrist Hans Berger made the first recording of the electric field of the human
brain in 1924 [15]. This recording or electroencephalogram can measure brain activity in two
ways: noninvasively through the scalp with an amplitude of approximately 100 —V or invasively
on the surface of the brain with an amplitude of 1 to 2 mV. EEG is the result of the sum of
the action potentials derived from the mixture of streams generated by extracellular populations
of neurons. Therefore, EEG depends basically on the cytoarchitecture of neuronal populations,
their connectivity and the geometry of their extracellular fields. The main physical sources of
the potential scalp are the pyramidal cells of the cortical layers III and V [16]. This modality,
improved over a century still remains the most widely used method in neurological and psychological
laboratories.



2 Chapter 1. EEG and Epilepsy

EEG is used primarily for three types of studies [17]:

1. Brain activity.

2. Event-Related Potentials (ERP), which are EEG components that emerge in response to
a stimulus (e.g. electric, auditory, visual). Such signals are usually below the noise level,
therefore not easily distinguished, and require the use of stimuli and signal time averaging
to improve the SNR.

3. Bioelectric events produced by single neurons. The behavior of a single neuron can be
examined using microelectrodes that traverse the specific cells of interest. The study of a
single cell or cell networks allows the construction of models that reflect the actual properties
of the tissue.

The standardized international 10-20 system is generally used to record the EEG activity. This
system has 21 electrodes located symmetrically on the surface of the scalp; these positions are
computed as percentages of standard distances, the resulting records are comparable between
different patients, see Figure 1.1. EEG electrode positions are determined as follows: the reference
points are the nasion, which is the delve at the top of the nose, at the level of the eyes; and the
inion, which is the bony lump at the base of the skull on the midline at the back of the head. From
these points and once the central point (Cz) is localized, the skull perimeters are measured in the
transverse and median planes. Electrode locations are determined by dividing these perimeters
into 10% and 20% intervals, see Figure 1.1 and Figure 3.1. Additionally, the EEG measurement
provides temporal and spatial information about the synchronous firing of many neurons inside
the brain with a dominant frequency according to the brain rhythms (see section 1.3), namely
delta (‹) with (f ≤ 4 Hz), theta („) with (4 Hz ≤ f ≤ 7 Hz), alpha (¸) with (8 Hz ≤ f ≤ 12
Hz), beta (˛) with (13 Hz ≤ f ≤ 29 Hz) and gamma (‚) with (30 Hz ≤ f), see Table 1.1 for
more details. EEG measurement can use an unipolar electrodes configuration, where the potential
of each electrode is compared either to a neutral electrode or to the average of all electrodes;
or bipolar electrodes configuration, where the potential difference between a pair of electrodes
spatially close is measured [17].

In EEG, an artifact is defined as an electrical potential that has originated outside of the
brain; there are two basic artifact types, 1) physiological artifacts generated from the electrical
activity associated with the normal functioning of the body of the patient (e.g. movement and
blinking of the eyes, respiration, chewing, bruxism, swallowing, tongue movement, skin potentials,
body tremor, cardiac activity, muscle activity, sweat glands, pulse in the tissues, and artificial
cardiac pacemaker); 2) Non-physiological artifacts generated by electromagnetic fields outside the
body or by technical problems (e.g. poor signal characteristics given by bad signal recording,
line frequency 50/60 Hz, electrodes, the different types of medical equipment, cell phones, lights,
and the environmental movement). Figure 1.2 shows some examples of artifacts, for more details
see [18]. Noises are as important as artifacts. Acquiring EEG signal properly means mainly
safety, biosignal measurement with higher signal to noise ratio (SNR) and no data loss, as much
as possible. The system electronics include the circuitry and printed circuit board design, the
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Figure 1.1: 10-20 system: electrode placement method, the electrodes positions have a
nomenclature according to the different functional regions of the cortex (temporal lobe,
parietal lobe, occipital lobe, frontal lobe), which are responsible for motor control, cognitive
and memory functions. A = Ear lobe, C = central, P = parietal, F = frontal, Fp = frontal
polar, O = occipital. Both parts of the figure show the standard bipolar electrodes method
between the front (F) and back (B) of the head and between the left (L) and right (R)

hemispheres respectively

filtering stages, electronic amplifier’s noise control, correct signal conversion, data storing, contact
resistance skin-electrodes, and background noise [19, 20, 21].

1.3 Brain rhythms

EEG is the predominant modality to study abnormal cerebral activity due to its low cost, small
space requirements, very-high time resolution, medium space resolution and its tolerance to subject
movement [22, 23]. EEG enables us to glimpse the generalized activity of the cerebral cortex. Brain
activity produces a range of electrical or brain rhythms, which closely correlate with particular
states of behavior or pathology. They help diagnose certain neurological conditions, especially the
seizures of epilepsy. Brain rhythms play an important role in spike timing and brain communication.
Different brain regions, see Figure (3.1), produce distinctly different brain rhythm frequencies that
are thought to reflect unique forms of processing important for the localization, parceling, and
routing of information within and between regions [24].

The amplitude of the EEG signal strongly depends on how synchronous is the activity of the
underlying neurons. When a group of cells is excited simultaneously, the tiny signals sum up to
generate one larger surface signal. However, when each cell receives the same amount of excitation
but the excitations are spread out in time, the summed signals are meager and irregular and can
be a pathological discharge pattern generated in the basal ganglia [24]. Notice that in this case,
the number of activated cells and the total amount of excitation may not have changed, only the
timing of the activity. If a synchronous excitation of this group of cells is repeated, again and
again, the resulting EEG will consist of large-brain rhythmic that represent the normal activity of
the brain [25], Table 1.1 summarizes the brain rhythms.
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A recent study that compares the spectral power in the different brain rhythms across 10 mental
health disorders such as depression, bipolar disorder, addiction, autism, ADHD, anxiety, panic disor-
der, obsessive-compulsive disorder (OCD), post-traumatic stress disorder (PTSD) and schizophre-
nia; suggest that it is necessary to have caution with any interpretation of results from studies
that consider only one disorder in isolation [26]. Extrapolating this to epilepsy disease is impor-
tant, due to the considerable variability in the studies, reports based on a subset of studies or the
highly inconsistent between experts makes it difficult to normalize all the differences found in the
researches.

Figure 1.2: Examples of different artifacts: bruxism, tongue, arms and legs movement, exhi-
bit a similar alteration in all channels while swallowing and cell phone have a high pronounced
peak; lamp artifact present spikes that can be confused with epilepsy abnormal waveform by

an inexpert eye. The examples shown correspond to one-second segments in duration.

1.4 Epilepsy

The term epilepsy derives from the Greek term epilambanein which means to seize, and it denotes
the predisposition to have recurrent, unprovoked seizures. Seizures can be symptomatic; that is,
result from specific precipitants such as fever, strokes, metabolic disturbances (e.g. hypoglycemia,
drug abuse/withdrawal), trauma, infections in the central nervous system, and acute head injury.
In epilepsy, however, seizures are unprovoked and expected to be recurrent [27]. Appropriate
diagnosis and treatment of epilepsy is a main public health issue. According to the World Health
Organization [28], there are more than 50 million people worldwide that suffer from some form of
epilepsy, nearly 80% of them are in developing regions, where it is believed that 3 out of 4 people
with these conditions do not get appropriate diagnostic and treatment.
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Brain
Rhythm

Frequency
in Hz

Amplitude
in —V

Region Cognitive activity Epileptic Clinical Association

Delta (‹) < 4 20-200 Frontal,
Temporal,
Occipital

Deep sleep, waking state, normal in infants,
sleeping adults.

Intermittent or non-rhythmic slow wave.
Newborn seizures.
Delta brush: beta-delta complexes and ripples of
prematurity.
Semirhythmic hallmarks of slow wave sleep.
Sharply-contoured slow waves.
Hypersynchrony.
Intermittent rhythmic activity.
Focal spiking.
Chaotic bursts.

Theta („) 4-7 20-100 Temporal,
Occipital

It is more common in children and young adults
than in older adults, locomotion, sensory infor-
mation, consciousness slips towards drowsiness,
unconscious material, creative inspiration, deep
meditation, maturational and emotional studies,
sleeping adults, drowsiness, spatial memory pro-
cesses.

Newborn seizures.
Triphasic waves.
Burst with a morphology very similar to ictal pat-
terns.
Rhythmic vertex.
Semirhythmic hallmarks of the onset of drowsiness.
Sleep-related hypersynchronies.
Sharply-contoured slow waves.
Sharp temporal discharges.
Theta pointu alternant: Neonatal alternating sharp
theta.
Abnormal in the adult during wakefulness.

Alpha (¸) 8-12 20-60 Occipital When there is no attention, mental fatigue, cog-
nitive disorders, awake but relaxed, attenuation
as an indicator of visual activity during dream-
ing, semantic memory processes, to any type of
task, during visually presented stimulations.

A slow decrease in frequency with an increase in am-
plitude..
Loss of reactivity to eye-opening or to mental aler-
ting.
Desynchronization when moving a body part.
Intrude into a deep sleep or attention dramatically.
An absence of the posterior rhythm.

Beta (˛) 13-29 2-30 Frontal,
Central,
Parietal

Active thinking, active attention, focus on the
outside world or solving concrete problems, is
found in normal adults, panic state, rises im-
mediately after the task, sensory-motor area,
drowsiness, light sleep, REM sleep, a relatively
sudden, diffuse increase in activity can mark on-
set of early drowsiness

Increase or decrease in waves activity.
Triphasic waves.
A smaller magnitude and delayed in motor move-
ments.
High voltage or plentiful activity.
Asymmetry.

Gamma (‚) 30 < 5-10 Frontal,
Central

Childhood, memory tasks, awakening, REM
sleep, working, right and left index finger move-
ment, right toes and the rather broad and bilat-
eral area for tongue movement.

Highest levels of cerebral blood flow.
Asynchrony bursts

Table 1.1: Brain rhythms

The International League Against Epilepsy (ILAE) [29] defines “epileptic seizure as a transient
occurrence of signs and/or symptoms due to abnormal excessive or synchronous neuronal activity
in the brain”. The elements defining an epileptic seizure include its mode of onset and termination,
its clinical manifestations, and its abnormal enhanced synchrony [30]. Physical manifestations of
epilepsy result mainly from the synchronous and excessive discharge of electricity by a group of
neurons behaving abnormally in the cerebral cortex. Epileptic seizures usually have a sudden onset,
they spread within seconds and, in most cases, are brief. The precise manifestation of a seizure
depends on the location in the brain where it originates (onset detection) and on how far and
fast it spreads. The correct identification of this location and spread information is key to proper
treatment. Therefore, an epilepsy syndrome consists of a combination of clinical, seizure and
EEG characteristics that make up a distinct entity. The diagnosis of epilepsy has implications for
outcome and management, however, diagnosis of a particular syndrome does not imply a single
cause, it has multiple etiologies [27].

The electroencephalogram (EEG) is the premier diagnostic tool for epilepsy and provides a
key element for the classification and detection of epileptic seizures. The information about the
morphology and dynamics of EEG signals can be used to accurately identify seizure onset and
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quantify the severity and dynamical progression of seizure activity. A neurologist can discriminate
normal from abnormal signals. A normal signal includes the general signal in the cortex, the typical
brain rhythms and the varying degrees of thalamocortical interdependence while an abnormal signal
includes burst suppression and seizures.

Epileptic attacks have two clinical manifestations of abnormal activity. Ictal or activity recorded
during an epileptic seizure, and Interictal or abnormal signals recorded between epileptic seizures.
Where the impaired consciousness plays an important role, which is defined as the inability to
respond normally to exogenous stimuli by virtue of altered awareness and/or responsiveness [31].
In epilepsy context, normal activity includes physiological artifacts and different sleep potentials
e.g. vertex waves, K -complexes, positive occipital sharp transients of sleep and benign waveform
transients of sleep; while abnormal activity refers to interictal waveform potential, according to
morphological characteristics. Interictal discharges are good epilepsy indicators and depending on
EEG recordings duration and the inclusion of different states of vigilance; they can be shown in up
to 90% of patients [32], see Table 1.2.

More common morphological waveforms are spike-wave and sharp-wave, see Figure 1.3; a spike-
wave may last 20-70 ms and a sharp-wave may last 70-200 ms although not as sharply contoured
as a spike; spike-wave complex is a spike followed by a slow-wave. If they occur at rates below 3
Hz then they are called spike-and-slow-wave complexes. Polyspikes have multiple spike complexes
where several spikes occur in sequence, e.g. polyspike-and-slow-wave is a polyspike followed by a
slow-wave, see Figure 1.4.

Background activity describes the context in which the spike occurs; it is used to normalize
the spike parameters to account for varying electrical output from different patients and determine
whether the spike is more than a random variation of the underlying rhythmic activity [33].

1.5 Seizure classification

Seizure classification is composed of four families: 1) Partial or Focal Seizures, which originate from
a localized cortical area and represent 60% of epilepsy cases; 2) Generalized Seizures, which are
characterized by initial synchronous discharges over both hemispheres and represent 40 % of cases
(see Tables 1.3 and 1.4 for more details); 3) Unclassified Epileptic Seizures; and 4) Addendum,
prolonged or repetitive seizures [31, 34]; see Table 1.1 for a relationship with the different brain
rhythms. For a better compression of Table 1.4, the following definitions are introduced according
to [35]

Absence seizures : They cause lapses in awareness, sometimes with staring. They are a type of
generalized onset seizures, meaning they begin in both sides of the brain at the same time.
An older term is petit mal seizures. They begin and end abruptly, lasting only a few seconds.

Atypical absences : They are a type of absence seizure that is atypical. This means it’s different,
unusual, or not typical compared to typical absence seizures, which were previously called
petit mal seizures. They are a type of generalized onset seizure. When a single atypical
absence seizure ends, the person usually is awake and continues doing whatever they were
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doing before the seizure. No first aid is needed during a single seizure. Sometimes a person
may have more than one atypical absence at a time or have groups of seizures.

Clonic seizures : "Clonus" means fast stiffening and relaxing of a muscle that happens repeatedly.
In other words, it is repeated jerking. The movements cannot be stopped by restraining or
repositioning the arms or legs. Clonic seizures are rare and most commonly occur in babies.
Most often, clonic movements are seen as part of a tonic-clonic seizure.

Tonic seizures : Muscle "tone" is the muscle’s normal tension at rest. In a tonic seizure, the
tone is greatly increased: the body, arms, or legs become suddenly stiff or tense.

Myoclonic seizures : are brief shock-like jerks of a muscle or group of muscles. "Myo" means
muscle. They occur in a variety of epilepsy syndromes that have different characteristics.
During a myoclonic seizure, the person is usually awake and able to think clearly.

Tonic-clonic seizure : They usually begins on both sides of the brain, but can start in one side
and spread to the whole brain. A person loses consciousness, muscles stiffen, and jerking
movements are seen. These types of seizures usually last 1 to 3 minutes and take longer for
a person to recover.

Atonic seizure : In this seizure, a person suddenly loses muscle tone. Their head or body may
go limp and they may fall. They are also known as drop attacks.

Figure 1.3: Different interictal abnormal activity: a) spike waveforms using a monopolar
configuration whose reference is the average of all channels (Avg). b) sharp-wave using
bipolar configuration, note the phase reversal in FP1-FT7, FT7-F7 channels vs. FT9-T3,
T3-T5 channels, this indicating that channel F7 is a seizure candidate; c) spike-and-wave
using monopolar configuration whose reference are A1 or A2 channels, the spike-and-wave

waveform is present in almost all channels.
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Figure 1.4: Different ictal abnormal activity: polyspike, polyspike wave and polyspike,
respectively.

Clinical Recorded Onset EEG waveform Behavioral Disturbance
Ictal. During

an
epileptic
seizure.

Match. Spikes, spike trains,
isolated spikes,
sharp-waves,
spike-wave complexes,
sharp-wave complexes

a) Bilateral involvement with
impaired consciousness and ab-
normal EEG.
b) Unilateral involvement with
clear consciousness where the
EEG can be normal.

Interictal. Between
epileptic
seizure.

It can
match
or
not.

Polyspike and
polyspike waves.

a) Inadequate psychological
adaptation; neurological, cog-
nitive and intellectual deficits.
b) Aberrant personality traits.
Affective disorders.
c) Psychoses.
d) Memory.
e) Depression.

Table 1.2: Abnormal activity and associated EEG morphologic waveforms
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1.6 Seizure onset detection

Ictal discharges are clinical signs used to detect the onset seizure from the epileptogenic zone in
the brain cortex. Seizure Onset Detection (SOD) helps physicians to improve therapy with drug
treatment, diagnostic and alert procedures; while in biomedical technology, the goal is intended
to recognize the start of a seizure, with the shortest possible delay and with the highest possible
accuracy. SOD recordings may be: intracranial or extracranial. In intracranial recordings, for
seizure identification and retrospective analysis of seizures, often in the context of presurgical
evaluations, it can be relatively straightforward to detect onset with reasonable sensitivity and
specificity since events often last over a minute [36]. In extracranial recordings to distinguish
between primary and secondary irritative areas may be difficult. The primary irritative area is the
ictal zone when the focal seizure starting and the second irritative area is related to his spread. This
is because an ictal discharge can spread very fast to the normal anatomical connections between
cortical areas, through the commissural fibers or via subcortical structures. Finally, this may lead
to the widespread or bilateral occurrence of interictal discharges [37].

Clinical Impaired
Consciousness

EEG Seizure Onset Interictal
Expression

Simple
partial
seizure.

Not. Local contralateral dis-
charge starting over
the corresponding area
of cortical representa-
tion.

Lateral but
not always
recorded on
the scalp.

Local
contralateral
discharge.

Complex
partial
seizure.

Yes. Unilateral or frequently
bilateral discharge, dif-
fuse or focal in tempo-
ral.

Fronto-
temporal.

Unilateral
or bilateral,
generally
asyn-
chronous
focus.

Partial
seizures
evolving to
secondarily
generalized
seizures.

Yes. Above discharges be-
come secondarily and
rapidly generalized.

Focal,
lateral.

Focal
discharge.

Table 1.3: Classification of simple partial seizures

In a medical context, neurologists use EEG to determine the type of seizure the person may
have had and if there are any detectable abnormalities in the person’s brain rhythm waves. This
analysis of waveform features permits to localize and quantify the epileptogenic zone. In the context
of epilepsy surgery, the precise identification of the epileptogenic zone is crucial. The seizure
onset zone is the area of the cortex from which clinical seizures generate. There is currently no
diagnostic modality that can be used to directly measure the entire epileptogenic zone. The precise
localization of the epileptiform discharges is essential to the localization of the epileptogenic zone,
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Clinical EEG Seizure Abnormal
Activity

EEG Waveforms Interictal
Expression

Absence
seizures, It
is the most
typical.

Regular and symmetric
between 2 Hz and 4 Hz.

Bilateral, regular
and symmetric.

Spike-wave, slow-
wave complexes,
multiple spike-wave
and slow-wave com-
plexes.

In background acti-
vity usually normal,
although paroxysmal
activity may occur.

Atypical
absence.

EEG more heterogeneous;
may include fast activity or
other paroxysmal activity.

Bilateral, irregular
and asymmetric.

In background usually
abnormal; paroxysmal
activity.

Regular, spike-wave,
irregular spike, slow-
wave complexes, and
slower generalized
spike-wave.

Myoclonic
seizures,
Myoclonic
jerks.
(single or
multiple).

Polyspike and wave, or
sometimes spike and wave or
sharp and slow waves.

Bilateral. Polyspike,
sharp-wave.

Same as ictal.

Clonic
seizures.

Fast activity of 10 Hz or
more.

Focal
contralateral.

Slow-waves,
occasional spikes and
wave patterns.

Spike and spike-
waves, polyspike and
wave discharges.

Tonic
seizures.

Low voltage fast activity or
a fast rhythm of 9 Hz - 10
Hz or more decreasing in fre-
quency and increasing in am-
plitude.

Sometimes
asymmetric.

Sharp and slow-waves. More or less rhythmic
discharges of sharp
and slow waves. The
background is often
abnormal for age.

Tonic-clonic
seizures.

Rhythm at 10 Hz or more,
decreasing in frequency and
increasing in amplitude du-
ring tonic phase, interrupted
by slow waves during clonic
phase.

Bilateral. Polyspike. Polyspike and waves,
spike and wave, or,
sometimes, sharp
waves and slow-wave
discharges.

Atonic
seizures.

Flattening or low-voltage
fast activity.

Bilateral. Polyspikes and slow-
waves.

Polyspikes and slow-
waves.

Table 1.4: Classification of generalized seizures

particularly in patients considered for resective epilepsy surgery [38]. The multifaceted aspects of
these discharges can be explored in vivo by electroencephalographic recordings [39].

The seizure onset is assessed visually and defined as an unequivocal and sustained rhythmic
change from the background activity in the EEG accompanied by subsequent clinically typical
seizure activity, and clearly distinguished from background EEG and interictal activity. When this
information cannot be properly identified from the scalp EEG the intracranial monitoring with grids
or depth electrodes are indicated. The EEG seizure-onset patterns may exhibit:

1. A low-voltage fast activity that produces an attenuation of background activity.

2. Low-frequency high-amplitude periodic spikes, high-voltage spiking at 0.5-2 Hz.

3. Sharp activity, low to medium-voltage sharply-contoured rhythmic activity most commonly
in the alpha/theta range.

4. Spike and wave activity occurring at a frequency of 2-4 Hz.
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5. A burst of high amplitude polyspikes.

6. Burst suppression, brief bursts of medium- to high-voltage repetitive spikes alternating with
brief periods of voltage attenuation

7. Delta brush, rhythmic delta waves at 1-2 Hz, with superimposed brief bursts of 20-30 Hz
activity overriding each delta wave [40].

Seizure onset detection was first investigated in the seventies by Viglione et al. [41] and Liss et
al. [42], and with later contributions by Ktonas et al. [43], Gotman et al. [44] and Iasemidis et al.
[45, 46]. Moreover, different works studied linear and nonlinear prediction techniques to separate
transients from background activity. For example, filter techniques [47], power spectrum techniques
[48], cross-correlation techniques [49], principal or independent component analysis techniques [50,
51] have been investigated. Other examples include techniques based on wavelet representations
[52], state space reconstruction [53], correlation measures [54], signal dimension [55], density and
correlation integrals [56, 57], mutual prediction [58], Lyapunov exponents [59, 8], synchronization
[60], similarity measures [61], recurrence quantification measures [62], and nonlinear predictability
[63]. We refer the reader to [64] for a comprehensive treatment of measurement, models, detection
and prediction techniques. Other important surveys of the literature in this topic can be found in
[65, 52, 66, 67, 68, 33, 69, 70, 71, 72]. See Section 4.2 for an extension of this state-of-art.

Moreover, modern SOD methods can be grouped into the following categories: 1) Template
matching : These are techniques based on finding events that match previously selected spikes; the
detection is made whenever the cross correlation of the EEG with a template exceeds a threshold
[73]; 2) Parametric methods: These techniques are based on traditional signal processing and
consider that a seizure has occurred when the difference between the EEG signal and a predicted
value (based on the assumption that the background is stationary) exceeds a threshold [74]; 3)
Mimetic methods: these techniques seek to mimic the human expert (i.e. neurophysiologist) and
operate by monitoring the value of parameters computed from each wave and applying thresholds
[75, 76, 77]; 4) Morphologic analysis: these techniques are based on the characterization of the
waveforms with respect to sharpness, amplitude, duration, convexity, frequency bands or time-
frequency representations of spikes [75, 78]; 5) Syntactic methods: these techniques are based
on the detection of the presence of structural features [79]; 6) Neural networks: this approach
adopts a machine learning perspective to learn transients related to epileptic seizures [80, 81]; 7)
Expert systems: this approach detects seizures by mimicking an expert’s knowledge and reasoning
process [82]; 8) Data mining techniques: this approach also adopts a machine learning perspective
to train a classifier [71, 83, 84]; 9) Clustering techniques: detection is based on hierarchical
agglomerative processes and self-organizing maps [47, 72]; 10) Knowledge-based rules: similar to
expert systems, these techniques seek to incorporate knowledge from neurophysiologists through
spatial and temporal rules [85, 67, 85].
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1.7 Conclusions

This chapter presented the medical context of this thesis by defining electroencephalography, brain
rhythms, epilepsy, and seizure activity. These topics are important for developing biomedical
solutions, especially for detecting epileptic seizure activity in EEG signals in real-time. In order
to quantify and characterize such brain disorders, this thesis adopts a statistical modeling and
mathematics computation approach. The following chapter develops this approach and derives
quantitative characterization indicators.



Chapter 2
Statistical-Model-based EEG signal

characterization

2.1 Introduction

In chapter 1, EEG, brain rhythms, epilepsy, and seizure activity were explained in the medical
context. In this chapter, a statistical model is established for EEG data, in order to characterize
the epileptic seizure activity within each brain rhythm.

In the first part, the method of decomposing EEG data into different brain rhythms using
wavelets filter banks is presented. Next, different statistical models are studied and compared in
order to choose the best model that fits the brain rhythms. The generalized Gaussian distribution
(GGD) is shown to give the best goodness-of-fit. This constitutes the main contribution of this
thesis, which shows that the GGD statistical model represents correctly the epileptic seizure activity
in EEG signals. This model permits the characterization and quantification of EEG signals using
its scale and shape parameters. In addition, this proposed model-based characterization allows a
considerable dimensional reduction and makes possible developing fast classification algorithms with
low complexity. In the second part, the Kullback-Leibler divergence (KLD) is used to measure the
discrepancy between probability density functions (PDF), in order to detect changes between seizure
and non-seizure. Our second methodological contribution consists in the analytical development
of the KLD between two generalized Gaussian distributions.

2.2 Data set

In order to establish the best statistical model for epileptic EEG, we studied the Children’s Hos-
pital Boston database [86], previously considered in [37]. This dataset which consists of 36 EEG
recordings from pediatric subjects with intractable seizures. In this thesis, we used 54 events of
18 recordings from 9 different subjects. The events include 18 seizures and 36 non-seizures (18
before and 18 after the seizure).

The signals were acquired with a 23-channel array operating at a 256 Hz sampling rate. The
neurologist annotated each signal to indicate the beginning and end of the seizure epochs, which
we use as ground truth. Moreover, for each seizure epoch, the neurologist also selected two
adjacent non-seizure signal segments of the same length to represent challenging or control of the
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non-pathological brain activity. The length of all seizures used are summarized in Table 2.1.
No distinction was considered regarding the types of seizure onsets; the data contains focal,

lateral, and generalized seizure onsets. Furthermore, the recordings were made in a routine clinical
environment, therefore non-seizure activity and artifacts such as head/body movement, chewing,
blinking, early stages of sleep, and electrode pops/movement are present in the data, see Figure
1.2 in Section 1.2.

Processing duration in msec
Epoch Seizure Duration Segments Delta Theta Alpha Beta Gamma
01 04 1m30sec 181 7 6 7 7 8
02 05 1m41sec 203 7 7 7 8 9
03 10 1m04sec 129 7 7 7 7 9
04 11 1m07sec 137 7 6 7 7 8
05 12 2m00sec 241 7 7 7 8 8
06 13 1m57sec 235 7 7 7 8 9
07 17 1m26sec 173 7 7 7 8 8
08 18 2m23sec 287 7 7 7 8 9
09 19 3m09sec 321 7 6 6 7 8
10 20 3m46sec 343 7 6 6 7 8
11 21 5m38sec 529 7 6 7 7 8
12 22 1m04sec 129 7 6 7 7 8
13 23 1m03sec 125 7 9 9 7 13
14 26 1m05sec 131 7 9 10 11 35
15 27 1m02sec 117 7 7 7 7 9
16 28 1m16sec 153 7 7 7 8 9
17 29 1m29sec 179 7 6 7 7 8
18 30 0m32sec 65 7 7 7 7 8

Table 2.1: Length of the 18 seizures used in this study and the corresponding number of
overlapping 1-second segments using a rectangular sliding window of 2 seconds. An offset has
been used for each epoch to avoid leading and trailing signals that were noisy. Consequently,

the number of windows is irregular between epochs.

2.3 Data organization

Let X ∈ RM×N denote the matrix gathering M EEG signals xm ∈ R1×N measured simultaneously
on different channels and at N discrete time instants. We use the representation [22],

X = K J + ” (2.1)

where X are the EEG signals, J ∈ Rns×N is a matrix representing the sources, K ∈ RM×ns is the
so-called lead field or gain matrix, ns is the number of sources, and ” is additive noise.
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The original signal X is split into a set of overlapping 1-second segments using a rectangular
sliding window of 2 seconds so that

X(i) = Ω(i)X (2.2)

Ω(i) =
h
0L×iL; IL×L; 0L×N−iL−L

i
where 0N×M ∈ RN×M is the null matrix, IN×N ∈ RN×N is the identity matrix and L is the number
of measurement obtained in 2 seconds.

2.4 Wavelets and Filter banks

Wavelets are localized waves that, instead of oscillating forever, drop to zero. They come from
the iteration of filters with scaling [87, 88]. They are obtained from a single prototype “mother”
wavelet  (t) by rescaling and shifting, i.e.,

 a;b(t) =
1√
a
 

„
t − b
a

«
(2.3)

where a is the scaling parameter and b is the shifting parameter. The wavelet transform is given
by

Wf (a; b) =

Z ∞
−∞

x(t) a;b(t)dt (2.4)

The discrete wavelet transform (DWT) transforms a discrete time signal to a discrete wavelet
representation. It converts an input series x = [x0; : : : ; xL−1]T of length L, into one high-pass
(h) wavelet coefficient series and one low-pass (l ) wavelet coefficient series, each one of length L

2 ,
given by

hj =
K−1X
k=0

x2j−k sk ; lj =
K−1X
k=0

x2j−k tk ∀ 0 ≤ j < L

2
(2.5)

where s = [s0; : : : ; sK−1]T and t = [t0; : : : ; tK−1]T are called the wavelet filters. Recalling that
X(i) represents a multichannel signal where each column contains a different channel and each
row represents the temporal evolution of the EEG signal.
The discretized wavelet for the DWT takes the following form

Wd(a; b) =
∞X
−∞

x(n)
1√
aj
 a;b

„
n − b
aj

«
(2.6)

In the discrete wavelet transform, the scale parameter is always discretized to integer powers of 2,
2j with j = 1; 2; 3; · · · ; so that the number of voices per octave is always 1.
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The CWT and DWT differ in how they discretize the scale parameter. The CWT typically uses
exponential scales with a base smaller than 2 (e.g. 21=12), while the DWT always uses exponential
scales with the base equal to 2. The scales are powers of 2. Therefore, the physical interpretation
of scales for both the CWT and DWT requires the inclusion of the signal’s sampling interval if it
is not equal to one [89].

2.4.1 Multilevel 1D wavelet decomposition

The multilevel 1D wavelet transform decomposes the matrix X(i) using eq. (2.5) into two compo-
nent matrices, namely L(i)

j , H(i)
j , where (L) corresponds to applying a low-pass frequency operation

to the temporal component (rows) of X(i) and (H) refers to the high-pass filter applied to the
channel component (columns) of X(i); each one according the scale j . The lowest frequency
sub-band L(i)

j is the approximation (A) coefficients and H(i)
j is the detail (D) coefficients of the

original signal X(i). This process is repeated recursively replacing the input signal X(i) with the
last approximation series L(i)

j until the desired number of scales j = [1; 2; : : : ; J]T is obtained.

2.4.2 Multilevel 2D wavelet decomposition

The multilevel 2D wavelet transform decomposes the matrix X(i) using eq. (2.5) into four com-
ponent matrices, namely LL(i)

j , LH(i)
j , HL(i)

j and HH(i)
j , where the first letter corresponds to

applying a low-pass (L) or high-pass (H) frequency operation to the temporal component (rows)
of X(i) and the second letter refers to the filter applied to the channel component (columns) of
X(i), each one according to the scale j . The lowest frequency sub-band LL(i)

j is the approxi-
mation coefficients of the original signal X(i). The remaining three frequency sub-bands are the
detail parts of the signal and give the vertical high (LH(i)

j ), horizontal high (HL(i)
j ) and diagonal

high (HH(i)
j ) coefficients. This process is repeated recursively replacing the input signal X(i) with

the last approximation series LL(i)
j until the desired number of scales j = [1; 2; : : : ; J]T is obtained.

2.4.3 Extraction of brain rhythms

The coefficients X(i) associated with all wavelet scales for a 2-second segment with overlapping
1 second, are represented using a Daubechies wavelet filter bank with 6 scales of order 4 (Db4),
see Figure 2.1, to obtain a time-frequency decomposition [90]. The purpose of this decomposition
is to evaluate the energy distribution throughout the neurological frequency spectrum or brain
rhythms, namely the delta (‹), theta („), alpha (¸), beta (˛) and gamma (‚) bands [91, 92].
Db4 offers the number of vanishing moments that allow representing the signal with sufficient
smoothness. Performing wavelet decomposition fits naturally the dyadic structure of the neu-
rological spectral bands, and provides a computationally efficient filtering algorithm that can be
implemented straightforwardly on real-time signal processing hardware.
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Figure 2.1: db4 wavelet waveform, we can see the similarity with a seizure waveforms in
Figures 1.3 and 1.4.

Let C
(i)
j denote the coefficients corresponding to the different sub-bands, namely approxi-

mation (A) and detail (D) coefficients for the multilevel 1D wavelet decomposition (Section 2.4.1)
or horizontal (H), vertical (V), diagonal (D) and approximation (A) for the multilevel 2D wavelet
decomposition (Section 2.4.2).

Let „(i) denote the vector of parameters estimated from the different brain rhythms (‚; ˛; ¸; „; ‹,
see Table 2.2):

„(i) =

»
„

(i)
3 ; „

(i)
4 ; „

(i)
5 ; „

(i)
6 ; „T

L
(i)
6

–T
=
h
„(i)
‚ ; „

(i)
˛ ; „

(i)
¸ ; „

(i)
„ ; „

(i)
‹

iT
: (2.7)

For the multilevel 1D wavelet decomposition (Section 2.4.1) we obtain a 5-dimensional vector
„(i) and the components:

„
(i)
j =

»
„T
L

(i)
j

; „T
H

(i)
j

–
: (2.8)

For the multilevel 2D wavelet decomposition (Section 2.4.2) we obtain a 13-dimensional vector
„(i) and the components:

„
(i)
j =

»
„T
LH

(i)
j

; „T
HL

(i)
j

; „T
HH

(i)
j

–
: (2.9)

Table 2.2 presents frequencies corresponding to different levels of decomposition for the Daubechies
wavelets of order 4 with a sampling frequency of 256 Hz, where A and D refer to Approximation and
details respectively for Section 2.4.1 or where H, V and D refer to horizontal, vertical and diagonal
details respectively for Section 2.4.2 and the number is the scale. The rest of approximations and
details are discarded because they are outside of the brain rhythms. Note that in high-frequency
oscillations (HFOs) the gamma band is extended to the 80–500 Hz frequency range, which provides
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to the neurophysiologist new information about the extent of the epileptogenic tissue in addition
to ictal and interictal lower frequency events[93].

Decomposed Signal Frequency range (Hz) Brain Rhythms
D3 - H3 - V3 32-64 Gamma (‚)
D4 - H4 - V4 16-32 Beta (˛)
D5 - H5 - V5 8-16 Alpha (¸)
D6 - H6 - V6 4-8 Theta („)

A6 0-4 Delta (‹)

Table 2.2: Frequencies of the different scales of the multilevel 2D wavelet decomposition.

2.5 Statistical models

In this thesis, we are interested in the characterization of the physical processes underlying the EEG
signals. Deterministic physical models of such processes are difficult to establish as epileptic seizure
have usually sudden onsets, spread in a matter of seconds, and are in most cases very brief. Also,
they are contaminated with noise that intrinsically follows a stochastic process model. In addition,
such physical model should also take into account the complexity related to the location of the
seizure source and the temporal and spatial scope of its spread. Therefore, we resort to statistical
modeling to capture the characteristics of the electrical processes underlying EEG signals. Our
aim is to establish quantitative indicators based on a statistical model to characterize EEG signals.
The objective is to develop a machine learning algorithm that uses such indicators as features to
detect epileptic seizures.

A statistical model is a probability distribution constructed to enable inferences to be drawn
through histogram or decisions made from data [94]. A histogram can be interpreted through a
parametric statistical distribution, where the probability density function (PDF) is denoted

p
“
C

(i)
j ; „

(i)
j

”
(2.10)

where j refers to each brain rhythm, i is related to the window segment, C(i)
j are the coefficients

corresponding to the different brain rhythms, and „(i)
j is a set of model parameters associated with

the wavelet coefficients of each brain rhythm. Statistical parameters are a quantity that indexes a
family of probability distributions [95], see Table 2.3 for some statistical parameters examples.

Parameter Logistic t-location-scale Alpha-stable Cauchy GGD
Location — — ‹ x0 —
Scale “ ff ‚ ‚ ff
Shape � fi

Skewness fi
Stability ff

Table 2.3: Statistical parameters of each distribution under consideration.
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For the EEG signal X with long segment L from model p
“
C

(i)
j ; „

(i)
j

”
, the maximum likelihood

estimation consists in maximizing

1

L
log

“
c ; „

(i)
j

”
=

1

L

LX
i=1

log p
“
c(i); „

(i)
j

”
(2.11)

giving the estimate

„̂
C

(i)
j

= argmax»
„
C

(i)
j

–T log p (c ; „) : (2.12)

2.5.1 Generalized Gaussian distribution

The univariate generalized Gaussian distribution (GGD) is a flexible statistical model for one-
dimensional signals [96] that has found numerous applications in science and engineering [97, 98,
99, 100]. Since the series has zero-mean because it was subtracted (detrending), then there aren’t
non-zero coefficients for the lower frequency resolution band [101], it can be safely assumed that
they can be represented by a zero-mean distribution. Consequently, the distribution of the wavelet
coefficients C(i)

j can be represented by using a zero-mean GGD statistical model [102, 103] with
probability density function (PDF) given by

fGGD(x ;ff; fi) =
fi

2ffΓ(fi−1)
exp

„
−
˛̨̨̨
x

ff

˛̨̨̨fi«
(2.13)

where ff ∈ R+ is a scale parameter and fi ∈ R+ is a parameter that controls the shape of the
density tail and Γ (·) is the Gamma function. Note that the GGD parametric distribution family
includes many popular distributions that are commonly used in biomedical signal processing. For
example, setting fi = 1 leads to a Laplacian or double-exponential distribution, fi = 2 leads to
Gaussian or normal distribution, and fi →∞ leads to a uniform distribution.
From eq. (2.13) and eq. (2.12), the statistical properties of the wavelet coefficients C(i)

j can be
summarized by parameter-vector „

C
(i)
j

:

„̂
C

(i)
j

=
h
ff

(i)
j ; fi

(i)
j

iT
= arg max

[ff;fi ]T
fGGD(C

(i)
j ;ff; fi): (2.14)

2.5.2 Logistic distribution

The logistic distribution models a continuous random variable whose probability density is the
logistic function. It is very popular in different areas, such as biology, epidemiology, sociology
and energy [104, 105] . This parametric distribution has two parameters estimated by maximum
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likelihood [106], and the probability density function (PDF)

fLD(x ;—; “) =
exp

“
− x−—“

”
“

„
1 + exp

“
− x−—“

”2
« (2.15)

where — ∈ R is a location parameter and “ > 0 ∈ R is a scale parameter. From eq. (2.15) and
eq. (2.12), the statistical properties of the wavelet coefficients C(i)

j can be summarized by the
parameter-vector „

C
(i)
j

„̂
C

(i)
j

=
h
—

(i)
j ; “

(i)
j

iT
= argmax

[—;“]T
fLD(C

(i)
j ;—; “): (2.16)

2.5.3 t-location-scale distribution

The t-location-scale distribution, is heavy-tailed and has been extensively used in many different
areas [107, 108]. This parametric distribution has 3 parameters estimated by maximum likelihood
[109], and the probability density function (PDF)

fTLSD(x ;—; �; ff) =
Γ(�+1

2 )

ff
√
�ı Γ(�2 )

"
� + ( x−—ff )2

�

#− �+1
2

(2.17)

where −∞ < — < ∞ is the location parameter, ff > 0 is the scale parameter and � > 0 is the
shape parameter, see Section 5.6. From eq. (2.17) and eq. (2.12), the statistical properties of
the wavelet coefficients C(i)

j can be summarized by the parameter-vector „
C

(i)
j

„̂
C

(i)
j

=
h
—

(i)
j ; �

(i)
j ff

(i)
j

iT
= argmax

[—;�;ff]T
fTLSD(C

(i)
j ;—; �; ff): (2.18)

2.5.4 Alpha-stable Distribution

The alpha-stable distribution, is heavy-tailed and has found several applications in economics and
physics as models of rare, but extreme events, such as earthquakes or stock market crashes [110].
In engineering and mathematics, it has also have a variety of applications [111, 112, 113, 114, 115].
This parametric distribution has 4 parameters estimated by maximum likelihood [116, 117, 118],
and the probability density function (PDF)

fASD(x ;ff; fi; ‚; ‹) (2.19)

where ff = 2 is a Gaussian characteristic exponent parameter that describes the tail of the distri-
bution, fi ∈ [−1; 1] is a skewness parameter, with a right-skewed distribution for fi > 0 and the
left-skewed for fi < 0; ‚ > 0 is a scale parameter and ‹ ∈ R is the location parameter.



2.6. Goodness-of-fit test 21

From eq. (2.19) and eq. (2.12), the statistical properties of the wavelet coefficients C(i)
j can

be summarized in a formal sense by the parameter-vector „
C

(i)
j

„̂
C

(i)
j

=
h
ff

(i)
j ; fi

(i)
j ; ‚

(i)
j ; ‹

(i)
j

iT
= argmax

[ff;fi;‚;‹]T
fASD(C

(i)
j ;ff; fi; ‚; ‹): (2.20)

2.5.5 Cauchy distribution

The Cauchy distribution has no mean, variance or higher moments defined. Mode and media are
both equal to x0 [119, 120]. Some applications in engineering and mathematics can be found in
[121, 122, 123]. This parametric distribution has two parameters estimated by maximum likelihood
[124], and the probability density function (PDF)

fCD(x; x0; ‚) =
1

ı‚[1 + ( x−x0
‚ )2]

(2.21)

where x0 ∈ R is a location parameter and ‚ > 0 ∈ R is a scale parameter. From eq. (2.21) and
eq. (2.12), the statistical properties of the wavelet coefficients C(i)

j can be summarized by the
parameter-vector „

C
(i)
j

„̂
C

(i)
j

=
h
x0

(i)
j ; ‚

(i)
j

iT
= argmax

[x0;‚]T
fCD(C

(i)
j ; x0; ‚): (2.22)

2.6 Goodness-of-fit test

2.6.1 Distribution-fitting

For each statistical distribution, the parameters „
C

(i)
j

(see Table 2.3) of the corresponding proba-

bility density function (PDF) were estimated in order to define which is the best model for our
data set. This decision is determined visually through the histogram according to the presence or
absence of symmetry of the data set with respect to the mean value.

Figures 2.2 to 2.6 depict the fit of the different statistical models to wavelet coefficients for
each brain rhythm. This information is relevant to neurologists and allows discriminating clinical
events of different nature, see Section 1.3. We notice that the generalized Gaussian distribution
(GGD) gives the best fit among all the statistical distributions, for all brain rhythms by using all
signals from the Children’s Hospital Boston database. Both visual inspection of curve fitting and
Q-Q plot analysis confirm this good-fit.
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Figure 2.2: Example of good fit of generalized Gaussian distribution (GGD) statistical model
for the Delta Band; we can observe the different data distribution-fitting and how the GGD

is the best data-fit among all distributions considered.
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Figure 2.3: Example of good fit of generalized Gaussian distribution (GGD) statistical model
for the Theta Band; we can observe the different data distribution-fitting and how the GGD

is the best data-fit among all distributions considered.
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Figure 2.4: Example of good fit of generalized Gaussian distribution (GGD) statistical model
for the Alpha Band; we can observe the different data distribution-fitting and how the GGD

is the best data-fit among all distributions considered.
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Figure 2.5: Example of good fit of generalized Gaussian distribution (GGD) statistical model
for the Beta Band; we can observe the different data distribution-fitting and how the GGD

is the best data-fit among all distributions considered.
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Figure 2.6: Example of good fit of generalized Gaussian distribution (GGD) statistical model
for the Gamma Band; we can observe the different data distribution-fitting and how the GGD

is the best data-fit among all distributions considered.

2.6.2 Kolmogorov-Smirnov (KS)

Kolmogorov-Smirnov [125, 126] is a nonparametric test, used to decide if a sample comes from
a population with a specific distribution or between two empirical (cumulative) distributions. It is
defined by

H0 = The data come from a specified distribution

H1 = The data don’t come from a specified distribution

KS = max
x

˛̨̨
F ∗
X(i) − FX(i)

˛̨̨
(2.23)

where F is the empirical distribution and F ∗ is the specified cumulative distribution. The hypothesis
regarding the distributional form is rejected if the significant p-value is greater than 0:05.

2.6.3 Cramer-von Mises criterion (CvM)

Cramer-von Mises (CvM) is a criterion used for judging the goodness of fit of a cumulative
distribution function compared to a given empirical distribution function or for comparing two
empirical distributions [127, 128]. It is defined by

H0 = The data come from a specified distribution

H1 = The data don’t come from a specified distribution

CvM =

Z +∞

∞

˛̨̨
F ∗
X(i) − FX(i)

˛̨̨2
dF (X(i)) (2.24)
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where F is the empirical distribution and F ∗ is the specified cumulative distribution. The hypothesis
regarding the distributional form is rejected if the significant p-value is greater than 0:05.

2.6.4 Goodness-of-fit test results

For comparison, we computed the goodness-of-fit score for the following statistical models that
are also commonly used to model wavelet coefficients: logistic, t-location-scale distribution, and
alpha-stable. Moreover, we computed the scores for each spectral band and by separating the data
into seizures and non-seizure groups for each brain rhythms. The resulting scores are summarized
in Tables 2.4 and 2.5 below, which report respectively the mean and standard deviation of the
Kolmogorov-Smirnov (KS) and the Cramer-von-Mises (CvM) scores. Observe that the generalized
Gaussian distribution clearly provides the best model-fit-to-data.

KS Means GGD Logistic t-location-scale Alpha-stable
delta Non-Seizure 0.002 0.007 0.007 0.007

Seizure 0.002 0.004 0.004 0.004
theta Non-Seizure 0.008 0.037 0.042 0.042

Seizure 0.005 0.018 0.021 0.021
alpha Non-Seizure 0.005 0.045 0.051 0.051

Seizure 0.003 0.021 0.024 0.024
beta Non-Seizure 0.002 0.024 0.027 0.027

Seizure 0.001 0.011 0.012 0.012
gamma Non-Seizure 0.003 0.022 0.027 0.027

Seizure 0.001 0.010 0.012 0.012
CvM Means GGD Logistic t-location-scale Alpha-stable
delta Non-Seizure < 0.001 < 0.001 < 0.001 < 0.001

Seizure 0.004 0.007 0.006 0.006
theta Non-Seizure < 0.001 0.013 0.016 0.016

Seizure 0.001 0.006 0.008 0.008
alpha Non-Seizure < 0.001 0.021 0.027 0.027

Seizure < 0.001 0.005 0.006 0.006
beta Non-Seizure < 0.001 0.009 0.012 0.012

Seizure 0.001 0.005 0.006 0.006
gamma Non-Seizure < 0.001 0.010 0.016 0.016

Seizure < 0.001 0.002 0.003 0.003

Table 2.4: Means of the Kolmogorov-Smirnov (KS) and the Cramer-von-Mises criterion
(CvM) scores obtained for GGD pdfs estimated with all EEG segments of 54 events used, 18
seizures and 36 non-seizures. The GGD shows the lowest scores with respect to the other

distributions considered.
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KS st. deviations GGD Logistic t-location-scale Alpha-stable
delta Non-Seizure 0.001 < 0.001 < 0.001 < 0.001

Seizure 0.024 0.032 0.031 0.031
theta Non-Seizure < 0.001 0.002 0.002 0.002

Seizure 0.014 0.022 0.023 0.023
alpha Non-Seizure < 0.001 0.005 0.005 0.005

Seizure 0.008 0.007 0.007 0.007
beta Non-Seizure < 0.001 0.004 0.004 0.004

Seizure 0.008 0.014 0.016 0.016
gamma Non-Seizure 0.001 0.004 0.005 0.005

Seizure 0.002 0.003 0.003 0.003
CvM st. deviations GGD Logistic t-location-scale Alpha-stable
delta Non-Seizure 0.001 < 0.001 < 0.001 < 0.001

Seizure 0.178 0.290 0.258 0.258
theta Non-Seizure 0.001 0.004 0.003 0.003

Seizure 0.013 0.064 0.078 0.078
alpha Non-Seizure < 0.001 0.007 0.008 0.008

Seizure 0.005 0.016 0.015 0.015
beta Non-Seizure < 0.001 0.006 0.007 0.007

Seizure 0.028 0.145 0.174 0.174
gamma Non-Seizure < 0.001 0.007 0.011 0.011

Seizure 0.001 0.004 0.005 0.005

Table 2.5: Standard deviations of the Kolmogorov-Smirnov (KS) and the Cramer-von-Mises
criterion (CvM) scores obtained for GGD pdfs estimated with all EEG segments of 54 events
used, 18 seizures and 36 non-seizures. The GGD shows the lowest scores with respect to the

other distributions considered.

2.7 Generalized Gaussian best distribution-fitting

In Section 2.6 different statistical models were compared for their ability to model wavelet coeffi-
cients, namely the generalized Gaussian, logistic, t-location-scale, alpha-stable and Cauchy. Based
on the visual comparison, it was determined that the generalized Gaussian is the best distribution.
Precisely, each scale of the wavelet decomposition is represented by the statistical parameters ff
and fi of the generalized Gaussian distribution. The proposed parameter-vector „

C
(i)
j

is obtained

by collecting the parameters associated with all wavelet scales for a 2-second segment with over-
lapping 1 second in all brain rhythms. This vector of parameters is adopted as a quantitative
descriptor of the EEG signals. It acts as a strong reduction of the dimension of X (eq. (2.1)).
Therefore an epileptic signal can be modeled by the probability density function (PDF) of the
generalized Gaussian distribution represented by its parameter-vector given by
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2.8 Characterization with the generalized Gaussian distribution
parameters

2.8.1 Estimation of ff and fi

The electrical brain signal analysis is mostly qualitative according to the level of expertise of the
physician. The development of new quantitative methods that can characterize the dynamical
changes of the electrical activity is crucial for restricting the subjectivity in the study in epileptic
seizures. In section (2.6), the goodness-of-fit test showed that the ff and fi parameters are good
descriptors capable to quantify the variation of the EEG signal in both time and frequency. We
adopt a pseudo-likelihood approach [129, 130, 131] and construct a log-likelihood function under
the next assumption: by ignoring dependency, we get a realistic approximation of the distribution
of the wavelet coefficients. However, this approximation significantly simplifies that estimation of
the parameters of the model and generally produces accurate estimation results.

The log-likelihood of the sample c having independent component can be expressed as:

L(c ;ff; fi) = log
LY
i=1

fGGD(c(i);ff; fi) (2.26)

where ff and fi are parameters to be estimated. Maximizing this log-likelihood requires solving the
following equations:
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where  = Γ′(z)
Γ(z) is the digamma function. Fixing fi > 0 in (2.27), the estimation of the scale ff

parameter has a unique, real an positive solution:

ff =

 
fi

L

LX
i=1

˛̨̨
c(i)
˛̨̨fi! 1

fi

: (2.29)

Substituting this into (2.28), the estimation of the shape fi parameter is given by
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Finally using a Newton-Raphson iterative procedure [102], we compute the new guess for the
root of g(fi), fik+1, based on the previous one, fik , using

fik+1 = fik −
g(fik)

g ′(fik)
: (2.31)

where
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where  ′ is the first poligamma or trigamma function. Note the fact that g(fi) and g ′(fi) share
many common terms which can be used for saving computation at each iteration step in (2.31).
For a GGD, it can be shown that the ratio of mean absolute value of the standard deviation is a
steadily increasing function of the fi :

F (fi) =
Γ( 2
fi )q

Γ( 1
fi )Γ( 3

fi )
: (2.33)

The initial guess fi0 of the maximum log-likelihood estimator is given by

fi0 = F−1
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Given a value for fi , it is possible to estimate — by finding the minimum of

argmin
[—]

LX
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: (2.35)

2.8.2 Model based characterization

In order to use the parameters ff and fi as features to classify seizure and non-seizure EEG segments,
we first propose to assess their ability to separate such signals, in each brain rhythm, see section
2.4.3. We consider a dataset composed of n1 non-seizure events and n2 seizure events of EEG
segments.
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Let 2.36 and 2.37 the set of parameters estimated from non-seizure (N) and seizure (S) events
respectively for a given brain rhythm j , which are the scale and shape parameters of the GGD
associated with the wavelet coefficients from seizure events“
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It is assumed that these four parameters are independent and follow normal distributions. This
assumption is because our parameters are estimated by using maximum likelihood estimation
(MLE). MLE has two properties: consistency and asymptotic normality. That means that when
we repeat MLE, the estimated values follow asymptotically a Gaussian distribution [132, 133], see
for example the Gaussian fitting in the histograms from Figures 2.2 to 2.6.
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A univariate T-test [134] was designed to compare the means —(N)
ff and —(S)

ff

H
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ffj = —

(S)
ffj (2.42)

H
(ffj )
1 : —

(N)
ffj 6= —
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The variances of the distributions (2.38)-(2.41) are not equal and unknown. Consequently, we
designed the test as follows:
Let ff̄(N)

j and ff̄(S)
j denote the empirical conditional means of ff(N)

j and ff(S)
j , and Dffj = ff̄

(N)
j −ff̄

(S)
j

their difference. Denoting as s2
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and s2

ff
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the unbiased estimators of the variances in each group

of events, i.e. seizure and non-seizure, the standard deviation of Dffj can be estimated as
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The statistics of the T-test associated with (2.42) and (2.43) is then
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which is distributed according to a Student’s t-distribution with � degrees of freedom,
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The hypothesis H(ffj )
0 is rejected if

˛̨̨
T

(ffj )
�

˛̨̨
> Tt and we chose a probability of false alarm t = 0:05.

To assess the statistical significance, the p-value of each test has been calculated. Table 2.6 shows
the decision rules that were applied.

p-value Observed difference
> 0:10 not significant
≤ 0:10 marginally significant
≤ 0:05 significant
≤ 0:01 highly significant

Table 2.6: Decision rules to asses the statistical significance of the difference of means of
the GGD parameters for seizure and non-seizure signals.

A similar test has also been designed to compare —(N)
fi j and —(S)

fi j for each brain rhythm j . A bi-
variate T-test has also been designed for the pair (ffj ; fij). Its results were not significant, therefore
it is not reported here.

In addition, to further support the statistical significance given by the p-value, we calculated
the Bayes factor indicator following the method proposed by [135]. This method establishes a
correspondence between frequency significance tests, such as the ones designed here, with Bayesian
tests. As a result, it allows one to equate the size of the classical hypothesis tests with evidence
thresholds in Bayesian tests. Following this work (and assuming equal variances), we calculated
the Bayes factor (BF ) that provides the same evidence as the p-values given by our tests

BF =

0B@ � + T
(ffj )
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� +
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1CA
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where the hypothesis H0 is rejected when t >
√
�‚∗ with ‚∗ = ‚2=(n1+n2−1) − 1 and ‚ =

((T
(ffj )
t )2=� − 1)(n1+n2)=2.

These statistical tests were implemented with the parameters obtained from all events in all
epochs according to section 2.2, with n1 = 36 non-seizure events and n2 = 18 seizure events.
Table 2.7 shows the T-scores, and their associated p-values and Bayes factors. The corresponding
thresholds are shown. We observe that the t-scores (T ff·� ) are all greater than the threshold (Tt).
The corresponding p-values (p) are all lower than 0:01. The equivalent Bayes factors (BF) are
also all greater than the threshold (BFt). The Hff0 hypothesis is therefore rejected for all bands,
with high statistical significance according to the decision rules presented in Table 2.6. The scale
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parameter ff is a good marker to distinguish seizure and non-seizure EEG events. Contrarily, t-
scores for fi are lower than the threshold, except for the Delta band. The associated p-values are
higher than 0:1. The Bayes factors are lower than the thresholds. Consequently, Hfi0 hypothesis is
accepted implying that beta band cannot discriminate seizure and non-seizure EEG events. Based
on these results, it becomes credible to classify EEG into two classes seizure and non-seizure based
on the scale parameter ff of the GGD associated with their wavelet coefficients in each brain
rhythm.

Delta Band Theta Band Alpha Band Beta Band Gamma Band
GGD Parameter ff fi ff fi ff fi ff fi ff fi

T� 6.15 3.19 5.86 0.17 6.47 0.50 7.08 0.48 6.40 0.91
Tt 2.09 2.01 2.09 2.03 2.09 2.01 2.07 2.03 2.08 2.01
p <0.001 <0.001 <0.001 0.90 <0.001 0.62 <0.001 0.63 <0.001 0.37
BF >1000 98.31 >1000 0.03 >1000 0.30 >1000 0.08 >1000 0.64
BFt 3.63 2.12 3.70 2.45 3.79 2.09 3.39 2.46 3.51 2.17

Table 2.7: Results of the t-tests to assess the ability of ff and fi to discriminate separately
seizure and non-seizure EEG. The Hff0 hypothesis is rejected for all rhythms, with highly
statistical significant (p < 0:01). These scores are supported by very high Bayes factors.
Contrarily, Hfi0 is accepted for all rhythms, except Delta band. The associated p-values are
largely greater than 0:1 with Bayes factors lower than the evidence threshold. We conclude
that the scale parameter ff is a marker to discriminate seizure and non-seizure events with a
high statistical significance. The shape parameter fi is not a marker to discriminate seizure

and non-seizure events.

2.9 Kullback-Leibler divergence (KLD)

The Kullback-Leibler divergence (KLD) or relative entropy [136] is used to measure the discrepancy
or similarity between probability density functions (PDF) [137, 138, 139, 140]. Specifically, we
used KLD between the PDFs of the generalized Gaussian distribution for EEG signals in order to
discriminate seizure from non-seizure. See [141, 142, 143] for some works on this topic in epilepsy
and [144, 145, 146] for some applications in EEG Signals.

Let p and q two PDFs, then a Kullback-Leibler Divergence (KLD) is given by
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Notice that in general DKL(p||q) 6= DKL(q||p), and that DKL(p; q) = 0 if and only if p = q [138].
Rewriting (2.13), the probability density function of GGD is given by
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The divergence between two generalized Gaussian models with parameters (ff1,fi1,—1) and (ff2,fi2,—2)
using eq. (2.51) subject to the constraint —1 = —2 = 0 (since our wavelet coefficients have zero-
mean) given by
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In our study, we estimated the parameters (ff; fi) for each 1-second segment of the EEG signal.
The estimated GGD distributions for all segments were compared using the KLD metric (eq.
(2.52)) according to the following rules:

1. Between the PDFs p(i) of the sliding window and the PDF of the annotated seizure onset q

KLDpdf (p(i)||qonset) = Ω(i)KLDpdf (p||q)

2. Between adjacent PDFs coupled with a 7-order one-dimensional median filter [147]

KLDpdf (p(i)||q(i+1)) = Ω(i)F(i)KLDpdf (p||q)

with

F(i) = medianF i lter(KLDpdf (p(i)||q(i)))

See eq. (2.2) for more details about the sliding window.

2.9.1 A visual EEG epilepsy detection experience

A good performance of KLD method via visual inspection by an experienced neurologist from
FLENI was obtained in 8 signals studied from the database described in Section 2.2. We use an
example to show the proposed method. Figures 2.7 and 2.8 depicts the different brain rhythms:
delta, theta, alpha, beta and gamma, where the seizure is 40 seconds of duration. We can see
an increase in the activity between 2 minutes and 2.4 minutes in all brain rhythms. In Figure 2.7
one can notice that the signal shows a seizure onset starting at minute two. We can see clearly
the discrepancy between seizure or non-seizure in epileptic signals; while in Figure 2.8 the seizure
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onset is detected clearly given by the highest peak which emerges from the background of EEG
showing a discrepancy between seizure or non-seizure. Once the seizure finished, there are several
medical pathological factors that cause the signal to take time to stabilize. This explains why
the seizure does not have an instantaneous change after 2 minutes 40 seconds. Nevertheless, the
discrepancy is very clear after the seizure.
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Figure 2.7: KLD between the PDFs of the sliding window and the PDF of the seizure onset
of the epileptic signal, showing a clear discrepancy between seizure or non-seizure. In this

example, the seizure onset begins at minute 2, and its duration is 40 seconds.
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Figure 2.8: KLD between adjacent PDFs coupled with a 7-order one-dimensional median
filter, showing clearly the discrepancy given by the highest peak which emerges from the
background of EEG. In this example, the seizure onset begins at minute 2, and its duration

is 40 seconds.

2.10 Conclusions

Seizure activity characterization requires an efficient and accurate statistical modeling. In this
chapter, the general framework to achieve good epileptic seizure activity detection and quantifica-
tion in EEG signals was presented. We have compared different statistical models and discussed
the best distribution-fitting of the brain rhythms (or wavelet coefficients). The generalized Gaus-
sian statistical model whose parameters can be found by maximum-likelihood estimation was the
best distribution. Each brain rhythm is then mapped to a low-dimensional manifold by this model,
which can be implemented in real time and makes possible developing classification algorithms
with low complexity. Additionally, an analytical Kullback-Leibler divergence (KLD) was developed
for the generalized Gaussian in order to detect epileptic seizures. A study that will be developed
deeper in future work.



Chapter 3
Seizure onset detection and temporal

spread estimation

3.1 Introduction

In chapter 2, we have established a generalized Gaussian statistical model for EEG data and
derived the characterization of epileptic EEG signals using the parameters of this model. Precisely,
we have shown that the scale and shape parameters of the Gaussian distribution are relevant
features to classify EEG signals and detect epileptic seizures. This chapter starts from the fact
that a seizure onset is a sudden change in the spectral energy distribution, which exhibit in a set of
EEG channels. Such seizure progresses and spreads throughout the brain, while its characteristics
evolve. We propose the idea that the scale parameter (which depends on the shape parameter) is
characteristic of the variability of brain activity. Consequently, we develop a new algorithm that
shows that the scale parameter is a descriptor that allows seizure onset detection and his spread
across different brain rhythms in both focal and generalized seizures in epileptic EEG signals.

3.2 Scale parameter sigma (ff)

Based on the brain rhythm decomposition of EEG signals using multilevel 1D wavelets (see sections
2.4.1 and 1.3) and the associated GGD parameters, ff and fi (see eq. (2.13) and eq. (2.25)), a new
algorithm for seizure onset detection and temporal spread estimation was developed. The purpose
of this algorithm is to show that the scale parameter ff (which depends on the shape parameter)
is closely related to the variability of the brain activity and is, therefore, a good descriptor for
performing seizure onset detection (SOD). Each signal in each channel were edited to have an
epoch with the following characteristics: 2 minutes before the seizure, seizure at minute 2 and 2
minutes after the seizure. For each epoch, we know where the seizure begins (see section 2.2)
and can calculate the time delay for the onset based on a thresholding approach (see section
1.6). Table 3.1 reports the minimum value, maximum value and mean of ff parameter for all EEG
signals in 36 non-seizure events and 18 seizure events, which allow using a threshold approach
[78]. Precisely, based on the ff mean for each brain rhythm, it is possible to differentiate between
epileptic events, see Table 3.2.
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ff min max mean
Non-Seizure 1375.45 474942.97 69221.84

Seizure 4383.92 1476232.96 331300.79

Table 3.1: Minimum value, maximum value and mean of ff parameter for all signals in
36 non-seizure events and 18 seizure events. The mean value allows using a thresholding

approach with the scale parameter.

ff Non-Seizure Seizure
Bands min max mean min max mean
Delta 935.85 381863.65 58908.66 2579.55 1264885.38 279701.55
Theta 12.56 3774.65 359.08 10.26 11187.93 1834.65
Alpha 50.95 5216.49 544.67 92.77 17783.92 2890.21
Beta 198.17 42831.14 5253.32 583.46 100595.75 25139.34

Gamma 177.91 41257.05 4156.10 1117.88 81779.97 21735.05

Table 3.2: Minimum value, maximum value and mean of ff parameter for each brain rhythm
in 36 non-seizure events and 36 seizure events. The mean value allows using a thresholding

approach with the scale parameter.

The proposed algorithm requires solving basically three problems. The first problem is related
to the seizure onset detection, where the scale parameter helps to detect a sudden change in the
EEG signal by using the statistical-threshold crossing of the mean of ff, see Table 3.2. The second
problem is the moment estimation in which this sudden change begins. This estimation is given by
the time delay between the annotated seizure onset detection and the statistical-threshold crossing,
given by the mean of ff. Finally, the combination of different time delays in each brain rhythm is
given for each brain area according to the type of seizure, such as focal or generalized. Therefore,
the onset time delay between the annotated seizure onset data and the detection was estimated
using the mean of ff for non-seizures and seizures events. Once onset delay estimation has been
performed for each brain rhythm and each channel, we collect this information off-line in a table,
such as Table 3.3. This table allows identifying channels with low delay and thus understanding
how the seizure originated and propagated temporarily. The most common electrode to all channels
in the brain area is the best possible candidate.

For illustration, we will focus on one example with a generalized seizure. But in general,
no distinction was considered regarding the types of seizure such as focal or generalized because
the goal is to show the possibilities of the analysis of our algorithm through the scale parameter
(which depends on the shape parameter). See the example in Table 3.3, where channels 13 (Fp2-
F8), 14 (F8-T8), 15 (T8-P8), 21 (FT9-Ft10) and 23 (T8-P8) have a delay in all brain rhythms,
therefore they are the candidate-electrodes. Note that these electrodes correspond to the right
temporal brain area, see Figure 3.1. FT9 or FT10 have the least delay, but T8 is the most common
electrode to all according to the clinical observations, therefore it is considered the best candidate.
It is interesting to notice that for the observed activation region, the candidate channels involved
belong all to the same region. This provides hints on the temporal spread. Figure 3.1 and Figures
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3.5 to 3.7 show a correlation between the different brain areas and the electrode positions. Note
that, despite the fact that channel 1 has a previous detection to any of the indicated channels, it
was discarded by the neurologist because this brain area doesn’t have a generalized seizure through
all the brain bands. But it opens interesting research questions to explore deeper. They are related
to the analysis of the frequency bands detected before the onset seizure, and which channels are
active despite not participating directly in the detection of the seizure onset, see for example the
negative value −0:099 in channel 1 for delta band in Table 3.3.

Channel Number Channel Name Delta Theta Alpha Beta Gamma
1 FP1-F7 -0.099 0.001 0.002 0.130 0.131
2 F7-T7 - 0.069 0.234 0.131 0.058
3 T7-P7 - 0.037 0.215 0.369 0.371
4 P7-O1 - - - 0.224 0.162
5 FP1-F3 - 0.037 0.011 0.133 0.133
6 F3-C3 - - - 0.221 0.132
7 C3-P3 - - - 0.378 0.140
8 P3-O1 - - - 0.584 0.552
9 FP2-F4 0.083 0.060 0.037 0.212 0.098
10 F4-C4 - 0.001 - 0.125 0.110
11 C4-P4 - 0.018 0.029 - 0.103
12 P4-O2 - 0.035 - - -
13 FP2-F8 0.105 0.012 0.025 0.021 0.101
14 F8-T8 0.073 0.087 0.134 0.097 0.100
15 T8-P8 0.081 0.018 0.013 0.099 0.103
16 P8-O2 - 0.036 0.016 0.258 0.086
17 FZ-CZ - - - 0.034 0.141
18 CZ-PZ - - - - -
19 P7-T7 0.086 0.085 0.040 2.360 0.350
20 T7-FT9 - 0.069 - 0.372 0.377
21 FT9-FT10 0.005 0.001 0.016 0.098 0.117
22 FT10-T8 0.075 0.066 0.010 0.102 0.101
23 T8-P8 0.065 0.032 0.015 0.098 0.117

Table 3.3: Onset delay (in seconds) by frequency bands, the symbol (-) means that there
is no clear difference at the beginning of the onset. In this example, according to the data,
channels (21) FT9-FT10, (23) T8-P8, (13) FP2-F8, (14) F8-T8 and (15) T8-P8 are the best
candidates by brain area for SOD because it has minor delays; in this case T8 is common
to all channels in this brain area, therefore is the best option for being the onset and other

channels form the spread.

In the next sections, we are going to introduce the proposed algorithm (Section 3.3), which
was applied to 8 real EEG signals from 8 patients suffering from epileptic seizures. By using one
example with generalized seizure, the performance of the algorithm is demonstrated across all brain
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rhythms, namely the delta, theta, alpha, beta, and gamma bands, (Section 3.4). Next, a validation
stage is used by using the Brainstorm software with the purpose of validating the qualitative results
made by visual inspection by the neurologist from FLENI (See Section 3.5).

3.3 Algorithm

The proposed algorithm can be summarized as follows:
Data: EEG raw
Result: Temporal spread estimation
for each brain rhythm do

1. Estimate the GGD parameters ff and fi , see eq. (2.25);
2. Use the scale parameter ff to calculate the time delays of each SOD for each channel
and each brain rhythms;

3. Create a table with the information and calculate each delay for each channel;
4. Organize the table ascendantly;
5. Calculate the Seizure Onset Detection (SOD) candidate channels for the different
brain areas namely Frontal, Parietal, Temporal and Occipital, see Figure 3.1;

The candidates for the onset are the channels that are common to all other channels by
brain rhythm in a determined brain area; and the other channels are the possible
temporal spread accompanying the seizures.

end
Algorithm 1: Temporal spread estimation algorithm

Figure 3.1: Areas of the brain of the Cerebral Cortex (Lateral view) can be correlated with
the electrodes positions, which have a nomenclature according to the lobules, namely (T)

temporal lobe, (P) parietal lobe, (O) occipital lobe and (F) frontal lobe.
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Figure 3.1 shows the four lobe divisions of the cerebral cortex. These areas can be correlated
with the electrode positions whose nomenclature is directly related, (F) of Frontal Lobule, (P) of
Parietal Lobule, (T) of Temporal Lobule and (O) Occipital Lobule, see Figure 1.1.

3.4 Experimental Results

The performance of the proposed algorithm for seizure temporal spread estimation was assessed
using 8 signals from the Children’s Hospital Boston database described in Section 2.2, and com-
pared with results obtained by qualitative visual inspection by an experimented neurologist from
FLENI, who relied on EEG and MRI data, see Figure 3.8. In the next sections, we present the
seizure detection at minute 2 and estimated spread across the cerebral cortex for each rhythm
brain in one example with a generalized seizure.

3.4.1 General Spread

The channels with the smaller delay in the right temporal brain area are (21) FT9-FT10, (23)
T8-P8, (13) FP2-F8, (15) T8-P8, (22) FT10-T8, (14) F8-T8, (9) FP2-FP4, (19) P7-T7. This
distribution suggests that T8 can be the onset of the seizure. Figure 3.2 reports the spread across
the cerebral cortex namely: (F) Frontal, (T) Temporal and (P) Parietal areas, with a small share
in the (C) Central area. This result suggests a simple seizure across the right hemisphere of the
cerebral cortex.

3.4.2 Delta Band Spread

The delta band sequence corresponding to low delays is: (10) F4-C4, (21) FT9-FT10, (11) C4-P4,
(23) T8-P8, (14) F8-T8, (22) FT10-T8, (15) T8-P8, (9) FP2-F4, (19) P7-T7, (1) FP1-F7, (13)
FP2-F8. Figure 3.3 reports the spread across the cerebral cortex namely: (F) Frontal and (T)
Temporal and (C) Central areas. This result suggests a delta activity across the right hemisphere
and isolated activity in the left hemisphere of the cerebral cortex.

3.4.3 Theta Band Spread

The theta band sequence corresponding to low delays is: (1) FP1-F7, (21) FT9-FT10, (13) FP2-
F8, (15) T8-P8, (11) C4-P4, (23) T8-P8, (16) P8-O2, (3) T7-P7, (5) FP1-F3, (9) FP2-F4, (22)
FT10-T8, (2) F7-T7, (20) T7-FT9, (19) P7-T7, (14) F8-T8. Figure 3.4 reports the spread across
the cerebral cortex namely: (F) Frontal, (T) Temporal and (P) Parietal areas, with a small share in
the (C) Central area. This result suggests theta activity on temporal area across both hemispheres
of the cerebral cortex.
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(a) Channel 23: T8-P8
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(b) Channel 13: Fp2-F8
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(c) Channel 15: T8-P8
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(d) Channel 22: FT10-T8
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(e) Channel 14: F8-T8 (f) General spread

Figure 3.2: General Spread: EEG electrodes array, suggests that the seizure starts in channel
T8 and then the spread across the channels F8-T8-P8, F4-C4-P4. Amplitude (y-axis) in mV

and time (x-axis) in min.

3.4.4 Alpha Band Spread

The alpha band sequence corresponding to low delays is: (1) FP1-F7, (22) FT10-T8, (5) FP1-F3,
(15) T8-P8, (23) T8-P8, (16) P8-O2, (21) FT9-FT10, (13) FP2-F8, (12) P4-O2, (9) FP2-F4,
(19) P7-T7, (14) F8-T8, (3) T7-P7, (2) F7-T7. Figure 3.5 reports the spread across the cerebral
cortex namely: (F) Frontal, (T) Temporal and (P) Parietal areas. This result suggests alpha
activity spread across both hemispheres of the cerebral cortex, predominating the right side.
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3.4.5 Beta Band Spread

The beta band sequence corresponding to low delays is: (13) FP2-F8, (17) FZ-CZ, (14) F8-T8,
(21) FT9-FT10, (23) T8-P8, (15) T8-P8, (22) FT10-T8, (10) F4-C4, (1) FP1-F7, (2) F7-T7,
(5) FP1-F3, (9) FP2-F4, (6) F3-C3,(4) P7-O1, (16) P8-O2, (3) T7-P7, (20) T7-FT9, (7) C3-
P3, (8) P3-O1, 19 P7-T7. Figure 3.6 reports the spread across the cerebral cortex namely: (F)
Frontal, (T) Temporal and (P) Parietal areas. This result suggests beta activity spread across both
hemispheres of the cerebral cortex.

3.4.6 Gamma Band Spread

The delta gamma sequence corresponding to low delays is: (2) F7-T7, (16) P8-O2, (9) FP2-F4,
(14) F8-T8, (13) FP2-F8, (22) FT10-T8, (11) C4-P4, (15) T8-P8, (10) F4-C4, (21) FT9-FT10,
(23) T8-P8, (1) FP1-F7, (6) F3-C3, (5) FP1-F3, (7) C3-P3, (17) FZ-CZ, (4) P7-O1, (19) P7-T7,
(3) T7-P7, 20 T7-FT9, (8) P3-O1. Figure (3.7) reports the spread across the cerebral cortex
namely: (F) Frontal, (T) Temporal and (P) Parietal areas. This result suggests gamma activity
spread across both hemispheres of the cerebral cortex.

3.5 Validation

In Section 3.4, we applied our algorithm described in Section 3.3 and we predicted the seizure
onset with its temporal spread in each channel of each epileptic signal. For the validation pro-
cess, we use Brainstorm software (this is a collaborative, open-source application dedicated to
MEG/EEG/sEEG/ECoG data analysis, such as visualization, processing and advanced source mo-
deling [148]) in two stages: MRI image and EEG raw signals. For each MRI of each subject, we
used the default surfaces of Brainstorm, which allow calculating the coordinate system to create
a realistic head model. The underlying method consists in exploiting anatomy and surfaces (in-
formation on head tissues and sensor characteristics) extracted from the image, see Section A.3.2
from appendix A. This MRI is coupled with each EEG signal for each subject in order to project
the electrical activity in the image, see Figure 3.8. Each final image was validated by qualitative
visual inspection by an experimented neurologist from FLENI relying on EEG and MRI data.

In other words, it is necessary to estimate the brain sources which produced the data, according
to the head and information of the sensor array by solving the inverse problem. We used standard-
ized low-resolution brain electromagnetic tomography (sLORETA) algorithm, see Section A.6.5,
which assumes that all possible locations of the sources are simultaneous, see Section A.5.2 from
appendix A.
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(a) Channel 10: F4-C4
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(b) Channel 21:FT9-FT10
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(c) Channel 11: C4-P4
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(d) Channel 23: T8-P8
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(e) Channel 14: F8-T8
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(f) Channel 22: FT10-T8
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(g) Channel 15: T8-P8 (h) Delta spread

Figure 3.3: Delta Band Spread: EEG electrodes array, suggests delta activity spread across
the right hemisphere and isolated activity in the left hemisphere. Amplitude (y-axis) in mV

and time (x-axis) in min.
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(a) Channel 1: Fp1-F7
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(b) Channel 21:FT9-FT10
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(c) Channel 13: C4-P4
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(d) Channel 15: T8-P8
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(e) Channel 11: C4-P4
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(f) Channel 16: P8-O2
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(g) Channel 3: T7-P7 (h) Theta spread

Figure 3.4: Theta Band Spread: EEG electrodes array, suggests theta activity spread across
both hemispheres on temporal area of the cerebral cortex. Amplitude (y-axis) in mV and

time (x-axis) in min.
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(b) Channel 22: FT10-T8
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(c) Channel 5: FP1-F3
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(d) Channel 15: T8-P8

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

20

40

D
e

lt
a

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

20

40

T
e

th
a

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

20

40

A
lp

h
a

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

20

40

B
e

ta

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

20

40

G
a

m
m

a

(e) Channel 16: T8-P8
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(f) Channel 21: FT10-T8
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(g) Channel 13: FP2-F8 (h) Alpha spread

Figure 3.5: Alpha Bands Spread: EEG electrodes array, suggests alpha activity spread across
both hemispheres of the cerebral cortex, predominating the right side. Amplitude (y-axis) in

mV and time (x-axis) in min.
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(c) Channel 14: F8-T8
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(d) Channel 21: FT9-FT10
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(e) Channel 23: T8-P8
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(f) Channel 15: T8-P8
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(g) Channel 22: FT10-T8 (h) Beta spread

Figure 3.6: Beta Band Spread: EEG electrodes array, suggests beta activity spread across
both hemispheres of the cerebral cortex. Amplitude (y-axis) in mV and time (x-axis) in min.
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(c) Channel 9: FP2-F4
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(d) Channel 14: F8-T8
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(f) Channel 22: FT10-T8
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(g) Channel 11: C4-P4 (h) Gamma spread

Figure 3.7: Gamma Band Spread: EEG electrodes array, suggests gamma activity spread
across both hemispheres of the cerebral cortex. Amplitude (y-axis) in mV and time (x-axis)

in min.
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The observation model of EEG signals Φ is given by the equation:

Φ = K J + ” (3.1)

where J is a matrix representing the sources, K is the so-called lead field or gain matrix, and ”
is additive noise. Estimating J requires solving the inverse problem (3.6). It has been shown that
this can be done by minimizing the following regularized criteria:

F–(J) = ‖KJ − ffi‖2
2 + –‖J‖p (3.2)

where – is the regularization parameter ‘p-norm in the interval 1 ≤ ‘p ≤ 2 and 1 ≤ p ≤ 2, see
(A.8).

sLORETA (see Section A.6.5 from appendix A) uses the Tikhonov regularization (p = 2) [149]
and solves the resulting cost function

min
h
‖ffi−KJ‖2

2 + –‖J‖2
2

i
(3.3)

A possible solution to this inverse problem can be expressed as

j i = KT
i [K iK

T
i + –iI]−1ffi = RiJ (3.4)

where j i indicates the possible source candidate at voxel i and Ri is the resolution matrix given by

Ri = KT
i [K iK

T
i + –iI]−1: (3.5)

The observation model of EEG signals Φ is given by the equation:

Φ = K J + ” (3.6)

where J is a matrix representing the sources, K is the so-called lead field or gain matrix, and ”
is additive noise. Estimating J requires solving the inverse problem (3.6). It has been shown that
this can be done by minimizing the following regularized criteria:

F–(J) = ‖KJ − ffi‖2
2 + –‖J‖p (3.7)

where – is the regularization parameter ‘p-norm in the interval 1 ≤ ‘p ≤ 2 and 1 ≤ p ≤ 2, see
(A.8). sLORETA (see Section A.6.5 from appendix A) uses the Tikhonov regularization (p = 2)
[149] and solves the resulting cost function

min
h
‖ffi−KJ‖2

2 + –‖J‖2
2

i
(3.8)

A possible solution to this inverse problem can be expressed as

j i = KT
i [K iK

T
i + –iI]−1ffi = RiJ (3.9)
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where j i indicates the possible source candidate at voxel i and Ri is the resolution matrix given by

Ri = KT
i [K iK

T
i + –iI]−1: (3.10)

See section A.6.5 from appendix A for more details about this algorithm. For illustration Figure
3.8 shows the EEG and MRI image for one subject using sLORETA. This information allows the
reconstruction of a model of the brain and the determination of the location where the seizure
originated, as well as its temporal spread throughout the brain. This information is compared with
the spread sequence estimated by our algorithm from EEG data.

Figure 3.8: For illustration, the figure shows the EEG of a patient (left) with his correspon-
ding MRI (right top). A reconstruction of the brain is shown with the corresponding seizure
spread (right bottom). On the right of each image, there is a color map which indicates the

intensity of each activation source.

3.6 Conclusions

The proposed algorithm is useful for onset detection and temporal spread estimation. Performing
the analysis at the level of the brain activity rhythm bands can improve the identification of the
area of the brain affected, as seen in the interesting correlation with Table 1.1. This preliminary
study shows a plausible path for seizure onset detection and its spread in both focal and generalized
seizures in epileptic EEG signals. Therefore, a strong quantitative validation with control of false
positive rates in future work is necessary, in order to implement the algorithm in automatic real
processing systems.



Chapter 4
Model-based classification for seizure onset
detection

4.1 Introduction

EEG signal classifiers play a particularly important role in EEG signal processing. Classification is
based on features extracted from single channels, multiple channels or a combination of these. In
this chapter, we study four different classifiers: linear discriminant, multivariate Bayesian, ensemble
bagging and logistic regression into the broad framework of machine learning. They are trained
off-line for each brain rhythm. Each classifier runs in real time to detect seizure onsets from EEG
recordings as follows:

Classifier Wavelet
Decomposition

Features Epochs from the
database

Linear discriminant 1D ff, fi , � 39
Bayesian 2D ff, fi 36
Ensemble bagging 1D ff, fi , › 105
Logistic Regression 1D –, & 36

Table 4.1: Classification methods developed independently for each brain rhythm. The scale
(ff) and shape (fi) correspond to the generalized Gaussian distribution parameters, � is the
variance, › is the entropy from the generalized Gaussian, – are the largest Lyapunov exponents
from the Analysis of Independent Components (ICA), and & are the –-scaling between their

± standard deviation.

Note that, in this chapter, we use different epochs from the database because all studies
correspond to different stages of the research, see Table 4.1. Linear discriminant and multiva-
riate Bayesian classifiers are based on multilevel 1D and 2D wavelet decomposition respectively.
They both use the parameters of the generalized Gaussian distribution of the wavelet coefficients,
independently for each brain rhythm. The ensemble bagging classifier uses the entropy of the
generalized Gaussian distribution associated with the multilevel 1D wavelet coefficients. While
the logistic regression classifier is applied to Lyapunov exponents and their scaling given by its ±
standard deviation, from Independent Component Analysis (ICA) of multilevel 1D wavelet decom-
position, independently for each brain rhythm. The four classifiers are tested and compared using
a challenging pediatric dataset containing both epileptic events and normal brain function signals,
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see Section 2.2. The high performance in terms of classification sensitivity and specificity permits
to discriminate between seizure and non-seizure in EEG signals.

In this chapter, we are going to concentrate on the linear discriminant classifier because this
method has three main strengths: it has low computational cost making it suitable for real-time
implementation in EEG devices; it performs detection separately for each brain rhythm, following
the current medical practices; and it can be trained using reasonably small datasets, which is key
in clinical problems where there is limited annotated data available. This is in sharp contrast with
modern approaches based on machine learning techniques, which achieve very high sensitivity and
specificity but require large training sets with expert annotations that may not be available.

4.2 Seizure onset detection (SOD) classifiers

Epileptic seizure detection methods based on EEG signals stem from the observation that EEG
signal descriptors allow discriminating normal from abnormal brain activity. This practice originated
half a century ago with works by Viglione et al. [41], Liss et al. [42], Ktonas et al. [43] and Gotman
et al. [44]; and continued with Iasemidis et al. [45, 46] mainly in the medical literature and by using
analog EEG devices, see Section 1.6 for more details. Later, the adoption of digital signal processing
in EEG systems stimulated the development of pattern recognition methods to detect and analyze
abnormal brain activity automatically. The main practical advantage of EEG technology is its
economic accessibility. This has significantly contributed to the wide adoption of EEG in developing
countries, whereas other more advanced modalities, such as magnetoencephalography (MEG), are
expensive and have not been widely adopted.

There is currently a wide range of EEG signal processing methods to detect brain seizures
accurately. Most methods use classification techniques from the supervised machine learning
literature, such as support vector machines [150, 151] and discriminant analysis [12], and differ
mainly in terms of their feature extraction methods and the features classification approaches.
Many methods use time-frequency descriptors, either explicitly (e.g., short-term Fourier or wavelet
representations) [37, 152, 153, 154, 151, 155], empirical mode decomposition [156, 157, 158],
implicitly by learning neural networks [14, 159] or by using component analysis or common spatial
patterns (see for example [13, 160, 161]). Some also use statistical descriptors such as signal
entropy [162, 163, 164, 154, 151, 165] or fractal dimension [166, 167].

The main approaches from the state of the art are summarised in Table 4.2, together with their
detection performance on a test dataset. Observe that most modern methods perform remarkably
well and achieve true positive rates (TPR) or sensitivities of the order of 95% − 99%, and true
negative rates or specificities of the order of 85% − 95%, depending on the specific method
and dataset considered. This good performance is achieved by using advanced signal processing
techniques that are generally very computationally intensive. As a result, state-of-the-art detection
methods cannot be incorporated into EEG devices to perform detection in real time. For example,
the method [13] uses common spatial patterns that require estimating covariance matrices and
performing singular value decompositions at each detection step. This limitation is motivating the
development of detection methods that use cloud computing technology to perform detection on a
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high-performance computing server that is accessed remotely (see for example [161]). This strategy
is potentially very interesting in some settings, but it would be difficult to implement in developing
countries where many hospitals still have limited Internet access and poor IT infrastructure.

Another limitation of state-of-the-art methods is that they pull information from all spectral
bands to improve detection performance [13]. While beneficial in terms of classification accuracy,
this can be problematic in many clinical applications where the current practice is to detect seizures
independently in each physiological spectral band or brain rhythm (these bands are specified in
Section 2.4). Finally, state-of-the-art methods also rely increasingly on large training datasets,
which is a drawback in clinical applications where there is limited annotated data available. Also,
many existing methods use feature-based classification techniques, with a significant number of
features in order to handle the inherent variability of such features.

This chapter seeks to address these limitations of the existing methods by developing an
automatic EEG detection technique that has a low computational cost, that performs detection
independently in each brain rhythm following current clinical practice, and that can be trained
with reasonably small datasets, with a detection performance that is similar to that of state-
of-the-art algorithms. In contrast to existing methods, the proposed method adopts a model-
based classification approach. Model-based classification has been used in various applications
[168, 169, 170]. The idea is to capture the statistical properties of the signal using the parameters
of a probabilistic model, see Section 2.5.1. This approach is interesting compared to feature-based
classification, especially when features are numerous or exhibit large variability. It can be viewed
as an interesting dimensionality reduction technique facing the curse of dimensionality and leading
to low computational cost classification, see Section 2.7. Despite its interest, this approach has
not been widely investigated in EEG signal processing. Precisely, the linear classification method
(explained later) is driven by a parametric statistical model that captures the statistical properties
of the signals and their evolution in time, with the model parameters acting as classification
features, see Section 2.8.2. This approach is an interesting alternative to the non-parametric
features (e.g., signal power spectrum, variance, entropy, etc.) commonly used in the literature
because the parametric structure of the model acts as a dimensionality reduction mechanism that
regularizes the classification problem and consequently improves the stability and robustness of the
classification while reducing significantly computational cost. Despite its advantages, to the best
of our knowledge, this promising approach has not been investigated for EEG signal classification.
Note however that statistical approaches have been successfully applied to other challenging EEG
processing problems (see for example [171, 172]).
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Classification method Features Test data Performance Ref.
Learning vector quantization Signal entropy from wavelet coefficients 400 epochs from 5 normal subjects and 5

epileptic patients
TPR:98% [154]

Support Vector Machine Matching pursuit algorithm 133 EEG from Rigshospitalet University Hos-
pital database (Copenhagen, Denmark)

TPR:78%,
TNR:84%

[150]

Support Vector Machine Spectral and entropy analysis 3 datasets from EEG University Hospital
Bonn database

TPR:90% [151]

Fuzzy classification Amplitude, frequency and entropy descrip-
tors

56 iEEG from 20 patients from University of
Freiburg database

TPR:95:8%,
TNR:74%

[173]

Hidden Markov Model Segmentation of topographic maps of time
varying spectral

10 EEG patients from EPILEPSIAE [174] TPR:94:59%,
TNR:92:22%

[155]

Support Vector Machine Third-order tensor discriminant analysis:
spectral, spatial, and temporal domains

36 EEG patients from Children’s Hospital
Boston database

TPR:98%,
TNR:94%

[12]

K-means clustering Spatiotemporal analysis as morphological fil-
ter

10 EEG patients from University of Florida
Hospital database

TPR:87:4% [175]

Support Vector Machine Fractional linear prediction 100 single channel EEG segments from The
Bern-Barcelona EEG database

TPR:96%,
TNR:95%

[176]

Least Squares Support Vector
Machine

Phase space representation 100 segments from the EEG University Hos-
pital Bonn

TPR:100%,
TNR:96%

[177]

Support Vector Machine Empirical mode decomposition 51 EEG segments from 17 patients from Uni-
versity of Freiburg (Germany)

TPR:98:6%,
TNR:88:6%

[178]

1-Nearest Neighbor 1D-local binary patterns from bank of Gabor
filters

100 ECoG segments from University Hospital
Bonn database

TPR:98:33% [179]

Support Vector Machine Common spatial Pattern (is a method that
uses a linear transform to project multichan-
nel EEG data into a low-dimensional spatial-
subspace projection)

36 EEG patients from Children’s Hospital
Boston database

TPR:100% [13]

Relevance Vector Machine Multifractal 21 EEG patients from the Epilepsy Center of
the University Hospital of Freiburg

TPR:92:94%,
TNR:97:47%

[180]

Regression neural network Statistical descriptors of dual-tree complex
wavelet transform coefficients

100 segments from University of Bonn
database and 21 patients from Sir Ganga
Ram Hospital (New Delhi)

TPR:92%,
TNR:98%

[159]

K-Nearest Neighbor, linear
discriminant analysis, naive
Bayesian, logistic regression
and Support Vector Machine

Time, frequency, time-frequency and nonlin-
ear features

100 segments from University Hospital Bonn
database

TPR:99:25% [181]

1-Nearest Neighbor Regularization, learning rate and momentum
from a convolutional neural network

5 patients from the EEG University Hospital
Bonn

TPR:95%,
TNR:88:67%

[160]

Random Forest, C4.5, Func-
tional tree, Bayesian-network,
Naive-Bayes and K-nearest
neighbours

Mean of joint instantaneous amplitude,
Mean and variance of monotonic absolute
change from empirical wavelet transform

36 EEG patients from Children’s Hospital
Boston database

TPR:97:91%,
TNR:99:57%

[182]

Support Vector Machine Pyramid of difference of Gaussian filtered
signals and local binary patterns

100 segments from the EEG University Hos-
pital Bonn

TPR:100%,
TNR:100%

[183]

Support Vector Machine Random subspace ensemble method and In-
finite Independent Component Analysis

208 ECoG from University of Pennsylvania
and the Mayo Clinic

TPR:98%,
TNR:96%

[161]

Least-Square Support Vector
Machine

Time-frequency representation based on the
improved eigenvalue decomposition of Han-
kel matrix and Hilbert transform

100 segments from the EEG University Hos-
pital Bonn

TPR:100%,
TNR:100%

[184]

Table 4.2: State-of-the-art methods to perform seizure detection automatically in EEG
signals, summarized in terms of the classification techniques and features used and their
reported performance on a test dataset. The performance metrics are the True Positives

Rate or Sensitivity (TPR), the True Negative Rate or Specificity (TNR).
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4.3 Cross-validation and leave-one-out cross-validation

In many biomedical applications the supply of data for training and testing can be limited, so if
we want to build good models, we must use as much of the available data as possible for training.
However, if the validation set is small, it will give a relatively noisy estimate of predictive perfor-
mance. One solution to this dilemma is to use cross-validation [185], which is a model validation
technique for evaluating how the results of a statistical analysis algorithm can be generalized to
an independent data set. Applications of this method in epilepsy date back to the 70s [73] with
template matching, see [3] for more details.

Cross-validation is a model validation technique to evaluate how the results of a statistical
analysis algorithm can be generalized to an independent data set. This is done by partitioning a
dataset and using a subset to train the algorithm and the remaining data for testing. Each round
of cross-validation involves randomly partitioning the original dataset into a training set and a
testing set. The training set is then used to train a supervised learning algorithm and the testing
set is used to evaluate its performance. This process is repeated several times and the average
cross-validation error is used as a performance indicator.

In leave-one-out cross-validation technique, the data partitions use the k-fold approach where
k is equal to the total number of observations in the data [186, 187]. Leave-one-out cross-
validation technique has numerous applications in science, engineering and EEG signal processing
[188, 189, 190, 191, 192].

4.4 Methodology

The general methodology used in this chapter is presented in the following subsections.

4.4.1 Problem statement

Let X ∈ RM×N denote a time-discretized EEG signal recorded by an array composed of M
channels over a period of T seconds, and using a sampling period of T=N seconds. Each row of
X is associated with one channel of the array and contains all the sampling points corresponding
to the EEG signal recorded by that channel, whereas each column is associated with a sampling
point and contains the vector signal acquired by the full array at that time instant. Moreover, to
analyse the different frequency components of „(i), we denote by „(i)

‹ , „(i)
„ , „(i)

¸ , „(i)
˛ , and „(i)

‚ the
spectral components related to the ‹ (0-4 Hz), „ (4-8 Hz), ¸ (8-16 Hz), ˛ (16-32 Hz), and ‚
(32-64 Hz) frequency bands. As mentioned previously, each of these bands is related to different
neurological functions and is therefore associated with specific neurological disorders, see Section
1.3 for more details.

This thesis considers the problem of detecting epileptic seizure activity in EEG signals in
real-time and identifying the frequency bands where the seizure occurs. Formally, for any time
instant n ∈ {1; N}, define band-specific binary labels !‹(n), !„(n), !¸(n), !˛(n), and !‚(n)

that take value 1 to indicate the presence of an epileptic seizure at their spectral band, and 0
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to indicate normal activity. Given some expert annotated training data {X(i)
0 }

I0
i=1 and {X(i)

1 }
I1
i=1

corresponding to short EEG recordings of healthy and epileptic seizure activity, we consider the
supervised classification problem of estimating the values of !‹(n), !„(n), !¸(n), !˛(n), and
!‚(n) in real-time as X is acquired by the EEG array. This is motivated by our interest in clinical
applications where this information is required in real-time, we focus therefore on classifiers that
have low computational complexity.

4.4.2 Proposed method

The proposed method has a pipeline structure composed of the following three steps: a filter bank
that separates X into its X‹ , X„, X¸, X˛, and X‚ spectral components, followed by a statistical
dimensionality reduction step that maps these components into a low-dimensional representation
where pathological brain activity is easily detected, and finally a classification step based on a
thresholding approach.

4.4.3 Spectral decomposition by wavelet filter bank

We use a Dauchebies (Db4) wavelet filter bank to separate X into the five spectral components
X‹ , X„, X¸, X˛, and X‚ . Because our data is acquired at a 256 Hz sampling rate, in our
experiments we use a wavelet filter through tree-based topology, with six scales. The upper five
scales match with the spectral bands of interest (the remaining scale related to the 64-128 Hz
band has very poor signal-to-noise ratio and is discarded, see Section 2.4.3). The output of this
stage are 5 sets of wavelet coefficients „‹ , „„, „¸, „˛, „‚ (please note that this approach can be
straightforwardly generalized to higher sampling rates by using or discarding any additional bands),
see Section 2.4 for more details.

4.4.4 Statistical model of the spectral components

Designing a classifier to detect pathological brain activity directly from the EEG signals (or their
wavelet representation) is very challenging due to the high-dimensionality of the data, and because
it would require a large training set and a complex classification methodology. To detect abnormal
brain activity with limited annotated training data, particularly in the context of classifiers with low
computational complexity suitable for real-time implementations, it is necessary to map the EEG
data to a meaningful compact representation that highlights the information able to discriminate
normal and abnormal activities. A successful representation should also provide the low-dimensional
structure and favorable regularity properties that enable a simple classification scheme, such as
threshold-based methods.

Here we construct this representation by using a parametric statistical model to summarize the
empirical distribution of the wavelet coefficients associated with each spectral band. Precisely, a
sliding window approach was adopted and fit a parametric statistical model to the wavelet coeffi-
cients associated with the last 2 seconds of X. Because the signals considered in the experiments
are acquired with M = 23 channel array, the 2-second window corresponds respectively to the
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coefficients of C(i)
‹ , C(i)

„ , C(i)
¸ , C(i)

˛ , and C(i)
‚ . We model each set of wavelet coefficients with

zero-mean generalized Gaussian distribution (GGD) with density given by

f (x ;ff; fi) =
fi

2ffΓ(fi−1)
exp

„
−
˛̨̨̨
x

ff

˛̨̨̨fi«
(4.1)

where ff ∈ R+ is a scale parameter, fi ∈ R+ is a shape parameter that controls the density tail, and
Γ (·) is the Gamma function. We estimate the values of ff and fi for each spectral band by maximum
likelihood estimation, see eq. (2.25), which we solve straightforwardly by using a Newton-Raphson
algorithm, see Sections 2.8 and 2.8.2 for more details. We obtain the parameter-vector „

C
(i)
j

„
C

(i)
j

=
h
ff

(i)
j ; fi

(i)
j

iT
= argmax

[ff;fi ]T
fGGD(C

(i)
j ;ff; fi) =

"
„
C

(i)
j

‚ ; „
C

(i)
j

˛ ; „
C

(i)
j

¸ ; „
C

(i)
j

„ ; „T‹

#T
: (4.2)

4.5 Linear discriminant classifier

4.5.1 Classifier parameters

Linear classification parameters for onset detection are summarized in Figure 4.1.
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Figure 4.1: Algorithm used in linear classifier.
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4.5.2 SOD by linear discriminant analysis classification

Consider the classification into two possible classes: !s for seizure and !ns for non-seizure. For a
feature vector „

C
(i)
j

belonging either to the class !s or to the class !ns , we assume that „
C

(i)
j

has

a normal distribution with mean value —s (or —ns) and covariance matrix Σs = Σns , then

p

„
„
C

(i)
j

˛̨̨̨
!s

«
=

1q
(2ı)k |Σs |

exp

"
−1

2

„
„
C

(i)
j

−—s
«T

Σ−1
s

„
„
C

(i)
j

−—s
«#

(4.3)

p

„
„
C

(i)
j

˛̨̨̨
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«
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1q
(2ı)k |Σns |

exp

"
−1

2

„
„
C

(i)
j

−—ns
«T

Σ−1
ns

„
„
C

(i)
j

−—ns
«#

(4.4)

where k is the dimension of the vector „
C

(i)
j

and p(·) is the density conditioned by an event.

For linear discriminant analysis, we estimate the mean (—s or —ns) and the covariance (Σs or
Σns) of each class from observations.

The linear discriminant for these classification problem is given by

ln
p

„
„
C

(i)
j

˛̨̨̨
!s

«
p

„
„
C

(i)
j

˛̨̨̨
!ns

« = („
C

(i)
j

−—s)TΣ−1
s („

C
(i)
j

−—s) + ln
˛̨
Σs

˛̨

− („
C

(i)
j

−—ns)TΣ−1
ns („

C
(i)
j

−—ns)− ln
˛̨
Σns

˛̨
: (4.5)

Following the methodology used in Section 4.4, the proposed seizure detection pipeline is a
classifier that labels the statistical parameters associated with each spectral band as seizure or
non-seizure. Precisely, five independent two-parameter classifiers are used in parallel to classify the
pairs [ff‹(n); fi‹(n)], [ff„(n); fi„(n)], [ff¸(n); fi¸(n)], [ff˛(n); fi˛(n)], and [ff‚(n); fi‚(n)] generated by
the statistical dimensionality reduction step. This allows to simultaneously identify seizure activity
and the spectral bands where it occurs. For simplicity, a linear classifier derived from a linear
discriminant analysis is used. Just, a supervised approach was adopted where each classifier is
band-specific and has been trained by performing a linear discriminant analysis on expert annotated
data. The discriminant analysis perform on an augmented vector [ff; fi; �] ∈ R3, where � =

ff2Γ(3=fi)=Γ(1=fi) is the variance parameter. Including � in the discriminant analysis embeds
(ff; fi) in a non-linear manifold into R3 where a better linear classification is possible (note that �
available for free as a by-product of the Newton-Raphson method that estimates ff and fi , hence
this augmentation does not introduce any additional computational cost). The resulting linear
classifiers are specified by three parameters (a; b; c) defining a plane that splits R3 in two regions
related to seizure and non-seizure events, and which essentially operate as a three-dimensional
threshold for the triplets ff; fi; �. Lastly, similarly to the choice of the statistical model, it is
possible to consider more advanced classifications schemes. However, such classifiers also involve
more parameters and hence are more prone to over-fitting and more computationally expensive.
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4.5.3 Experimental results

For the experiments, we used data from the Children’s Hospital Boston database, see section 2.2.
From this database, we used 13 seizure signals or epochs selected by an experienced neurologist,
see Table 2.1. These correspond to 13 seizure events from 9 different subjects and are between
1 and 5 minutes long (the other data exhibited strong artifacts related to muscle activity and
were discarded as a consequence). The resulting dataset consisted therefore of 39 signal segments
related to 13 seizures and 26 non-seizure signals, and of variable length in the range of 1 to 5

minutes.

To illustrate the capacity of the statistical parameters ff and fi to discriminate seizure events
and non-seizure signals, Figure 4.2 shows scatter plots for each spectral band constructed using
the signals in the database and the expert annotations (non-seizure signals are represented using
blue circles and seizure signals using red crosses). Observe that this representation provides a
very good linear discrimination of the seizure and non-seizure groups. In particular, one notices
that the scale parameter ff is particularly useful for discrimination, see also discrimination tests in
subsection 2.8.2.
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Figure 4.2: Scatter plots for the statistical parameters ff and fi for seizure signals (red
crosses) and non-seizure signals (blue circles) for each spectral band, showing the good

discrimination properties of the proposed representation.
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Moreover, to assess the performance of the proposed methodology, we adopted a supervised
testing approach by using the 39 signal segments described above to train and test the method.
Because the dataset is relatively small we used an exhaustive cross-validation technique based on a
leave-one-out approach. Precisely, at each iteration of the cross-validation process, we trained the
5 classifiers (each defined by 3 parameters) with data from 13 seizure signals and 26 non-seizure
signals, and then assessed classification performance on the remaining 3 signals (these are 1 seizure
and 2 non-seizure signals). In each iteration of the cross-validation process, the classification per-
formance was assessed by splitting the test signals into sequences of 2 seconds and classifying each
sequence individually; these results were then used to assess classification performance. Precisely,
we measure the method’s true positive rate (TPR) or sensitivity, false positive rate (FPR), true
negative rate (TRN) or specificity, and overall accuracy (ACC), expressed as the rate of good cla-
ssification. For each figure of merit, we report the mean value and the standard deviation. These
results are reported in Table 4.3 below. Average latency (time delay) is also reported between
the annotated seizure onset and the detection by the method in Table 4.4. Classification accu-
racy and latency were compared with the state-of-the-art methods [12, 13, 14], which also report
classification performance and latency for the Children’s Hospital Boston database. We empha-
size again that these state-of-the-art methods are significantly more computationally expensive
than the proposed method. For example, [12] uses a third-order tensor discriminant analysis, [14]
a stack of neural networks combined with a logistic classifier, and [13] computes singular value
decompositions of covariance matrices at each detection step. Neither of these methods can be
implemented in real-time in a standard EEG system as a consequence.

Observe from Table 4.3 that, despite the computational simplicity, the proposed method
achieves an excellent sensitivity of the order of 97% − 99% for all spectral bands. This is close
to the state-of-the-art performances of 98% − 100% reported in [12, 13, 14] for this dataset.
Moreover, the specificity of the proposed method is approximately 90%. This is slightly bellowed
the 94% specificity of [12] (the works [13, 14] do not report specificity). However, notice that to
achieve this higher specificity, the method [12] pulls together all spectral bands, and as a result,
it does not discriminate between seizures in different bands. Our method performs classification
independently on each band because this is useful in clinical practice, at the expense of a slightly
lower specificity.

Furthermore, observe from Table 4.4 that the method proposed in this thesis achieves an
average latency of approximately 4 seconds for all spectral bands, outperforming the state-of-the-
art methods [12, 14] and close to the fastest available method [13]. Ii is important to emphasize at
this point that all the latency values reported in the literature measure the delay of the detection
algorithm offline, without taking into account any overhead related to the methods’ computing
times. Therefore, the fact that different methods achieve similar latency does not indicate that
they have similar computational complexity.
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Finally, note that computing times are not reported for these experiments for two reasons. First,
because these proof-of-concept tests were conducted in MATLAB, and processing each 2-second
EEG signal window required less than 50 milliseconds. Second, because we do not have access
to the implementations of [12], [13] and [14], and therefore the comparisons would not be fair.
However, as explained previously, these methods clearly have a significantly higher computational
complexity because of the sophisticated mathematical operations involved (e.g., third-order tensor
discriminant analysis, singular value decompositions of covariance matrices, stacked neural net-
works, etc.). A real-time implementation of the proposed method is currently under development.

Metric Delta Band (‹) Theta Band (Θ) Alpha Band (¸) Beta Band (˛) Gamma Band (‚)
TPR 0.97 ±0.06 0.99 ±0.01 0.99 ±0.02 0.97 ±0.05 0.99 ±0.01
TNR 0.92 ±0.07 0.79 ±0.23 0.91 ±0.08 0.90 ±0.10 0.91 ±0.08
FPR 0.08 ±0.07 0.21 ±0.23 0.09 ±0.08 0.10 ±0.10 0.09 ±0.08
ACC 0.95 ±0.17 0.92 ±0.29 0.96 ±0.11 0.94 ±0.22 0.97 ±0.11

Table 4.3: Seizure detection performance by using linear discriminant analysis classification
for each brain rhythm and for 39 events (13 seizure and 26 non-seizure) of the Children’s
Hospital Boston database, in terms of: TPR = True Positives Rate or Sensitivity; TNR =
True Negative Rate or Specificity; FPR = False positive Rate; ACC = Accuracy; and [±

standard deviation].

Proposed state-of-the-art
Delta band (‹) Theta band („) Alpha band (¸) Beta band (˛) Gamma band (‚) [12] [13] [14]

4:3 3:9 4:1 4:0 4:1 4:5 3:4 7:2

Table 4.4: Average latency between seizure onset and detection (in seconds), for the pro-
posed method on each spectral band, and for the state-of-the-art methods. [12, 13, 14].

4.5.4 Pearson’s product moment correlation

Pearson’s product moment correlation coefficient is a measure of the strength of a linear association
between two variables or classes, non-seizure and seizure in our case. Consider the classification
into two possible classes: !s for seizure and !ns for non-seizure from linear discriminant from
(4.5), then the linear association from the Pearson product-moment correlation coefficient r is
expressed as

r =

P
(!s − !s)(!ns − !ns)qP

(!s − !s)2
P

(!ns − !ns)2
(4.6)

where !s and !ns are the means of each class, and r can take a range of values from +1 to -1. A
value of 0 indicates that there is no association between the two variables. A value greater than
0 indicates a positive association; that is, as the value of one variable increases, so does the value
of the other variable. A value less than 0 indicates a negative association; that is, as the value of
one variable increases, the value of the other variable decreases.
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The Pearson’s correlation coefficient of the two classes (!s for seizure and !ns for non-seizure)
for each brain rhythm are reported in Table 4.5, where p-value is the significance level of the T-test
[134]. This shows that for bands delta, theta, alpha and beta the correlation for !ns is high with
r near to one, p-values < 0:001, and a good confidence interval; while for !s the bands are not
correlated with r near to zero. These results suggest that our model based on generalized Gaussian
distribution coupled with the linear discriminant classifier can be defined by scale value between
[−1; 1] to discriminate between seizure and non-seizure events.

Bands r p-value IC95%
Delta !ns 0.88 < 0.001 0.70 0.95
Delta !s 0.39 0.11 -0.01 0.72
Theta !ns 0.81 < 0.001 0.55 0.92
Theta !s 0.51 0.03 0.06 0.79
Alpha !ns 0.80 < 0.001 0.53 0.92
Alpha !s 0.45 0.06 -0.02 0.76
Beta !ns 0.72 < 0.001 0.38 0.89
Beta !s 0.15 0.56 -0.34 0.58

Gamma !ns 0.58 0.01 0.15 0.82
Gamma !s -0.11 0.66 -0.55 0.38

Table 4.5: Pearson’s product moment correlation coefficient comparison between !s for
seizure and !ns for non-seizure events, over the proposed epilepsy classification model for
each brain rhythm; where r = 1 is total positive correlation, r = 0 is no correlation, r = −1
is total negative correlation and IC95% is the 95 percent confidence interval. The model
presents high correlation for all brain rhythms, except for gamma band in non-seizure events.
This suggests that Pearson’s product moment correlation coefficient can be used to estimate

changes between seizure and non-seizure events.

4.6 Multivariate Bayesian Classifier

Methods to analyze epileptic seizure signals can be classified into univariate or multivariate approa-
ches. Univariate approaches analyze the state of a single brain region, while multivariate approaches
analyze. many regions simultaneously as well as their interactions [193]. In this classifier, we ex-
tend the approach used in the previous Section 4.5 by using a multilevel 2D wavelet representation
coupled with a Bayesian classification scheme [194, 195, 196, 197] to operate with multivariate
EEG signals so as to analyze several brain regions simultaneously.

4.6.1 Classifier parameters

Multivariate Bayesian classification for onset detection is summarized in Figure 4.3. It is very
similar to linear classifier parameters from subsection 4.5.1. The more important difference is the
use of multilevel 2D wavelet decomposition in order to analyze the EEG, see subsection 2.4.2
of Section 2.4. The feature vector associated with each time segment is classified by using a
Bayesian classifier as seizure or non-seizure. Here we use a multivariate Gaussian classifier [101]
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which provides a robust second-order approximation with a more general Bayesian classification
method [198, 199] which has the important advantage of requiring little training data.
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Figure 4.3: Algorithm used in Bayesian classifier. The coefficients vector C(i)
j and the vector

of parameters estimated „(i)
j , from different brain rhythms are composed by the details H,

V , and D, which refer to horizontal, vertical and diagonal respectively, see Section 2.4.

4.6.2 SOD by Bayesian Classifier

Consider a classification into J possible classes !1; : : : ; !J . For a feature vector „(i) belonging to
the class !j , we assume that „(i) has a multivariate normal distribution with mean value —j and
covariance matrix Σj , so that

p
“
„(i)

˛̨̨
!j
”

=
exp
h
− 1

2 („(i) −—j)TΣ−1
j („(i) −—j)

i
(2ı)K=2|Σj |1=2

(4.7)

where p(·) is the probability of a particular event, and K is the size of the vector „(i).
The Bayes decision rule states that the estimated class !̂(i) corresponding to „(i) is

!̂(i) = arg max
j

p
“
„(i)

˛̨̨
!j
”
p(!j) (4.8)
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or equivalently using the logarithmic likelihood we obtain the equivalent rule

gj
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„(i)

”
= log p

“
„(i)

˛̨̨
!j
”

+ log p(!j) (4.9)

!̂(i) = arg max
j

gj
“
„(i)

”
(4.10)

where gj(·) is the so called discriminant function.

From (4.7) and (4.9) the discriminant functions becomes
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4.6.3 Experimental results

The goal is to use EEG data to train off-line and subsequently test the capacity of our classi-
fication scheme to identify seizure and non-seizure signals. Table 4.8 reports the performance
of each classification method assessed by using a leave-one-out cross-validation approach to cal-
culate the confusion matrix [185]. These performance matrices are composed of the following
measures that characterize the different aspects of the classifiers: the sensitivity or true positives
rate (TPR); the false positive rate (FPR); the sensitivity or true negative rate (TNR); and the
overall classification accuracy (ACC), calculated as the total number of correct classifications out
of 36 events (18 seizure and 18 non-seizure). Notice that the classification results are performed
and reported separately for each brain rhythm or frequency band because this information is rele-
vant to neurologists and allows discriminating clinical events of different nature. We observe from
tables 4.6 and 4.7 the independent contributions for each 2D wavelet decomposition. The Table
4.6 correspond to the independent contribution between before the seizure and the seizure, where
the best sensitivity or true positives rate (TPR) is for Delta band, Theta horizontal band, Alpha
vertical band, Alpha diagonal band, all Beta bands and all Gamma bands, while the best sensitivity
or true negative rate (TNR) is for Delta band, Beta horizontal band and Gamma horizontal band.
The Table 4.7 correspond to the independent contribution between the seizure and after seizure,
where the best sensitivity or true positives rate (TPR) is for Alpha vertical band, Alpha diagonal
band, Beta horizontal band and Gamma horizontal band, while the best sensitivity or true negative
rate (TNR) is for Theta vertical band, Theta diagonal band, all Alpha bands, all Beta bands and all
Gamma bands. Table 4.8 reports the average of all 2D wavelet decomposition contributions. We
observe that the method detects correctly in terms of overall accuracy (ACC), sensitivity (TPR)
and specificity (TNR) for most frequency bands. In addition, the average latency (time delay) is
also reported between the annotated seizure onset and the detection by the method in Table 4.9.

Figures 4.4 to 4.8 shows scatter plots of the generalized Gaussian parameters ff and fi for seizure
events (red stars) and non-seizure events (blue squares and black diamonds) observed through the
all frequency bands. We observe that the proposed representation, based on a generalized Gaussian
model for the wavelet coefficients, leads to a very clear discrimination of seizure and non-seizure
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Metric ‹ „H „V „D ¸H ¸V ¸D ˛H ˛V ˛D ‚H ‚V ‚D
TPR 0.94 0.78 0.94 0.56 0.67 0.89 1.00 1.00 1.00 1.00 1.00 0.89 0.83
TNR 0.94 0.72 0.72 0.67 0.78 0.67 0.61 0.94 0.56 0.72 0.94 0.67 0.61
FPR 0.06 0.28 0.28 0.33 0.22 0.33 0.39 0.06 0.44 0.28 0.06 0.33 0.39
ACC 0.94 0.75 0.83 0.61 0.72 0.77 0.80 0.97 0.77 0.86 0.97 0.77 0.72

Table 4.6: Seizure detection performance for each independent contribution between be-
fore the seizure and the seizure by using multivariate Bayesian classification for each brain
rhythm and for 36 events (18 seizure and 18 non-seizure) of the Children’s Hospital Boston
database, in terms of: TPR = True Positives Rate or Sensitivity; TNR = True Negative Rate
or Specificity; FPR = False positive Rate; and ACC = Accuracy [± standard deviation].
‹: Delta band, „H: Theta horizontal band, „V: Theta vertical band, „D: Theta diagonal
band, ¸H: Alpha horizontal band, ¸V: Alpha vertical band, ¸D: Alpha diagonal band, ˛H:
Beta horizontal band, ˛V: Beta vertical band, ˛D: Beta diagonal band, ‚H: Gamma hori-
zontal band, ‚V: Gamma vertical band, ‚D: Gamma diagonal band. To simplify the visual
interpretation we highlight in red the metric that achieves the highest sensitivity, specificity,

and overall accuracy for each frequency band

Metric ‹ „H „V „D ¸H ¸V ¸D ˛H ˛V ˛D ‚H ‚V ‚D
TPR 0.72 0.72 0.72 0.78 0.78 0.83 0.83 0.89 0.72 0.67 0.89 0.78 0.67
TNR 0.72 0.72 1.00 1.00 0.72 1.00 1.00 0.94 1.00 1.00 1.00 0.94 0.94
FPR 0.28 0.28 0.00 0.00 0.28 0.00 0.00 0.06 0.00 0.00 0.00 0.06 0.06
ACC 0.72 0.72 0.86 0.88 0.75 0.91 0.91 0.91 0.86 0.83 0.94 0.86 0.80

Table 4.7: Seizure detection performance for each independent contribution between the
seizure and after the seizure by using multivariate Bayesian classification for each brain rhythm
and for 36 events (18 seizure and 18 non-seizure) of the Children’s Hospital Boston database,
in terms of: TPR = True Positives Rate or Sensitivity; TNR = True Negative Rate or Speci-
ficity; FPR = False positive Rate; and ACC = Accuracy [± standard deviation]. ‹: Delta
band, „H: Theta horizontal band, „V: Theta vertical band, „D: Theta diagonal band, ¸H:
Alpha horizontal band, ¸V: Alpha vertical band, ¸D: Alpha diagonal band, ˛H: Beta hori-
zontal band, ˛V: Beta vertical band, ˛D: Beta diagonal band, ‚H: Gamma horizontal band,
‚V: Gamma vertical band, ‚D: Gamma diagonal band. To simplify the visual interpretation
we highlight in red the metric that achieves the highest sensitivity, specificity, and overall

accuracy for each frequency band

events. In particular, notice that by using this representation it is possible to discriminate events
with separating line or hyper-plane, which is essentially what is achieved by using the multivariate
Gaussian classifier. Remember that, once the seizure finished, there are several medical pathological
factors that cause the signal to take time to stabilize, see Section 2.9.1. This explains why after
the seizure, the black diamonds, don’t have good discrimination with respect to the seizure, see
for example Approximation Delta Band from Figure 4.4 or Horizontal Theta Band from Figure 4.5.
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Metric Delta Band (‹) Theta Band (Θ) Alpha Band (¸) Beta Band (˛) Gamma Band (‚)
TPR 0.83 ±0.16 0.75 ±0.12 0.83 ±0.11 0.88 ±0.15 0.84 ±0.11
TNR 0.83 ±0.16 0.81 ±0.15 0.80 ±0.17 0.86 ±0.18 0.85 ±0.17
FPR 0.17 ±0.16 0.19 ±0.15 0.20 ±0.17 0.14 ±0.18 0.15 ±0.17
ACC 0.83 ±0.16 0.77 ±0.10 0.80 ±0.08 0.86 ±0.07 0.83 ±0.10

Table 4.8: Seizure detection performance by using multivariate Bayesian classification for
each brain rhythm and for 36 events (18 seizure and 18 non-seizure) of the Children’s Hospital
Boston database, in terms of: TPR = True Positives Rate or Sensitivity; TNR = True
Negative Rate or Specificity; FPR = False positive Rate; and ACC = Accuracy [± standard

deviation].

Proposed state-of-the-art
Delta band (‹) Theta band („) Alpha band (¸) Beta band (˛) Gamma band (‚) [12] [13] [14]

4:2 4:1 4:2 4:2 4:2 4:5 3:4 7:2

Table 4.9: Average latency between seizure onset and detection (in seconds), for the pro-
posed method on each spectral band, and for the state-of-the-art methods. [12, 13, 14].
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Figure 4.4: Scatter plots for the generalized Gaussian parameters ff and fi for seizure
events (red stars) and non-seizure events (blue squares for before the seizure and black
diamonds for after seizure) observed through the Delta frequency band, showing the good

linear discrimination power of the proposed approach.
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Figure 4.5: Scatter plots for the generalized Gaussian parameters ff and fi for seizure
events (red stars) and non-seizure events (blue squares for before the seizure and black
diamonds for after seizure) observed through the Theta frequency band, showing the good

linear discrimination power of the proposed approach.
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Figure 4.6: Scatter plots for the generalized Gaussian parameters ff and fi for seizure
events (red stars) and non-seizure events (blue squares for before the seizure and black
diamonds for after seizure) observed through the Alpha frequency band, showing the good

linear discrimination power of the proposed approach.
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Figure 4.7: Scatter plots for the generalized Gaussian parameters ff and fi for seizure
events (red stars) and non-seizure events (blue squares for before the seizure and black
diamonds for after seizure) observed through the Beta frequency band, showing the good

linear discrimination power of the proposed approach.
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Figure 4.8: Scatter plots for the generalized Gaussian parameters ff and fi for seizure events
(red stars) and non-seizure events (blue squares for before the seizure and black diamonds
for after seizure) observed through the Gamma frequency band, showing the good linear

discrimination power of the proposed approach.
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4.7 Ensemble Bagging Classifier

Ensemble machine learning methods have been developed to enhance the performance of indivi-
dual classifiers [200]. The underlying principle consists in combining a collection of weak classifiers
through a suitable manner. The more popular combination schemes are arithmetic or geometric
averaging rule, stacking and majority voting rule [201]. Ensemble bagging (stands for Bootstrap
Aggregating) relies on bootstrap replicates of the training set [202]. The classifier outputs are
combined by the plurality vote. This technique allows increasing the size of the training set, de-
creasing the variance, and increasing the accuracy and narrowly tuning the prediction to expected
outcome [200]. Such classifiers can be optimal in terms of stability and predictive accuracy for
datasets with imbalanced class distributions, unstable models or for data mining [203, 204, 205].
Ensemble bagging is widely used in bioinformatics, particularly in protein prediction [206, 207] and
recently was used in automatic detection of iEEG bad channels [203]. In this section, we study
the Shannon entropy of each brain rhythm, based on the probability density function (PDF) of the
generalized Gaussian distribution (GGD). Brain rhythms are obtained through wavelet decomposi-
tion. An ensemble bagging method is used to classify EEG signals as seizure or non-seizure. The
classification parameters use the entropy and the scale and shape parameters from the GGD. The
motivation relates to the fact that averaging measurements can lead to a more stable and reliable
estimate, as the influence of random fluctuations in single measurements is reduced. By building
an ensemble of slightly different models from the same training data, we might be able to similarly
reduce the influence of random fluctuations in single models [208]. The random fluctuations in
epilepsy can be modeled according to spontaneous neural or chaotic activity by using the entropy.
The idea is to characterize the dynamic EEG signal by determining the sudden changes in the
epileptic signals [209, 210]. Therefore, the random fluctuations that are typical of the variation
of the uncertainty can be determined when the entropy is used [101]. In this study, we train
decision trees having low bias and high variances to discriminate between seizure and non-seizure
[185, 208]. To accurately predict responses, we combine these tree by an ensemble technique in
order to reduce the variance and maintain the bias interchangeably low.

4.7.1 Classifier Parameters

Ensemble bagging classification for onset detection is summarized in Figure 4.9. It is very similar
to linear classifier parameters from subsection 4.5.1, the most important difference is the use of
the Shanon entropy " from generalized Gaussian parameters ff and fi . Rényi entropy [96], for the
PDF from eq. (4.1) is defined by

JR(“) =
1

1− “ log

Z
f “(x ;ff; fi)dx

ff
(4.12)

where “ > 0 and “ 6= 1, then solving the integral of eq. (4.12) for the PDF from eq. (4.1) one
obtains
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Thus, eq. (4.12) takes the expression

JR(“) =
log “

fi(1− “)
− log


fi

2ffΓ(fi−1)

ff
: (4.14)

Shannon entropy defined by E[− log f (X)] is the particular case of eq. (4.14) for “ → 1. Then
limiting in (4.14) and using L’Hopital’s rule, one obtains the entropy for the generalized Gaussian
distribution PDF

" = E[− log f (X)] = fi−1 − log


fi

2ffΓ(fi−1)

ff
: (4.15)

4.7.2 SOD by ensemble of bagged decision trees classification

Let Mt : ! → {0; 1} be the tth weak binary class for the tree t = {1; · · · ;T }, where 0 is for
non-seizure event and 1 is for seizure event; and p = [ff; fi; "] ∈ ! the parameters to be classified.
Then to combine the outputsM1(p); · · ·MT (p) into a single tree-class prediction, a weight linear
combination of the outputs of the weak tree-classifiers, can be used through an ensemble prediction
functionM : ! → {0; 1} such that

M(p) = sign

 TX
t=1

wtMt(p)

!
(4.16)

where w1; · · · ; wT is a set of weights of the tree t, according to the average vote from all trees in
the ensemble.

Consider a dataset D = {d1; d2; ::; dN} with di = (pi ; !
(i)), where !(i) is a class label, 1 for

seizure and 0 for non-seizure. Bagging algorithm returns the ensemble as a set of models by using
decision trees according to each region given by the minimum and maximum values from vector
p. Combining the predictions T from the different models by average, see algorithm 2. The class
predicted is the class that yields the largest weighted average as

arg max
!

〈 M(p)〉 (4.17)



4.7. Ensemble Bagging Classifier 71

X

Slice Signal

X(i)

1D wavelet
decomposition

C
(i)
j =

h
X

(i)
‹ ;X

(i)
„ ;X

(i)
¸ ;X

(i)
˛ ;X

(i)
‚

i

Dimensional Reduction:
Generalized Gaussian distribution ff, fi

" = fi−1 − log
n

fi
2ffΓ(fi−1)

o

Bagging ensemble classifier
Seizure or Non-Seizure

!(i)

Figure 4.9: Algorithm used in bagging ensemble classifier.

Data: data set D; ensemble size T ; learning algorithm A
Result: ensemble of models whose predictions are to be combined by averaging.
for t=1 to T do

build a bootstrap sample Dt from D by sampling |D| data points with replacement;
run A on Dt to produce a modelMt ;

end
Algorithm 2: Bagging(D,T ,A) – train an ensemble of models from bootstrap samples [208].

4.7.3 Experimental results

Figure 4.10 shows the discrimination properties of the proposed vector representation p = [ff; fi; "] ∈
R3 from the wavelets coefficients. We can see the direct relation between ff and ", both increase as
they grow in their scale of values for the seizure events (yellow circles) with respect to non-seizure
events (blue circles). For illustration, Figure 4.11 shows the different ranges in the box plots for
the entropy, clearly discriminating the two classes, seizure or non-seizure. For all brain rhythms,
except for delta band, the maximum and minimum values for each box together with the quartiles
can help to classify based on a thresholding approach.

Table 4.10 reports the mean and standard deviation values for all signals with the proposed
vector representation p = [ff; fi; "] ∈ R3, showing a clear difference between seizure events and
non-seizure events. The 95% confidence interval (IC95%) has different values, which permits to set
a threshold for detecting the seizure, with a proper choice, this can help to determine the duration
and amplitude between seizure events and non-seizure events; those are the most important factor
affecting the performance of automated detection [211].
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Figure 4.10: Scatter plots from vector p = [ff; fi; "] observed through all brain rhythms
using 105 events: 35 seizures (yellow dots) and 70 non-seizures (blue dots). We can see how

the seizure event concentrates on high values of ff and ›.

To assess the performance of the proposed methodology, a supervised testing approach was
adopted and used the 105 events described above to train and test the method with an exhaustive
cross-validation technique based on a leave-one-out approach of the vector p = [ff; fi; "] ∈ R3

with 35 ensemble learnings. Table 4.11 reports the rate of correct classification in terms of: TPR
= True Positives Rate or Sensitivity ; TNR = True Negative Rate or specificity ; FPR = False
Positive Rate; FNR = False Negative Rate; Error Rate; and ACC = Accuracy (ACC). In addition,
the average latency (time delay) is also reported between the annotated seizure onset and the
detection by the method in Table 4.12.
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Figure 4.11: Box plots of Shannon entropy observed through all brain rhythms using 105
events (35 seizures and 70 non-seizures). The maximum an minimum values for each box

together with the quartiles can help to classify based on a thresholding approach.

Non-Seizure Seizure
Bands mean std IC95% mean std IC95%
Delta 106.23 75.09 [102.28, 110.17] 202.78 122.53 [193.68, 211.89]
Theta 25.84 19.60 [24.81, 26.87] 85.55 67.49 [80.54, 90.56]
Alpha 22.08 14.15 [21.34,22.83] 75.11 67.32 [70.10, 80.11]
Beta 11.96 6.95 [11.59, 12.32] 37.44 44.05 [34.16, 40.71]

Gamma 6.83 6.21 [6.50, 7.15] 35.01 43.57 [31.78, 37.30]

Table 4.10: Comparison between means, standard deviations of the entropy and 95%
confidence interval (IC95%) of seizure and non-seizure, using 105 events (35 seizures and 70
non-seizures) for each brain rhythm. We can see how one can set a threshold for detecting

the seizure

Metric Delta Band (‹) Theta Band (Θ) Alpha Band (¸) Beta Band (˛) Gamma Band (‚)
TPR 0.95 ±0.03 0.97 ±0.03 0.98 ±0.02 0.98 ±0.02 0.99 ±0.01
TNR 0.87 ±0.05 0.94 ±0.05 0.94 ±0.06 0.94 ±0.08 0.95 ±0.07
FPR 0.13 ±0.05 0.06 ±0.05 0.06 ±0.06 0.06 ±0.08 0.05 ±0.07
ACC 0.92 ±0.03 0.96 ±0.02 0.97 ±0.02 0.97 ±0.04 0.97 ±0.04

Table 4.11: Seizure detection performance by using ensemble bagged classification for each
brain rhythm and for 105 events (35 seizure and 70 non-seizure) of the Children’s Hospital
Boston database, in terms of: TPR = True Positives Rate or Sensitivity; TNR = True
Negative Rate or Specificity; FPR = False positive Rate; and ACC = Accuracy [± standard

deviation].

Proposed state-of-the-art
Delta band (‹) Theta band („) Alpha band (¸) Beta band (˛) Gamma band (‚) [12] [13] [14]

4:4 4:2 4:3 4:3 4:2 4:5 3:4 7:2

Table 4.12: Average latency between seizure onset and detection (in seconds), for the
proposed method on each spectral band, and for the state-of-the-art methods. [12, 13, 14].
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4.8 Logistic Regression Classifier

Logistic regression is one of the most common multivariate analysis models used in biomedical
applications for analyzing binary outcome data [185, 212]. The choice of the explicative variables
that should be included in the logistic regression model is based on prior knowledge of epilepsy and
the statistical correlation between the variable and the epileptic event [213, 214], in our case the
correlation between the seizure and the largest Lyapunov exponent. In recent works, the logistic
regression classifier coupled with Cox regression has been used to construct time to first EEG
seizure in neonates subjects [215] or to classifier the significant non-antiepileptic drug predictors
of psychiatric and behavioral side effects rate [216], or to estimate the average recurrence risk of
ictal asystole and its determining factors in people with epilepsy [217].

The EEG signal was decomposed independently for each brain rhythms using ICA to study the
epileptic dynamic features of EEG during seizure (ictal) and non-seizure (interictal) behavior. The
difference between typical ictal and interictal feature values enables us to distinguish between the
two states, which are identified through the largest Lyapunov exponents (LLE). The results allow
us to differentiate the distinctive and appreciable changes during epileptic seizures, discriminating
normal from abnormal brain activity.

Independent component analysis (ICA) is a method to find underlying sources (or components)
from multivariate or multidimensional statistical data. The main idea of ICA is to find a linear
representation of non-Gaussian data in such a way that the components are statistically indepen-
dent. The advantage of identifying these independent features is that, when used in combination
with other methods such as largest Lyapunov exponents (LLE), it makes possible to distinguish
between seizure and non-seizure events in a higher dimensional feature space [32]. ICA has been
successfully used by the scientific community and has been applied to numerous signal processing
problems in diverse areas such as biomedicine, bioengineering, communications, finance, and re-
mote sensing; and keeps evolving [218]. ICA is widely used in EEG data and its applications are very
varied, for example in [219] was demonstrated that ICA can be an efficient approach to separate
responses related to epilepsy which are commonly obtained through fMRI studies, or in [220] to
select the PROJection onto Independent Components (PROJIC) from EEG data collected during
fMRI acquisitions to detect Inter-ictal epileptiform discharges, or by using a new deflation ICA
algorithm called penalized semialgebraic unitary deflation (P-SAUD) in order to remove artifacts
from interictal epileptic spikes [221].

Largest Lyapunov exponents (LLE) is a time-dependent analysis technique that can be used
to infer the properties of a system [222, 223, 224, 225]. In a medical context, they describe the
time interval over which the system’s evolution diverges, helping to discriminate seizures from non-
seizures in epileptic signals [226, 227]. In recent studies, the Lyapunov coefficients were applied
as a filter-noise that can be used as an epilepsy detector [228], as features in order to predict
epileptic seizures in synthetic signals [229], coupled with the adaptive Teager energy to seizure
detection in long-term signals with a sensitivity of 91% and a specificity of 86% [230], or by using
point-process to correlate the heartbeat dynamics with the epileptic signals and SVM classifier with
an accuracy of 73.91% [231], for EEG patterns classification based on continuous neural networks
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by using a generalization-regularization with an accuracy of 97.2% [232]; as a seizure prediction
in intracraneal signals (iEEG) with a sensitivity of 89.8% and a specificity of 96.7% [233], or to
detect metabolic encephalopathy by using SVM with a specificity of 100% and a sensitivity of
95.33% [234].

4.8.1 Classifier parameters

The process of logistic regression for onset detection is summarized in Figure 4.12.
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Figure 4.12: Algorithm used in logistic regression classifier.
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The Independent component analysis (ICA) is a representation of a signal (the brain rhythm of eq.
(4.18) in this case) through a set of independent constituent components given by the likelihood

p
“
C

(i)
j |S

”
=

TY
t=1

p (fflt |St) (4.19)

where p
“
C

(i)
j |S

”
is the joint probability distribution, p (fflt |St) are the marginal distributions,

S ∈ RT×N are the unknown sources, fflt is the observed signal matrix from the wavelet coefficients
C

(i)
j , and T is the number of independent components (see Figure 4.13).

We assume that the source signals arrive at the electrodes at the same time instantaneously,
thus the problem of separating sources corresponding to the independent components for each
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brain rhythm, of eq. (4.18) is given by

fflt = Hst + ” (4.20)

where H is the mixing matrix, s is the source matrix and ” is the noise.
The separation is performed by means of a matrix W ∈ RT×M , the so called unmixing matrix,

which uses only the information in fflt to reconstruct the original source signals (also known as the
independent components) as:

y t = Wfflt (4.21)

where y t ∈ RT×N , W ∈ RT×M and fflt ∈ RM×N .

Figure 4.13: Example for seven electrodes, namely X1; :::;X7 and four sources St namely
s1; ::; s4, representation of assumption that the source signals arrive at the electrodes at the

same time instantaneously.
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The estimation of the unmixing matrix W in eq. (4.21) is calculated using singular value de-
composition (SVD) through the eigenvalue decomposition of the covariance matrix (prewhitening)
[235, 236, 237, 238, 239] and the JADE algorithm for real-valued signals [240], to find the best
estimation of the independent sources S through

Y = WC
(i)
j (4.22)

The independent sources Y from equation (4.22) for each brain rhythm is split in sets of
non-overlapping 2 seconds segments using a rectangular sliding window so that

Y (i) = Ω(i)Y (4.23)

See eq. (2.2) for more details about the sliding window.

4.8.2 Largest Lyapunov exponent (LLE)

The nonlinear prediction technique to separate transients from background activity using Lyapunov
exponents was first investigated by Leonidas D. Iasemidis and J. Chris Sackellares in [59] where
the lowest values of Lyapunov exponents occur during the seizure. This gives us an idea of how
much the EEG signal background changes when a small perturbation or change occurred during
the seizure process.

The largest Lyapunov exponent is estimated by means of two-time series, Y (i)
1 and Y (i)

2 (we
would like to remind the reader that Y (i) denotes each segment of the evaluated signal); which
originate from the same system and have similar initial conditions [225], defined as a distance
vector

dist(i) =
‚‚‚Y (i)

1 − Y
(i)
2

‚‚‚ (4.24)

and the Lyapunov exponent

– =
1

i
log

dist(i)

dist(0)
(4.25)

where i is the sample number and dist(0) is the distance between the initial sample points on the
two trajectories. A trajectory is a path that the variables trace throughout the phase space. Phase
space represents all possible internal states of a system. The divergence value of – magnifies small
changes in a trajectory that grow over time [241], this value shows how an increase in distance
between trajectories that start from similar conditions become increasingly decorrelated, contrary
to convergence. This can be summarized as follows

• If – > 0 then the divergence is exponential.

• If – < 0 then the convergence is exponential.

• If – = 0 then there is no divergence or convergence.
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For each segment of eq. (4.23) and each brain rhythm, of eq. (4.18) a largest Lyapunov
exponent – is estimated using eq. (4.25) according to the divergence or convergence of the con-
sidered value. This allows us to discriminate the divergence or convergence between seizure and
non-seizure in epileptic signals. Two positive Lyapunov exponents were estimated. The presence
of a positive exponent is sufficient to detect the seizure [223].

4.8.3 –-Scaling

Each largest Lyapunov exponent value for each brain rhythm is assigned one scale value between
the minimum and the maximum of the standard deviation from LLE, see Table 4.13.

Let ‘sup = +–std and ‘inf = −–std , –min = min(LLE) and –max = max(LLE), then the
scale value is given by

& =
(–− –min)(‘sup − ‘inf )

–max − –min
+ ‘inf (4.26)

The proposed seizure detection is a classifier by using logistic regression, that labels each
Largest Lyapunov exponents (–) and their scales (&) associated with each brain rhythm as seizure
or non-seizure. Precisely, five independent two-parameter classifiers are used in parallel to classify
the feature vector pairs ffi‹(n) = [–‹(n); &‹(n)], ffi„(n) = [–„(n); &„(n)], ffi¸(n) = [–¸(n); &¸(n)],
ffi˛(n) = [–˛(n); &˛(n)], and ffi‚(n) = [–‚(n); &‚(n)].

4.8.4 SOD by logistic regression classification

Consider a classification into two possible classes: !s for seizure and !ns for non-seizure. The
posterior probability of class !s can be written as

p
“
!s |Y (i)

”
=

p(Y (i)|!s)p(!s)

p(Y (i)|!s)p(!s) + p(Y (i)!ns)p(!ns)
(4.27)

=
1

1 + exp(−a)
= ff(a) (4.28)

a = ln
p(Y (i)|!s)p(!s)

p(Y (i)i |!ns)p(!ns)
(4.29)

where ff(:) is the logistic sigmoid function, and the class-conditional densities are assumed Gaussian
[185]. Then the posterior probability of class !s can be written as a logistic sigmoid acting on a
linear function of the feature vector ffi so that

p(!s |ffi) = ff(wTffi) (4.30)

p(!ns |ffi) = 1− p(!s |ffi) (4.31)

w = Σ−1(—1 − —2) (4.32)
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assuming that all classes share the same covariance matrix Σ and — are the means of each class.
For a data set

n
ffi; !(i)

o
, where !(i) ∈ {0; 1}, 1 for class !s and 0 for class !ns , and ffi(n) = ffi(Y (i))

the likelihood can be written

p(!|w) =
NY
i=1

y!
(i)

i {1− yi}1−!(i)
(4.33)

where ! = (!1; !2; ::; !N)T and yi = p(!s |ffib(n)). It should be noted that the feature vector
ffib(n) is given by each LLE (–) and their scales (&) of each brain rhythm (b). The methodology
used can be summarized in four basic steps through next algorithm

Data: Epileptic EEG signals
Result: Seizure and Non-Seizure detection
begin

1. Find all independent brain rhythms using univariate wavelet 1D decomposition;
2. Compute the independent features of each brain rhythms using ICA decomposition;
3. Compute LLE for all independent brain rhythms of 2.;
4. Scale each LLE from step 3. between the minimum and the maximum of the
standard deviation;

5. Seizure detection for each pairs [LLE,scale] by using logistic regression;
end

Algorithm 3: Epileptic seizure detection algorithm

4.8.5 Experimental results

Figures 4.14 show how the EEG signal background changes through the six largest Lyapunov
exponents (LLE) from 9 independent components by using ICA. Two LLE before, two LLE during
and two after the seizure ICA process . In the delta, theta and alpha brain rhythms the largest
Lyapunov exponent (LLE) presents the lowest value, while in beta and gamma brain rhythms the
opposite happens. This suggests that the algorithm is potentially interesting for epilepsy detection
systems because it permits discriminating seizure from non-seizure in all brain rhythms.

Table 4.13 shows the minimum LLE (–min), maximum LLE (–max) and the standard deviation
from LLE (–std) through all the data utilized that permits the use of a threshold approach in order
to scale each LLE by using the equation (4.26).

The logistic regression classifier was trained off-line with 20 empirical fold cross-validation. In
this experiment, we used two classes: seizure and non-seizure for each pair [–b; &b] for each brain
rhythm (b). Where 264 events correspond to seizure and 528 events correspond to non-seizure.
The performance of the logistic regression classification method through these 792 observations
was assessed in terms of overall accuracy classification, and achieves a 100% of sensitivity (True
positive rate) and specificity (True false rate) for seizure detection in epilepsy signals with time-
delay of 8.9 sec in average for all brain rhythms.

We suggest that these good results in the classification are due to the fact that the LLE coupled
with their scaling can discriminate correctly between seizure and non-seizure in all brain rhythms,
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as shown in the values of the Table 4.13 and the visual observation of the LLE figures 4.14.

(a) Delta Band (b) Theta Band

(c) Alpha Band (d) Beta Band

(e) Gamma Band

Figure 4.14: Scatter plot for six largest Lyapunov exponents (LLE) for seizure (middle) and
non-seizure before an after events observed through the different rhythms bands. Lowest
valued LLE is in the seizure events for delta, theta, and alpha bands, while highest valued
LLE are in the seizure events for beta and gamma bands. In this example, the start and end
of the seizure in this EEG signal were labeled by the neurologist using two lines. The first

line divides the EEG signal before the seizure and the second line after the seizure.
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Brain rhythm –min –max –std

‹ Non-Seizure -0.00266 0.00028 0.00074
‹ Seizure -0.00328 -0.00003 0.00092

„ Non-Seizure -0.00249 0.00052 0.00064
„ Seizure -0.00368 -0.00002 0.00103

¸ Non-Seizure -0.00443 0.00117 0.00111
¸ Seizure -0.00641 0.00027 0.00147

˛ Non-Seizure -0.00311 0.00177 0.00068
˛ Seizure -0.00317 0.00346 0.00111

‚ Non-Seizure -0.00281 0.00364 0.00079
‚ Seizure -0.00082 0.00768 0.00149

Table 4.13: Minimum, maximum and standard deviation from all LLE for each brain rhythm.

4.9 Conclusions

This chapter presented three new methods to detect epileptic brain activity on-line in EEG signals,
with a focus on applications involving real-time constraints and small training datasets. A particu-
larity of the methods is that detection is performed independently for each brain rhythm, following
the current medical practices. Detection is achieved by first separating the EEG signals into the five
brain rhythms by using a wavelet decomposition, and then using a generalized Gaussian statistical
model to map signals onto a low-dimensional representation where classification can be performed
efficiently to discriminating between seizure and non-seizure by linear discriminant analysis, multi-
variate Bayesian classifier or ensemble bagging classifier by using decision trees (through all brain
rhythms) using the entropy from the generalized Gaussian statistical model parameters. The fourth
method, using logistic regression of Lyapunov exponents from Independent Component Analysis
(ICA) computed independently in each brain rhythms from wavelet decomposition obtained very
good results, but computationally, it is very expensive to apply it in real time. All classifiers have
similar latency around 4 seconds, except for the Lyapunov exponents around 9 seconds. The four
methods are potentially useful for differentiating between seizure or non-seizure events in epileptic
signals and for onset detection, in terms of high sensitivity, specificity, and accuracy. Note that, the
model-based classification by using the GGD parameters (scale and shape) permit a correct seizure
onset identification in epileptic EEG signals with an acceptable time delay. The best classifier,
in general, was the linear discriminant analysis, but the ensemble of bagged decision trees classi-
fier showed the best performance in the specificity. The multivariate Bayesian was the weakest
classifier, but it may be possible to improve its performance using a regulation parameter.
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Chapter 5
Spike-and-wave epileptiform pattern

recognition

5.1 Introduction

This chapter presents three novel methods to detect spike-and-wave discharges (SWD) in EEG
signals. The methodology is computationally very efficient, suitable for real-time automation, and
can be used to perform the spike-and-wave detection online. The database used was created in
Fundación Lucha contra las Enfermedades Neurólogicas Infantiles (FLENI). Method one consist of
SWD detection using the generalized Gaussian distribution; method two consists of SWD detection
using t-location-scale distribution and method three uses cross-correlation. Methods one and two
use k-NN classifiers while method three uses a decision tree classifier.

Spike-and-wave discharge waveform has a regular and symmetric morphology. The information
about the morphology and dynamics of EEG signals can be used to accurately identify seizure onset
and quantify the severity and dynamical progression of seizure activity. The most relevant EEG
features employed to classify epileptogenic abnormality can be categorized in terms of spectral
properties, signal morphology and statistical measures [32], see Figure 5.1. In this chapter, we
will focus on signal morphology, specifically in spike-and-wave discharge (SWD) pattern in EEG
signals.

5.2 Spike-and-Wave discharge (SWD)

A seizure is characterized by the excessive electrical discharges in neurons and such waveforms
are known as spikes. Neurologists trained in EEG are able to properly determine an epilepsy
diagnosis by analyzing the different types of spikes in the rhythmic activity of the brain. A spike
is characterized by short bursts of high amplitude, synchronized and multi-phasic activity, where
polarity changes occur several times, which manifest themselves at or around the epileptic focus
and stand out from the background EEG.

A spike-and-wave epileptiform is an EEG generalized discharge pattern seen particularly during
absence epilepsy [242], whose clinical importance lies in cognitive and behavioral disturbances
[243]. It is the result of a bilateral synchronous firing of neurons ranging from the neocortex to
the thalamus, along with the thalamocortical network [244]. Absence seizures are more common
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EEG Extract Signals Physician

Biomedical
Signal

Diagnostic
Normal/Abnormal

Treatments

Features

Spectral Properties

Morphology Statistical Descriptors

Figure 5.1: EEG signals extraction. A physician may determine the patient treatment
according to the EEG waveforms; while in a biomedical signal approach the most relevant
features employed to classify epileptogenic abnormality can be categorized in terms of spectral

properties, signal morphology, and statistical measures.

in children. It causes lapses in awareness, sometimes with staring and it can be so brief they
sometimes are mistaken for daydreaming and may not be detected for months. Children between
the ages of three and seven exhibit continuous spike-and-wave discharges during slow-sleep. This
disorder is found in 0.2%-0.5% of all childhood epilepsy cases. Spike-and-wave activity occupies
about 85% of the non-rapid eye movement sleep [245]. This continuous pattern during sleep,
like other aspects of the spike-and-wave activity, are not completely understood. However, it is
hypothesized that corticothalamic neuronal network involved in oscillating sleep patterns may begin
to function as a pathologic discharging source [246].

Spike-and-wave discharge (SWD) is a generalized EEG discharge pattern whose waveform
has a regular and symmetric morphology. This morphology can be mathematically described
by a Morlet wavelet transform that generates a time-frequency representation of the EEG sig-
nal [247, 248, 249, 250]. The spike component of a SWD is associated with neuronal firing,
whereas the wave component is associated with neuronal inhibition or hyperpolarization of neu-
rons [251]. SWD is widely used in mice studies [252, 253, 254, 255], but human testing is limited.
Mice have a predisposition for generalized SWD at 7-12 Hz [256] and typically have spontaneous
absence-seizure-like-events. The presence of an intact cortex, thalamus and their interconnections
is necessary to record them [257, 258].

Existing spike-and-wave discharge detection algorithms can be classified in the following three
categories [259]:

1. Algorithms that use the information extracted from changes in the amplitude (magnitude)
of the EEG signal when SWD occurs.

2. Detection based on monitoring the energy power in the frequency bands which SWD occu-
pies.
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Figure 5.2: Spike-and-wave and Morlet wavelet respectively, Note that the scales are diffe-
rent, but for illustration, we can see the symmetric and regular morphology in both signals.

Figure 5.3: Example of 6 channels of one monopolar EEG raw, we can see different SWD
in all channels.

3. Combination of the first two methods together into labeling the SWD activities in the EEG
recordings. The threshold, overlapping window technique and band pass filter are commonly
used for enhancing the performance of the detection algorithm.

5.3 Morlet Wavelet

The continuous wavelet transform is given by

Wf (t; a; b) =

Z ∞
−∞

Xt  
∗
a;b(ffl)dffl (5.1)

 ∗a;b(ffl) =
1√
a
 

„
ffl− b
a

«
(5.2)

 (ffl) = exp
−ffl2

2 cos(5ffl) (5.3)

where a is the scaling parameter, b is the shifting parameter,  ∗a;b(ffl) is the mother wavelet
function,  ∗ denotes the complex conjugate operation and  (ffl) is the analytic expression of the
Morlet wavelet. In order to associate the Morlet wavelet as purely periodic signal of frequency Fc ,
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we use the relationship between scale and frequency

Fa =
Fc
a∆

(5.4)

where ∆ is the sampling period, Fc is the center frequency of Morlet wavelet in Hz and Fa is the
pseudo-frequency corresponding to the scale a in Hz. The center frequency-based approximation
captures the main wavelet oscillations. Therefore, the center frequency is a convenient and simple
characterization of the dominant frequency of the wavelet [260]. Note that the wavelet scale
is estimated according to the 1-3 Hz restricted narrow frequency of SWD database, introduced
below.

5.4 Database

A database with 780 monopolar 256 Hz signals was created for the off-line training of the classifier:
340 spike-and-wave signals and 440 non-spikes-and-wave signals, measured from six patients from
Fundación Lucha contra las Enfermedades Neurológicas Infantiles (FLENI). The spike-and-wave
signals have different times and waveforms but their morphology is preserved, while the non-spike-
and-wave signals have normal waveforms as Figures 5.2 and 5.3. See section 1.5 for more details.

By analyzing each SWD in the frequency domain, it was observed that they are restricted to
a narrow frequency band 1 from 3 Hz. Each EEG was acquired with a 22-channel array using the
standard 10=20 system through channels: Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5,
P3, Pz, P4, T6, O1, O2, Oz, FT10 and FT9. See Figure 3.1 for areas of the brain and Figure 5.4
for electrode positions used.

Figure 5.4: Electrodes position used with this database.

All new segments to analyze contain different spike-and-waves events. Their onset and duration
time has been labeled by an expert neurologist. Here we used the expert annotations to extract a
short epoch from each recording such that it is focused on the spike-and-wave in long-time EEG
signals (the epochs used have a duration of the order of 1 minute).
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It should be noted that, for each new patient to analyze, ten new SWD are selected to be part
of the database. This permits to get patient-specific seizure detection.

Table 5.1 summarizes the different methods, features, classifiers, signals for training and testing
considered in this chapter. The generalized Gaussian distribution uses the feature vector [ff; �; ex ],
where ff is the scale parameter of the generalized Gaussian distribution, � is the variance parameter
from the generalized Gaussian distribution parameters, and ex is the median parameter from the
wavelet Morlet coefficients C(i); the t-location-scale distribution uses the feature vector [—; ff; �],
which corresponds to the parameters of this distribution, namely location (—), scale (ff) and shape
(�); and the cross-correlation measure uses the similarity feature vector r . Note that, we use
different number of signals from training and test from the database because all studies correspond
to different stages of the research.

Method Features Classifier Signals for training Signals for testing
Generalized Gaussian distribution
from C(i)

ff, �, ex k-NN 340 spike-and-waves and
440 non-spike-and-waves

69

t-location-scale distribution from
X(i)

—, ff, � k-NN 96 spike-and-waves and
96 non-spike-and-waves

46

Cross-correlation from X(i) r Decision-tress 96 spike-and-waves 46

Table 5.1: Methods, features, classifiers, signals for training and testing considered in this
chapter. The generalized Gaussian distribution uses the feature vector [ff; �; ex ], where ff is
the scale parameter of the generalized Gaussian distribution, � is the variance parameter
from the generalized Gaussian distribution parameters, and ex is the median parameter from
the wavelet Morlet coefficients C(i); the t-location-scale distribution uses the feature vector
[—; ff; �], which corresponds to the parameters of this distribution, namely location (—), scale
(ff) and shape (�); and the cross-correlation measure uses the similarity feature vector r .

5.5 Spike-and-wave detection using the generalized Gaussian
distribution

5.5.1 Methodology

In this study, we use the same methodology as in Chapter 4, Section 4.4. We start from the
parameter-vector „C(i) of the wavelet coefficients C(i) such that

„C(i) =
h
ff(i); fi (i)

iT
= argmax

[ff;fi ]T
fGGD(C(i);ff; fi): (5.5)

Note that, the eq. (2.25) was estimated by using the discrete wavelet transform (DWT). In this
Section, we use the continuous wavelet transform (CWT) by using the Morlet mother wavelet
because it can describe mathematically the SWD morphology[247, 248, 249, 250], see the Figure
5.2.



88 Chapter 5. Spike-and-wave epileptiform pattern recognition

5.5.2 Spike-and-wave detection by k-nearest neighbors classifier

Consider a classification into two possible classes !ns = 0 and !s = 1, then for a feature vector
„C(i) each class is given by

p
`
„C(i) |!ns = 0

´
=

1

!0

X
!∈!ns

N
“
„C(i) |„!

C(i) ; �I
”

=
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!0 (2ı�)D=2

X
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exp−

“
„
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2� (5.6)
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!

C(i)

”2

2� (5.7)

where D is the dimension of a data-point „C(i) and !0 or !1 are the numbers of training points of
class 0 or class 1 respectively, and � is the variance of „C(i) .
Using the Bayes rule to classify a new datapoint „∗

C(i) in class !ns = 0 the following equation is
obtained

p
“
!ws = 0|„∗

C(i)

”
=

p
“
„∗
C(i) |!ns = 0

”
p (!ns = 0)

p
“
„∗
C(i) |!ns = 0

”
p (!ns = 0) + p

“
„∗
C(i) |!s = 1

”
p (!s = 1)

: (5.8)

The marginal likelihood p(!ns = 0) is !0=(!0 +!1), and p(!s = 1) = !1=(!0 +!1). An analogous
expression to eq. (A.48) can be obtained for p

“
!s = 1|„∗

C(i)

”
. To determine which class is most

likely, the ratio between their two expressions is calculated as follows::

p
“
!ns = 0|„∗

C(i)

”
p
“
!s = 1|„∗

C(i)

” =
p
“
„∗
C(i) |!ns = 0

”
p (!ns = 0)

p
“
„∗
C(i) |!s = 1

”
p (!s = 1)

: (5.9)

If this ratio is greater than one, „∗
C(i) is classified as !ns = 0, otherwise, it is classified as !s = 1.

It is important to note that in the case where � is very small in (5.9), then both the numerator as
the denominator will be dominated by the term for which the datapoint „!0

C(i) in class 0 or „!1

C(i) in
class 1 are closest to the point „∗

C(i) , such that
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On the limit � → 0, „∗
C(i) is classified as class 0 if „∗

C(i) has a point in the class 0 data which is
closer than the closest point in the class 1 data. The nearest (single) neighbor method is therefore
recovered as the limiting case of a probabilistic generative model [185, 130].

5.5.3 Experimental Results

In the training stage, the annotated database previously exposed in Section 5.4 was utilized.
These 780 monopolar signals (340 spike-and-wave signals and 440 non-spikes-and-wave signals),
were trained off-line using k-nearest neighbors on a modified vector [ff; �; ex ] ∈ R3 collecting the
parameters associated with Morlet wavelet coefficients for each 2-second segment, where ff is the
scale parameter of the generalized Gaussian distribution, � = ff2Γ(3=fi)=Γ(1=fi) is the variance
parameter, and ex is the median parameter from the wavelet Morlet coefficients from the feature
vector „C(i) . Remember that scale parameter ff depends on fi and is closely related to the variability
of the brain activity, being therefore, a good descriptor for performing seizure detection, see Section
2.8.2 for more details. The variance and the median do not introduce any additional computational
cost.

Table 5.2 contains the different bounds for each parameter. Note that both the minimum
and the maximum are large for [ff; �; ex ] when SWD and non-SWD signals are compared. This
observation suggests that a threshold could be implemented to detect SWD patterns as clear
discrimination exists between spike-and-wave and non-spike-and-wave. To illustrate this, Figure
5.5 shows scatter plots for the tree parameters as follows:

1. Scale parameter (ff) vs variance (�): For class 1 or SWD, we can see the direct rela-
tionship between the variance and sigma, both grow proportionally. While for class 0 or
non-SWD, both sigma and variance remain in a range of values.

2. Scale parameter (ff) vs median (ex): As ff grows, median increases and decreases for both
SWD and non-SWD, but is larger for SWD. A cone-shaped pattern can be identified.

3. Variance (�) vs median (ex): As the variance grows, the median increases and decreases
for SWD, while for non-SWD, it remains in a small range (cluster).

The performance of the k-nearest neighbors classification method using 10 neighbors with 3
predictors [ff; �; ex ] was evaluated using a dataset consisting of 69 new annotated measurement.
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Metric Sigma (ff) Variance (�) Median (ex)
Class 0 [12.19,1275.38] [946.60,31620526.09] [-27698.91,21799.08]
Class 1 [31.22,1811.37] [2715.81,43218940.81] [-73254.70,74064.46]

Table 5.2: Range of values for sigma (ff), variance (�) and median (ex) parameters for class
0 or non-spike-and-wave and for class 1 or spike-and-wave.
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(c) variance (�) vs median (ex)
Figure 5.5: Scatter plots of the off-line training classification in database signals, for ff, �
and ex parameters for spike-and-waves events (SWD = class 1 = red dots) and non-spike-and-
waves events (non-SWD = class 0 = blue dots), showing the data dispersion of the proposed
approach. In (a) Scale parameter (ff) vs variance (�). For class 1 or SWD, we can see the
direct relationship between the variance and sigma, both grow proportionally, while for class 0
or non-SWD both sigma and variance remain in a range of values. (b) Scale parameter (ff) vs
median (ex). As sigma grows, median increases and decreases for both SWD and non-SWD,
but is larger for SWD. (c) variance (�) vs median (ex). As variance grows, median increases

and decreases for SWD, while for non-SWD, remains in a small range.

The annotated dataset corresponds to 69 segments extracted from six EEG signals of different
subjects from Fundación Lucha contra las Enfermedades Neurológicas Infantiles (FLENI). The
assessment of the results was performed in terms of the overall accuracy of the classification. The
classifier achieved a 100% sensitivity (True Positive Rate) and specificity (True Negative Rate) for
SWD detection.

5.6 Spike-and-wave detection using t-location-scale
distribution

The t-location-scale distribution or non-standardized Student’s t-distribution is a statistical model
for univariate and multivariate signals that has three parameters: location, shape and a non-
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negative scale. It is useful for modeling data distributions with heavy tails which are more prone
to outliers than the normal distribution. The t-location-scale distribution has been applied to
different signal processing problems in diverse areas such as radar, watermark, speech and wireless;
in medicine and health, it is widely used in genetics and has been recently used in sleep patterns
[261]. In Section 5.5, we showed that the generalized Gaussian distribution can be used for SWD
pattern recognition. Knowing that the t-location-scale distribution is heavy-tailed and more prone
to outliers than the normal distribution, the following question arose: what if this distribution
could be used to detect a SWD pattern recognition in epileptic EEG signals?. Question that we
will answer in this preliminary study.

The t-location-scale distribution is a statistical model that belongs to location-scale family
formed by translation and rescaling of the Student’s t-distribution. The probability density function
(PDF) of a location-scale distribution, is given by

g(x |—; ff) =
1

ff
 

„
x − —
ff

«
: (5.11)

The probability density function (PDF) of the Student’s t-distribution, is given by
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Therefore applying (5.12) to (5.11), we have the probability density function (PDF) of the t-
location-scale, which is given by
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where −∞ < — < ∞ is the location parameter, ff > 0 is the scale parameter, � > 0 is the
shape parameter, and Γ(:) is the Gamma function. The optimization problem of estimating the
parameters of this distribution can then be solved using the simplex search method of Lagarias et
al. [109].

5.6.1 Methodology

Let X ∈ RM×N denote the matrix gathering M EEG signals xm ∈ R1×N measured simultaneously
on different channels and at N discrete time instants. The proposed methodology is composed of
three stages. The first stage splits the original signal X into a set of non-overlapping 1 second
segments using a rectangular sliding window X(i) = Ω(i)X. In the second stage the parameters
of the t-location-scale distribution for each X(i) are estimated and finally, in the third stage,
the feature vector associated with each time segment is classified by using k-nearest neighbors
classifier as spike-and-wave/non-spike-and-wave through the feature vector „C(i) = [—; ff; �]T of
the t-location-scale parameters: location (—), scale (ff) and shape (�), see Section 5.5.2 for more
details.
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5.6.2 Experimental Results

To asses the performance of the proposed method we used 192 monopolar 256Hz signals for off-line
training classifier, 96 spike-and-waves and 96 non-spikes-and-waves from the database described
in Section 5.4, and 46 new labeled test signals used for on-line classification. Their onset and
duration time have been labeled by an expert neurologist from FLENI. Here we used the expert
annotations to extract a short epoch from each recording such that it is focused on the spike-
and-wave in long-time signals (the epochs have a duration of the order of 1 minute). Figure 5.6
and Figure 5.8 show scatter plots of the kNN off-line training classifier and on-line classification
respectively, using the three t-location-scale distribution parameters: location (—), scale (ff) and
shape (�).

Data dispersion of spike-and-wave events (label 1: blue dots) and non-spike-and-wave events
(label 0: red dots) in Figure 5.6, during the training stage, suggests that in a) and c) spike-and-wave
events tend to have a higher scale ff with respect to non-spike-and-wave events, in b) non-spikes-
and-wave events tend to have a location — concentrated between a certain threshold with respect
to spike-and-wave events; while the data dispersion in Figure 5.8, during the classification stage,
suggests that in a) spike-and-wave events tend towards the center down with respect to non-
spike-and-wave events, in b) the trend is not very clear, although there is a great concentration
of spike-and-wave events in the center down near zero with respect to non-spike-and-wave events
and in c) spike-and-wave events tend to be located towards the right and near zero with respect
to non-spike-and-wave events.

From the illustration in Figure 5.7 and Figure 5.9 we can see the different histograms and
the perfect group discrimination between spike-and-wave events (label 1) and non-spike-and-wave
events (label 0) in off-line training classification for Figure 5.7 and on-line classification Figure 5.9.

The performance of the online k-nearest neighbors classification method using an equal weight
distance with the number of neighbors equal to one and the distance metric Euclidean, see Figure
5.8 and Figure 5.9, was assessed in terms of overall accuracy classification, and achieves a 100% of
sensitivity (True Positive Rate) and specificity (True Negative Rate) for spike-and-wave detection.
These results invite us to study this distribution in deeper (e.g. goodness-of-fit test, parameters
estimation, and model-based characterization, similar to Sections 2.6 and 2.8), in order to be used
in the future in seizure onset detection and epileptiform patterns recognition in epileptic signals.
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(c) Scale (ff) vs. shape (�)

Figure 5.6: Scatter plots of the off-line training classification in 192 dataset signals, for the
t-location-scale parameters —, ff and � for spike-and-waves events (blue dots) and non-spike-
and-waves events (red dots), showing the data dispersion of the proposed approach. In a)
and c) spike-and-waves tend to have a higher scale ff, in b) non-spikes-and-waves tend to

have a location — concentrated between 0 and 100.

Figure 5.7: Scatter plot in off-line training classification in 192 dataset signals for the t-
location-scale parameters —, ff and �, we can see the correct discrimination between two
groups whose size is the same (96 spike-and-waves and 96 non-spikes-and-waves), label 1 for

spike-and-wave and label 0 for non-spike-and-wave.
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Figure 5.8: Scatter plots in on-line classification in 46 test signals, for the t-location-scale
parameters —, ff and � for spike-and-waves events (blue dots) and non-spike-and-waves events
(red dots), showing the data dispersion of the proposed approach. In a) spike-and-waves
tend towards the center down, in b) the trend is not very clear, although there is a great
concentration of spike-and-waves in the center down near zero, and in c) spike-and-waves

tend to be located towards the right and near zero.

Figure 5.9: Scatter plot in on-line classification in 46 test signals for the t-location-scale
parameters —, ff and �, we can see the correct discrimination between two groups whose size is
different (spike-and-waves labeled by an expert neurologist and non-spikes-and-waves), label

1 for spike-and-wave and label 0 for non-spike-and-wave.
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5.7 Spike-and-wave detection using cross-correlation and
decision-trees

A decision tree is a hierarchical model for supervised learning whereby the local region is identified
in a sequence of recursive splits in a smaller number of steps [262, 185, 187]. A decision tree is
composed of internal decision nodes and terminal leaves, see Figure 5.10. It is defined in a way
that there is a single node, called the root, which has no parents, and all other nodes only have
one parent. When a node receives an input a specific test, designed for that particular node, is
applied and one of the branches is taken depending on the outcome. This process starts at the
root and is repeated recursively until a leaf node is hit, at which point the leaf’s value constitutes
the output. Each specific test is a simple function which defines a discriminant in the input space
dividing it into smaller regions that are further subdivided as we take a path from the root down.
In this manner, a complex function is broken into a series of simple decisions by simply writing the
tests down as a tree.

Cross-correlation

Similarity
non

Similarity

non-SWD
(0.4) non

SWD
(0.6)

yes

yes

Figure 5.10: A decision tree example. Consider the decision problem as to whether or not
to go ahead with a cross-correlation similarity. If we go ahead with the similarity and meets
the threshold (0.6), then we have a spike-and-wave candidate; on the other hand, if we don’t
go ahead with the similarity (0.4) then the threshold is not met and therefore we don’t have
a spike-and-wave candidate. Note that, this tree has only two regions given by the similarity

threshold for SWD or non-SWD.

We now introduce the detection trees in general form using the methodology from [185]. The
goal is to predict a single target variable t from a D-dimensional vector r = (r1; :::; rD)T of input
variables related to the cross-correlation in our study. The training data consists of input vectors
{r1; · · · ; rN} along with the corresponding continuous labels {t1; :::; tN}. If the partitioning of the
input space is given, and we minimize the sum-of-squares error function, then the optimal value
of the predictive variable within any given region is just given by the average of the values of tn
for those data points that fall in that region, two regions or classes in our case spike-and-wave or
non-spike-and-wave, see Figure 5.11. To determine the structure of the decision tree, the first step
is start with a single root node, corresponding to the whole input space, and then growing the tree
by adding nodes one at a time. At each step there will be some number of candidate regions in
input space that can be split, corresponding to the addition of a pair of leaf nodes to the existing
tree. For each of these, there is a choice of which of the D input variables to split, as well as
the value of the threshold. For a given choice of split variable and threshold, the optimal choice
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of predictive variable is given by the local average of the data. This is repeated for all possible
choices of the variable to be split, and the one that gives the smallest residual sum-of-squares
error is retained. The stopping of the addition of nodes, is related to the number of data points
associated with the leaf nodes, to then prune back the resulting tree. The pruning is based on a
criterion that balances residual error against a measure of model complexity. For example, if we
denote the starting tree for pruning by T0, then we define T ⊂ T0 to be a subtree of T0 if it can be
obtained by pruning nodes from T0. Suppose the leaf nodes are indexed by fi = 1; · · · ; |T |, with
leaf node fi representing a region Rfi of input space having Nfi datapoints, and |T | denoting the
total number of leaf nodes. The optimal prediction for region Rfi is then given by

yfi =
1

Nfi

X
rn∈RT

tn (5.14)

and the corresponding contribution to the residual sum-of-squares is given by

Qfi (T ) =
X
rn∈RT

{tn − yfi}2: (5.15)

The pruning criterion is then given by

C(T ) =

|T |X
fi=1

Qfi (T ) + –|T | (5.16)

The regularization parameter – determines the trade-off between the overall residual sum-of-squares
error and the complexity of the model as measured by the number |T | of leaf nodes, and its value
is chosen by cross-validation. For classification problems, the process of growing and pruning the
tree is similar, except that the sum-of-squares error is replaced by a more appropriate measure of
performance of the Gini index for a binary classifier, defining pfik to be the proportion of data
points in region Rfi assigned to class k , where k = 1; · · · ; K, in our case we have two classes
spike-and-wave and non-spike-and-wave, see eq. (5.17).

Qfi (T ) =
KX
k=1

pfik(1− pfik): (5.17)

5.7.1 Methodology

Let bX ∈ RN×M be an EEG raw signal, measured simultaneously on N different channels with 256
Hz of sample rate and dSW ∈ R1×P a spike-and-wave pattern database gathered from different
EEG signals bX, given by

bX = [x1; x2; :::; xm; :::; xN ]T with 1 ≤ m ≤ N (5.18)dSW = [sw1; sw2; :::; swp; :::; swP ] with 1 ≤ p ≤ P (5.19)
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where N = 23 channels and P = 96 spike-and-waves from database described in 5.4. The proposed
methodology is composed of four stages.
The first stage is the filtering of bX and dSW using two cascade Butterworth IIR filters in Z
domain with an empirical design based on physicians experience, a 2-order lowpass filter with
cutoff frequency of 100 Hz and 1-order highpass filter with cutoff frequency of 30 Hz, see eq.
5.20-5.21 respectively

Wlp(z) =
b

(1− az−1)2
(5.20)

Whp(z) =
b(1− z−1)

(1− az−1)
: (5.21)

Let X and SW be the filtered original signals. Then in the second stage, the filtered signal X is
splitted into a set of non-overlapping 1 second segments using a rectangular sliding window so that
X(i) = Ω(i)X. In the third stage, a cross-correlation is used to find the best match between the
two signals X(i) and SW p. Cross-correlation measures the similarity between SW p and shifted
(lagged) copies of X(i) as a function of the lag. Note that X(i) is an EEG RN×M matrix and SW p

is a R1×P vector which contains all the spike-and-wave to be analyzed. Assuming that i = p = n

then a cross-correlation rX;SW for the displacement in time of each EEG channel with respect to
each spike-and-wave is given by

rX;SW [fi ] =
1

N

NX
n=1

X[n−fi ]SW [n]: (5.22)

Then waveforms similarity are classified by the local peaks of the absolute value of rX;SW . Of
which, only the peaks greater than a certain threshold given by eq. (5.23), are considered similar
enough. Besides, a minimum distance of 1 second is established between peaks, which means that
for this algorithm there could not be more than one SWD per second:

max
[X;SW ]T

˛̨
rX;SW [fi ]

˛̨
− ff (rX;SW [fi ]) (5.23)

where |:| is the absolute value and ff is the standard deviation. Finally, in the fourth stage, only the
SWDs greater than 40% of the threshold of the total of coincidences by using the eq. (5.23), are
chosen as spikes-and-waves by each channel. Last two stages are using as a D-dimensional input
vector r for decision trees classifier in two regions namely spike-and-wave and non-spike-and-wave,
see Section 5.7.

The proposed methodology can be summarized by using the next algorithm:
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Data: EEG raw
Result: SWD detection
for each SWD do

for each X(i) for each channel do
1. Cross-correlation estimation between each SWD and X(i), see eq. (5.22);
2. SWDs candidates selection: based-on the waveform similarity and the distance
between peaks of 1 second greater than a threshold given by eq. (5.23);

3. SWDs: Only the SWDs greater than 40% of the total of coincidences are
chosen, see eq. (5.23) and Figure 5.11;

4. Steps 2. and 3. are using as a D-dimensional input vector r for decision trees
classifier in two regions namely spike-and-wave and non-spike-and-wave, see Figure
5.10;

end
end

Algorithm 4: SWD detection by using cross-correlation and decision trees.

5.7.2 Experimental results

We evaluate the performance of the proposed seizure detector in with 46 segments between 40
and 60 seconds from 23 channels, see Figure 5.11, which correspond to sleep long-term epileptic
signals recordings of one patient from Fundación contra las Enfermedades Neurológicas Infantiles
(FLENI).

Figure 5.11: Scatter plot example between all 23 channels (x axis) and the total coincidences
(y axis) into spike-and-wave signals from database, the line in 40 is the threshold used.

We compare the medical annotated data with our cross-correlation classifier and using 10 and
20 empirical K-fold cross-validation through the decision tree to evaluate how our results can be
generalized to an independent data set. We found an Area Under Curve (AUC) of 97% in 874
predictors corresponding to all database candidates from two EEG epochs with 23 channels, with
86% sensitivity and 98% specificity for spike-and-waves detection in long-term epileptic signals,
see classifier performance in ROC Figure 5.12.
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Figure 5.12: Receiver operating characteristic curve (ROC) in 874 predictors

5.8 Conclusions

In this chapter, we studied three different methods to detect spike-and-wave discharges in EEG
signals using a database created in Fundación Lucha contra las Enfermedades Neurológicas In-
fantiles (FLENI). For each new patient, ten new SWD patterns were selected to be part of the
database before training. Once the entire new database is trained, the prediction transforms into
a patient-specific seizure detection.

The main method used the generalized Gaussian distribution (GGD) coupled with the k-NN
classifier. In the second method, we used the t-location-scale distribution with a similar metho-
dology as with GGD. Both methods obtained an accuracy of 100%. Finally, in method three, we
used a cross-correlation coupled with decision trees classifier getting 98% sensitivity (True positive
rate) and 86% specificity (True negative rate) for spike-and-wave detection.

This research experience suggests that the proposed methods are potentially useful for spike-
and-wave detection in EEG long-term signals in epilepsy.
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Chapter 6

Conclusions, contributions, advantages,
limitations and research perspectives

6.1 Conclusions and contributions

This thesis originated with the Dynamic Brain SticAmSud project (2012-2014): "Dynamic image
reconstruction and segmentation for brain tissue characterization". The interdisciplinary research
was conducted by the following partners: Hadj Batatia and Jean Yves Tourneret from IRIT-
ENSEEIHT Laboratory of the University of Toulouse, France; José Bermudez and Marcio Costa
from LPDS/EEL Laboratory of the Universidade Federal de Santa Catarina, Brazil; Marcelo Pereyra
from School of Mathematics of the University of Bristol, UK; Carlos D’Giano from FLENI, Ar-
gentina; and Marcelo Risk and Antonio Quintero-Rincón from ITBA, Argentina. All institutions
with funding source by Centre national de la recherche scientifique (CNRS) from France, Coor-
denação de aperfeiçoamento de pessoal de nivel superior (CAPES) from Brazil and Ministerio de
Ciencia, Tecnología e Innovación Productiva (MinCyT) from Argentina.

In this thesis, the main methodological and theoretical aspects of EEG data processing have
been covered, from an accurate solution of detection, quantification, and characterization of
epilepsy seizures to effective approaches to correct classification between seizures and non-seizures.

Our work with real data led us to the analysis and comparison of state-of-the-art with similar
results, domain to which we contributed by introducing a statistical model that acts as a strong
dimension reduction mechanism yielding a significantly lower computational complexity. This
makes feasible a fast online implementation of an onset detection algorithm using a linear or
Bayesian classifier.

This work was motivated by the real need to detect epileptic seizures in clinical practices for two
reasons: manually marking the pattern is time consuming and the visual detection may be difficult
and error-prone. This topic was investigated from the exploration of the data to the construction of
principled methodology that allowed us to obtain promising results. It was possible to achieve two
methods: a new onset detection method in epileptic signals with a low computational complexity
that can be trained using a reasonably small dataset, but remains an open issue; and the other
one, a spike-and-wave epileptiform pattern recognition method.

Our interest in the research area motivated us to address some hard and still open questions
in the field. Going beyond detection, we proposed a temporal spread estimation algorithm working
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on the scale parameter of the generalized Gaussian distribution that offers interesting perspectives
for the investigation of the variability of the brain activity. We applied this method to epileptic
signals processing which demonstrated that such an approach could provide a good descriptor for
performing seizure onset detection.

Another topic addressed during this thesis relates to the analytical development of Kullback-
Leibler divergence (KLD) using the generalized Gaussian distribution parameters (scale and shape),
to distinguish between seizure and non-seizure in epileptic signals.

Pattern recognition was addressed with three novel methods to detect spike-and-wave dis-
charges (SWD) in long-term EEG signals. Recently, this work was selected for a national innovation
competition in Argentina named “INNOVAR 2018”.

The contributions are basically methodological and applied. Throughout this thesis, we tried to
make the right mathematical choices to model the problems of interest. We believe this enabled us
to propose appropriate and efficient algorithms so that we could finally tackle challenging epilepsy
problems.

To summarize:

• We contributed by providing to the EEG community an excellent seizure onset detector in
epileptic signals.

• We presented mathematical details of the statistical model based on the generalized Gaussian
distribution that acts as a strong dimension reduction mechanism yielding a significantly
lower computational complexity. This makes feasible an online implementation of an onset
detection algorithm.

• We developed a Kullback-Leibler-divergence-based methodology to distinguish between seizure
and non-seizure in epileptic signals.

• We contributed to set up a full experimental study from protocol design and data exploration
to the construction of a data analysis pipeline that offers promising results for the study of
EEG signals.

• We proposed a novel algorithm to address the hard problem of temporal spread estimation.
We believe that this contribution can be a valuable tool to investigate inter-trial variabilities,
which is of major interest in epilepsy studies.

• We proposed three novel methods to detect spike-and-wave discharges (SWD) following
the methodology used in this thesis. SWD is an EEG generalized discharge pattern seen
particularly during absence epilepsy, whose clinical importance lies in cognitive and behavioral
disturbances.

• We generated challenging research activity for bioengineering students at ITBA. This allowed
them to be trained in research and generating different projects on the exciting world of EEG
signal processing.
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• We generated collaborations between different international universities from France, U.K.,
Brazil, Germany and Tunisia.

These contributions are reflected in the following publications:

International Journal Papers

1. Antonio Quintero-Rincón, Marcelo Pereyra, Carlos D’Giano, Marcelo Risk and Hadj Bata-
tia. Fast statistical model-based classification of epileptic EEG signals. Biocybernetics and
Biomedical Engineering, Vol. 38, No. 4, pages 877-889, 2018 [4].

2. Antonio Quintero-Rincón, Carlos D’Giano and Marcelo Risk. Epileptic seizure prediction
using Pearson’s product-moment correlation coefficient of a linear classifier from generalized
Gaussian modeling. Neurología Argentina, Vol. 10, Issue. 4, pages 201-217, 2018 [5].

3. Antonio Quintero-Rincón, Marcelo Risk, Carlos D’Giano, Valeria Muro, Jorge Prendes, Hadj
Batatia. A novel spike-and-wave automatic detection in EEG signals. International Journal
of Signal and Imaging Systems Engineering. Vol. x, No. x, pages X, 2019 (In press) [10].

4. Antonio Quintero-Rincón, Catalina Carenzo, Joaquin Ems, Lourdes Hirschson, Valeria Muro,
Carlos D’Giano. Spike-and-wave epileptiform discharge pattern detection based on Kendall’s
Tau-b coefficient. Applied Medical Informatics. Vol. x, No. x, pages X, 2019 (In press)
[263].

5. Antonio Quintero-Rincón, Carlos D’Giano and Hadj Batatia. Curve fitting based on two-
point central difference to detect epileptic EEG seizures. Journal of Biomedical Research.
Vol. x, No. x, pages X, 2019 (In press) [264].

International Proceedings Papers

1. Antonio Quintero-Rincón, Carlos D’Giano, Hadj Batatia. Seizure onset detection in EEG
signals based on entropy from generalized Gaussian PDF modeling and ensemble bagging cla-
ssifier. European Association for Predictive, Preventive and Personalised Medicine (EPMA),
Springer book series, Vol. x, No. x, pages X, 2019 (In press), DOI: 10.1007/978-3-030-
11800-6, https://www.springer.com/gp/book/9783030117993#aboutBook [7].

2. Antonio Quintero-Rincón, Marcelo Pereyra, Carlos D’Giano, Hadj Batatia and Marcelo
Risk. A visual EEG epilepsy detection method based on a wavelet statistical representa-
tion and the Kullback-Leibler divergence. International Federation for Medical and Biolo-
gical Engineering (IFMBE) Proceedings Springer book series, Vol. 60, pages 13-16, 2017.
https://doi.org/10.1007/978-981-10-4086-3_4 [2]

3. Antonio Quintero-Rincón, Marcelo Pereyra, Carlos D’Giano, Hadj Batatia and Marcelo Risk.
A New algorithm for Seizure Onset Detection and Spread in Epilepsy Signals. Journal of
Physics: Conference Series, Vol. 705. No 1, page 012032, 2016. DOI:10.1088/1742-
6596/705/1/012032 [3]
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National Journal Papers

1. Antonio Quintero-Rincón, Máximo Flugelman, Jorge Prendes and Carlos D’Giano. Study
on epileptic seizure detection in EEG signals using largest Lyapunov exponents and logistic
regression. Revista Argentina de Bioingeniería, Bioengineering Argentinian Society. Vol. x,
No. x, pages X, 2019. (In press) [8].

2. Ivanna Zorgno, Maria Cecilia Blanc, Simon Oxenford, Francisco Gil Garbagnoli, Carlos
D’Giano and Antonio Quintero-Rincón. Epilepsy seizure onset detection applying 1-NN
classifier based on statistical parameters. Argentina Biennial Congress ARGENCON 2018,
San Miguel de Tucumán, 6-8 June 2018. DOI: 10.1109/ARGENCON.2018.8646234 [265].

3. Antonio Quintero-Rincón, Manuela Alanis, Valeria Muro and Carlos D’Giano. Spike-and-
Wave detection in epileptic signals using cross-correlation and decision trees. Revista Ar-
gentina de Bioingeniería, Bioengineering Argentinian Society, 22(4):3-6, 2018 [11].

International Conference Papers

1. Bassem Bouaziz, Lotfi Chaari, Hadj Batatia, Antonio Quintero-Rincón. Epileptic seizure
detection using a Convolutional Neural Network. International conference on digital health
technologies (ICDHT). October 15-16, 2018 - Sfax, Tunisia, [266].

2. Antonio Quintero-Rincón, Jorge Prendes, Valeria Muro and Carlos D’Giano. Study on Spike-
and-wave detection in epileptic signals using t-location-scale distribution and the k-nearest
neighbors classifier. IEEE URUCON 2017 Congress on Electronics, Electrical Engineer-
ing and Computing. Montevideo, Uruguay, 23-25 October 2017. DOI: 10.1109/URU-
CON.2017.8171869 [9].

3. Antonio Quintero-Rincón, Jorge Prendes, Marcelo Pereyra, Hadj Batatia and Marcelo Risk.
Multivariate Bayesian Classification of Epilepsy EEG Signals. The 2016 IEEE Image Video
and Multidimensional Signal Processing (IVMSP) workshop (IVMSP). Bordeaux, France.
11-12 July 2016:1-5. DOI: 10.1109/IVMSPW.2016.7528180 [6].

4. Antonio Quintero-Rincón, Hadj Batatia, Marcelo Pereyra and Marcelo Risk. Detection
of Onset in Epilepsy Signals using Generalized Gaussian Distribution. Fifth International
Conference on Advances in New Technologies, Interactive Interfaces and Communicabi-
lity. Huerta Grande, Córdoba, Argentina, 10-12 November 2014. (Special Mention) ISBN:
978.88.96.471.37.1, DOI: 10.978.8896471/371 Blue Herons Editions [1].

International Technical Reports

1. Antonio Quintero-Rincón and Marcelo Risk. Estimation and Regularization of Inverse Pro-
blem in EEG. STIC-Amsud Technical Report -12STIC-03 DynBrain, EEG dynamic image
reconstruction and segmentation for brain tissue characterization, Toulouse, France, 21 Ja-
nuary 2014.
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2. Antonio Quintero-Rincón and Marcelo Risk. Head Models: Review of the State of the Art.
STIC-Amsud Technical Report -12STIC-03 DynBrain, EEG dynamic image reconstruction
and segmentation for brain tissue characterization, Toulouse, France, October 1st 2012.

National Congress

1. Antonio Quintero-Rincón. Detección de Crisis en Señales Epilépticas usando la Distribución
Gaussiana Generalizada. Terceras Jornadas Interdisciplinarias de Análisis Avanzado de Imá-
genes y Señales (JIAAIS), Universidad Tecnológica Nacional de Buenos Aires, May 11-12,
2017.

2. Antonio Quintero-Rincón, Alberto Tablón, Marcelo Pereyra and Marcelo Risk. Spatial Re-
gularization for Head Models using EEG and MRI. XIX Argentinean Bioengineering Society
Congress, SABI 2013 (XIX Congreso Argentino de Bioingeniería y VIII Jornadas de Ingeniería
Clínica), Tucumán, Argentina, september 4-6, 2013 [267].

3. Antonio Quintero-Rincón, Sergio Liberczuk and Marcelo Risk. EEG preprocessing with Ham-
pel filters. Biennial Congress of IEEE Argentina, ARGENCON 2012, Córdoba Argentina,
June 13-15, No 89, Vol. 2012 [18].

4. Sergio Liberczuk, Antonio Quintero-Rincón and Marcelo Risk. Evaluación de un mapa Auto-
Organizado aplicado a una Interfaz Cerebro Computadora. Biennial Congress of IEEE Ar-
gentina, ARGENCON 2012, Córdoba Argentina, June 13-15, No 126, Vol. 2012 [268].

Finally, we hope that this thesis elucidates some aspects of EEG data processing in order
to improve the understanding but also the use of new methodological tools in the community.
Consequently, we hope that such a better understanding will improve the quality of results obtained
with EEG signal processing in order for these brain studies to have a higher impact on both basic
neuroscience and clinical studies.

6.2 Advantages and limitations

Through the use of a statistical model-based classification technique, the proposed method has
three main advantages. First, it requires only estimating and classifying two scalar parameters
for seizure onset detection or a few scalar parameters for spike-and-wave detection, allowing it to
be implemented in dedicated real-time hardware. Second, they can be trained using a reasonably
small dataset due precisely to the fact that it used only a few classification parameters. This
contrasts with methods using a number of features that would require large training datasets.
Third, it allows seizure detection simultaneously in the different brain rhythms, complying with
current medical practices.

Nevertheless, the proposed methods have three main limitations. First, due to the very high
dynamics of epileptic signals, defining the sliding time-window and the overlap of epochs is difficult.
Second, it needs defining regularization parameters for the training stage in order to take into
consideration random peaks, noise and artifacts that might lead to false positives. Third, seizures
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have variable and dynamic offsets corresponding to the complex nature of different epilepsy types.
As an example, when brain waves slow down, change from seizure to non-seizure is difficult to
track and can generate classification errors.

Lyapunov exponents (LLE) are not instant for seizure detection because their coefficients are
quite computationally time-consuming. It is important to conduct further studies in order to
quantify the variation of LLE coefficients in the different brain states throughout all brain rhythms.
This new information may have the potential to correlate with different characteristics of the
seizure event and eventually provide new insights to evaluate epileptic treatments.

6.3 Research perspectives

In this thesis, we approached the challenging problems of seizure onset detection and spike-and-
wave epileptiform pattern recognition in patients suffering from epilepsy. These topics have a major
interest especially in real time monitoring on EEG long-term signals where the inter-trial variability
can provide valuable information such as feasibility, anticipation, time, delay and source location
of epilepsy seizure. In the near future, we plan to apply our existing tools for source location
estimation. The idea is to use source location information to characterize the spatio-temporal
patterns and its connectivity of epileptic activity in intracranial and extracranial records.

The next methodological step would be to extend our approach to different kinds of inter-trial
variabilities. This work is currently starting in collaboration with Centro Integral de Epilepsia y
Telemetría from Fundación contra las Enfermedades Neurológicas Infantiles (FLENI), IRIT-INP-
ENSEEIHT from University of Toulouse, School of Mathematical and Computer Sciences (Heriot-
Watt University) and Max-Planck Institute for Empirical Aesthetics from Frankfurt (Germany).

Also, we will focus on other epileptic waveforms patterns and implementing a medical-friendly
interface with automatic epileptiforms count with an amplitude cerebral area map, robust non-
parametric statistical methods application; convolutional neural networks (CNN) approaches and
an increase of the database of spike-and-waves in on-line EEG long-term signals detection. It is
important to improve the latency time of seizure detection and conduct a detailed study about the
reliability prediction as the seizure develops across time. Other interesting research questions to
explore in more depths, are related with the analysis of the frequency bands detected before the
onset seizure, and which channels are active despite not participating directly in the detection of
the seizure onset.

We would also be interested in the marked point process (MPP) [269, 270] using the formalism
of generating probability functions (GPF) describing the space-time organization for large space
and time windows in EEG signals by taking account of the preexisting heterogeneity of spontaneous
seizures in epilepsy signals. Because EEG data assimilation is routinely employed as the optimal
way to combine noisy observations with prior model information for obtaining better estimates of
a state and, thus, better forecasts that can be achieved by ignoring data uncertainties.



Appendix A
Estimation and regularization of source

localization using EEG

A.1 Dipole assumption

A typical model used in neuroscience and appropriated for a single pattern interpretation from
magnetic field or potential over the electrodes B, is the dipole current. For a dipole at K location,
the magnetic field observed at electrode i in the position R(i), is given by

B(i) =
—

4ı

Q× (R(i)−K)

|R(i)−K| ; for i = 1; :::; NE ; (A.1)

For m-dipoles, the magnetic field in the location j can be obtained by

B(i) =
—

4ı

mX
i

Qj × (R(i)−Kj)

|R(i)−Kj |
; for i = 1; :::; NE (A.2)

where × represents the vector product, Q is the dipole moment, NE is the number of elec-
trodes, Kj is the j-th dipole location and the magnetic field B can be considered as B =

[B(1); B(2); :::; B(NE)], see Figure (A.1).
Factoring the dipole moments and normalizing with respect to —

4ı , into the product of their
unit orientation moments and strengths, the magnetic field can be expressed as B = GQ, where
Q = [Q1; Q2; :::Qm]T and G = [g(1); g(2); :::; G(m)] is the propagating medium matriz. Therefore
B can be expressed as B = GMJ, where GM is a function of location and orientation H(L;M),
resulting B = H(K;M)J.

The initial solution to this problem used a least-square approach (LS) [271], that minimizes
the difference between the estimate and the measurement data, which is given by:

JLS = ‖ffi−H(K;M)J‖2
F (A.3)

where ffi is the magnetic field or the potential over the electrodes. The parameters to be
estimated are location, dipole orientation and magnitude for each dipole. This is subject to
knowing the number of sources or dipoles.
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Figure A.1: The magnetic field B at each electrode is computed with respect to the dipole(s)
moment(s) and the distance between the center of the dipole volume and the electrode.

The application of the dipole moment at the brain activity location, assumes implicitly that
the current source is located in a small area or in several places separated in several dipoles
models. These require a priori knowledge about the number of sources, which are usually not
known. Misleading results can be obtained if these assumptions are not valid. If too few dipoles
are selected, the resulting parameters are influenced by the missing dipoles. If too many dipoles,
the accuracy will be reduced, because some of them are not valid brain sources. In addition,
the computational cost is high because the parameters optimization are made simultaneously
[272, 273]. One way to solve this is through the projection of the minimization problem:

JLS = ‖ffi−H(K;M)J‖2
F = ‖P⊥Hffi‖2

F (A.4)

The P⊥H matrix projects the data on to the orthogonal complement of the column space of
H(K;M), F is the Frobenius norm.

A.2 Lead-Field

The distribution of an electromagnetic field on the head or sources from EEG measurements is
described by the linear Poisson

5 · (ff5 ffi) = 5 · Js ; in Ω (A.5)

with no-flux Neumann boundary conditions on the scalp:
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ff(5ffi)· = 0; on ΓΩ (A.6)

where ff is the electrical conductivity tensor, ffi is the electric potential and Js are the electric
current sources. The mapping from electrical sources in the skull for scalp recordings can be
represented by a linear operator K and given a particular configuration of sources j ∈ J, the
resultant recordings ffi ∈ Φ, and the noise in the system �, represent the inverse problem approach
as

ffi = KJ + �: (A.7)

where K is the lead-field or kernel of the response of the system, his size is NE x 3NV and con-
tains information about the geometry and conductivity from the model. The K matrix represents
the direct transmission of the coefficients of each source to source array. The model construction
is easy by simple geometries such as spheres or for cases in which there is an analytical solution
for the direct problem, but it is difficult for geometries based on real data from patients. J is
an unknown data that represents the dipole moment matrix or electrical current sources. The
perturbation matrix � is the Gaussian noise, and the data matrix ffi can be found in the literature
as: observation model, likelihood, signal temporal data, recordings or measurements.

The goal in source image localization problem is: Given a set of recordings ffi and knowing
K (a priori), in necessary to make certain assumptions about �, in order to determine the set
of sources J, which generated the recordings. The inverse problem solution basically consists of
two steps: building the matrix K using the forward problem, then find the solution to the inverse
problem from K, which is required to estimate the Ĵ magnitude dipolar matrix, given the positions
of the electrodes and the EEG recordings in the scalp, using the K gain matrix calculated in the
forward problem.

A.3 Head models

The accuracy of a realistic head model by using EEG partly depends on head tissues geometry and
strongly affects the reliability of the source reconstruction process [274, 275, 276]. In the modeling
method, two practical considerations must be taken into account. First, to reduce the sensitivity
to noise, both in the measured voltages and the measured geometry, the number of independent
measurements at the body surface usually must greatly exceed the number of variables in the
source model. The overspecified equations are then solved using least-squares approximation eq.
(A.3) and possibly other constraints to achieve greater stability. Second, noise sensitivity increases
greatly with a growth in the number of degrees of freedom. For example, although greater brain
region information could be obtained with a greater number of multiple dipoles, results could
become useless if too large a number were selected [17]. A head model solves the eq. (A.6) using
the forward and/or inverse problem, see Figure (A.2).



110 Appendix A. Estimation and regularization of source localization using EEG

The forward problem is the problem in which the source and the conducting medium are known
but the field is unknown and must be determined, see Figure A.2. The forward problem has a
unique solution and always is possible to calculate the field with an high accuracy. This is limited
only by the accuracy with which the source and the volume can be described. Forward models
accuracy for EEG partly depends on head tissues geometry and strongly affects the reliability of
the source reconstruction process, but it is not yet clear which brain regions are more sensitive to
the choice of different model geometry [274, 275, 277].

The inverse problem is the problem in which the field and the conductor are known but the
source is unknown. To find the source given the measured field, a unique solution cannot be
found based on external measurements alone, see Figure A.2. For example in medical applications,
specifically in the bioelectric phenomena, the inverse problem is very important in clinical diagnosis,
because it trying to determine the source of the measured bioelectric or biomagnetic signals.
Therefore the possible pathology related to the source provides the base of the diagnostic decision.
The inverse problem may be solved by modeling the source of the bioelectric or biomagnetic signal
and the volume conductor in the following way [17]:

1. A model is constructed from the signal source. The model should have a limited number of
independent variables yet still have good correspondence with the physiology and anatomy
associated with the actual source distribution.

2. A model is constructed from the volume conductor. The conductor model accuracy must
be as good as or better than that of the source model.

3. At least as many independent measurements are made as the model as independent variables.

In practice, four types of head volume conductor models are the most used, but they are not the
only: a homogeneous sphere head volume conductor model, a boundary element method (BEM)
model, a finite element method (FEM) model and Dipole fitting methods (DFM).

A.3.1 Homogeneous sphere head volume conductor model

The inner skull surface is usually chosen in the single compartment case because the skull con-
ductivity is much lower with respect to the cerebrospinal fluid of the brain. Although the currents
outside the skull are much smaller, some studies suggest that additional layers can have an impor-
tant contribution to the external field [278, 279, 280].

The volume conductor head models have been successfully considered to be a series of concen-
tric spherical regions (e.g. brain, skull, and scalp) with results that correspond reasonably well to
measurements [281, 282, 283, 284, 277], but although the head has been modeled with a sphere
approximating the local inner curvature of the skull, the assumption of sphericity is poor. For
example, when temporal and frontal areas are studied or when measurements cover a large area
on the head. Even if a brain-shaped homogeneous conductor is considered, the secondary currents
on the outer interfaces give only a negligible contribution to the magnetic field outside the head
[278, 285, 286, 274, 276]. For head geometry realistic models, the surface Laplacian is estimated
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Figure A.2: Forward and Inverse Problems

from scalp potential directly into realistic scalp surfaces by using a triangular mesh reconstructed
from MRI scans [287].

A.3.2 Boundary element model

The Boundary Element Modeling (BEM) uses the T1-MRI for creates realistically shaped layers of
the body tissues. For example, a piece-wise homogeneous conductivity in each layer is assumed to
build the subject-specific head volume model. A lot of studies have been shown to be computa-
tionally strong, optimum and efficient for many applications of electrophysiological source imaging
or to solve the EEG forward or inverse problem [288, 277, 278, 289, 290, 291, 292]. In [293] a
realistic BEM head model was constructed to localize sources by introducing the first results of
numerical methods for modeling the dynamic structure and evolution of epileptic seizure activity
in an intracranial subdural electrode recording.

A.3.3 Finite element model

The Finite Element Method (FEM) divides the head into small elements where the geometry and
conductivity can be defined individually. FEM modeling allows handling of conductivity inhomo-
geneity and also tissue anisotropy. However, is restricted by the complexity and estimation of
model construction. Nevertheless, is the best approximation to the real head volume conductor
[294, 295, 286, 296]. If the conductivity tensor throughout the head is known, then is possible
to obtain an accurate solution using FEM numerical methods [297, 298, 295, 299], without de-
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tailed anatomical data for each subject [280]. In [298] the adaptive meshing scheme (wMesh)
was introduced. This scheme reflects the electrical properties of the human brain optimally by
using the MRI structural information and the fractional anisotropy maps derived from diffusion
tensors in the FE-mesh generation process. wMesh produce different forward solutions that are
different from conventional regular meshes. These are useful for modeling an individual-specific
and high-resolution anisotropic FE head model by incorporating realistic anisotropic conductivity
distributions. Allowing a more accurate analysis of a bioelectromagnetic problem.

A.3.4 Dipole fitting model

The Dipole fitting methods (DFM) are used for localizing focal activation with high accurately.
DFM has high computational demand and it is necessary to have model assumptions because
cannot reconstruct an extended source distribution and cannot localize multiple sources without
enough a priori knowledge [300, 277]. Dipole fitting techniques are widely used, but in fMRI and
EEG/fMRI studies have been found that spontaneous fluctuations are usually organized as diffused
networks [277]. Therefore, one or a few discrete dipoles might not be adequate to represent
such large-scale activity. Alternatively, EEG/MEG distributed source imaging serves well for this
purpose. A straightforward strategy is to estimate the source distribution instant-by-instant to
image brain activity spanning a continuous time period. Such a strategy has been applied to identify
large-scale resting-state rhythms, but it is challenged by the low SNR of continuous EEG/MEG
signals and the high computational demand. In Epilepsy, the subspace scanning technique for
spatiotemporal dipole fitting has been used to reconstruct the ictal activity in short periods. The
spatial precision and temporal resolution of which, allowed the identification of a causal relationship
between epileptic sources [301]. The comparison between DFM realistic model, BEM model, and
the sensor-fitted spherical model, suggest that the realistic geometry can provide a factor of
improvement which is particularly important when considering sources placed in the temporal or
in the occipital cortex. Template models have been suggested to simplify the analysis pipeline
and possibly reduce the computational burden [302, 303, 304]. The performance between the
centroid-head models and Thin Plate Spline (TPS)-MNI models (or Montreal Neurological Institute
(MNI)-shaped), might be even larger for FEM/DFM models because this type of head modeling is
probably much more sensitive to the approximations achieved at finer levels of detail of the image
[305].

A.4 Inverse problem

The inverse problem has the imposition that the physiological constraints are based on the infor-
mation available on the anatomy and physiology of the active tissue [17]. This imposes strong
limitations on the number of available solutions because there is no unique solution to the inverse
problem. Therefore more than one source configuration will generate fields that are consistent with
the measurements. However, it may be possible to select from among these competing solutions
one that at the same time meets physiological expectations.
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In simplified models, the source and the volume conductor are characterized by only a few
degrees of freedom. Because of one only attempts to minimize errors from the last approximation
by fitting a sphere. The idea is to go from a uniform conductor to a sphere, and not from
approximating the head by a uniform conductor. This is because a fully realistic model would
be needed to attempt to reproduce his results with a sphere, which would defeat the purpose of
using a spherical model in the first place [280]. The distributed source imaging (DSI), is used
for the problems of equivalent dipole modeling. DSI uses the assumption that a source model
consisting of a large number of unit dipoles evenly positioned in the brain volume or over the
cortical sheet of gray matter (e.g. the cortical current density (CCD) model). Such a distributed
source model approximates the biophysical organization and distribution of pyramidal neurons.
DSI has the merits of solving a linear inverse problem since the locations of dipoles are fixed
[277]. DSI has been developed to obtain an optimal source estimation by adding biophysical
and/or physiological constraints to the distributed source imaging inverse problem. For example,
the minimum norm estimate (MNE) identifies an optimal solution by using ‘2-norm optimization
in the sense of most energy efficiency [306], or by applying the weighted-MNE (WMN) method
to help to compensate the disfavored deep sources [271], or by using FEM approach [297] or by
utilization of low-resolution brain electromagnetic tomography (LORETA) that further consider
spatial smoothness of the neural activity [307] and their statistical analysis [308]. However, ‘2-
norm-based techniques produce blurred images spreading over multiple cortical sulci and gyri, which
lack spatial resolution to separate spatially focal sources. Nonlinear techniques based on ‘p-norm
(p < 2) were developed in an attempt to make the distributed source imaging images apply to
the distributed focal source, such as the focal underdetermined system solver (FOCUSS) [309], a
sparse source imaging based on ‘-1 norm [310, 311] and ‘p-norm iterative sparse [312].

Using MEG source localization is possible investigate the spatiotemporal dynamic estimation
in large-scale distributed source spaces with several thousand source locations and hundreds of
sensors [313]. The resulting inverse solutions provide substantial performance improvements over
static methods by using the dynamic maximum a posteriori expectation-maximization (dMAP-
EM) source localization algorithm. This algorithm is useful to estimation of cortical sources and
model parameters based on the Kalman filter, the fixed interval smoother, and the EM algorithms.
Kalman filter provides a natural framework in order to incorporate dynamic EEG generation models
in source localization [314]. The linear spatial filters (e.g. beamformer) explain how the spherical
approximation errors can give rise to larger localization differences when all modeling effects are
taken into account and with your complex source configurations [280].

A.5 Source localization approaches in EEG inverse problem

The main difficulty of EEG interpretation is the infinity of spatial patterns that result in identical
measurements. One possible solution is to select the current distributions, among the infinite
available by selecting the more consistent with the a priori information of the problem. This
additional information represents some characteristic or restriction of the currents whose cannot
be determined directly from the data available. The veracity of this additional information is critical
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to the reliability of the solution. Only the a priori knowledge of the source of the data, allows us to
make the final decision [22]. EEG measurements along with the solution of the direct problem are
possible to locate the brain regions that produced the data, in both space and time. However, due
to the physics of the problem, the limited sensors number compared with the possible number of
origin locations, and the measurement noise makes ill-posed the inverse problem. The general form
of the inverse problem is given by the instantaneous measurements NE given by the electrodes,
and by the amount of NV voxels in the brain. Typically, the voxels are determined by subdividing
uniformly the solution space, which is usually taken as the cortical grey matter volume or surface.
At each voxel, there is a point source, which may be a vector with three unknown components
(the three dipole moments), or a scalar (e.g. unknown dipole amplitude, known orientation). The
estimate of the sources of an EEG electromagnetic field, can be classified into two categories:

A.5.1 Equivalent current dipole approach

The equivalent current dipole approach (ECD) or parametric methods, assume that the EEG signals
are generated by a relatively small number of point sources. Typically between 1 and 5 where both,
position and the ideal time of each dipole are adjusted by data measuring [315, 316, 317, 318].
The concept of dipole source is a mathematical simplification of the actual distributed current
source [319].

The dipoles locations are found by using the least-squares approximation (LS), see eq. (A.3).
LS is a nonlinear optimization method to minimizes the variance of the data with respect to
the dipole locations based on the comparison between the maps observed (EEG data) and the
theoretical maps generated by the selected dipoles. The method stops when the differences between
the two maps are reduced or when they have an acceptable minimum. The high dependence on
the initial parameters can cause them to be trapped in the local minima, which do not represent
real solutions to the problem. These difficulties are accentuated with an increasing number of
sources and therefore the number of dipoles that can reasonably be estimated in practice is less
than predicted by the theory. In general, ECD methods have two important limitations. First,
the number of dipoles must be specified by the user and second, the optimization algorithm can
become trapped in a local minimum, and therefore might not be able to find the optimum dipole
location. Indeed, ECD methods are known to be unreliable when used many dipoles [320, 321].
Some methods used to dipoles adjust are brain electrical source analysis (BESA) [316], multiple
signal classification (MUSIC) [322] and non-recursive subspace algorithm (FINES) [323].

A.5.2 Linear current distributed approach

The linear current distributed approach, current distributed-source reconstruction (CDR) or non-
parametric methods, assume that all possible locations of the sources are simultaneous. A more
general model assumes that the EEG measurements are due to a distribution of sources in the brain.
As the number of unknown sources is much larger than the number of measurements, additional
restrictions are required in order to obtain a unique solution [324, 325, 326, 327, 328, 329].

The source location is equivalent to finding the current amplitudes for all dipoles simultaneously.
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This is an ill-posed problem because the number of dipoles is much larger than the number of
sensors. However, the use of dipoles fixed location means that the forward problem is linear and
the location of the source can be considered as the solution of a linear system with indeterminate
equations. Similar to the problems encountered in signal processing and image processing [171].
The optimization of these methods are routed by sung distributed source imaging (DIS) or images
methods [277]. The first inverse solution of a distributed model was the minimum-norm least-
squares (MNLS) [22], which later developed into weighted minimum-norm (WMN), a solution
used to avoid the intrinsic bias toward superficial currents [325, 271].

A.6 Current distributed-source estimation

The inverse problems usually use a solution according to ‘p-norm, where the regularization method
is to minimize the cost function

F–(J) = ‖KJ − ffi‖2 + –‖J‖p (A.8)

where J is the sources currents vector, K is the lead-field, ffi is the EEG measurements, – is the
regularization parameter and ‖:‖ is the minimum ‘p-norm method in the interval 1 ≤ ‘p ≤ 2. The
main distributed-source estimates are introduced follow.

A.6.1 Minimum norm estimation

The minimum norm estimation (MNE) is based on finding a unique solution with minimum power.
It is necessary to make assumptions about the solution, such assumptions can be formulated as
deterministic regularization terms [149]. MNE is used when a minimum a priori information about
the J source is available. When no assumptions about current discrete elements, estimates turn
out to be current distributions [326], where the dipole activity extends over some areas of the
cortical surface (voxel). One approach to minimizes the norm of J under the constraint of the
forward problem is

min‖J‖2
2 subject to ffi = KJ (A.9)

(A.10)

with a solution as

J = KT (KKT )†ffi (A.11)

Where † denotes the Moore-Penrose pseudo-inverse. The goal is to find a sparse solution
with zero contribution from most of the sources. Therefore by combining the equations (A.9) and
(A.11), the cost equation (A.8) becomes

F–(J) = ‖KJ − ffi‖2
2 + –‖J‖2

2 (A.12)
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J estimation is given by

ĴNE>NV = (KTK + –INV )−1KTffi (A.13)

ĴNV>NE = KT (KKT + –INE )−1ffi (A.14)

where NE is the number of electrodes and NV is the number of dipoles or voxels, T is the inverse
operator KT (KKT + –INE )−1, so TK is the resolution matrix, ideally the identity matrix I.

The main feature is that MNE penalizes distant sources to the sensors. Therefore the estimation
benefits the surface sources. This favors distributions from sources close to the measurement
surface, resulting in a poor location capability for deeper sources, also has poor performance
source localization in three-dimensional space.

A.6.2 Weighted minimum-norm

The weighted minimum-norm (WMNE) compensates the MNE depth sources. Therefore the
method estimates the weak and surface sources. In addition, improves the performance of the
three-dimensional location of sources. This is accomplished by introducing spatial weights (e.g.
3x3 weighting voxels/dipoles matrix) which ensure distribution of activity in all brain volume. The
norms of the columns of K are normalized, therefore the constraint can be formulated as

min‖WJ‖2
2 subject to ffi = KJ (A.15)

(A.16)

with a solution as

J = W−1KT (KW−1KT )†ffi (A.17)

where W is a diagonal of 3NV × 3NV weighting matrix, which compensates for deep sources in the
following way:

W = diag

"
1

‖K1‖2
;

1

‖K2‖2
; :::;

1

‖K3NV
‖2

#
(A.18)

where ‖K i‖2 represents the Euclidean norm of the ith column of K, W corresponds to the inverse
of the distances between the sources and electrodes. Therefore the cost equation (A.8) becomes

F–(J) = ‖KJ − ffi‖2
2 + –‖WJ‖2

2 (A.19)

J estimation is given by

‖J‖ = (KTK + –W TW )−1KTffi (A.20)

(A.21)
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or

‖Ĵ‖ = (KKT )−1KT (K(W TW )−1KT + –INE )−1ffi (A.22)

There are many weighting strategies for the WMN solution, the low-resolution electromagnetic
tomography (LORETA) algorithm, is a well-known solution for a weight matrix choice capable to
the depth compensation with a smooth solution, hence the name low resolution.

A.6.3 LORETA

The low-resolution electromagnetic tomography (LORETA) [307], combines the lead-field matrix
normalizationK with the spatial Laplacian operator (L) with the aim of reconstructing the surfaces
and deeps sources. This operator produces a spatially smooth solution, given an assumption with
respect to the neurophysiological a priori. The function of interest is

min‖LWJ‖2
2 subject to ffi = KJ (A.23)

This minimum norm approach produces a smooth topography in which the peaks representing the
source locations are accurately located. Therefore the cost equation (A.8) becomes

F–(J) = ‖KJ − ffi‖2
2 + –‖∆BJ‖2

2 (A.24)

where B = Ω̂⊗ I3, ⊗ denotes the Kronecker product, I3 is the 3x3 identity matrix and a Ω is a
diagonal matrix for the column normalization of K.

J estimation is given by

‖J‖ = (KTK + –B∆T∆B)−1KTffi (A.25)

or

‖Ĵ‖ = (B∆T∆B)−1KT (K(B∆T∆B)−1KT + –INE )−1ffi (A.26)

LORETA is better than MNE because the sources are distributed in smaller quantities through-
out the interior volume of the head. This process generates source distributions with low spatial
resolution. Whereas that the deeper sources by using MNE cannot be recovered because the dipoles
are placed on the surface of the source space. The depth compensated of the inverse solution is
given according to the restriction of smoothly distributed sources based on maximum smoothness
of the solution. The LORETA overall average localization error is smaller than one grid unit [308].
LORETA detect relatively strong activations in the thalamus, but a focal source reconstructed by
LORETA appears to be a cloud of active sources with the maxima hopefully located at the true
source location [312]. However, in many cases a higher spatial resolution is more desirable (e.g.
when extracting spatial features for spatiotemporal pattern recognition) [319].
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A.6.4 FOCUSS

Focal underdetermined system solver (FOCUSS), it is an iterative process of locating energy to
make the solution sparse and localized, a linear function J = Wq is applied to the function of
interest as follows

min‖q‖ subject to ffi = KWq (A.27)

FOCUSS is a high-resolution process for underdetermined systems [330, 309], where the k-th
iteration of the transformW k is a diagonal matrix constructed by the prior iteration solution Jk−1,
denoted byW k = diag(Jk−1). The final solution depends largely on the initial source distribution
J0, usually provided by LORETA. In addition, is sensitive to noises and source configurations [331].
During each iteration, a matrix inverse is needed and such an inverse calculation greatly determines
the stability and validation of FOCUSS. Current efforts in improvement of FOCUSS are mainly
made to improve the calculation of the matrix inverse and various techniques such as singular value
decomposition (SVD) truncation and regularization technique are adopted [312].

The basic form of the FOCUSS algorithm is

1. W k = diag(Jk−1)

2. qk = (KW k)†ffi

3. Jk = W kqk

When the iteration number is larger than the predefined maximum iteration number or when the
difference between neighboring iterations is less than the termination tolerance error, then the
iteration will be terminated and a sparse and energy localized solution will be achieved. FOCUSS
is appropriate for recovering a few focal sources but relies on a robust initialization, additionally
will converge to a localized solution with zero on most elements. The FOCUSS result is highly
dependent on the initialization of the algorithm.

WMNE-FOCUSS

FOCUSS repeats the procedure of the WMN method (see the previous section A.6.2), recur-
sively adjusting the weighting matrix until most elements of the solution become nearly zero, thus
achieving a localized solution. However, the final solution depends, to some degree, on the assu-
med initial current distribution [319]. The Weighted Minimum Norm (WMNE) compensates for
the lower gains of deeper sources by using lead-field normalization [332]. The information from
the previous iteration is given by

min‖CJ‖2
2 subject to ffi = KJ (A.28)
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where C = (W−1)TW−1 and W i = W i−1[diag(J i−1(1); :::; J i−1(3NV ))], the solution of iteration
i is given by

Ĵ i = W iW
T
i K

T (KW iW
T
i K

T )†ffi (A.29)

The iterations stop when not exists significant change in the estimation. Therefore the cost
equation (A.8) becomes

F–(J) = ‖KJ − ffi‖2
2 + –‖CJ‖2

2 (A.30)

J estimation is given by

‖Ĵ‖ = W iW
T
i K

T (KW iW
T
i K

T + –INE )−1ffi (A.31)

where i is the iteration index and W i is the diagonal matrix computed using

‖W i‖ = w iW i−1diag(J i−1) (A.32)

The diagonal matrix for deeper source compensation is defined as

‖W i‖ = diag(
1

|K(:; j)|); j ∈ [1; 2; :::; NV ];K(:; j) Jth is the column of K (A.33)

The algorithm is initialized with the ||Ĵ|| MNE solution given by

‖W 0‖ = diag‖Ĵ‖ = diag(Ĵ0(1); Ĵ0(2); :::; Ĵ0(3NV )) (A.34)

where Ĵ0(n) represents the n-th element of the vector Ĵ0. If continued long enough, FOCUSS
converges to a set of concentrated solutions equal to the number of electrodes. The localization
accuracy is improved impressively in comparison to MNE. However, localization of deeper sources
cannot be properly estimated [332]. In practice, the algorithm converges close to the initialization
point and may easily become stuck in some local minimum [331].

LORETA-FOCUSS

Is similar to WMNE-FOCUSS, but using LORETA, so both can be combined together according
to the following steps:

1. Compute the current density using LORETA, get the smooth solution Ĵ.

2. Construct the W matrix according to (A.32), the initial value of W is given by ‖Ĵ‖ of
LORETA eq. (A.34).

3. Compute the current density using eq. (A.31), that involving the compute of FOCUSS using
WMNE.

4. Repeat steps (2) and (3) until the solution Ĵ no longer changes, i.e. until convergence.
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FOCUSS is not able to accurately reconstruct the time series of active sources. Normally make
a solution increasingly sparse during the iteration. Therefore is better to remove the nodes that
do not have focal activities or to recover the active nodes that can be discarded by mistake [333].

A.6.5 sLORETA

Standardized low-resolution brain electromagnetic tomography (sLORETA), is different from LORETA
because it does not use the Laplacian operator, but is similar to Dale and Sereno Method [334].
This method is based in the inverse MNE solution, which assumes the noise value N and the dipole
intensity J are distributed with media no zero and the R and C covariance matrix are proportional
to I matrix, is given by:

Ĵ = RKT (KRKT + C)−1ffi (A.35)

In other words, Dale and Sereno [334] proposed a method in which the localization inference is
based on a standardization of the current density approach. In particular, the current density esti-
mation is employed given by the minimum norm solution, and standardized by using the expected
standard deviation, which is hypothesized to be originated exclusively by measurement noise. This
method produces systematic non-zero localization errors, even in the presence of negligible noise.
Precisely sLORETA location [307], is based on images of standardized current density approach.
This method employs the current density estimation given by the minimum norm solution ||J||,
where instantaneous extracranial measurements satisfy the expression Nv � NE (number of voxels
in the brain � number of electrodes), see equation (A.13). The localization inference is based
on standardized values of the current density estimation, which is defined so the variance of the
actual source be SD = I3dipoles = I3NV

and the noisy variations measures are SNoiseffi = –INE .

The electrical potential variance is given by

Sffi = KSffiK
T + SNoiseffi (A.36)

The variance of the estimated current density is given by

SĴ = TSffiT
T = KT [KKT + –INE ]−1K (A.37)

Eq. (A.37) is similar to the TK matrix resolution (see section MNE (A.6.1)). For the EEG, for
an unknown current density vector, the standardized current density power estimation is given by

Ĵ
T
MNE;l{[SĴ ]l l}−1ĴMNE;l (A.38)

where ĴMNE;l ∈ R3x1 is the current density estimation at the voxel lth given by MNE and
[SĴ ]l l ∈ R3x1 is the lth diagonal block of the resolution matrix SĴ . sLORETA returns a unique
solution to the inverse problem. Therefore the cost equation (A.8) becomes

min‖ffi−KJ‖2
2 + –‖J‖2

2 (A.39)
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Using the Tikhonov-Phillips regularization, find a possible solution to the inverse problem of the
form

j i = KT
i [K iK

T
i + –iI]−1ffi = RiJ (A.40)

where j i indicates the candidate sources, J are the actual sources, R is the resolution matrix given
by

Ri = KT
i [K iK

T
i + –iI]−1 (A.41)

The reconstruction of multiple sources performed by the final iteration of sLORETA is used as an
initialization for the combined adaptive standardized LORETA-FOCUSS (ALF) (see section A.7.3)
and weighted minimum norm (WMN or FOCUSS) algorithms [273]. The number of sources is
reduced each time and the equation (A.11) is modified as follow

j i = W iW
T
i K

T
f [KfW iW

T
i K

T
f + –I]−1ffi (A.42)

where Kf indicates the final NE ×NV lead-field matrix, returned by sLORETA. W i is a diagonal
(3NV )f × (3NV )f matrix, which is recursively improved based on the current density estimated by
the previous step:

W i = diag [j i−1(1); j i−1(2); :::; j i−1((3NE )f )] (A.43)

The resolution matrix given by (A.41) after each iteration changes to

Ri = W iW
T
i K

T
f [KfW iW

T
i K

T
f + –I]−1Kf (A.44)

The iterations are continued until the solution does not change significantly. sLORETA permits an
accurate location without errors when the single sources are reconstructed. The maximum power
current density estimation matches with the exact dipole location. While in Dale and Sereno
method, the current density estimation is based only on the noise measurement. Also, sLORETA
takes into account the variance of the actual source [308].

A.6.6 LPISS

The ‘p-norm iterative sparse solution (LPISS) find a sparse solution using ‘p-norm iterative with
p ≤ 1, hence the name [312]. LPISS is different to FOCUSS because the sparse solution of an
intermediate auxiliary variable q, is estimated by using ‘p-norm constrained optimization procedure,
instead of the matrix inverse estimation. When the algorithm converges, a sparse solution of source
J is readily derived from the obtained sparsely by using the next algorithm:
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1. Initialization. Set k = 1, iteration termination error › and the maximum iteration number
Tmax , initialize source distribution Jk−1 with LORETA solution.

2. Update the diagonal weight matrix: W k = diag(Jk−1).

3. Using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) optimization method [335], which is
an iterative method to solve unconstrained nonlinear optimization, to estimate the sparse
qk in:

arg min ‖ffi−KW kqk‖2 + –‖qk‖p (A.45)

4. Update source distribution: Jk = W kqk .

5. Judge termination condition. Comparing the difference between the prior and the last source
distribution:
If ‖Jk−Jk−1‖ ≤ › or k ≥ Tmax terminate the iteration and Jk is the final source distribution.
else
k = k + 1 and jump to step 2, FOCUSS Algorithm (A.6.4) and go on.

A.6.7 Bayesian approach

This method relates the probability functions with both current and data in order to select a highly
probable current distribution in a statistical sense. Depending on the complexity of the distribution
assumed, may be linear or nonlinear algorithms, which allows incorporations of a priori information
more elaborate. The Classic solution to solve the inverse problem, is given by eq. (A.46) previously
introduced in (A.7). The idea is to try to estimate J, knowing that ffi is the known variable, which
can be measured and observed, � is the perturbation and K is the lead-field that represents the
solution to the direct problem. In this approach is essential to take into account any information
about the a priori probabilities. In EEG applications the inverse problem equation is given by

ffi(n) = KJ(n) + �(n) (A.46)

where ffi(n) is a NE × 1 vector (where NE is the number of electrodes) containing the sample
values of the EEG in time n, K is a NE × m matrix, represents the head model, J(n) are the
m×1 vectors, containing the sample values of the sources at the time n and �(n) is a noise sample
vector NE×1 at instant n. The a priori information about the sources imposes some restrictions on
their locations and their temporal properties because there is an infinite amount of J(n). Usually,
the goal is to find the Ĵ estimation that maximize some kind of criteria. The estimation may be
performed using a maximum a posteriori (MAP) criterion, in which the estimator tries to find J(n)

that maximizes the probability distribution of J(n) given the measurements ffi(n). The estimator
is denoted as:

Ĵ = arg max
J

[(J(n)|ffi(n))] (A.47)
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where (J|ffi) is the refers to the conditional probability density of J given ffi. This estimator is
the more probably with respect to the measurements and the a priori considerations [332].

The starting point of all Bayesian methods is based on the Bayes theorem. Known that (J|ffi)

is the a posteriori density of J, therefore

(J(n)|ffi(n)) =
(ffi(n)|J(n))(J(n))

(ffi(n))
(A.48)

where (ffi(n)|J(n)) is the likelihood, (ffi(n)) is the marginal distribution of the measurements or
evidence and (J(n) is the prior probability.

The posterior can be written in terms of energy functions as

(J(n)|z(n)) =
1

z(n)
exp[−U(J(n))] (A.49)

where U(J(n)) can be expressed as

U(J(n)) = (1− –)U1(J(n)) + –U2(J(n)) (A.50)

where U1 is the likelihood, U2 is the a priori and 0 ≤ – ≤ 1. The a priori may be separated into
two functions, spatial priors Us and temporal priors Ut . Both reflect a balance between the data
fidelity and the function spatiotemporal smoothness –.

A.6.8 Spatial estimation

The spatial estimation is a modification of quadratic estimation, where the U2(J) parameter
estimation in the eq. (A.50), is calculated by using the intensity gradient of the dipole [336],
which leads to smooth variations in the solution by means of the estimator

Ĵ = (KTK + –5T 5)−1KTffi (A.51)

or

Ĵ = (5T5)−1KT (K(5T5)−1KT + –INE )−1ffi (A.52)

The spatial estimation is an inversion procedure based on a non-quadratic choice for U2(J) in the
eq. (A.50), which makes the estimator becomes nonlinear and more suitable for detecting the
intensity of energy [336], this is given by

Us(J) =
NX
n=1

Φ(5J) (A.53)

where N = NV × N, is the number of dipoles (e.g. voxels) by the number of neighbors of each
source J; 5J is th-vector element 5. The spatial prior function can take into account the
smoothness of the spatial variation of the sources. A cost function that determines the spatial
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smoothness is

Φ(u) =
u2

1 + ( uK )2
= ¸× ˛ (A.54)

where K is the scaling factor that determines the required smoothness, ¸ depends on the distance
between a source and his current neighbor and ˛ of the discrepancy depends on the orientations
of the two sources considered. Thus the function a priori for space constraints can be written as:

Us(J(n)) =
NX
n=1

ˆ
Φx
k(5xJ(n)|k) + Φy

k(5yJ(n)|k)
˜

(A.55)

where the indices x and y correspond to horizontal and vertical gradients respectively. For small5,
the local cost is quadratic, producing areas with spatial changes of smooth intensity. Whereas for
big 5, the local cost is infinite, Φ(u) ≈ K2, thus enabling preservation of discontinuities estimator
is given by

Ĵ = „(K; Ĵ i−1)ffi (A.56)

where „ is a NV ×NE matrix (NV is the number of dipoles and NE is the number of electrodes),
which depends on K and with priors calculated from the previous estimated source Ĵ i−1. The
spatial resolution depends on the signal-noise ratio of the scalp. One approach to achieving a
higher resolution is to use ‘1-norm instead of ‘2-norm. ‘1-norm methods can generate more focal
solutions and have a more robust behavior with respect to outliers in the measurement data.
However, ‘1-norm methods require much more computational effort in comparison with ‘2-norm
methods [282].

A.6.9 Spatiotemporal estimation

The component of the temporal magnitudes are assumed to evolve slowly respect to the sampling
frequency, therefore the time restrictions imposed by assuming that the projection of J(n) on the
space perpendicular to J(n − 1) is small or close.

The temporal prior function can be expressed as

Ut(J(n)) = ‖P⊥n−1J(n)‖2 (A.57)

where P⊥n−1 matrix is the projection onto space perpendicular to J(n − 1). Therefore the overall
minimization criterion for estimation of J(n) will be

Ut(J(n)) = argmin
J

"
‖ffi(n)−KJ(n)‖2 +¸

NEX
k=1

»
Φx
k(5xJ(n)|k) + Φy

k(5yJ(n)|k)

–

+ ˛‖P⊥n−1J(n)‖2

#
(A.58)



A.7. Shrinking methods 125

where ¸ and ˛ are the penalty terms or regularization parameters.

A.7 Shrinking methods

A.7.1 Shrinking LORETA-FOCUSS

This method combines LORETA and FOCUSS by iterative adjustments in the space solution in
order to reduce calculation time and increase the resolution of the source. The method begins
with a soft LORETA solution that improves the intensity of some relevant dipoles in the solution
while accentuates the intensity of those who are not.

The algorithm consists of the following steps:

1. Estimate the current density using LORETA to obtain Ĵ.

2. Construct the weighting matrix W using the solution estimated from the previous step, i.e.,
update the weighting matrix (A.32), Then, compute the current density according to (A.29),
where the initial value is given by the equation (A.34) with Ĵ of LORETA.

3. Current density Ĵ i estimation, which is calculated using the equation that involves the
estimation of FOCUSS using WMNE (A.31).

4. In the readjusted smoothing process, the prominent nodes are preserved, i.e. the nodes
greater than 1% of maximum value with its neighbors. The values of current density at
these nodes, readjust by smoothing, the new values are given by

1

Nl

»
Ĵ(l) +

X
u

Ĵ(u)

–
∀u under the constraint ‖rl − ru‖ ≤ d (A.59)

where rl is the position vector of lth node, Nl is the number of neighbor nodes around the
lth node with a distance equal to the minimum distance d between the nodes.

5. Shrinking process: the elements corresponding to Ĵ and K are retained and the K = JĴ

matrix is calculated.

6. Repeat steps 2. to 5, until convergence, can be defined as a threshold or when there is no
significant change in the weights of the additional iterations.

7. Let the solution of the last iteration before smoothing be the final solution.

Steps 4. and 5. are stopped if the new solution space has fewer nodes than the number of
electrodes or the solution of the current iteration is less sparse than that estimated by the previous
iteration.

Once steps 4. and 5. are stopped, the algorithm becomes a FOCUSS process.
The method in simulated data without noise, is able to reconstruct a three-dimensional source

distribution with a smaller error of localization and energy, regarding WMNE, ‘1-norm and LORETA
with FOCUSS is 10 times faster than LORETA-FOCUSS and several thousand to ‘1-norm. The
method is not able to accurately reconstruct the temporal series of active sources [319, 337].
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A.7.2 Standardized shrinking LORETA-FOCUSS (SSLOFO)

The Standardized Shrinking LORETA-FOCUSS (SSLOFO) method combines the characteristics
of high resolution given by FOCUSS with the low resolution given by WMNE and sLORETA.
Therefore SSLOFO can extract regions of dominant activity, as well as locate multiple sources
within the region of interest. For the algorithm is not trapped in a local minimum is performed
smoothing process. The algorithm is similar to LORETA-FOCUSS:

1. Current density is calculated using sLORETA to obtain Ĵ.

2. The weighting matrix W is build using the eq. (A.34) with sLORETA Ĵ.

3. Current density Ĵ i is calculated using eq. (A.31) of FOCUSS. Estimate the source power is
normalized as:

Ĵ
T
i (l) {[Ri ]l l}−1 J i (l) (A.60)

where [Ri ]l l is the lth diagonal block of matrix Ri = W iW
T
i K

T (KW iW
T
i + –INE )K

4. Retain the prominent nodes and their neighboring nodes. Adjust the values on these nodes
through smoothing.

5. Redefine the solution space to contain only the retained nodes, i.e. only the corresponding
elements in J and the corresponding column in K.

6. Update the weighting matrix.

7. Repeat steps 3 to 6 until a stopping condition is satisfied. The stopping condition may be
when a threshold is defined, or when there is no negligible change in the weights in further
iterations.

8. The final solution is the result of the last step before smoothing.

In simulated data the reconstruction of the temporal waveforms of both source, individual as
multiple, were correct. Thus allowing the direct estimation of the dynamics of cortical neuronal
sources. The algorithm achieves an excellent localization ability on noise-free data. It is capable
of recovering complex source configurations with arbitrary shapes and can produce high-quality
images of extended source distributions [337]. SSLOFO shrinks the source space after each itera-
tion of FOCUSS, reducing the computational request. The sources reconstructions obtained are
better than WMNE with FOCUSS and sLORETA, even outperforms FOCUSS with many extended
sources.

A.7.3 Adaptive standardized LORETA-FOCUSS (ALF)

While the above methods need a complete calculation of the matrix K of SSLOFO, Adaptive Stan-
dardized LORETA-FOCUSS (ALF), only requires between 6% and 11% of the of the full-resolution
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of the lead-field matrix with a localization accuracy that was not significantly different from an
exhaustive search through a fully-sampled source space. ALF It minimizes forward computations
through an adaptive procedure that increases source resolution as the spatial extent is reduced
[331].

The algorithm consists of the following steps:

1. A set of successive decimation is defined on the set of possible sources, these ratios determine
successively higher resolutions, the first ratio is selected so as to produce a selective number
of sources selected by the user and the last one relationship produces the full resolution
model.

2. Beginning with the first decimation ratio, are retained only the corresponding dipole locations
and columns in K of SSLOFO.

3. sLORETA in eq. (A.38) is used to achieve a smooth solution. The source with maximum
normalized power is selected as the center point for spatial refinement in the next iteration,
in which the next decimation ratio is applied. Successive iterations include sources within a
spherical region at successively higher resolutions.

4. Steps 2 and 3 are repeated until the last decimation ratio is reached. The solution produced
by the final iteration of sLORETA is used as initialization of the FOCUSS algorithm, where
the normalization process, see eq. (A.60), is incorporated.

5. Iterations are continued until there is no change in the solution.

The location accuracy achieved with ALF is not significantly different than that obtained when
an exhaustive search is performed for fully sampled source space is made [331]. A multiresolution
framework approach can be implemented too [338]. At each iteration of the algorithm, the source
space on the cortical surface was scanned at a higher spatial resolution such that at every resolution
but the highest, the number of source candidates was kept constant [332].

A.8 Regularization

The regularization techniques or penalty, are approximations of an ill-posed problem in a family
neighborhood of well-posed problem. They are used to prevent a large number of degrees of
freedom in the source space from being used to over-fit to added noise [337].
The regularization is expressed in terms of the – operator which is given by

F– = ‖KJ − ffi‖2 + –‖J‖p (A.61)

This cost equation has two properties

1. Among all possible solutions, only select the best fits that satisfy the set constraints such as
math (minimum norm estimates), anatomical, physiological or functional a priori information.
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This is based on the understanding of both neurophysiological and biophysics analysis. The
goal is to find the best approximation to the solution.

2. The solution is stable.

Thus, a challenge is to develop efficient optimization strategies that can solve the EEG inverse
problem with such priors in a short time. The optimum – value, can be determined using the
spectral truncation [149] or the truncated SVD (TSVD) criteria [330], where in general, a high
noise power corresponds a greater – [339, 312, 340, 341]. Different criteria to find – can be found
in the literature, for example by using a visually or empirically approaches [342], using the L-Curve
method [343, 344], setting, scaling or adjusting a SNR value [345, 346, 311, 347], by taking the
additive noise as a parameter known [348], or by selecting a percent of the Lead-Field matrix,
such as 99% of the total power [346] or 10% of maximum singular value [349]. Another way to
estimate – is by using the equation – = ff

√
2logN, where ff is the standard deviation of noise and

N is the size of the solution space [350].

A.8.1 ‘1 and ‘2 Regularization

In the literature, we can be found two types of approaches, the least-squares approximation, and
the logistic regression. The idea in both is try to find a J matrix, which will minimize a loss
function ‖KJ − ffi‖2 and the – operator. The linear model using, see section (A.2), is given by

ffi = KJ + � (A.62)

where ffi is the observation matrix such that ffi ∈ Rm, J is the unknown matrix such that J ∈ Rm,
� is the noise matrix such that � ∈ Rm and K is the lead-field matrix such that K ∈ Rm×n.
Over-fitting may occur when the number of observations m is not large enough compared with the
number of feature variables �, which tends to occur when large weights are found in J. Therefore
‘2 regularization is used, also it is easy to calculate and does not add too much complexity to
existing problems [351]. In this case the regularization term in (A.61), is given by –‖J‖2

2.

The least square problems seek to minimize the equation

‖KJ − ffi‖2
2 + –‖J‖2

2 (A.63)

where the regularization term restricts large value components, this is a special case of Tikhonov
regularization. This can be computed directly (O(n3)) or by using iterative methods, such as the
conjugate gradients method.

The logistic regression problem seek to minimize the equation

l avg (v ; J) + –‖J‖2
2 (A.64)

where the smooth and convex problem can be solved by using the gradient descent, steepest
descent, Newton, quasi-Newton, truncated Newton or conjugate gradients methods.
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The ‘1 regularization term in eq. (A.61) is given by –‖J‖1, this creates sparse answers and
better approximations in relevant cases [351].

The least square problems seek to minimize the equation

‖KJ − ffi‖2 + ‖J‖2
2 + –‖J‖1 (A.65)

The logistic regression problems seek to minimize the equation

‘avg (v ; J) + –‖J‖1 (A.66)

The regularization term in eq. (A.65) and eq. (A.66) penalize all factors equally which make
J sparse. This means that the complexity can be reduced, thus can be viewed as a selection of
relevant characteristics and/or importance. In addition, it is a non-differentiable, therefore the
problem is NP-complex, which can be transformed into a convex quadratic problem, where it seeks
to minimize

‖KJ − ffi‖2 + ‖J‖2
2 + –

nX
i=1

ui subject to:− ui ≤ J i ≤ ui for i = 1; :::; n (A.67)

The solution is by using the standard convex optimization methods that usually cannot handle
large practical problems [351]. The regularization assumptions made in terms of deterministic
regularization or Bayesian interpretation as the minimum norm estimate (MNE) and minimum
current estimate (MCE) [326, 329] correspond to ‘1-norm and ‘2-norm. In this methods a large –
corresponds to a large penalty in the current sources and a small – emphasizes the reliability of the
data. This means that ‘1-norm promotes sparse solutions, which that fact is a strong hypothesis.
This implies that the solution must have only a small number of coefficients different from zero.
While in some cases the minimum ‘2-norm may tend to force the solution of the dipoles near the
sensors, rather than the true source because the magnetic field follows the inverse square of the
distance between the sensor and the source [352]. In other words, this process usually leads to an
overestimation of the extension of the focal areas of activation.

‘1-priors are used to promote a priori solution spatially sparse and soft, while ‘2-priors are
used either for guidance [353] or for time and guidance [311], which leads to an optimization
problem convex. The prior most used in the EEG community are based on ‘2-norm [271, 334, 307]
and the Gaussian distribution as a likelihood measurements from the current sources [329, 354,
355, 356, 357]. In ‘2-norm, MNE is post-processed to obtain an interpretable image activation
patterns spatiotemporally [358]. MNE locates the source configuration with minimal energy. The
regularization parameter or Ridge regularization is estimated by cross-validation producing a linear
solution obtained by simple matrix multiplication [149]. This process makes estimation extremely
fast. In [339] for example using MEG, the – parameter was calculated by using the Markov random
field (MRF) coupled with the mean field, in order to evaluate the accuracy of the wrong location
and the difference between points in E/MEG.

The MNE solution is usually unstable with respect to modeling errors or the location and noise
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measurement [271]. Noise measurement can be projected onto the cortical sources, therefore set-
ting the – parameter is intended to limit this effect [340]. Also, MNE often too diffuse and tend to
estimate sources extending over a considerable part of the brain, which is not always physiologically
significant, see section (A.6.1). To address these limitations have been proposed many alternatives,
for example, in [310] was proposed the regularization of amplitudes from estimated sources with ‘1
priors by using the optimization procedure based on the simplex method [359]. This approach was
later modified slightly [329], which was called MCE penalized ‘1 solutions, the solutions obtained
by MCE are often too sparse and tend to scatter around the true sources [360]. LORETA [307]
uses a regularization term based on a spatial Laplacian to enforce the smoothing solution [311].
The iteratively reweighed least-squares (IRLS) approach was proposed by [330] to find the source
image location. FOCUSS algorithm approximates the solution with ‘0 a priori, this involves an
iterative weights estimation of MNE solutions with updated weights after each iteration [361].
Some applications using FOCUSS are to find the lead-field in magnetic field tomography (MFT)
[362],or to improve the calculation of the gradient vector flow (GVF) in MRI data [363]. Other
approaches are by combining algorithms such as shrinking from LORETA and FOCUSS, in order
to adjust the weight matrix and the spatial solution, obtaining a low error rate in the energy and
focal localization sparse [333], later improved in shape recursive [319] and using with sLORETA in
SSLOFO approach [337], Further improvements of the method arose with adaptive improvement,
using only between 6% and 11% of the resolution of lead-field, creating sparse signals to locate
the source [331], see section (A.7).

Some alternatives using ‘1-norm can be found in [353], which proposes the focal vector field
reconstruction method (FVR) with a – fixed, this is calculated by the division between the standard
values of the electrodes and the array containing all the raw data, in simulated data the sources
were recovered reliably. [364] proposed the sparse source imaging method (SSI), which reconstructs
the estimated sources and the active and inactive cortical currents, – was set to a large enough
value so that the probability satisfies ‖ffi−KJ‖2 ≥ –; [341] proposed the common spatial patterns
method (CPS-‘1) with a – calculated by using the Tikhonov method [149] in order to optimize the
outliers to classify the motor imagery in BCI spatial filters. Other methods are prelocation sources
of multivariate (MAP), which restricts the solution space to rebuild the focal activity in cortical
areas [344] or the mixed integer linear programming (MILP), where – is estimated based on the
uncertainty potential measurement. This method obtains a location of the minimum number of
streams able to reconstruct the evoked potentials recorded on the scalp.

The Bayesian approach [336] was extended by introducing a spatial and temporal prior informa-
tion [334], where the regularization parameter – was calculated empirically through the maximum
a-posteriori probability (MAP). MAP finds the coefficients that are used to establish a balance
between a probability term (the quantification of fidelity to the raw data) and a term a priori on
the estimator behavior. As for the marginalization of the regularization parameter, concerning
the dependence of the current measurements, in [365] was proposed that instead of calculating
a single best solution according to some criterion, is better generate before use, a large number
of possible solutions using MCMC, both for the data as for the priors information. –-hiperapriori
can be marginalized so that, is possible to create a connection point between ‘2-norm, MCE, FO-
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CUSS, sLORETA and minimum beamformer algorithm, to locate sources of E/MEG [366] or also
by applying the potential functions resolution in empirical form. Gradients are applied to optimize
the anatomical information by using a method based on the multiresolution approach to identify
real sparse focal patterns from current density [338].

These approaches are originated from the fact that it is possible that the configurations of
realistic sources, have only a limited number of active regions, see section (A.5), for example,
when a few brain regions are activated significantly from a particular cognitive task. The source
configuration is said to be spatially sparse. This assumption has proven to be relevant for clinical
applications and also justifies the location approximation from dipole fitting which is currently the
most widely used method in the clinical setting. [358].

However, the above approaches suffer from significant limitations. Solutions to sparsity-
inducing priors, are slow when applied to the analysis of real data sets, also algorithms proposed
so far, are complex and difficult to implement [358]. These can be calculated in a few hundred
milliseconds, but sparse inverse solutions can take a long time to converge when the actual di-
mensions are used [353, 311]. More however under certain conditions, it has been shown that
the sparse can allow perfect resolution of ill-posed problems [367]. On the other hand, when a
sparse solution is originated independently at each time instant, is not possible to recover the
time trajectories of cortical sources, therefore is important to consider the temporal dynamics from
data [366, 368, 311], where hyperparameters can be calculated by using the restricted maximum
likelihood (REML) approach [369, 370] or focal vector field reconstruction [353].

In sparse Bayesian learning methods [369, 370, 366], the problem can be reduced to the
maximization of a non-convex cost function called model evidence. For example, in [353, 311],
the problem was approached by using sparsity-Inducing prior, a mixture of ‘1-nom and ‘2-norm.
Estimating mixed standards (M ×NE) have the ability to structure a priori in order to incorporate
some additional assumptions on the sources. Is possible to promote spatially focal sources with
soft time estimation with a level-2 ‘1=‘2, while a level-3 can be used to promote spatially non-
overlapping sources between different experimental conditions. Some M × NE can be obtained
efficiently, for example, by using coordinate descent (based on the proximal estimation) or gradient
operators methods. Both based on the current understanding of mathematics and convergence
properties of these solutions.

LARS-LASSO algorithm [371, 372], which is a variant of the homotopy method [373, 374], is
an extremely powerful method for solving the ‘1 problem [375]. Simple coordinate descent [376]
or blockwise coordinate descent methods, also called block coordinate relaxation (BCR) [377],
are possible strategies. Other methods have been proposed based on the gradient projection and
proximity operators [358], sparsely connected sources analysis (SCSA) [357] or adaptive recursive
least-squares (RLS) group lasso for real-time [374], in this last, the time sequence is generated
of the optimal coefficients from the sparse prediction vectors, with a fixed 0:1 < – < 0:9 value,
typical standard RLS value for homotopy method with a steady state 0.05 error. Another interesting
approach is through the structured sparse regularization, by using brain electrical sources (BES)
matrix directly in the spatiotemporal source space, without having to rely on selecting a good basis
for sparse decomposition techniques [378].
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A.8.2 1 < p < 2 regularization

Usually, the main neural electrical activities are localized to sparse way, therefore, a reasonable
solution must not only explain scalp records that they are localized sparse way [312]. The approach
to achieve a sparse inverse problem solution for EEG can assume sparse few sources by using a
non-linear optimization method [274] or estimating directly ‘p-norm with predefined values, such
as p = 1 or p = 2. ‘2-norm produces extensive and extremely smooth estimates, while ‘1-norm
can be estimated focally. These approaches used the classical regularization methods such as
Tikhonov-Arsenin [149] or/and TSVD [361], both combined with the estimation methods such
as LORETA [307], sLORETA [308], Bayesian approach [326, 336, 329] or by using ‘1-norm and
‘2-norm where a large – corresponds to a large penalty in the current sources and a small –
emphasizes the reliability of the data.

For p values between 1 < p < 2, which are subject to uncertainty, p must be treated as an
unknown variable. One option is by using Bayesian inference, which is a popular method for finding
a solution of the electromagnetic inverse problem [365, 354, 336], another option is through the
method of Markov Chain Monte Carlo (MCMC) [365, 379], or methods based on the solution
of shrinking spaces, shrinking LORETA-FOCUSS [319], standardized shrinking LORETA-FOCUSS
(SSLOFO) [337] and adaptive standardized LORETA-FOCUSS (ALF) [331]. These methods using
a fuzzy initial solution of the distributed source as MNS, by iterative reduction of the solution
space, the solution converges to a relatively sparse, such as self-coherence enhancement algorithm
(SCEA) [380] and the focal solution of indeterminate systems using FOCUSS [309], WMNE with
FOCUSS [319] or by using methods that promote spatially sparse solutions, taking into account
the temporal dynamics of the data [366, 368, 311]. Sparse component analysis (SCA) is a method
that permits that allows the decomposition of sparse signals, which takes usually ‘p-norm with
p ≤ 1 as the restriction of signals decomposition, criteria used in LPISS Method [381, 382, 312].
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