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a b s t r a c t

For time-invariant (nonimpulsive) systems, it is already well-known that the input-to-state stability
(ISS) property is strictly stronger than integral input-to-state stability (iISS). Very recently, we have
shown that under suitable uniform boundedness and continuity assumptions on the function defining
system dynamics, ISS implies iISS also for time-varying systems. In this paper, we show that this
implication remains true for impulsive systems, provided that asymptotic stability is understood in a
sense stronger than usual for impulsive systems.
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1. Introduction

One of the main issues in control system theory concerns
nderstanding the dependence of state trajectories on inputs. In
his regard, the input-to-state stability (ISS) and integral-ISS (iISS)
re arguably the most important and useful state–space based
onlinear definitions of stability for systems with inputs.
The notions of ISS and iISS, originally introduced for time-

nvariant continuous-time systems in Sontag (1989, 1998), re-
pectively, were subsequently extended and studied for other
lasses of systems: time-varying systems (Edwards et al., 2000),
iscrete-time systems (Jiang & Wang, 2001), switched systems
Haimovich & Mancilla-Aguilar, 2018b; Mancilla-Aguilar & García,
2001), impulsive systems (Hespanha et al., 2008), hybrid systems
(Cai & Teel, 2009; Noroozi et al., 2017) and infinite dimensional
systems (Dashkovskiy & Mironchenko, 2013a; Mironchenko &
Wirth, 2017).

A natural question regards the exact relationship between
the ISS and iISS properties. Since the introduction of the iISS
property it is known that ISS implies iISS and that the converse
does not hold for time-invariant continuous-time systems (Son-
tag, 1998). The same implication was proved for discrete-time
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systems (Angeli, 1999), switched systems under arbitrary switch-
ng (Mancilla-Aguilar & García, 2001) and hybrid systems
Noroozi et al., 2017), assuming time-invariance. The correspond-
ing proofs employ Lyapunov characterizations of the ISS or of the
global uniform asymptotic stability (GUAS) properties in a funda-
mental way. This hinders the extension to classes of systems for
which Lyapunov characterizations do not exist, such as switched
systems under restricted switching or impulsive systems. Very
recently, Haimovich and Mancilla-Aguilar (2019a) proved that ISS
mplies iISS for families of time-varying and switched nonlinear
ystems without resorting to any Lyapunov converse theorem,
nd, in this way, opening the door to proving the implication for
ther types of systems.
This paper deals with impulsive systems with inputs, i.e. dy-

amical systems whose state evolves continuously most of the
ime but may exhibit jumps (discontinuities) at isolated time
nstants, and where the inputs affect both the flow (i.e. the
ontinuous evolution) and the jump equations (Yang et al., 2019).
ufficient conditions for ISS and iISS of impulsive systems with
nputs, based on Lyapunov-type functions, have been derived in
espanha et al. (2008). Since the appearance of Hespanha et al.

(2008), many works have addressed the stability of impulsive
systems with inputs from ISS-related standpoints, giving suffi-
cient conditions for the ISS and/or iISS in terms of Lyapunov
functions (Chen & Zheng, 2009; Dashkovskiy & Feketa, 2017;
Dashkovskiy et al., 2012; Dashkovskiy & Mironchenko, 2013b; Li
& Li, 2019; Li et al., 2018, 2017; Liu et al., 2014, 2011; Mancilla-
Aguilar & Haimovich, 2020; Ning et al., 2018; Peng, 2018; Peng
et al., 2018). In addition, some results for hybrid systems may
lso be applicable to impulsive systems (Liberzon et al., 2014; Liu
t al., 2018; Mironchenko et al., 2018).
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Despite the great progress of the stability theory of impul-
ive systems with inputs during the last decade, up to our best
nowledge the exact relationship between the ISS and iISS prop-
rties has not yet been established for this type of systems.
he main contribution of the current paper is thus solving this
pen problem by proving that ISS implies iISS. The implica-
ion is proved assuming that the ISS and iISS properties are
nderstood in a stronger sense than is usually considered in the
iterature of impulsive systems, more akin to that employed for
ybrid systems. As is well-known, the ISS/iISS properties impose
bound on the state trajectory comprising a decaying-to-zero

erm whose amplitude depends on the initial state value, and an
nput magnitude/energy-dependent term. As already explained in
espanha et al. (2008), the decaying term in the ISS/iISS defi-
itions employed for impulsive systems decays as time elapses
ut is insensitive to the occurrence of jumps. In this paper, we
onsider definitions of ISS/iISS where the decaying term decreases
lso when a jump occurs (see Definition 2.1), in agreement with

those considered in the context of hybrid systems (Cai & Teel,
2005, 2009; Noroozi et al., 2017). As a corollary of our main
result, we obtain that ISS implies iISS in the usual sense when the
impulse-time sequence satisfies a specific bound on the number
of impulse times on each bounded interval. This condition is
satisfied, for example, when the impulse-time sequence is such
that the flow periods (i.e. between jumps) have a minimum or
average dwell time. Very recently, we have shown that some of
the intermediate implications required to prove that ISS implies
iISS break down if both ISS and iISS are understood in the stan-
dard weak sense and the number of impulse instants in each
bounded interval cannot be bounded in relation to the length of
the interval (Haimovich & Mancilla-Aguilar, 2019b).

The current paper generalizes some of our previous results
(Haimovich & Mancilla-Aguilar, 2018a, 2018b, 2019a; Haimovich
et al., 2019). Our proof strategy conceptually follows that of
Haimovich and Mancilla-Aguilar (2019a), in the sense of being
based on bounding the difference between state trajectories. The
current results cannot be obtained directly (mutatis mutandis)
from the previous ones, mainly because we do not require the
jump maps to satisfy any kind of Lipschitz continuity property.
This led to the development of novel techniques for comparing
trajectories, especially suited to impulsive systems without Lip-
schitz continuity of the jump maps. The specific similarities and
differences with respect to our previous work are explained as
appropriate along the text.

The remainder of the paper is organized as follows. This sec-
tion ends with a brief description of the notation employed. In
Section 2, we precisely explain the type of systems considered
and the stability concepts employed. In Section 3, we provide a
characterization of the strong iISS property. This characterization
is employed in Section 4 in order to establish that strong ISS
implies strong iISS. The proofs of some technical intermediate
results are given in Section 5. Conclusions are given in Section 6.

Notation. N, R, R>0 and R≥0 denote the natural numbers, re-
als, positive reals and nonnegative reals, respectively. |x| denotes
the Euclidean norm of x ∈ Rp. We write α ∈ K if α : R≥0 → R≥0
is continuous, strictly increasing and α(0) = 0, and α ∈ K∞ if, in
addition, α is unbounded. We write β ∈ KL if β : R≥0 × R≥0 →

R≥0, β(·, t) ∈ K∞ for any t ≥ 0 and, for any fixed r ≥ 0,
β(r, t) monotonically decreases to zero as t → ∞. From any
function h : I ⊂ R → Rp, h(t−) and h(t+) denote, respectively,
the left and right limits of h at t ∈ R, when they exist and are
finite. For every n ∈ N and r ≥ 0, we define the closed ball
Bn
r := {x ∈ Rn

: |x| ≤ r}. Without risk of confusion, if γ = {τk}
N
k=1,

then γ can be interpreted as both the sequence {τk}
N
k=1 and the

set {τk : k ∈ N, k ≤ N} (even if N = ∞). For a, b ∈ R, we define
a ∧ b := min{a, b} and ⌈a⌉ as the least integer not less than a.
2. Stability of impulsive systems with inputs

2.1. Impulsive systems with inputs

Consider the time-varying impulsive system with inputs Σ
defined by the equations

ẋ(t) = f (t, x(t), u(t)), for t /∈ γ , (1a)

x(t) = x(t−) + g(t, x(t−), u(t)), for t ∈ γ , (1b)

where t ≥ 0, the state variable x(t) ∈ Rn, the input variable
u(t) ∈ Rm and f and g are functions from R≥0 × Rn

× Rm

to Rn, and the impulse-time sequence γ = {τk}
N
k=1 ⊂ (0,∞),

with N finite or N = ∞. We shall refer to f and to (1a) as,
respectively, the flow map and the flow equation and to g and
to (1b) as, respectively, the jump map and the jump equation. By
‘‘input’’, we mean a Lebesgue measurable and locally essentially
bounded function u : [0,∞) → Rm; we denote by U the set of
all the inputs. As is usual for impulsive systems, we only consider
impulse-time sequences γ = {τk}

N
k=1 that are strictly increasing

and have no finite limit points, i.e. limk→∞ τk = ∞ when the
sequence is infinite; we employ Γ to denote the set of all such
impulse-time sequences. For any sequence γ = {τk}

N
k=1 ∈ Γ

we define for convenience τ0 = 0; nevertheless, τ0 is never an
impulse time, because γ ⊂ (0,∞) by definition.

In order to guarantee the existence of Carathéodory solutions
of the differential equation ẋ(t) = f (t, x(t), u(t)), we assume that
f (t, ξ , µ) is Lebesgue measurable in t , continuous in (ξ, µ) and
that for every compact interval I ⊂ R≥0 and every compact set
K ⊂ Rn

× Rm there exists an integrable function m : I → R
such that |f (t, ξ , µ)| ≤ m(t) for all (t, ξ , µ) ∈ I × K . Under these
conditions, for each input u ∈ U the map fu(t, ξ ) = f (t, ξ , u(t))
satisfies the standard Carathéodory conditions (see Hale, 1980)
and hence the (local) existence of solutions of the differential
equation ẋ(t) = f (t, x(t), u(t)) is ensured.

The impulsive system Σ is completely determined by the
sequence of impulse times γ and the flow and jump maps f and
g . Hence, we write Σ = (γ , f , g). Given γ ∈ Γ and an interval
I ⊂ [0,∞), we define nγI as the number of elements of γ that lie
in the interval I:

nγI := #
[
γ ∩ I

]
. (2)

A solution of Σ = (γ , f , g) corresponding to an initial time
t0 ≥ 0, an initial state x0 ∈ Rn and an input u ∈ U is a function
x : [t0, Tx) → Rn such that:

(i) x(t0) = x0;
(ii) x is locally absolutely continuous on each interval J =

[t1, t2) ⊂ [t0, Tx) without points of γ in its interior, and
ẋ(t) = f (t, x(t), u(t)) for almost all t ∈ J; and

(iii) for all t ∈ γ ∩ (t0, Tx), the left limit x(t−) exists and is finite,
and it happens that x(t) = x(t−) + g(t, x(t−), u(t)).

Note that (ii) implies that for all t ∈ [t0, Tx), x(t) = x(t+), i.e. x is
right-continuous at t .

The solution x is said to be maximally defined if no other
solution y : [t0, Ty) → Rn satisfies y(t) = x(t) for all t ∈ [t0, Tx)
and has Ty > Tx. We will use TΣ (t0, x0, u) to denote the set of
maximally defined solutions of Σ corresponding to initial time
t0, initial state x0 and input u. Every solution x ∈ TΣ (t0, x0, u)
with t0 ≥ 0, x0 ∈ Rn and u ∈ U satisfies

x(t) = x(t0) +

∫ t

t0

f (s, x(s), u(s))ds

+

∑
τ∈γ∩(t0,t]

g(τ , x(τ−), u(τ )), ∀t ∈ [t0, Tx). (3)
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Remark 1. Note that even if t0 ∈ γ , any solution x ∈ TΣ (t0, x0, u)
begins its evolution by ‘‘flowing’’ and not by ‘‘jumping’’. This is
because in item (iii), the time instants where jumps occur are
those in γ ∩ (t0, Tx). ◦

2.2. Families of impulsive systems

Often one is interested in determining whether some stability
property holds not just for a single impulse-time sequence γ ∈

Γ but also for some family S ⊂ Γ . For example, the family
S could contain all those impulse-time sequences having some
minimum, maximum or average dwell time. Another situation
of interest is to determine if some stability property holds not
just for a single pair of functions (f , g) but also for all pairs
(f , g) belonging to some given set F . To take into account these
and other situations, we consider a parametrized family ΣΛ :=

{Σλ = (γλ, fλ, gλ)}λ∈Λ of impulsive systems with inputs, where
Λ is an index set (i.e. an arbitrary nonempty set). For example,
if we are interested in studying stability properties of systems
modelled by (1) which hold uniformly over a class S ⊂ Γ , then
we set S as the index set, and consider the parametrized family of
systems {Σγ = (γ , f , g)}γ∈S . By taking as index set Λ = F and
considering the family {Σ(f ,g) = (γ , f , g)}(f ,g)∈Λ we can handle
the other mentioned situation. Another interesting situation we
can handle in this way is that of impulsive switched systems (see
Mancilla-Aguilar & Haimovich, 2020, for details).

2.3. Stability definitions

In the context of impulsive systems, the input can be in-
terpreted as having both a continuous-time and an impulsive
component. From (1b) one observes that the values of u at the
instants t ∈ γ may instantaneously affect the state trajectory.
For this reason, input bounds suitable for the required stability
properties have to account for the instantaneous values u(t) at
t ∈ γ . Given an input u ∈ U , an impulse-time sequence γ ∈ Γ ,
an interval I ⊂ R≥0, and functions ρ1, ρ2 ∈ K∞, we thus define

∥uI∥∞,γ := max
{
ess. sup

t∈I
|u(t)|, sup

t∈γ∩I
|u(t)|

}
, (4)

∥uI∥ρ1,ρ2,γ :=

∫
I
ρ1(|u(s)|)ds +

∑
s∈γ∩I

ρ2(|u(s)|). (5)

When I = [0,∞) we simply write u instead of uI . These def-
initions are in agreement with those employed in Cai and Teel
(2009) and Noroozi et al. (2017) in the context of hybrid systems.
n what follows, 0 denotes the identically zero input.

efinition 2.1. We say that the parametrized family ΣΛ =

Σλ = (γλ, fλ, gλ)}λ∈Λ of impulsive systems is

(a) strongly 0-GUAS if there exist β ∈ KL such that for all
λ ∈ Λ, t0 ≥ 0, x0 ∈ Rn, and x ∈ TΣλ (t0, x0, 0), it happens
that for all t ∈ [t0, Tx),

|x(t)| ≤ β

(
|x0|, t − t0 + nγλ(t0,t]

)
. (6)

(b) strongly ISS if there exist β ∈ KL and ρ ∈ K∞ such that

|x(t)| ≤ β

(
|x0|, t − t0 + nγλ(t0,t]

)
+ ρ(∥u(t0,t]∥∞,γλ ); (7)

(c) strongly iISS if there exist β ∈ KL and α, ρ1, ρ2 ∈ K∞ such
that

α(|x(t)|) ≤ β

(
|x0|, t − t0 + nγλ(t0,t]

)
+ ∥u(t0,t]∥ρ1,ρ2,γλ; (8)
(d) Uniformly Bounded-Energy input/Bounded State (UBEBS,
Angeli et al., 2000) if there exist α, ρ1, ρ2 ∈ K∞ and c ≥ 0
such that

α(|x(t)|) ≤ |x0| + ∥u(t0,t]∥ρ1,ρ2,γλ + c; (9)

here (7)–(9) hold for all λ ∈ Λ, t0 ≥ 0, x0 ∈ Rn, u ∈ U ,
∈ TΣλ (t0, x0, u), and t ∈ [t0, Tx). The pair (ρ1, ρ2) in (8) or (9)
ill be referred to as an iISS or UBEBS gain, respectively.

emark 2. Due to causality and the Markov property, equivalent
efinitions are obtained if u(t0,t] is replaced by u in (7), (8) or (9).
ote that we do not require the solutions of (1) to be defined
or all t ≥ t0 in the definitions of the different stability prop-
rties. Nevertheless, well-known results for ordinary differential
quations ensure the existence of the solution on [t0,∞) in each
ase. ◦

emark 3. It is evident that strong ISS implies strong 0-GUAS
just set u = 0).

All the properties in Definition 2.1 are uniform with respect
o both initial time t0 and the different systems within the family
Λ. The ISS and iISS properties are called ‘‘strong’’ because the
ecaying term given by the function β forces additional decay
henever a jump occurs. The corresponding weak properties are
btained by replacing the second argument of β by t − t0 (see
ancilla-Aguilar & Haimovich, 2020). Strong ISS (and iISS) is in
greement with the ISS property for hybrid systems as in Liberzon
t al. (2014).
The strong and weak ISS/iISS become equivalent under the

ollowing condition, which is satisfied when the time periods
etween impulses have a minimum or average dwell time.

efinition 2.2. Consider a set S ⊂ Γ of impulse-time sequences.
e say that S is uniformly incrementally bounded (UIB) if there

xists a continuous and nondecreasing function φ : R≥0 → R≥0
o that nγ(t0,t] ≤ φ(t − t0) for every γ ∈ S and all t > t0 ≥ 0.

The proof of the following result can be obtained following the
ines of that of Proposition 2.3 in Mancilla-Aguilar and Haimovich
2020).

roposition 2.3. Let ΣΛ = {Σλ = (γλ, fλ, gλ)}λ∈Λ. Suppose that
γλ : λ ∈ Λ} is UIB. Then ΣΛ is strongly ISS (resp. iISS) if and only
f it is weakly ISS (iISS).

. A characterization of iISS

In this section we will show that under suitable hypotheses,
he strong iISS of a parametrized family of impulsive systems
ith inputs is equivalent to the combination of UBEBS and strong
-GUAS of the family.

.1. Assumptions and statement

First, we note that if jumps do not occur (γ = ∅), then (1) be-
omes the type of system considered in Haimovich and Mancilla-
guilar (2018b). We thus require that the flow maps satisfy the
onditions in Assumption 1 of Haimovich and Mancilla-Aguilar
2018b).

ssumption 1. The functions fλ : R≥0 × Rn
× Rm

→ Rn, λ ∈ Λ,
atisfy the following:

(i) there exist νf ∈ K and a nondecreasing function Nf :

R≥0 → R>0 such that for all λ ∈ Λ, |fλ(t, ξ , µ)| ≤

N (|ξ |)(1 + ν (|µ|)) for all (t, ξ , µ) ∈ R × Rn
× Rm;
f f ≥0
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(ii) for every r > 0 and ε > 0 there exists δ > 0 such that
for all λ ∈ Λ and all t ≥ 0, |fλ(t, ξ , µ) − fλ(t, ξ , 0)| < ε if
|ξ | ≤ r and |µ| ≤ δ;

(iii) fλ(t, ξ , 0) is locally Lipschitz in ξ , uniformly in t and λ,
i.e. for every R > 0 there is a constant LR ≥ 0 so that
for every λ ∈ Λ, ξ1, ξ2 ∈ Bn

R and t ≥ 0 it happens that
|fλ(t, ξ1, 0) − fλ(t, ξ2, 0)| ≤ LR|ξ1 − ξ2|.

All the conditions imposed by Assumption 1 on the flow
maps are uniform over all the systems in the family. Item (i)
imposes a bound that is, in addition, uniform over all values of the
time variable. Item (ii) requires a kind of continuity in the input
variable at its zero value, uniformly over time and over states in
compact sets. Item (iii) requires that the flow map of the zero-
nput system be locally Lipschitz in the state variable, uniformly
ver time.
The Lipschitz condition in item (iii) is required in order to

llow the application of Gronwall inequality. If all the conditions
f Assumption 1 were imposed on the jump maps gλ as well,
hen the required characterization of strong iISS would follow,
utatis mutandis, from Haimovich et al. (2019). However, impos-

ing such a Lipschitz continuity requirement on the jump maps is
restrictive and unnecessary. We will thus require the following
conditions.

Assumption 2. The functions gλ : R≥0 ×Rn
×Rm

→ Rn, λ ∈ Λ,
satisfy the following:

(i) there exist νg ∈ K and a nondecreasing function Ng :

R≥0 → R>0 such that for all λ ∈ Λ, |gλ(t, ξ , µ)| ≤

Ng (|ξ |)(1 + νg (|µ|)) for all (t, ξ , µ) ∈ R≥0 × Rn
× Rm;

(ii) for every r > 0 and ε > 0 there exists δ > 0 such that
for all λ ∈ Λ and all t ≥ 0, |gλ(t, ξ , µ) − gλ(t, ξ , 0)| < ε if
|ξ | ≤ r and |µ| ≤ δ;

(iii) gλ(t, ξ , 0) is continuous in ξ , uniformly in t and λ, i.e. for
every R > 0 there is a function ωR ∈ K∞ so that for
every ξ1, ξ2 ∈ Bn

R, t ≥ 0 and λ ∈ Λ, it happens that
|gλ(t, ξ1, 0) − gλ(t, ξ2, 0)| ≤ ωR(|ξ1 − ξ2|).

Items (i) and (ii) of Assumption 2 are identical to those of
Assumption 1. By contrast, the Lipschitz continuity requirement
of Assumption 1(iii) has been replaced by just continuity, keeping
the corresponding uniformity with respect to the other vari-
ables. The removal of the Lipschitz continuity requirement on
the jump maps causes the proof of our current results to be-
come substantially different and harder than that of the previous
ones (Haimovich & Mancilla-Aguilar, 2018a, 2019a; Haimovich
et al., 2019).

The main result of this section is the following characterization
of strong iISS for parametrized families of impulsive systems with
inputs.

Theorem 3.1. Consider the parametrized family ΣΛ = {Σλ =

(γλ, fλ, gλ)}λ∈Λ and let Assumptions 1 and 2 hold. Then ΣΛ is
strongly iISS if and only if it is strongly 0-GUAS and UBEBS.

The proof of Theorem 3.1 is given in Section 3.3. Note that
Theorem 3.1 does not require uniqueness of solutions under
nonzero inputs because the local Lipschitz continuity of the flow
maps imposed by Assumption 1(iii) applies only under zero input.

3.2. Preliminary results

The proof of Theorem 3.1 requires some preliminary lemmas.
The first of these is a type of generalized Gronwall inequality for
impulsive systems. The proof is given in Section 5.1.
Lemma 3.2. Let 0 ≤ t0 < T and let y : [t0, T ] → R≥0 be
a right-continuous function having a finite number N of points of
discontinuity s1, . . . , sN satisfying t0 < s1 < · · · < sN ≤ T . Let y be
such that the left-limit y(s−j ) exists for all j = 1, . . . ,N. Let p ∈ R≥0,
let a : R≥0 → R≥0 be locally integrable, let {ck}∞k=1 be a sequence of
nonnegative numbers, and let ω ∈ K∞. Let σ = {sk}Nk=1 and define
c : σ → R≥0 via c(sj) = cj. If y satisfies

y(t) ≤ p +

∫ t

t0

a(s)y(s)ds +

∑
s∈σ∩(t0,t]

c(s)ω(y(s−)) (10)

for all t ∈ [t0, T ], then in the same time interval y satisfies

y(t) ≤ ht0
k (p, t), (11)

where k = nσ(t0,t], and the functions ht0
j : R≥0 × [t0,∞) → R≥0,

j = 0, 1, . . ., are recursively defined as follows

ht0
0 (p,t) = pe

∫ t
t0

a(s)ds
, and, for j ≥ 1,

ht0
j (p,t) = ht0

j−1(p, t)+

cje
∫ t
t0

a(s)ds sup
t0≤s≤t

[
ω(ht0

j−1(p, s))e
−

∫ s
t0

a(τ )dτ
]
.

The function ω on the right-hand side of inequality (10) makes
the third term therein not necessarily affine in y. This enables the
application of Lemma 3.2 to impulsive systems without Lipschitz
continuity of the jump map. In addition, Lemma 3.2 is not a
particular case of other existing comparison-type results (such as
those in Lakshmikantham et al., 1989; Noroozi et al., 2014) and
is hence interesting in its own right.

Remark 4. If the function a(·) is constant, it follows that
ht0
j (p, t) = h0

j (p, t − t0) for all j ∈ N0, p ≥ 0 and t ≥ t0 ≥ 0. ◦

The following result is a generalization of Lemma 3 of
Haimovich and Mancilla-Aguilar (2018b) to the current setting.
The proof is given in Section 5.2.

Lemma 3.3. Let {Σλ = (γλ, fλ, gλ)}λ∈Λ be a strongly 0-GUAS
parametrized family of impulsive systems with inputs which satisfies
Assumptions 1 and 2. Let β ∈ KL characterize the 0-GUAS property
and let νf and νg be the functions given by Assumption 1(i) and 2(i).
Let χf , χg ∈ K∞ satisfy χf ≥ νf and χg ≥ νg . Then, for every
r > 0 and every η > 0, there exist L = L(r), κ = κ(r, η) and
ω = ωr ∈ K∞ such that if x ∈ TΣλ (t0, x0, u) with λ ∈ Λ, t0 ≥ 0,
x0 ∈ Rn and u ∈ U satisfies |x(t)| ≤ r for all t ≥ t0, then also

|x(t)| ≤ β(|x0|, t − t0 + nγλ(t0,t]) +

h0
n
γλ
(t0,t]

(
(t − t0 + nγλ(t0,t])η + κ∥u(t0,t]∥χf ,χg ,γλ , t − t0

)
, (12)

where h0
j , for j = 0, 1, . . ., are the functions defined in Lemma 3.2

in correspondence with a(s) ≡ L and cj ≡ 1.

As in Haimovich and Mancilla-Aguilar (2018b, Lemma 3), the
inequality (12) is only useful when its right-hand side is less
than r , since |x(t)| ≤ r for all t ≥ t0 is already assumed.
If γλ = ∅ (no impulses), and hence nγλ(t0,t] = 0, then (12)
reduces to the corresponding bound in Lemma 3 of Haimovich
and Mancilla-Aguilar (2018b).

The following result shows that if a system is strongly 0-
GUAS, then UBEBS could be equivalently defined setting c = 0 in
(9). This generalizes Lemma 4 of Haimovich and Mancilla-Aguilar
(2018b) to the current setting. The proof is given in Section 5.3.

Lemma 3.4. Let {Σλ = (γλ, fλ, gλ)}λ∈Λ be a strongly 0-GUAS and
UBEBS parametrized family of impulsive systems with inputs which
satisfies Assumptions 1 and 2. Then there exist α̃, ρ̃ , ρ̃ ∈ K , with
1 2 ∞
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ρ̃1 ≥ νf and ρ̃2 ≥ νg , for which the estimate (13) holds for every
∈ TΣλ (t0, x0, u) with λ ∈ Λ, t0 ≥ 0, x0 ∈ Rn and u ∈ U .

α̃(|x(t)|) ≤ |x(t0)| + ∥u(t0,t]∥ρ̃1,ρ̃2,γλ ∀t ≥ t0. (13)

We now have almost all the ingredients required for proving
Theorem 3.1. The only additional step is an ϵ-δ characterization
of the strong iISS property (see Haimovich et al., 2019, Theorem
3.2), stated here so that iISS is uniform over families of systems.

Theorem 3.5. Consider the parametrized family ΣΛ = {Σλ =

(γλ, fλ, gλ)}λ∈Λ of impulsive systems with inputs. Let ρ1, ρ2 ∈ K∞.
Consider the notation ∥u∥λ = ∥u∥ρ1,ρ2,γλ and, for r ≥ 0, Bλr := {u ∈

U : ∥u∥λ ≤ r}. Then ΣΛ is strongly iISS with gain (ρ1, ρ2) if and
only if the following conditions hold:

(i) For every T ≥ 0, r ≥ 0, s ≥ 0, there exists C > 0 such
that every x ∈ TΣλ (t0, x0, u) with λ ∈ Λ, t0 ≥ 0, x0 ∈ Bn

r
and u ∈ Bλs satisfies |x(t)| ≤ C for all t ≥ t0 such that
t + nγλ(t0,t] ≤ t0 + T .

(ii) For each ϵ > 0, there exists δ > 0 such that every x ∈

TΣλ (t0, x0, u) with λ ∈ Λ, t0 ≥ 0, x0 ∈ Bn
δ and u ∈ Bλδ satisfies

|x(t)| ≤ ϵ for all t ≥ t0.
(iii) There exists α ∈ K∞ such that for every r, ϵ > 0 there exists

T = T (r, ϵ) > 0 so that

α(|x(t)|) ≤ ϵ + ∥u∥λ

for all x ∈ TΣλ (t0, x0, u), λ ∈ Λ, t0 ≥ 0, x0 ∈ Bn
r , u ∈ U , and

t ≥ t0 such that t + nγλ(t0,t] ≥ t0 + T .

3.3. Proof of Theorem 3.1

(⇒) Let x ∈ TΣλ (t0, x0, 0), with λ ∈ Λ, t0 ≥ 0, x0 ∈ Rn.
The estimate (8), with γλ instead of γ reduces to α(|x(t)|) ≤

β(|x(t0)|, t − t0 + nγλ(t0,t]) and hence |x(t)| ≤ α−1
◦β(|x(t0)|, t −

t0 + nγλ(t0,t]). The function β̃ := α−1
◦β satisfies β̃ ∈ KL, and

hence (6) follows with β replaced by β̃ . Therefore, clearly strong
iISS implies strong 0-GUAS. Consider β ∈ KL from (8), define
β0 ∈ K∞ via β0(r) = β(r, 0). Define ψ ∈ K∞ via ψ(r) :=

min{β−1
0 (r/2), r/2}. Applying ψ to each side of (8), we obtain

ψ ◦α(|x(t)|) ≤ ψ
(
β0(|x(t0)|) + ∥u(t0,t]∥ρ1,ρ2,γλ

)
≤ ψ (2β0(|x(t0)|))+ ψ(2∥u(t0,t]∥ρ1,ρ2,γλ )
≤ |x(t0)| + ∥u(t0,t]∥ρ1,ρ2,γλ ,

and hence (9) follows with α replaced by α̃ := ψ ◦α ∈ K∞. We
ave thus shown that strong iISS implies UBEBS.
(⇐) Let α̃, ρ̃1, ρ̃2 ∈ K∞ be given by Lemma 3.4, so that (13)

s satisfied. We will prove that {Σλ}λ∈Λ is strongly iISS with iISS
ain (ρ̃1, ρ̃2) by establishing each of the items of Theorem 3.5.
ere we use the notation ∥u∥λ = ∥u∥ρ̃1,ρ̃2,γλ .
(i) Let T ≥ 0, r ≥ 0 and s ≥ 0. Let x ∈ TΣλ (t0, x0, u) with
∈ Λ, t0 ≥ 0, x0 ∈ Bn

r and u ∈ Bλs . From (13), it follows that
˜ (|x(t)|) ≤ r + s, and hence |x(t)| ≤ α̃−1(r + s) =: C for all t ≥ t0.
his establishes item (i) of Theorem 3.5.
(ii) Let ϵ > 0 and δ = α̃(ϵ)/2. Then, if x ∈ TΣλ (t0, x0, u) with
∈ Λ, t0 ≥ 0, x0 ∈ Bn

δ and u ∈ Bλδ , it follows from (13) that
x(t)| ≤ α̃−1(2δ) = ϵ for all t ≥ t0. This establishes item (ii) of
heorem 3.5.
(iii) Let α = α̃/2 ∈ K∞. Let r, ϵ > 0 and let x ∈ TΣλ (t0, x0, u)

ith λ ∈ Λ, t0 ≥ 0, x0 ∈ Bn
r and u ∈ U . We distinguish two cases:

(a) ∥u∥λ ≥ r ,
(b) ∥u∥λ < r .

n case (a), from (13) we have α̃(|x(t)|) ≤ r + ∥u(t0,t]∥λ ≤ r +
u∥λ ≤ 2∥u∥λ, hence α(|x(t)|) ≤ ∥u∥λ ≤ ϵ + ∥u∥λ for all t ≥ t0.
Next, consider case (b). From (13), we have α̃(|x(t)|) ≤ r +

u∥λ < 2r for all t ≥ t0. Then |x(t)| ≤ r̃ := α̃−1(2r) for all t ≥ t0.
et β ∈ KL characterize the strong 0-GUAS property, so that (6) is
atisfied under zero input, and let L = L(r̃) > 0 and ω = ωr̃ ∈ K∞

e given by Lemma 3.3 with χf = ρ̃1 and χg = ρ̃2, and let
j := h0

j , j = 0, 1, . . ., be the functions defined in Lemma 3.2
n correspondence with a(s) ≡ L and cj ≡ 1. Let ϵ̃ = ϵ and T̃ > 0
atisfy β(r̃, T̃ ) < ϵ̃/2. Let k̃ = ⌈T̃⌉+1, where ⌈s⌉ denotes the least
nteger not less than s ∈ R. Since hk̃ is continuous and hk̃(0, t) = 0
or all t ≥ 0, then there exists δ̃ > 0 such that hk̃(δ̃, k̃) < ϵ̃/2.
efine η =

δ̃

2k̃
and let κ = κ(r̃, η) > 0 be given by Lemma 3.3.

Set δ =
δ̃
2κ and define N :=

⌈ r
δ

⌉
and T := Nk̃.

Consider the sequence t0 = s0 < s1 < · · · < sN , recursively
defined as follows:

sj = inf{t ≥ sj−1 : t − sj−1 + nγλ(sj−1,t]
≥ T̃ }.

onsider the intervals Ii = (si, si+1], with i = 0, . . . ,N − 1. We
claim that there exists j ≤ N − 1 for which ∥uIj∥λ ≤ δ. For a
contradiction, suppose that ∥uIj∥λ > δ for all 0 ≤ j ≤ N−1. Then,
∥u∥λ ≥

∑N−1
j=0 ∥uIj∥λ > Nδ ≥ r , contradicting case (b). Therefore,

et 0 ≤ j ≤ N − 1 be such that ∥uIj∥ ≤ δ.
Since x ∈ TΣλ (sj, x(sj), u) and |x(t)| ≤ r̃ for all t ≥ sj, from

Lemma 3.3 it follows that

x(sj+1)| ≤ β

(
|x(sj)|, sj+1 − sj + nγλIj

)
+

hn
γλ
Ij

([
sj+1 − sj + nγλIj

]
η + κ∥uIj∥λ, sj+1 − sj

)
.

ince |x(sj)| ≤ r̃ , T̃ ≤ sj+1 − sj + nγλIj ≤ k̃, k̃η = δ̃/2, κδ ≤ δ̃/2 and
he functions hj(p, t) are separately increasing in p and in t , and
j(p, t) ≤ hk̃(p, t) for all 0 ≤ j ≤ k̃, it follows that

x(sj+1)| ≤ β(r̃, T̃ ) + hk̃(δ̃, k̃) <
ϵ̃

2
+
ϵ̃

2
= ϵ̃.

Therefore, using (13) with t0 replaced by sj+1, we reach

α̃(|x(t)|) ≤ |x(sj+1)| + ∥u(sj+1,t]∥λ ≤ ϵ̃ + ∥u∥λ

or all t ≥ sj+1. Since si+1 − si + nγλ(si,si+1]
≤ k̃ for all 0 ≤ i ≤ N − 1,

j+1 − t0 + nγλ(t0,sj+1]
=

∑j
i=1[si+1 − si + nγλ(si,si+1]

] ≤ Nk̃ = T . In
onsequence, if t ≥ t0 is such that t−t0+nγλ(t0,t] ≥ T , then t ≥ sj+1,
nd hence α̃(|x(t)|) ≤ ϵ̃ + ∥u∥λ. Since α = α̃/2 ≤ α̃, it follows

that item (iii) of Theorem 3.5 also is satisfied.

4. Strong ISS implies strong iISS

Definition 4.1. A parametrized family of functions {hλ}λ∈Λ, with
hλ : R≥0 ×Rn

×Rm
→ Rq for all λ, is said to have property UC if:

(i) For every r ≥ 0 and ε > 0, there exists δ = δ(r, ε) > 0
such that |hλ(t, ξ1, µ1) − hλ(t, ξ2, µ2)| ≤ ε for all λ ∈

Λ, t ≥ 0, ξ1, ξ2 ∈ Bn
r and µ1, µ2 ∈ Bm

r such that
max{|ξ1 − ξ2|, |µ1 − µ2|} ≤ δ.

The family {hλ}λ∈Λ is said to have property UCL, where L stands
for Lipschitz, if it has property UC and, in addition,

(ii) for every r ≥ 0, there exists L = L(r) such that |hλ(t, ξ1, µ)
− hλ(t, ξ2, µ)|≤ L|ξ1 − ξ2| for all λ ∈ Λ, t ≥ 0, ξ1, ξ2 ∈ Bn

r ,
and µ ∈ Bm

r .

A family {hλ}λ∈Λ has property UC when the functions hλ are
ontinuous in (ξ, µ) uniformly over t ≥ 0 and λ ∈ Λ. When Λ
ontains a single element, i.e. Λ = {λ}, the fact that the single-
lement family {hλ} has property UC reduces to the continuity of

hλ in (ξ, µ) uniformly over t ≥ 0.
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Remark 5. Condition (ii) in Definition 4.1 is equivalent to the
ollowing local Lipschitz condition: for all ξ ∈ Rn and r >

there exist η = η(r, ξ ) > 0 and L = L(r, ξ ) such that
hλ(t, ξ1, µ) − hλ(t, ξ2, µ)| ≤ L|ξ1 − ξ2| for all λ ∈ Λ, t ≥ 0,

∈ Bm
r and |ξi − ξ | ≤ η, i = 1, 2. ◦

To establish that strong ISS implies strong iISS, we need As-
umption 3, which strengthens Assumptions 1 and 2.

Assumption 3. The families of functions {fλ}λ∈Λ and {gλ}λ∈Λ
have properties UCL and UC, respectively, and fλ(t, 0, 0) =

gλ(t, 0, 0) = 0 for all t ≥ 0 and λ ∈ Λ.

Lemma 4.2. Assumption 3 implies Assumptions 1 and 2.

The proof of Lemma 4.2 is given in Section 5.5. Note that
Assumption 3 imposes local Lipschitz continuity of the flow maps
with respect to the state variable and hence uniqueness of so-
lutions of Σλ for all λ ∈ Λ. Our main result is the following.

Theorem 4.3. Let {Σλ = (γλ, fλ, gλ)}λ∈Λ be a strongly ISS
parametrized family of impulsive systems with inputs and let As-
sumption 3 hold. Then, {Σλ}λ∈Λ is strongly iISS.

The structure of the proof of Theorem 4.3 is given in the
following diagram. In this diagram, the application of Theorem 3.1
is possible because Assumption 3 implies Assumptions 1 and
2. Nonetheless, we stress that Assumption 3 is only needed for
application of Theorem 4.5. The implication indicated by Re-
mark 3 follows directly from the definitions with no additional
assumptions; the implication given by Theorem 3.1 holds under
the weaker Assumptions 1 and 2 which, in particular, do not
impose uniqueness of solutions under nonzero input.

strong
0-GUAS

↓↓strong
ISS

Remark 3
→↗

Theorem 4.5 ↘→

and Theorem 3.1 →→
strong
iISS

UBEBS

↑↑

Before giving the remaining step, indicated as Theorem 4.5,
we pose the following simple consequence of Theorem 4.3 and
Proposition 2.3.

Corollary 4.4. Let {Σλ = (γλ, fλ, gλ)}λ∈Λ be a weakly ISS
parametrized family of impulsive systems with inputs and let As-
sumption 3 hold. Suppose that {γλ}λ∈Λ is UIB (Definition 2.2). Then,
{Σλ}λ∈Λ is strongly iISS and hence also weakly iISS.

Proof. Since {γλ}λ∈Λ is UIB, then by Proposition 2.3 the weak
nd strong versions of ISS (or iISS) are equivalent. Applying The-
rem 4.3, the result follows. ■

emark 6. Some of the intermediate implications required to
rove that ISS implies iISS break down if both ISS and iISS are
nderstood in the standard weak sense and the UIB condition is
ot imposed. For example, we have recently shown (Haimovich &
ancilla-Aguilar, 2019b) that an impulsive systemmay be weakly
-GUAS and UBEBS but not weakly iISS. ◦

We next give a theorem that establishes that strong ISS implies
BEBS. This theorem is an extension to impulsive systems of
heorem 3.12 in Haimovich and Mancilla-Aguilar (2019a). How-
ver, due to the absence of any type of Lipschitz continuity
ssumption on the jump maps, the current proof does not follow
traightforwardly from the corresponding one in Haimovich and
ancilla-Aguilar (2019a). Moreover, the proof is not a simple
onsequence of replacing the application of Gronwall inequality
y that of the current Lemma 3.2. Specifically, the expression to
e bounded does not anymore have the multiplicative form given
s g1(r)g2(s) in Lemma 3.11 of Haimovich and Mancilla-Aguilar
2019a), leading to a novel bounding strategy.

heorem 4.5. Let {Σλ = (γλ, fλ, gλ)}λ∈Λ be a strongly ISS
arametrized family of impulsive systems with inputs and let As-
umption 3 hold. Then, {Σλ}λ∈Λ is UBEBS.

The proof of Theorem 4.5 requires the following lemma, whose
roof is given in Section 5.4.

emma 4.6. Suppose that {hλ}λ∈Λ has property UC and that
λ(t, 0, 0) = 0 for all t ≥ 0 and λ ∈ Λ. Then,

(B1) There exist ϕ̃h ∈ K∞ and nondecreasing and continuous
functions Nh,Oh : R≥0 → R≥0 such that1

|hλ(t, ξ , µ1) − hλ(t, ξ , µ2)|
≤ ϕ̃h(|µ1 − µ2|)

[
Nh(|ξ |) + Oh

(
|µ1| ∧ |µ2|

)]
holds for all t ≥ 0, ξ ∈ Rn, µ1, µ2 ∈ Rm and λ ∈ Λ.

(B2) There exist ηh, ϕh ∈ K∞, and Ph : R≥0 → R≥0 nondecreasing
and continuous, such that for all t ≥ 0, ξ1, ξ2 ∈ Rn, µ ∈ Rm,
and λ ∈ Λ,

|hλ(t, ξ1, µ) − hλ(t, ξ2, µ)|
≤ ηh(|ξ1 − ξ2|)[Ph(|ξ1| ∧ |ξ2|) + ϕh(|µ|)].

f, in addition, {hλ}λ∈Λ has property UCL, then also

(B3) Item (B2) holds with ηh such that for every M ≥ 0 there exists
Lh = Lh(M) so that

ηh(s) ≤ Lhs for all 0 ≤ s ≤ M, (14)

where the function Lh(·) is continuous, nondecreasing, and
positive for M > 0.

roof of Theorem 4.5. Let β ∈ KL and ρ ∈ K∞ characterize
he strong ISS property. Let ϕ̃f ,Nf ,Of , ηf , ϕf , Pf be the functions
iven by Lemma 4.6 due to the fact that {fλ}λ∈Λ has property UCL,
nd let ϕ̃g ,Ng ,Og , ηg , ϕg , Pg be those corresponding to {gλ}λ∈Λ,
hich has property UC. Define ha

1, h
a
2 : R2

≥0 → R via

a
1(r, b) := Na(β(r, 0) + ρ(b)) + Oa(b), (15)
a
2(r, b) := Pa(β(r, 0) + ρ(b)), (16)

here a ∈ {f , g}. Let Lf : R≥0 → R≥0 be continuous, nondecreas-
ng, and such that for every M ≥ 0, (14) holds with ‘h’ replaced by
f ’. In correspondence with every r > 0, define Tr > 1 continuous
nd such that

(r, Tr − 1) ≤ r/3, and also (17)

br := ρ−1(r/3), Mr := r/3, (18)

h̄1(r) := hf
1(r, br ) + hg

1(r, br ) Lfr := Lf (Mr ). (19)

or each j ∈ N0, consider the functions h̃j : R4
≥0 → R≥0 given by

˜0(p,T , r, s) = pe[hf2(r,br )T+s]Lfr , and for j ≥ 1,

h̃j(p,T , r, s) = h̃j−1(p, T , r, s)+

[hg
2(r, br ) + s]e[hf2(r,br )T+s]Lfr ηg (h̃j−1(p, T , r, s)),

1 Recall the notation a ∧ b = min{a, b}.
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and define, for r > 0 and s ≥ 0,

˜(r, s) := sup
{
p ≥ 0 : h̃j(p, T , r, s) ≤

Mr

2
,

∀(j, T ) s.t. T ≥ 0, T + j ≤ Tr
}
.

Note that the functions h̃j are nondecreasing in j, p, T , r and s,
continuous in (p, T , r, s) over R4

≥0, and satisfy h̃j(0, T , r, s) = 0 for
all j ∈ N0 and (T , r, s) ∈ R3

≥0. In addition, the function h̃j(·, T , r, s)
is increasing for every j ∈ N0 and (T , r, s) ∈ R3

≥0, and h̃j(p, T , r, ·)
is increasing whenever p > 0 and r > 0. These facts make
p̃(r, s) > 0 for all r > 0 and s ≥ 0, and p̃(r, ·) decreasing. From
the definition of p̃(r, s), we have that for all r > 0 and s ≥ 0,

h̃j(p, T , r, s) ≤ Mr/2

whenever p ≤ p̃(r, s), T ≥ 0, T + j ≤ Tr . (20)

Consider the function ℓ : [1,∞) → R≥0, defined via

ℓ(r̄) := sup
1≤r≤r̄

h̄1(r)(r − 1)
p̃(r, r − 1)

. (21)

It is clear that ℓ is nondecreasing.

Claim 1. ℓ(r̄) < ∞ for all r̄ ≥ 1.

Proof of Claim 1. Let r̄ ≥ 1 and consider

T̄ := sup
1≤r≤r̄

Tr ,

p̄ := sup
{
p ≥ 0 : max

j∈N0,j≤T̄
h̃j(p, T̄ , r̄, r̄ − 1) ≤

M1

2

}
.

Since Tr is positive and continuous for r > 0, then T̄ is finite and
positive. From the continuity and monotonicity properties of h̃j,
t follows that p̄ > 0. From the corresponding definitions, it also
ollows that p̃(r, r − 1) ≥ p̄ for all 1 ≤ r ≤ r̄ . In consequence, by
lso taking into account the continuity of h̄1 it follows that

¯(r̄) ≤ max
1≤r≤r̄

h̄1(r)(r − 1)
p̄

< ∞. ◦

It follows that there exists κ ∈ K∞ such that ℓ(r) ≤ κ(r) for
all r ≥ 1. Define α ∈ K∞ via

α(b) = κ(3ρ(b)). (22)

Given an input u ∈ U and a constant b ≥ 0, let ub denote a new
input, defined as follows

ub(t) =

⎧⎨⎩
bu(t)
|u(t)|

if t ∈ Ωu(b),

u(t) otherwise,
(23)

Ωu(b) := {t ≥ 0 : |u(t)| > b}. (24)

Note that |ub(t)| = min{|u(t)|, b} for all t ≥ 0 and hence
∥ub∥∞,γ ≤ b for all γ .

Let χ1, χ2 ∈ K∞ satisfy χ1 ≥ max{ϕf , ϕ̃2
f , α

2
} and χ2 ≥

max{ϕg , ϕ̃2
g , α

2
}. We will establish UBEBS with gain (χ1, χ2). Let

t0 ≥ 0, ξ ∈ Rn, λ ∈ Λ, set γ = γλ, and consider an input u ∈ U
uch that

:=

∫
∞

0
χ1(|u(s)|)ds +

∑
s∈γ

χ2(|u(s)|) < ∞. (25)

et x ∈ TΣλ (t0, ξ , u) and define α̃ ∈ K∞ via

˜ (r) = β(r, 0) +
2r
3
. (26)
Claim 2. Let r be any real number such that r ≥ 1 + E and
|x(t0)| ≤ r, then

|x(t)| ≤ α̃(r) ∀t ≥ t0. (27)

Proof of Claim 2. For a fixed b ≥ 0, let xb ∈ TΣλ (t0, x(t0), ub),
nd ∆x = x − xb. From the strong ISS property, then

xb(t)| ≤ β

(
|x(t0)|, t − t0 + nγ(t0,t]

)
+ ρ(∥ub∥∞,γ )

≤ β(r, 0) + ρ(b)

or all t ≥ t0. From (3) and Assumption 3, it follows that

|∆x(t)| ≤

∫ t

t0

⏐⏐⏐fλ(s, x(s), u(s)) − fλ(s, xb(s), ub(s))
⏐⏐⏐ds+∑

τ∈γ∩(t0,t]

⏐⏐⏐gλ(τ , x(τ−), u(τ )) − gλ(τ , xb(τ−), ub(τ ))
⏐⏐⏐

≤

∫ t

t0

⏐⏐⏐fλ(s, x(s), u(s)) − fλ(s, xb(s), u(s))
⏐⏐⏐ds+∑

τ∈γ∩(t0,t]

⏐⏐⏐gλ(τ , x(τ−), u(τ )) − gλ(τ , xb(τ−), u(τ ))
⏐⏐⏐+∫ t

t0

⏐⏐⏐fλ(s, xb(s), u(s)) − fλ(s, xb(s), ub(s))
⏐⏐⏐ds+∑

τ∈γ∩(t0,t]

⏐⏐⏐gλ(τ , xb(τ−), u(τ )) − gλ(τ , xb(τ−), ub(τ ))
⏐⏐⏐

≤

∫ t

t0

ηf (|∆x(s)|)[Pf (|x(s)|∧|xb(s)|)+ϕf (|u(s)|)]ds+∑
τ∈γ∩(t0,t]

ηg (|∆x(τ−)|)[Pg (|x(τ−)|∧|xb(τ−)|)+ϕg (|u(τ )|)]+∫ t

t0

ϕ̃f (|u(s) − ub(s)|)[Nf (|xb(s)|)+Of (|u(s)|∧|ub(s)|)]ds+∑
τ∈γ∩(t0,t]

ϕ̃g (|u(τ ) − ub(τ )|)[Ng (|xb(τ−)|)+Og (|u(τ )|∧|ub(τ )|)]

holds for all t ≥ t0 for which x(t) exists. Then, for all t ≥ t0 for
which x(t) exists,

|∆x(t)|≤
∫ t

t0

ηf (|∆x(s)|)[hf
2(r, b) + ϕf (|u(s)|)]ds

+

∑
τ∈γ∩(t0,t]

ηg (|∆x(τ−)|)[hg
2(r, b) + ϕg (|u(τ )|)]

+ hf
1(r, b)

∫ t

t0

ϕ̃f (|u(s) − ub(s)|)ds

+ hg
1(r, b)

∑
τ∈γ∩(t0,t]

ϕ̃g (|u(τ ) − ub(τ )|). (28)

For t ≥ t0, we have the following inequalities:∫ t

t0

ϕ̃f (|u(s) − ub(s)|)ds ≤

∫
Ωu(b)

ϕ̃f (|u(s)|)ds,∑
τ∈γ∩(t0,t]

ϕ̃g (|u(τ ) − ub(τ )|) ≤

∑
τ∈γ∩Ωu(b)

ϕ̃g (|u(τ )|)

Applying the Schwarz inequality, then∫
Ωu(b)

ϕ̃f (|u(s)|)ds ≤ |Ωu(b)|1/2
√∫

Ωu(b)
ϕ̃2
f (|u(s)|)ds

≤ |Ωu(b)|1/2
√
E, and likewise∑

ϕ̃g (|u(τ )|) ≤

√
#[γ ∩Ωu(b)]

√
E,
τ∈γ∩Ωu(b)
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where we have used the facts that χ1 ≥ ϕ̃2
f and χ2 ≥ ϕ̃2

g , and
here |Ωu(b)| denotes the Lebesgue measure of the set Ωu(b).

Also, we have

E ≥

∫
Ωu(b)

χ1(|u(s)|)ds ≥ |Ωu(b)|χ1(b), and

E ≥

∑
τ∈γ∩Ωu(b)

χ2(|u(τ )|) ≥ #[γ ∩Ωu(b)]χ2(b),

and hence

|Ωu(b)| ≤
E

χ1(b)
, and #[γ ∩Ωu(b)] ≤

E
χ2(b)

if b > 0.

Combining the obtained inequalities, we reach, for b > 0,∫ t

t0

ϕ̃f (|u(s) − ub(s)|)ds ≤
E

√
χ1(b)

≤
E
α(b)

, (29)∑
τ∈γ∩Ωu(b)

ϕ̃g (|u(τ ) − ub(τ )|) ≤
E

√
χ2(b)

≤
E
α(b)

, (30)

where we have used the facts that χ1 ≥ α2 and χ2 ≥ α2. Let
= br . Define

:= inf{t ≥ t0 : |∆x(t)| ≥ Mr}.

e next show that ι − t0 + nγ(t0,ι] > Tr . Suppose on the contrary
hat ι− t0+nγ(t0,ι] ≤ Tr . From the definition of ι and the continuity
f ∆x from the right, we have ∆x(ι) ≥ Mr and

∆x(t)| < Mr for all t0 ≤ t < ι, (31)

rom (14), then ηf (|∆x(t)|) ≤ Lfr |∆x(t)| for all t0 ≤ t < ι.
rom (28) and (29)–(30), then for all t0 ≤ t ≤ ι, we have

∆x(t)| ≤ p +

∫ t

t0

a(s)|∆x(s)|ds

+

∑
τ∈γ∩(t0,t]

c(τ )ηg (|∆x(τ−)|), (32)

with p =
h̄1(r)E
α(br )

=
h̄1(r)E
κ(r)

,

a(s) = [hf
2(r, br ) + ϕf (|u(s)|)]Lfr ,

c(τ ) = [hg
2(r, br ) + ϕg (|u(τ )|)].

Note that (32) holds also at t = ι even if only (31) is true and
it happens that |∆x(ι)| > Mr . Applying Lemma 3.2 with y(t) =

∆x(t), T = ι, σ = γ ∩ (t0, ι] = {sj}kj=1, with k = nγ(t0,ι], {cj}∞k=1,
with cj = c(sj) for 1 ≤ j ≤ k and cj = 0 for j > k and ω = ηg , it
ollows that ∆x must also satisfy

∆x(ι)| ≤ ht0
k (p, ι) (33)

ith the functions ht0
j , j ∈ N0, as defined in Lemma 3.2.

laim 3. For all p ≥ 0, t ≥ t0 and 0 ≤ j ≤ k,

ht0
j (p, t) ≤ h̃j(p, t − t0, r, E). (34)

Proof of Claim 3. We prove the claim by induction on j. For j = 0,
we have that for all t ≥ t0

ht0
0 (p, t) = pe

∫ t
t0

a(s)ds

≤ pe[hf2(r,br )(t−t0)+E]Lfr = h̃0(p, t − t0, r, E)

since∫ t

t0

a(s)ds =

[
hf
2(r, br )(t − t0) +

∫ t

t0

ϕf (|u(s)|)ds
]
Lfr

≤ [hf
2(r, br )(t − t0) + E]Lfr (35)
because ϕf ≤ χ1 and ∥u∥χ1,χ2,γ = E.
Suppose now that for some 0 ≤ j < k, (34) holds for all t ≥ t0.
hen, from the definition of the function ht0

j+1, it follows that

ht0
j+1(p, t) = ht0

j (p, t) + cj+1 sup
t0≤s≤t

[
ηg (h

t0
j (p, s))e

∫ t
s a(τ )dτ

]
.

Since cj+1 = c(sj+1) ≤ hg
2(r, br ) + E, because ϕg ≤ χ2 and

∥u∥χ1,χ2,γ = E, and using (35), the nonnegativity of a, the
inductive hypothesis, and the fact that the functions ηj and h̃j are
nondecreasing in each of their arguments, it follows that

ht0
j+1(p, t) ≤ h̃j(p, t − t0, r, E) + [hg

2(r, br ) + E] ·

e[hf2(r,br )(t−t0)+E]Lfr ηg
(
h̃j(p, t − t0, r, E)

)
= h̃j+1(p, t − t0, r, E),

nd the proof of the claim follows. ◦

From Claim 3 it then follows that
t0
k (p, ι) ≤ h̃k(p, ι− t0, r, E).

On the other hand, for all E ≤ r − 1, we have

=
h̄1(r)E
κ(r)

≤
h̄1(r)(r − 1)

κ(r)
≤

h̄1(r)(r − 1)
κ(r)

p̃(r, r − 1)
p̃(r, r − 1)

≤
ℓ(r)
κ(r)

p̃(r, E) ≤ p̃(r, E).

Therefore, since ι− t0 + k ≤ Tr , it follows from the definition
of p̃ that h̃k(p, ι− t0, r, E) ≤ Mr/2 and then, from (33) that

|∆x(ι)| ≤ ht0
k (p, ι) ≤ h̃k(p, ι− t0, r, E) ≤ Mr/2,

which is a contradiction. Thus ι− t0 + nγ(t0,ι] > Tr . Therefore, the
solution x can be bounded as follows

|x(t)| ≤ |xbr (t)| + |∆x(t)|
≤ β(r, t − t0 + nγ(t0,t]) + ρ(br ) + Mr

≤ β(r, 0) + ρ(br ) + Mr = α̃(r),

for all t ≥ t0 such that t − t0 + nγ(t0,t] ≤ Tr . Consider the sequence
t1 < t2 < · · ·, defined recursively as follows, for j = 0, 1, 2, . . .

tj+1 = inf{t > tj : t − tj + nγ(tj,t] ≥ Tr − 1}

Note that Tr − 1 ≤ tj+1 − tj + nγ(tj,tj+1]
≤ Tr , and that tj → ∞

because γ has no finite limit points. It follows that

|x(t1)| ≤ β(r, Tr − 1) + ρ(br ) + Mr ≤ r.

Shifting the initial time to ti and applying recursively the preced-
ing reasoning, we obtain

|x(t)| ≤ α̃(r) ∀t ∈ [ti, ti+1]

|x(ti+1)| ≤ r.

This concludes the proof of the claim. ◦

If |x(t0)| ≥ 1+E, by applying Claim 2 with r = |x(t0)| it follows
that |x(t)| ≤ α̃(|x(t0)|) for all t ≥ t0.

If |x(t0)| < 1 + E, let t1 = inf{t ≥ t0 : |x(t)| ≥ 1 + E}. If
t1 = ∞, then |x(t)| < 1 + E for all t ≥ t0. If t1 is finite, then
|x(t)| < 1 + E for all t ∈ [t0, t1). If t1 /∈ γ , then |x(t1)| = 1 + E.
If t1 ∈ γ , then |x(t1)| ≤ |x(t−1 )| + |gλ(t1, x(t−1 ), u(t1))|. From
(B1) in Assumption 3 and the fact that χ2 ≥ ϕ̃g , it follows that
|gλ(t1, x(t−1 ), u(t1)) − gλ(t1, x(t−1 ), 0)| ≤ E[Ng (1 + E) + Og (0)] and
from (B2), also |gλ(t1, x(t−1 ), 0) − gλ(t1, 0, 0)| ≤ ηg (1 + E)Pg (0).
Since in addition gλ(t1, 0, 0) = 0, then |x(t1)| ≤ (1+E)[1+Ng (1+

E) + Og (0)] + ηg (1 + E)Pg (0) =: Ψ (E), where Ψ : R≥0 → R≥0
is continuous and nondecreasing. By applying Claim 2 with t1
instead of t0 and r := Ψ (E) ≥ 1 + E we obtain |x(t)| ≤ α̃ ◦Ψ (E)
for all t ≥ t . Therefore |x(t)| ≤ α̃ ◦Ψ (E) for all t ≥ t . Since Ψ
1 0



Ψ

|

i
(

5

5

h

h

is continuous and nondecreasing, there exists Ψ̃ ∈ K∞ such that
(r) ≤ Ψ (0) + Ψ̃ (r) for all r ≥ 0. For all t ≥ t0 we have

x(t)| ≤ max{α̃(|x(t0)|), α̃ ◦Ψ (E)}
≤ α̃(|x(t0)|) + α̃ ◦Ψ (E)

≤ α̃(|x(t0)|) + α̃(2Ψ̃ (E)) + α̃(2Ψ (0)),

where ψ(·) := α̃(2Ψ̃ (·)) ∈ K∞. It thus follows that the fam-
ly of impulsive systems is strongly UBEBS with UBEBS gain
χ1, χ2). ■

. Complementary proofs

.1. Proof of Lemma 3.2

For the sake of simplicity we write hj instead of ht0
j .

First, we prove that for all t0 ≤ r ≤ t , it happens that
k(p, r)e

∫ t
r a(s)ds

≤ hk(p, t) for all k ∈ N0. For k = 0, we have

h0(p, r)e
∫ t
r a(s)ds

= pe
∫ t
t0

a(s)ds
= h0(p, t),

so that the inequality holds with equality for k = 0. Next, suppose
that the inequality holds for some k ∈ N0. We have

k+1(p, r)e
∫ t
r a(s)ds

= e
∫ t
r a(s)ds

(
hk(p, r)+

ck+1e
∫ r
t0

a(s)ds sup
t0≤s≤r

[
ω(hk(p, s))e

−
∫ s
t0

a(τ )dτ
])

= hk(p, r)e
∫ t
r a(s)ds

+

ck+1e
∫ t
t0

a(s)ds sup
t0≤s≤r

[
ω(hk(p, s))e

−
∫ s
t0

a(τ )dτ
]

≤ hk(p, t) + ck+1e
∫ t
t0

a(s)ds sup
t0≤s≤t

[
ω(hk(p, s))e

−
∫ s
t0

a(τ )dτ
]

= hk+1(p, t),

so that the inequality holds for k + 1.
Define s0 := t0 and recall that {sk}Nk=1, with s1 > s0, is the

sequence of points where y is discontinuous. Let z : [t0, T ] → R≥0
be defined by

z(t) = p +

∫ t

t0

a(s)y(s)ds +

∑
s∈σ∩(t0,t]

c(s)ω(y(s−)). (36)

By assumption, y(t) ≤ z(t) for all t ∈ [t0, T ]. We will prove by
induction the following.

Claim: for all 0 ≤ k ≤ N−1, z(t) ≤ hk(p, t) for all sk ≤ t < sk+1.
Case k = 0. We have that for all t ∈ [s0, s1), σ ∩ (t0, t] = ∅.

Therefore, for all t ∈ [s0, s1),

z(t) = p +

∫ t

t0

a(s)y(s)ds ≤ p +

∫ t

t0

a(s)z(s)ds.

Applying Gronwall inequality, we have that

z(t) ≤ pe
∫ t
t0

a(s)ds
= h0(p, t) ∀t ∈ [s0, s1).

Recursive step. Suppose that z(t) ≤ hk(p, t) for all sk ≤ t < sk+1.
Since z(t) = p +

∫ t
t0
a(s)y(s)ds +

∑
s∈σ∩(t0,sk]

c(s)ω(y(s−)) for all
t ∈ [sk, sk+1), it follows that

p +

∫ sk+1

t0

a(s)y(s)ds +

∑
s∈σ∩(t0,sk]

c(s)ω(y(s−))

= z(s−k+1) ≤ hk(p, sk+1).

Therefore

z(sk+1) = p +

∫ sk+1

a(s)y(s)ds

t0
+

∑
s∈σ∩(t0,sk]

c(s)ω(y(s−)) + ck+1ω(y(s−k+1))

= z(s−k+1) + ck+1ω(y(s−k+1))
≤ z(s−k+1) + ck+1ω(z(s−k+1))
≤ hk(p, sk+1) + ck+1ω(hk(p, sk+1)).

Then, for all sk+1 ≤ t < sk+2 we have that

z(t) = z(sk+1) +

∫ t

sk+1

a(s)y(s)ds

≤ z(sk+1) +

∫ t

sk+1

a(s)z(s)ds

≤ z(sk+1)e
∫ t
sk+1

a(s)ds

≤ hk(p, sk+1)e
∫ t
sk+1

a(s)ds
+ ck+1ω(hk(p, sk+1))e

∫ t
sk+1

a(s)ds

≤ hk(p, t) + ck+1e
∫ t
t0

a(s)ds
[

sup
t0≤s≤t

ω(hk(p, s))e
−

∫ s
t0

a(τ )dτ
]

= hk+1(p, t)

This establishes the recursive step and concludes the proof of the
claim.

From the fact that z(t) ≤ hN−1(p, t) for all sN−1 ≤ t < sN
and proceeding as in the recursive step it follows that also z(t) ≤

hN (p, t) for all sN ≤ t ≤ T , which finishes the proof.

5.2. Proof of Lemma 3.3

The proof requires the following Claim, whose proof follows
from Appendix B of Haimovich and Mancilla-Aguilar (2018b) and
the fact that the functions fλ and gλ satisfy items (i) and (ii) of
Assumptions 1 and 2, respectively.

Claim 4. For every r∗ > 0 and η > 0 there exists κ = κ(r∗, η) > 0
such that for all λ ∈ Λ, t ≥ 0, ξ ∈ Bn

r∗ and µ ∈ Rm,

|fλ(t, ξ , µ) − fλ(t, ξ , 0)| ≤ η + κνf (|µ|) and
|gλ(t, ξ , µ) − gλ(t, ξ , 0)| ≤ η + κνg (|µ|)

Proof of Lemma 3.3. Fix r > 0 and η > 0, and define r∗
:=

β(r, 0) ≥ r . Let L = L(r) > 0 be a Lipschitz constant for fλ(t, ·, 0)
on the compact set Bn

r∗ and valid for every t ≥ 0 and every λ ∈ Λ

(such a constant exists due to (iii) of Assumption 1). Let ω =

ωr∗ ∈ K∞ be such that |gλ(t, ξ1, 0) − gλ(t, ξ2, 0)| ≤ ω(|ξ1 − ξ2|)
for all ξ1, ξ2 ∈ Bn

r∗ , all t ≥ 0 and all λ ∈ Λ [such a function
exists due to (iii) of Assumption 2]. Let κ be the quantity given
by Claim 4 in correspondence with r∗ and η. Let x ∈ TΣλ (t0, x0, u)
with λ ∈ Λ, t0 ≥ 0, x0 ∈ Rn and u ∈ U satisfy |x(t)| ≤ r for all
t ≥ t0. Let y ∈ TΣλ (t0, x0, 0). Then, x(t), y(t) ∈ Bn

r∗ for all t ≥ t0.
Let t ≥ t0. For all t0 ≤ τ ≤ t , we have, using (3),

|x(τ ) − y(τ )| ≤

∫ τ

t0

⏐⏐⏐fλ(s, x(s), u(s)) − fλ
(
s, y(s), 0

)⏐⏐⏐ds
+

∑
s∈γλ∩(t0,τ ]

⏐⏐⏐gλ(s, x(s−), u(s)) − gλ
(
s, y(s−), 0

)⏐⏐⏐
Adding and subtracting fλ(s, x(s), 0) and gλ(s, x(s−), 0) within the
respective norm signs, employing the bound on fλ and gλ given
by Claim 4 and recalling the definition of L and κ , it follows that

|fλ(s, x(s), u(s)) − fλ(s, y(s), 0)|
≤ η + κνf (|u(s)|) + L|x(s) − y(s)|,

|g(s, x(s−), u(s)) − g(s, y(s−), 0)|
≤ η + κνg (|u(s)|) + ω(|x(s−) − y(s−)|).
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Defining z(t) = |x(t) − y(t)|, then for all t0 ≤ τ ≤ t ,

z(τ ) ≤

∫ t

t0

[η + κχf (|u(s)|)]ds +

∑
s∈γλ∩(t0,t]

[η + κχg (|u(s)|)]

+

∫ τ

t0

Lz(s)ds +

∑
s∈γλ∩(t0,τ ]

ω(z(s−))

≤

[
t − t0 + nγλ(t0,t]

]
η + κ∥u(t0,t]∥χf ,χg ,γλ + L

∫ τ

t0

z(s)ds

+

∑
s∈γλ∩(t0,τ ]

ω(z(s−))

The result then follows from application of Lemma 3.2 (recall
Remark 4) and the fact that |x(t)| ≤ |y(t)| + z(t) ≤ β(|x0|, t −

t0 + nγλ(t0,t]) + z(t).

.3. Proof of Lemma 3.4

Let α, ρ1, ρ2 and c be as in the estimate (9). Let ρ̃1 :=

ax{ρ1, νf } and ρ̃2 := max{ρ2, νg}. For r ≥ 0 define

¯ (r) := sup
{

|x(t)| : x ∈ TΣλ (t0, x0, u),

λ ∈ Λ, t ≥ t0 ≥ 0, |x0| ≤ r, ∥u∥λ ≤ r
}

here ∥u∥λ := ∥u∥ρ̃1,ρ̃2,γλ . From this definition, it follows that ᾱ
s nondecreasing and from (9) that it is finite for all r ≥ 0. Next,
e show that limr→0+ ᾱ(r) = 0. Let β ∈ KL be the function
hich characterizes the strong 0-GUAS property of the family
f systems. Let r∗

= α−1(2 + c) and let L = L(r∗) > 0 and
= ωr∗ ∈ K∞ be given by Lemma 3.3 and let h0

j , j = 0, 1, . . .,
e the functions defined in Lemma 3.2 in correspondence with
(s) ≡ L (recall Remark 4) and cj ≡ 1. Let ε > 0 be arbitrary.
ick 0 < δ1 < 1 such that δ1 ≤ β(δ1, 0) < ε/2, and T > 0 such
hat β(δ1, T ) < δ1/2. Let k̃ = ⌈T⌉+1, where ⌈s⌉ denotes the least
nteger not less than s ∈ R. Since h0

k̃
is continuous and h0

k̃
(0, t) = 0

or all t ≥ 0, then there exists δ̃ > 0 such that h0
k̃
(δ̃, k̃) < δ1/2.

efine η =
δ̃

2k̃
and let κ = κ(r∗, η) > 0 be given by Lemma 3.3.

et δ2 = min{
δ̃
2κ , 1}.

Then, for every x ∈ TΣλ (t0, x0, u), with λ ∈ Λ, t0 ≥ 0, |x0| ≤ δ1,
u∥λ ≤ δ2, we claim that |x(t)| < ε for all t ≥ t0. First, note
hat under the given bounds for x0 and u, from (9) it follows that
α(|x(t)|) ≤ δ1 + δ2 + c ≤ 2 + c , and hence |x(t)| ≤ r∗ for all
t ≥ t0 ≥ 0. Consider the sequence t0 < t1 < t2 < · · ·, recursively
defined as follows:

tj+1 = inf{t ≥ tj : t − tj + nγλ(tj,t] ≥ T }, j ≥ 0.

We note that T ≤ tj+1 − tj + nγλ(tj,tj+1]
≤ k̃ and that tj → ∞ (see

the proof of Haimovich et al., 2019, Lemma 3.3). Let Ij = (tj, tj+1]

for j ≥ 0. The application of Lemma 3.3 with χf = ρ̃1 and χg = ρ̃2
gives the estimate (12) for all t ≥ t0. Then, by taking into account
that nγλ(t0,t] ≤ k̃ for all t ∈ I0, that the functions h0

j are separately
increasing in their arguments and h0

j ≤ h0
j+1 for all j ≥ 0, the

definitions of T , η, δ1 and δ2, and (12), it follows that for all t ∈ I0

|x(t)| ≤ β(|x0|, 0) + h0
k̃
(δ̃, k̃) <

ε

2
+
δ1

2
≤ ε and

x(t1)| ≤ β(|x0|, T ) + h0
k̃
(δ̃, k̃) <

δ1

2
+
δ1

2
≤ δ1.

By using recursively the same argument on each interval Ij
we obtain than |x(t)| < ε for all t ∈ Ij and |x(tj+1)| < δ1.
n consequence, |x(t)| < ε for all t ≥ t0 as we claim. Thus, if
= min{δ , δ }, for all x ∈ T (t , x , u), with λ ∈ Λ, t ≥ 0,
1 2 Σλ 0 0 0
|x0| ≤ δ and ∥u∥λ ≤ δ, we have |x(t)| ≤ ε for all t ≥ t0. Therefore,
¯ (r) ≤ ᾱ(δ) < ε for all 0 < r < δ and limr→0+ ᾱ(r) = 0.

Since ᾱ is nondecreasing and limr→0+ ᾱ(r) = 0 there exists
α̂ ∈ K∞ such that α̂(r) ≥ ᾱ(r) for all r ≥ 0. Let x ∈ TΣλ (t0, x0, u)
ith λ ∈ Λ, t0 ≥ 0, x0 ∈ Rn and u ∈ U . Let t ≥ t0 and let u(t0,t] be
he input which coincides with u on (t0, t] and is zero elsewhere.
rom well-known results on differential equations, there exists
∗

∈ TΣλ (t0, x0, u(t0,t]) such that x∗(τ ) = x(τ ) for all τ ∈ [t0, t].
y using the definition of ᾱ and the fact that α̂(r) ≥ ᾱ(r), we
hen have |x(t)| = |x∗(t)| ≤ α̂(|x0|)+ α̂(∥u(t0,t]∥λ). Define α̃ ∈ K∞

ia α̃(s) = α̂−1(s)/2. Applying α̃ to both sides of the preceding
nequality and using the fact that α̃(a + b) ≤ α̃(2a) + α̃(2b), we
each α̃(|x(t)|) ≤ |x0| + ∥u(t0,t]∥λ, which establishes the result.

.4. Proof of Lemma 4.6

We first prove the following result.

emma 5.1. Suppose that the family {hλ}λ∈Λ has property UC and
hat hλ(t, 0, 0) = 0 for all t ≥ 0 and λ ∈ Λ. Then there exists

∈ K∞ such that for every r ≥ 0 there exists L = L(r) ≥ 0 such
hat

hλ(t, ξ1, µ1) − hλ(t, ξ2, µ2)| ≤ L · ω(max{|ξ1 − ξ2|, |µ1 − µ2|})

or all λ ∈ Λ, t ≥ 0, ξ1, ξ2 ∈ Bn
r and µ1, µ2 ∈ Bm

r .

roof. We claim the following:

(a) for every r ≥ 0 there exists C = C(r) ≥ 0 such that
|h(t, ξ , µ)| ≤ C for all (t, ξ , µ) ∈ R≥0 × Bn

r × Bm
r .

o prove our claim, let r > 0. Let δ∗ > 0 be the positive
umber corresponding to ε∗

= 1 and r according to item (i) in
efinition 4.1. Define N∗

= ⌈r/δ∗
⌉. Given λ ∈ Λ and (ξ, µ) ∈ Bn

r ×
m
r define ξj =

j
N∗ ξ and µj =

j
N∗µ for j = 0, . . . ,N∗. Then ξ0 = 0,

µ0 = 0, ξN∗ = ξ , µN∗ = µ and max{|ξj+1 − ξj|, |µj+1 − µj|} ≤ δ∗

or all j = 0, . . . ,N∗
−1. Then, from the definition of δ∗, the facts

hat hλ(t, 0, 0) = 0 and (ξj, µj) ∈ Bn
r ×Bm

r for all j and the triangle
nequality, we have that

hλ(t, ξ , µ)| ≤

N∗
−1∑

j=0

|hλ(t, ξj+1, µj+1) − hλ(t, ξj, µj)| ≤ N∗,

howing that (a) holds with C(r) = N∗.
From (a) and Definition 4.1 it follows that for every r ≥ 0 there

xists ωr ∈ K∞ with the following properties:

• for all λ ∈ Λ, t ≥ 0, ξ1, ξ2 ∈ Bn
r , and µ1, µ2 ∈ Bm

r ,

|hλ(t, ξ1, µ1) − hλ(t, ξ2,µ2)|≤
ωr (max{|ξ1 − ξ2|, |µ1 − µ2|});

• ωr (δ) ≤ ωs(δ) for all 0 ≤ r ≤ s and δ ≥ 0.

or each s > 0, the equation ωs(R) = 2−s has a unique positive
olution R∗

= R∗(s). Note that R∗
: R>0 → R>0 is strictly

ecreasing and lims→∞ R∗(s) = 0 necessarily. Let R : R>0 →

>0 be any strictly decreasing and continuous function such that
(s) < R∗(s) for all2 s > 0. The restriction of the function R to the
nterval [1,∞) has a strictly decreasing and continuous inverse
: (0, R(1)] → [1,∞) that satisfies limr→0+ S(r) = ∞. Consider

he function ω : R≥0 → R≥0 defined via

(r) =

⎧⎨⎩
0 if r = 0,
2−S(r) if 0 < r ≤ R(1),
2−1

− R(1) + r if r > R(1).

2 Such a function R always exists. Take, e.g., R(k) := R∗(k+1) for every k ∈ N
and R(s) := (1 − s + k)R(k) + (s − k)R(k + 1) for s ∈ (k, k + 1).
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Then, ω ∈ K∞ and ω(r) ≥ ωS(r)(r) whenever 0 < r ≤ R(1).
et r > 0, λ ∈ Λ, t ≥ 0, ξ1, ξ2 ∈ Bn

r , µ1, µ2 ∈ Bm
r and

:= max{|ξ1 − ξ2|, |µ1 − µ2|}. Consider C = C(r) as given by
a). If ∆ > R(1), it follows that
|hλ(t, ξ1, µ1) − hλ(t, ξ2, µ2)|

ω(∆)
≤

2C(r)
ω(R(1))

.

f 0 < ∆ ≤ R(1) and ∆ ≤ R(r), then S(∆) ≥ r and

ωr (∆) ≤ ωS(∆)(∆) ≤ ω(∆).

If 0 < ∆ ≤ R(1) and ∆ > R(r), then

ωr (∆) ≤ ωr (R(1)) and ω(∆) ≥ ω(R(r)).

Therefore, in the case 0 < ∆ ≤ R(1) it follows that
|hλ(t,ξ1,µ1)−hλ(t,ξ2,µ2)|

ω(∆)
=

|hλ(t,ξ1,µ1)−hλ(t,ξ2,µ2)|

ωr (∆)
·
ωr (∆)
ω(∆)

≤
ωr (∆)
ω(∆)

≤

⎧⎪⎪⎨⎪⎪⎩
ω(∆)
ω(∆)

= 1, ∆ ≤ R(r),

ωr (R(1))
ω(R(r))

, ∆ > R(r).

The lemma is established after defining L = L(r) :=

ax{1, 2C(r)/ω(R(1)), ωr (R(1))/ω(R(r))}. ◦

Employing Lemma 5.1 it straightforwardly follows that

(A1) There exists ω1 ∈ K∞ and for every r, s ≥ 0, there exists
L1 = L1(r, s) ≥ 0 such that

|hλ(t, ξ , µ1) − hλ(t, ξ , µ2)| ≤ L1ω1(|µ1 − µ2|) (37)

for all t ≥ 0, ξ ∈ Bn
r , µ1, µ2 ∈ Bm

s and λ ∈ Λ.
(A2) There exists ω2 ∈ K∞ and for every r, s ≥ 0, there exists

L2 = L2(r, s) ≥ 0 such that

|hλ(t, ξ1, µ) − hλ(t, ξ2, µ)| ≤ L2ω2(|ξ1 − ξ2|) (38)

for all t ≥ 0, ξ1, ξ2 ∈ Bn
r , µ ∈ Bm

s and λ ∈ Λ.

By copying the proof of Lemma 3.4 in Haimovich and Mancilla-
Aguilar (2019a), it follows that (A1)–(A2) are equivalent to (B1)–
B2). If, in addition, {hλ}λ∈Λ ∈ UCL, then

(A3) Item (A2) holds with ω2(r) ≡ r .

Again, copying the proof of Lemma 3.4 in
Haimovich and Mancilla-Aguilar (2019a) and taking into account
Remark 3.5 therein, it follows that (A1)–(A3) are equivalent to
(B1)–(B3). This concludes the proof of Lemma 4.6. ■

5.5. Proof of Lemma 4.2

By assumption and using Lemma 4.6, we have

|fλ(t, ξ , µ)|
≤ |fλ(t, ξ , µ) − fλ(t, ξ , 0)| + |fλ(t, ξ , 0) − fλ(t, 0, 0)|
≤ ϕ̃f (|µ|)[Nf (|ξ |) + Of (0)] + ηf (|ξ |)[Pf (0) + ϕf (0)]

≤ N̂(|ξ |)[1 + ϕ̃f (|µ|)],

where we have defined N̂(s) = max{Pf (0)ηf (s),Of (0) + Nf (s), 1}
and noted that ϕf (0) = 0. Since N̂ satisfies N̂ : R≥0 → R>0 and
is nondecreasing, then item (i) of Assumption 1 follows.

Item (ii) of Assumption 1 follows from item (i) of Definition 4.1
setting ξ1 = ξ2 = ξ , µ1 = µ and µ2 = 0.

Item (iii) of Assumption 1 follows straightforwardly from
item (ii) of Definition 4.1 setting µ = 0.

Items (i) and (ii) of Assumption 2 follow analogously to those
of Assumption 1, and item (iii) follows straightforwardly from
Lemma 5.1 setting µ = 0 and ω = L(R)ω. ■
R
6. Conclusions

We have considered a strong version of asymptotic stability
for time-varying impulsive systems whereby the convergence to
zero of a state trajectory depends not only on elapsed time but
also on the number of jumps that occur. In this setting, we have
established that strong ISS implies strong iISS. This implication is
established without resorting to any type of Lyapunov function
because the latter may not exist for the type of systems con-
sidered. Future work may consider determining to what extent
the current results may apply when stability is understood in the
usual (weak) sense.
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