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Abstract

GPS and location services have been a breakthrough in recent history and have become a
necessary part of our daily lives, but they haven’t yet reached the point where we can be
located inside buildings. This would be really useful, with multiple applications such as
localization in big buildings, location-based advertising, location-assisted games, location-
aware social networks, etc. For this reason, there has been research on the field to solve this
problem and many possible approaches have been found. This project presents a starting
point for one of these solutions using WiFi fingerprinting. The project consists of an API
and two mobile applications that consume it, one for admins and another for users. The
admin app is used to gather samples needed for WiFi fingerprinting in an offline stage and
the user app is used to locate users based on WiFi scans on an online stage. This solution
is then tested and the results are presented.
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1. Introduction

In today’s world, the service provided by the Global Positioning System (GPS) is ubiqui-
tous. The system works especially well outdoors and enables accurate localization, speed
measuring and timing, among other things. Its most common use case is street directions,
which is possible thanks to massive amounts of street data as well as GPS’ accuracy: nu-
merous studies have found that GPS-enabled smartphones are typically accurate to within
a 10-meter radius approximately (Van Diggelen and Enge, 2015; Zandbergen, 2009; Hess
et al., 2012; Merry and Bettinger, 2019). However, the system is not infallible and GPS
signals can be blocked by most objects, deteriorating location accuracy. This makes GPS
unreliable for indoor positioning as roofs, walls and other objects obstruct signals. There are
several commercial indoor positioning systems (IPS) available that overcome these short-
comings, such as insoft GmbH, HERE and Proximi.io. Many of these require the purchase
of specialized equipment for localization to be sufficiently accurate, and this investment
makes commercial IPS infeasible for individuals.

Another approach, which is the focus of this project, leverages another ubiquitous sys-
tem: WiFi. By measuring the strength of received WiFi signals, a radio map can be
constructed and later used to locate a user given the wireless Access Points (APs) around
them. This technique is called fingerprinting and, thanks to the prevalence of access points,
becomes a “free” solution in that it requires no extraordinary investment. Thanks to this,
indoor location services could be provided both by businesses large and small as well as by
individuals, and as such the global positioning system could further extend inside buildings.

The goal of this project is to develop an extensible and adaptable solution that im-
plements this technique. With the purpose of reducing the access barriers as much as
possible, it was decided to use smartphones as the localization agents. This makes sense
because they are almost always carried on-person, they are even more common than WiFi
access points and they are equipped with vast and sophisticated sensor suites, including
GPS, WiFi and Bluetooth antennas among many other sensors. The project is composed
of various applications which aid in different stages of the process. Initially, a building
administrator registers the building on the system with data including coordinates, number
of floors, and floor plans for every floor. Then, with the use of a mobile app, authorized
users collect samples, which contain both a recorded fingerprint and an entered location



(coordinates and floor), thus charting out the building’s radio map. Once enough data has
been collected, regular users, with a different mobile app, perform automated background
WiFi scans which are periodically sent to a server. The server compares the fingerprint
with those of recorded samples and returns a location computed from the fingerprints of
the most similar samples, if any. The estimated location, including floor, is subsequently
updated on the user’s app.

It is not the intention of this project to introduce a novel algorithm with which to esti-
mate location by comparing fingerprints, but rather to implement a known, well-performing
one in the context of the applications discussed previously and compare the resulting ac-
curacy against that reported by the authors of the algorithm. It is the intention for the
implementation to be such that the algorithm’s parameters, or the algorithm itself, can
be easily changed and tested. With this, accurate and relevant location services could be
provided to users walking up, down and throughout any building.

2. Problem Setting
2.1 WiFi

The ubiquity of WiFi (IEEE, 2016; Wi-Fi Alliance, 2019), as previously discussed, makes it a
great tool to leverage in predicting the position of users. Each WiFi network is composed of
one or more wireless access points that connect wireless devices within a local area network
(LAN). These APs are usually routers, placed by homeowners or building administrators,
and they provide the connection to the World Wide Web. Each of these devices can be
uniquely identified by their hardware (MAC) address or by their Basic Service Set Identifier
(BSSID), both which are 48-bit labels. It is also possible for a single AP to broadcast
multiple networks, as is usually the case for home routers which have both 2.4GHz and
5GHz networks. In this case, even if both networks share the same name, they have different
BSSIDs.

Devices are able to perform a wireless scan to discover networks they can connect to.
Based on the distance and obstacles between the device and the networks’ APs, as well as
the capabilities of the device itself, different signal strengths will be detected for each of
these networks. This measure, called the Received Signal Strength Indicator (RSSI), has no
defined units or range (see IEEE, 2016, Table 20-1) so these are manufacturer-dependent
(Lui et al., 2011), but generally speaking a higher number indicates better signal strength.
In the case of the Android operating system, it is reported in dBm (Android Developers,
2019), and data collected in the project shows that its values range from -100 (no signal) to
0. Therefore, when a scan is performed the result is a list of APs with their corresponding
RSSIs, called a fingerprint. It should be noted that when a scan is performed not only will
APs be detected, but also any device that broadcasts a network such as printers, cellphones
or personal computers. Because not all of these are fixed to a specific location, not every
network can be used as reference for localization.

2.2 Previous Research

There is an abundance of indoor localization methods that have been proposed in the
past. In this project, the methods of particular interest are those which can be performed



entirely, or at least mostly, with the use of the sensor suites present in most smartphones
today. Thanks to the complexity of the sensor suites found on smartphones, many methods
can be implemented. Figure 1 displays a taxonomy of indoor localization methods. Dead
reckoning works with a known initial position along with sensor data in order to calculate
changes to that position. Sensors commonly used in dead reckoning are the accelerometer
and gyroscope. Fingerprinting, as previously discussed, consists of building a database of
sensor data with known locations, and then comparing new fingerprints with known ones
to locate a device by fingerprint similarity. WiFi RSSI fingerprinting, a specific type of
fingerprinting, is the technique chosen in this project.

Trilateration works by estimating distance to various wireless anchors (not necessarily
WiFi APs, distance to wireless devices based on Bluetooth beacons could also be used for
example). With distance measurements at a minimum of three separate known locations,
a three-dimensional position relative to the anchors can be established. A popular way of
measuring distance is through time of flight (ToF): by measuring the time it takes a signal
to travel from source to receiver, and multiplying by light speed, distance can be obtained.
The WiFi standard provides methods to estimate distance using ToF, and the latest versions
of Android already make use of it. The estimated precision is in the order of 1 ns (30 cm),
although the error can be greater for localization (Banin et al., 2016). Triangulation is
similar, but works with angles instead of distances. If the angles at a minimum of two
known locations for a smartphone are known, their location can be estimated.

Proximity estimation works on the assumption that the device’s position is that of the
beacon with highest signal strength. This provides only general proximity, but it is enough
for several use cases such as advertising in indoor shopping malls. Last but not least, visual
localization uses a phone’s camera to recognize the environment or analyze light signals
encoded within, such as LED pulses in ambient lighting, to estimate a location. All of these
and other methods are discussed in more detail in Langlois et al. (2017).
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Figure 1: Taxonomy of indoor localization methods. Langlois et al. (2017)

The accuracy of localization depends on the sensors and the technique used. In the case
of WiFi RSSI fingerprinting, Campeén et al. (2018a) have obtained a maximum accuracy
in the order of 1 - 2 m. There are also studies that show that the accuracy of WiFi RSSI
fingerprinting can be improved with the use of other sensors, such as the magnetometer



(Campedn et al., 2018b). The accuracies of various other methods are displayed in Langlois
et al., Table 1.A.

Out of all the discussed localization methods, WiFi RSSI fingerprinting is the most
popular. In order to compare performance of existing solutions, international competitions
are held yearly where teams subject their algorithms to a benchmarking test are and eval-
uated on mean error. In the EVAAL competition at the 2015 International Conference on
Indoor Positioning and Indoor Navigation (IPIN) held in Canada, the RTLSQUM team
obtained first place with their algorithm with a mean error of 6.20 m, median error 4.6 m,
100% building hit rate and 93.74% floor hit rate (see Moreira et al., 2015, Table XI). The
algorithm presented by the team is the one that this project implements.

2.3 Positioning Algorithm

RTLS@QUM presents multiple variants of their algorithm but for the purposes of this project
the base variant, labeled A;V; in (Moreira et al., 2015), was used. WiFi fingerprinting is
based on recording a fingerprint and comparing it with a previously built radio map, which
is essentially a list of fingerprints with their corresponding locations. By comparing, the
algorithm can find the most similar fingerprints and compute the average of their associated
locations. The algorithm thus receives as input both a fingerprint and the radio map and
outputs the estimated location from where said fingerprint was measured. This is done in
four main steps which can be seen in Figure 2 and which are now explained in detail.

In the first step, some preliminary calculations need to be done. The algorithm starts
by taking the input fingerprint and sorting its APs by descending RSSI. Let fpy be this
sorted input, which can be defined as a list of tuples [(APy, RSSIy), (AP;, RSSI;), ...,
(APg, RSSIg)] with @ being the number of APs in the fingerprint. This is also done for
each of the fingerprints in the radio map R, with the goal of obtaining the best AP for each
fingerprint (the one with the highest RSSI). As a last preliminary calculation, the similarity
between fpg and all of the fingerprints in R is calculated. The similarity function is a variant
of Manhattan distance (with shorter distance meaning greater similarity), defined in the
paper as:

S
S(fphfpz)Z%xZ]rssi%—rssi%\—Qx C (1)
i=1
where S is the total number of APs observed in the union of fp; and fps, and C is the
number of APs that were observed in both fp; and fpe. For missing APs, in fp; or fpg, a
default RSSI value is used.

As a second step, the algorithm decides the building where the fingerprint was taken.
For this, a subset of R with all the fingerprints with APy as their main AP is created. If
this subset is not empty, the building is selected from this group by simple majority. If it is
empty, the process is repeated for the next strongest AP in fpy (AP;, then APy, etc.) until
a building is chosen. Let the selected building be B. If no building is found, the algorithm
ends and returns an empty location.

Once the building is selected, the algorithm determines the floor within B. This starts
by creating R;, a subset of R with all the samples that have B as their building. Following
this, Ry is created, a subset of R; with all the fingerprints where APy, APy, ..., or APy is
the strongest AP, M being a parameter of the algorithm. If Ry’s cardinality is less than N,



N being another parameter of the algorithm, then Ry is overwritten to be R;. The next
step is to take the K; most similar samples from Rp and, like the building, the floor F' is
selected by simple majority.

Finally, Rg, a subset of Ry where the floor is F, is built. The algorithm takes the K»
most similar samples from Rg and calculates the centroid to obtain the result. This is done
by averaging the x and y coordinates of the resulting set, each axis averaged separately.
The returned value is the coordinates of the centroid, along with F' and B.
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Figure 2: Positioning algorithm diagram.



3. Implementation

In order to achieve our goal of developing an extensible and adaptable solution that imple-
ments the algorithm introduced by RTLSQUM, the proposed design had to cover two main
flows: the administration flow, where building plans could be uploaded and fingerprints
collected; and the user flow, where real-time positions would be shown on a cellphone using
the algorithm. A solution with two mobile applications and a web server was proposed, the
idea being to have one mobile application for each of the flows. On addition to this, a web
app was also developed with the purpose of making algorithm testing easier. The high-level
flow can be seen in the Figure 3, where the three main components appear. To the left is
the admin app with the administration flow: for each sample, the administrators have to
locate themselves, perform a scan and send the information to the server. In the middle,
the web server that stores the data and performs the calculations. And to the right, the
user app with the user flow: the recorded fingerprint is sent to the server, which replies
with a location that is shown in the app. In the following sections each of the components
and flows are discussed in further detail.
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Figure 3: High-level flow.



3.1 API + Database

In order to calculate the position, two options arose. The first one was to have the mobile
phone perform all the calculations, by running the algorithm in the user app. This would
mean that the app would need to store all the samples and query for updates at regular
intervals to maintain a synchronized database. This first approach has the benefit that the
location would not depend on neither the transport time to nor the calculation time within
the server, but the trade-off is increased CPU and storage usage. It also means that if the
administrator wants to update the algorithm or its parameters, this wouldn’t propagate
to users unless an update is downloaded. The decision was made to not over-encumber
the user phones and instead take a different approach, with the server performing all the
calculations and being in charge of storing all samples in a database.

The API is implemented in NodeJS using the Express web framework to serve requests
and authenticate, using Mongoose to perform CRUD operations against a MongoDB in-
stance. The database maintains a record of all registered buildings, their data (location,
floors, floor plans, etc.) as well as fingerprints captured within them. Production instances
of both the API and the database it manages are deployed in Heroku and are accessible
under https://pf-itba-spi.herokuapp.com/api-docs. Most technologies were chosen
because they are the easiest to get up and running with for web projects. MongoDB in
particular was chosen over other relational database engines because its lack of schema is
suitable for this use case, where arbitrary sensor data is collected by admins and used by
users. Relational databases would require either frequent schema updates for new data
types, or a “catch-all” column for arbitrary extra data which would bloat over time without
taking advantage of the benefits provided by relational databases. Heroku, the deployment
platform was selected due to its ease of use and familiarity among the project members.
Changing the deployment platform would not require any more effort than setting it up
and deploying the API there, since nothing is particularly tied to Heroku. Finally, NodeJS,
the JavaScript runtime under which the API itself runs, was also used along with the Ex-
press framework due to its particular specialization for APIs, as well as its ease of access to
external code. Many packages available from the Node Package Manager (NPM) registry
provide out-of-the-box solutions for many issues such as database connection (Mongoose),
authentication (jsonwebtoken), configuration (dotenv-safe), API documentation (swagger)
and more. Furthermore, JavaScript’s weak and dynamic typing makes it a perfect fit for
working with arbitrary data such as samples.

To serve data and provide functionality multiple endpoints were created. First, there
are CRUD endpoints (Create, Read, Update, and Delete) for our two REST resources:
buildings and samples. Secondly, there is the location endpoint which receives a fingerprint
and runs the positioning algorithm with it against all stored samples. Thirdly, there is the
location filtering algorithm, which receives a sample ID and runs the positioning algorithm
but excludes the specified sample to use it as input. In other words, it is as if the sample
had never been recorded, and is instead a user-recorded fingerprint. This is done so the
location output can be compared with the real location, also stored in the database, and is
used to measure the error distance for said sample.


https://pf-itba-spi.herokuapp.com/api-docs

3.2 Admin App

The admin app is used to record and manage samples in registered buildings. It authenti-
cates against the API with a cryptographic keypair (i.e. public/private key authentication)
that gives it permission to get building information and also insert new samples in existing
buildings. The admin flow can be seen in Figure 4, which is now explained. When the
admin app starts, it requests the buildings with their floors to be able to show the cor-
responding floor plans. Once this is done, the administrator can start to upload samples,
which is achieved in three steps. First, they go to the location where they want to add a
new sample. Secondly, they select the corresponding building and floor. Then they use the
floor plans to locate themselves, by moving the map using the touchscreen. Finally, once
they have located themselves on the map, they initiate a scan and wait for it to complete
and upload successfully. The sample is saved in the server’s database and a new scan can
be started.

The admin app also has access to existing samples, so as to visualize the existing radio
map. Samples are all displayed as markers on the map of the currently selected floor, as
can be seen in as seen in Figure ba and Figure 5b. The administrator can tap on each of
these markers to see more details about their corresponding fingerprints, or delete them if
needed.

With this the admin app has the liberty to fully manage samples in buildings. It is
worth noting that existing samples cannot be edited other than by directly accessing the
database and modifying values. They can only be deleted, as previously discussed.
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3.3 User App

The user app has the same base code as the admin app but instead of calibration, its main
purpose is locating the user. Because the app would be for public use, it authenticates
against the API with a different keypair that only gives it read access to buildings in order
to download building info, including indoor maps and floor distribution. To maintain the
user location updated, the location flow seen in Figure 7 is performed periodically. Due to
limitations in Android, which will be explained in next section, this is done every 10 seconds
for Android versions below 8 (Oreo) and every 30 seconds otherwise. First, the user’s phone
launches a WiFi scan request and hits a location request endpoint in the API with the scan
results. The server compares the sample to the ones collected in the calibration process,
locating the building, the floor and the coordinates (in that order). After finishing with the
algorithm, the server replies with the calculated location (or lack thereof) back to the app. If
the API replies with a valid location, the app updates the current location accordingly. This
is done by showing the user location with a marker, updating the floor map and sending a
toast with this information. This can be seen in Figure 6a and Figure 6b, where a red cross
was added to show the real user’s location. If not located, the app maintains its current
location (if any) and shows an icon that indicates that the location is unknown. If the user
device loses Internet connectivity, another icon is shown until connectivity is restored. The
user app will continue to attempt location when it has a connection to the API.
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3.4 Web Admin/Tester

In addition to the components described above, a simple web app was developed as a quick
non-mobile solution that allows visualizing the radio map, much like in the admin app,
as well as testing the accuracy of the location algorithm, without having to be physically
present at any particular building to send real fingerprints. The web app displays available
samples just like in the admin mobile app, and when clicking on a marker the app hits the
filtering endpoint in the API with the clicked sample. The API in turn runs the location
filtering algorithm, which was previously discussed. The result (if any) is displayed in the
web app as a marker with a different color to distinguish it from existing samples and
compare. If location fails, no marker is shown.

3.5 OS choice

For the mobile applications, Android was chosen as the target platform. The main reason
behind this decision was the high availability of hardware-handling libraries the SDK pro-
vides. Conversely, i0OS was discarded because Apple’s developer kit does not allow querying
WiF1i state, therefore making WiFi scanning apps infeasible (Eskimo, 2019, 2017). This left
Android as the only viable option to implement the IPS in.

Flutter and React Native hybrid frameworks were considered but discarded since their
only advantage over Android is the option to develop a single application to build and
release for both Android and iOS simultaneously. But because in this case the iOS build
would not be released for reasons explained above, neither alternative added any value. It
is also worth noting that hybrid frameworks usually lack hardware-handling libraries, so
a third-party one would have been needed. An initial research showed that such libraries
are scarce and not always reliable. For these reasons, native development was ultimately
chosen over hybrid development.

It should be noted that even though the Android SDK allows making network scans, as
of Android APT level 26 (Android 8) background WiFi scans have been severely restricted.
Unless it is a system app, an app in foreground is capped at four scans every 2 minutes
while an app in background is only allowed a single scan every half hour (Wang, 2019). This
change in Android policy is recent and greatly limits the functionality of WiFi scan based
applications. As of today there is no solution to the problem and there is no expectation
for this decision to be reverted.

4. Results

All tests and samples were taken at the Madero building of the Instituto Tecnolégico de
Buenos Aires (ITBA) using a OnePlus 6T, a Samsung Galaxy S10 and an LG Q6. In total,
567 samples were collected. It should be noted that because both Madero buildings are
treated as a single building in the floor plans, this was respected in the applications. And
because, thanks to this, there is only a single building in all of the samples, results for
building accuracy are not be presented in this section.

With the goal of finding the best parameter configuration, several tests were run while
varying a single parameter at a time. These tests were done using the location filtering
algorithm explained in section 3.1 for every collected sample, recording the error between
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the resulting position and the real position in the database. After each of these tests, the
parameter that gave the best results was chosen and used for the subsequent tests. The
modified parameters were the ones already presented with the algorithm in the section 2.3,
which can be seen in Table 1.

Table 1: Parameters of the positioning algorithm.

Parameter Description

K Maximum number of samples to use for the simple majority when calcu-
lating floor.

Ky Maximum number of samples to use for the centroid when calculating
coordinates.

N Minimum number of samples to use in floor calculation before defaulting
to all of the samples in the building, using R; as Rs.

M The number of APs of each fingerprint to use when calculating Ry.

Default RSSI  RSSI value to use in fingerprint similarity calculation, when one of the
them does not have a value for a certain AP present in the other.

For the following analysis, horizontal error was computed for the cases where the location
algorithm returned the correct floor. This is because if the floor is incorrect, the user won’t
care what position they are shown in, because the map will be incorrectly positioned anyway.
This is also done because the algorithm only uses the samples of the floor it correctly predicts
in coordinate calculation.

The starting values of the parameters were: K; = 3, Ko =3, M = 3 and N = 3.
RSSI = -90 was used in all of the tests, because this represents an AP with almost no
signal at all. After each set of tests, each parameter was replaced with the best value found.

First K; was varied with Ko = 3, M = 3 and N = 3. The results, displayed in Figure
8a, show an inverse proportion between K; and floor accuracy. As expected, K; does not
significantly affect coordinate precision as seen in Figure 8b but takes an important role on
the inference of the floor. Best average results were found for K; = 1. K; = 2 had the same
results as K; = 1, this is because even in the case of a tie, floor calculation uses first value
which is the one used for K; = 1. This effectively makes both values of K; the same.

K1 K1
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(a) Correct floor percentage, varying K. (b) Mean horizontal error, varying K.

Figure 8: Floor accuracy and horizontal error varying Kj.
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With K;’s best candidate the next step was to find the best value for K. Parameter
values used were K; = 1, M = 3 and N = 3. Because K> is used after obtaining the floor
this parameter does not affect floor accuracy, but as seen in Figure 9, it greatly influences
coordinate accuracy, with K» = 2 as the best fit.

Error [m]
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Figure 9: Horizontal error, varying Kp.

After finding Ko, M was next. Parameter values used were K; = 1, Ko = 2 and N = 3.
Floor precision was found to be best for values 3, 4 and 5, as shown in Figure 10a. M =4
was chosen as the best candidate after analyzing horizontal error in Figure 10b.
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Figure 10: Floor accuracy and horizontal error, varying M.

N was the last varied parameter with K; = 1, Ko = 2 and M = 4. Although N =1
has the greatest horizontal error (Figure 11b), its difference with the smallest one, N = 15,
was just around 0.15 m. As before, floor precision was prioritized over horizontal precision,
and so N = 1 was chosen.

After analyzing each set of runs, the best parameter configuration was to be the follow-
ing: K; =1, Ky =2, M = 4 and N = 1. This configuration’s floor precision was 94.89%
and its average horizontal error 2.87 m.

As stated before, GPS-enabled smartphones are typically accurate to within a 10-meter
radius approximately. As shown in Figure 12, 99% of the time error is below 10 m and, 40%
of the time below 2 m, showing that better accuracy is achieved when using this implemen-
tation over GPS alone. It is also important to note that GPS has less vertical accuracy than
it does horizontal (Applied Research Laboratories, 2019), although regardless the system
itself does not have enough information to estimate floor number since every building has
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Figure 11: Floor accuracy and horizontal error varying N.

different starting height and individual floor height. Results show that this implementation
does locate the current floor within the tested building with 94.89% accuracy.

Finally, these results can be compared with the ones obtained by RTLSQUM. In their
paper they report 93.74% floor accuracy rate, while our implementation showed a similar
value as stated above. Meanwhile, their horizontal error is shown to have a mean error of
6.20 m, but this is not comparable to these results mainly because RTLSQUM’s algorithm
adds an error penalty of 4 m when the floor was not located correctly while this project’s
implementation does not.
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Figure 12: Cumulative distribution function coordinates error for best parameters:
Ki=1,Ky=2, M =4and N = 1.

5. Conclusion

This was an interesting project that allowed for a first dive into IPS. Results were found
to have a similar error to those of RTLS@QUM, which means the solution works fairly well,
although there is still a lot of room for improvement. Even if these errors are low from a
scientific point of view, they have not yet arrived to a point where they are acceptable for
the average user, which would need an error accurate to the meter with an almost perfect
floor accuracy.

Future work on this project could involve improving the usability of the applications,
as well as their functionality. To improve the quality of the user application, for example,
the map camera could be exclusively controlled by the user, rather than being forced to
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center on the estimated location when found. It was not uncommon to be exploring the
map all to be abruptly moved to a different location, potentially with a different zoom
level. To make the experience smoother, the user app could be limited to simply show
a marker on the estimated location, and override the My Location button to center on
the marker rather than on the system estimated location. Additionally, the floor selector
could be enabled to give the ability to the user of exploring the building, while highlighting
the currently located floor. From the administration side, floor plans must be manually
uploaded and aligned to the world map by trial and error, but an iteration of the web
admin app could offer an interactive map uploader to simplify the process. These kinds of
changes would greatly streamline the process for administrators, which would in turn make
location services available more quickly to end users.

Another area that could be worked on is new features, like allowing administrators to
associate names with each section of the building such as classroom numbers for universities,
shop names for shopping malls, etc. This data could be displayed in the user app, or be
used as search filters. If the layout of the building were deeply detailed, this could even
enable pathfinding and routing between arbitrary points.

As final work, it would also be interesting to test more of the algorithms and ideas
available for IPS. To combine them and take the best of each one, to make our own approach
to problem with the goal of getting even better results.
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