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Abstract—Most of the existing characterizations of the integral 
input-to-state stability (iISS) property are not valid for time-varying 
or switched systems in cases where converse Lyapunov theorems 
for stability are not available. This paper provides a characteri-
zation that is valid for switched and time-varying systems, and 
shows that natural extensions of some of the existing character-
izations result in only sufficient but not necessary conditions. The 
results provided also pinpoint suitable iISS gains and relate these 
to supply functions and bounds on the function defining the system 
dynamics.

Index Terms—Converse theorems, dissipativity, input-to-state 
stability (ISS), nonlinear systems, persistence of excitation, 
switched systems, time-varying systems.

I. INTRODUCTION

Input-to-state stability (ISS) [1] and integral-ISS (iISS) [2] are ar-
guably the most important and useful state-space-based nonlinear no-
tions of stability for systems with inputs. The ISS property gives a state
bound that is the sum of a decaying-to-zero term whose amplitude
depends only on the initial state, and a term depending (nonlinearly)
only on the input bound. The difference in the iISS property lies on
the input-dependent term, which is a (nonlinear) function of an input
energy bound, instead of an input bound.

For time-invariant systems, several characterizations of both the ISS
and iISS properties exist (see [3]–[5] for ISS and [2], [6], and [7]
for iISS). Among the different characterizations of these properties,
perhaps the most practical ones are those based on ISS- [3] or iISS- [6]
Lyapunov functions. Indeed, since each of these properties is known
to be equivalent to the existence of the respective type of Lyapunov
function, there is no loss of generality in focusing on the obtention of 
such functions. Results that ensure that an ISS or iISS system admits
the corresponding type of Lyapunov function heavily rely on converse
Lyapunov theorems for stability [8], since both ISS and iISS imply 
global asymptotic stability.

As for time-varying systems, some Lyapunov characterizations of
ISS exist in both uniform [9] and nonuniform flavors [10], [11]. All of 
these works assume that the function f defining the system dynamics,
ẋ = f (t, x, u), is (at least) continuous. To the best of our knowledge, 
neither useful characterizations of the iISS property nor iISS-Lyapunov 
converse theorems exist in this case.
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This paper deals with time-varying systems, especially with switched
systems [12], and focuses on iISS that is uniform over some given set
of switching signals—the set of admissible switching signals— (see
Section II for the precise definition). In this setting, the situation can
be fairly different depending on the properties of this set. For example,
when the set of admissible switching signals coincides with the set of
all switching signals, i.e., under arbitrary switching, and the subsys-
tems are time invariant, then the Lyapunov characterizations available
for ISS and iISS carry over to the switched system with little change
[13], [14]. However, to the best of the authors’ knowledge, all of the
existing converse theorems employed to derive Lyapunov characteri-
zations of the ISS or iISS properties break down if the set of admissible
switching signals is not closed under concatenations (i.e., when piecing
together two admissible switching signals does not necessarily result
in another admissible switching signal). As a consequence, when the
set of admissible switching signals is not closed under concatenations,
such Lyapunov characterizations cannot be derived by following known
techniques, and as we will illustrate along this paper, it is likely that no
such Lyapunov characterization is possible. Sets of switching signals
not closed under concatenations have not only theoretical but also prac-
tical interest (e.g., in the analysis of stability of switching converters
[15] and supervisory control [12]).

In this context, the main contribution of this paper is to provide a
characterization of iISS for switched systems with any set of admissi-
ble switching signals. More specifically, we will show that a switched
system is iISS uniformly with respect to a given set of switching signals
if and only if the system satisfies a uniformly bounded energy bounded
state [7] property and a zero-input global asymptotic stability prop-
erty, both uniformly with respect to the given set of switching signals.
This characterization of iISS was originally developed in [7] for time-
invariant systems. The corresponding proof in [7] is based on a converse
Lyapunov argument, which is not valid in the setting considered here.
Hence, the proof in this paper is, to the best of our knowledge, com-
pletely novel, even for the case of nonswitched time-varying systems.
A second contribution is to show that characterizations of iISS based
on dissipation inequalities and appropriate detectability conditions [6]
(see also [16] and [17]) become only sufficient but not necessary in the
setting considered. In the case of time-varying and switched systems, a
natural extension of the weak zero-detectability property in [6] is given
by the output-persistent excitation property [18], [19] (see Section IV).
A third contribution is that our results also pinpoint iISS gains, and re-
late these to supply functions and bounds on the function defining the
system dynamics, thus extending also some results of [17] regarding
the bounded-energy-input/convergent-state property.

The results in this paper are novel even for time-varying non-
switched systems, and apply to switched systems of most general forms,
having time-varying (not necessarily continuous with respect to time)
and nonlinear subsystems, and imposing mild conditions on the func-
tion defining the system dynamics. In addition, our results can be inter-
preted as conditions for iISS of a given arbitrary family of time-varying
systems, where the iISS estimate is uniform over all the systems in the
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family. In this regard, our results are not limited to the case where
the family of time-varying systems arises from the consideration of a
switched system (see Remark 2 in Section II-B). However, we chose
to keep the formulation in terms of switched systems due to its natural
application to the latter type of systems.

The remainder of this paper proceeds as follows. This section ends
with a brief description of the notation employed. Section II de-
scribes the system considered, states the standing assumptions, and
precisely defines the properties employed. Our main results are given in
Sections III and IV. Section III provides a characterization of iISS and
Section IV proves that conditions based on dissipativity are only suf-
ficient but not necessary. Examples are provided in Section V and
conclusions drawn in Section VI.

Notation: N, R, R> 0 , and R≥0 denote the natural numbers, reals,
positive reals, and nonnegative reals, respectively. |x| denotes the Eu-
clidean norm of x ∈ Rp . Vector or matrix transposition is denoted by ′.
For any m ∈ N, Um denotes the set of all the Lebesgue measurable and
locally essentially bounded functions u : R≥0 → Rm . We write α ∈ K
if α : R≥0 → R≥0 is continuous, strictly increasing and α(0) = 0,
and α ∈ K∞ if, in addition, α is unbounded. We write β ∈ KL if
β : R≥0 × R≥0 → R≥0 , β(·, t) ∈ K∞ for any t ≥ 0 and, for any fixed
r ≥ 0, β(r, t) monotonically decreases to zero as t → ∞. By “index
set,” we mean an arbitrary nonempty set, not necessarily finite nor
countable.

II. PRELIMINARIES

A. Time-Varying and Switched Systems With Inputs

Consider a time-varying switched system with inputs u, of the form

ẋ = f (t, x, u, σ) (1)

where t ∈ R≥0 , x(t) ∈ Rn , u ∈ Um , and σ : R≥0 → Γ, with Γ an
index set, is a switching signal, i.e., it is piecewise constant (having a
finite number of discontinuities in every bounded interval) and right
continuous. We assume that f : R≥0 × Rn × Rm × Γ → Rn satisfies
f (t, 0, 0, i) = 0 for all t ≥ 0 and all i ∈ Γ, and that f (t, ξ, μ, i) is
Lebesgue measurable in t for fixed (ξ, μ, i) and continuous in (ξ, μ)
for fixed t and i. The following is our main technical assumption.

Assumption 1: f in (1) satisfies the following conditions.
C1) There exist γ ∈ K and a nondecreasing function N : R≥0 →

R> 0 such that |f (t, ξ, μ, i)| ≤ N (|ξ|)(1 + γ(|μ|)) for all t ≥ 0,
all ξ ∈ Rn , all μ ∈ Rm and all i ∈ Γ.

C2) For every r > 0 and ε > 0, there exists δ > 0 such that for all
t ≥ 0 and i ∈ Γ, |f (t, ξ, μ, i) − f (t, ξ, 0, i)| < ε if |ξ| ≤ r and
|μ| ≤ δ.

C3) f (t, ξ, 0, i) is locally Lipschitz in ξ, uniformly in t and i. ◦
Remark 1: Existing characterizations of the iISS property for sys-

tems of the form ẋ = f (x, u) (cf., [2], [6], and [7]) usually assume
that f (x, u) is locally Lipschitz. We emphasize that we do not require
that f in (1) satisfy any additional Lipschitzity requirement other than
that in C3) of Assumption 1. As a consequence, solutions to (1) are
not necessarily unique. Also, since we focus on iISS that is uniform
with respect to initial time, it is reasonable that the conditions on f in
Assumption 1 should be uniform with respect to time. ◦

Assumption 1 is indeed guaranteed to hold, for example, when f in
(1) satisfies a local uniform Lipschitz condition (see Lemma 1 later),
and also for control-affine systems where f (t, ξ, μ, i) = f0 (t, ξ, i) +
g(t, ξ, i)μ with f0 (t, ξ, i) Lebesgue measurable in t, locally Lipschitz
in ξ uniformly in t and i, and f0 (t, 0, i) ≡ 0, and g(t, ξ, i) is Lebesgue
measurable in t, continuous in ξ, and for every r > 0 there exists N ≥ 0
such that for all t ≥ 0 and i ∈ Γ, |g(t, ξ, i)| ≤ N if |ξ| ≤ r. The proof
of the following result is given in the Appendix.

Lemma 1: If f (t, ξ, μ, i) is locally Lipschitz in (ξ, μ) uniformly
in t and i, and f (t, 0, 0, i) = 0 for all t ≥ 0 and all i ∈ Γ, then
Assumption 1 holds.

We will employ S to denote a set of (admissible) switching signals.
Given t0 ≥ 0, u ∈ Um and σ ∈ S, we denote by T (t0 , u, σ) the set of
maximally defined solutions x of (1) corresponding to u and σ such
that t0 ∈ dom x, where dom x denotes the interval of definition of x.
We say that (1) is forward complete with respect to (w.r.t.) S if for all
t0 ≥ 0, u ∈ Um , σ ∈ S and x ∈ T (t0 , u, σ), [t0 ,∞) ⊂ dom x.

B. Uniform iISS

For the switched system (1) and the set S of switching signals, we
will consider an iISS property that is uniform over switching signals in
S. This property is thus an extension of the one introduced in [2].

Definition 1: System (1) is said to be iISS w.r.t. S if it is forward
complete w.r.t. S and there exist β ∈ KL, and ρ and χ ∈ K (the latter
will be referred to as an iISS gain) such that the estimate (2) holds for
all t ≥ t0 ≥ 0, all u ∈ Um , all σ ∈ S and all x ∈ T (t0 , u, σ).

|x(t)| ≤ β(|x(t0 )|, t − t0 ) + ρ

(∫ t

t0

χ(|u(τ )|)dτ

)
. (2)

The problem considered along this manuscript is to provide a char-
acterization of the iISS w.r.t. S property for the switched system (1)
and a given set of admissible switching signals S.

Remark 2: We may equivalently formulate the problem considered
as follows. For each σ ∈ S define fσ : R≥0 × Rn × Rm → Rn via
fσ (t, ξ, μ) := f (t, ξ, μ, σ(t)), with f in (1). Consider the family F of
time-varying systems given by F := {fσ : σ ∈ S}. Then, we aim at
characterizing iISS so that the estimate (2) holds uniformly for every
system in the family F . Since we do not impose any additional re-
strictions on the set S, we may also consider arbitrary families F of
time-varying systems, not only those arising from a switched system,
i.e., we may consider S to be an arbitrary index set and rewrite the
aforementioned assumptions in terms of fσ instead of f so that the as-
sumptions on fσ hold uniformly over every possible σ ∈ S. For exam-
ple, instead of assuming C1), we would require C1’) there exist γ ∈ K
and N nondecreasing so that |fσ (t, ξ, μ)| ≤ N (|ξ|)(1 + γ(|μ|)) for
all t ≥ 0, ξ ∈ Rn , μ ∈ Rm and σ ∈ S. We emphasize that C1’) is
even weaker than C1) in the case of switched systems, but keep our
assumptions as previously for the sake of simplicity. ◦

Besides the usefulness of the iISS property for describing the qual-
itative behavior of the solutions of (1), the computation of an iISS
gain is pertinent to the stability analysis of interconnected systems that
contain iISS subsystems, and to the robustness analysis of closed-
loop systems (see [20] and [21]). Given χ ∈ K and u ∈ Um , let
‖u‖χ :=

∫ ∞
0 χ(|u(τ )|)dτ and Uχ

m := {u ∈ Um : ‖u‖χ < ∞}. How-
ever, note that ‖ · ‖χ is not necessarily a norm in Uχ

m .
Remark 3: Due to causality and the Markov property, an equiva-

lent definition of iISS w.r.t. S is obtained if
∫ t

t0
χ(|u(τ )|)dτ in (2) is

replaced by ‖u‖χ . ◦
An equivalent definition of iISS is provided by Lemma 2. This

lemma can be proved by techniques analogous to those in the proof of
[3, Lemma 2.7], and considering Remark 3.

Lemma 2: System (1) is iISS w.r.t. S with iISS gain χ if and only if
it is forward complete w.r.t. S and the following conditions hold with
‖u‖ = ‖u‖χ .
1) For every T > 0, r > 0 and s > 0, there exists C > 0 such that

every x ∈ T (t0 , u, σ), with t0 ≥ 0, u ∈ Um and σ ∈ S such that
‖u‖ ≤ s and |x(t0 )| ≤ r, satisfies |x(t)| ≤ C for all t ∈ [t0 , t0 +
T ].



2) For each ε > 0, there exists δ > 0 such that every x ∈ T (t0 , u, σ),
with t0 ≥ 0, u ∈ Um and σ ∈ S such that ‖u‖ ≤ δ and |x(t0 )| ≤ δ,
satisfies |x(t)| ≤ ε for all t ≥ t0 .

3) There exists ν ∈ K such that, for any r ≥ ε > 0, there is a T > 0
so that for every x ∈ T (t0 , u, σ), with t0 ≥ 0, u ∈ Um and σ ∈ S
such that |x(t0 )| ≤ r, then

|x(t)| ≤ ε + ν(‖u‖) ∀t ≥ t0 + T.

C. Bounded-Energy-Input/Convergent-State Property

We will also consider the following convergence property, providing
a natural extension of the one considered in [17] for time-invariant
systems.

Definition 2: We say that (1) has the bounded-energy-input
convergent-state property (BEICS) w.r.t. ‖ · ‖χ and S (χ-BEICS w.r.t.
S, for short) if for every x ∈ T (t0 , u, σ) with t0 ≥ 0, u ∈ Uχ

m and
σ ∈ S, x(t) → 0 as t → ∞.

The BEICS property is useful for establishing asymptotic stability
of cascade systems [20]. The following fact can be proved in the same
way as [2, Proposition 6].

Proposition 1: Suppose that (1) is iISS w.r.t. S with iISS gain χ.
Then (1) is χ-BEICS w.r.t. S.

D. Zero-Input System

In the sequel, we will refer to the zero-input system correspond-
ing to (1). We will employ 0 to denote the input u ∈ Um such that
u(t) = 0 for all t ≥ 0. The zero-input system is thus the system defined
by ẋ = f (t, x, 0, σ), and according to the aforementioned definitions,
T (t0 , 0, σ) is the set of its maximally defined solutions corresponding
to the switching signal σ such that t0 ∈ dom x. The following stability
property of the zero-input system will be required in the sequel.

Definition 3: System (1) is said to be zero-input globally uniformly
asymptotically stable (0-GUAS) w.r.t. S if there exists β ∈ KL such
that every x ∈ T (t0 , 0, σ), with t0 ≥ 0 and σ ∈ S, verifies

|x(t)| ≤ β(|x(t0 )|, t − t0 ) ∀t ≥ t0 ≥ 0. (3)

From Definitions 1 and 3, it is clear that iISS w.r.t.S implies 0-GUAS
w.r.t. S.

III. CHARACTERIZATION OF IISS

In this section, we provide a characterization of the iISS w.r.t. S
property. This characterization essentially is an extension of the equiv-
alence 1 ⇐⇒ 2 in [7, Th. 1]. Our approach is substantially different,
however, because existing converse Lyapunov theorems cannot be suc-
cessfully applied in the setting considered. Our results also have the
advantage of pinpointing suitable iISS gains. We thus introduce the
following definition, which is a natural extension of the corresponding
one in [7].

Definition 4: System (1) is uniformly bounded energy bounded
state (UBEBS) w.r.t S, if for some functions α1 , α2 , α ∈ K (the latter
will be referred to as an UBEBS gain), and some c ≥ 0, the estimate
(4) holds for every x ∈ T (t0 , u, σ) with t0 ≥ 0, u ∈ Um and σ ∈ S.

|x(t)| ≤ α1 (|x(t0 )|) + α2

(∫ t

t0

α(|u(s)|) ds

)
+ c ∀t ≥ t0 . (4)

The following is the main result of this section.
Theorem 1: Let Assumption 1 hold and let γ be as in C1) of that

assumption. Then,
a) if system (1) is iISS w.r.t. S with iISS gain χ, then (1) is 0-GUAS

and UBEBS, both w.r.t. S , with UBEBS gain χ;

b) if system (1) is 0-GUAS and UBEBS, both w.r.t. S, with UBEBS
gain α then (1) is iISS w.r.t. S with iISS gain χ = max{α, γ} and
has the χ-BEICS w.r.t. S property.

Theorem 1 contains a characterization of the iISS w.r.t. S property,
namely that 0-GUAS + UBEBS ⇐⇒ iISS (all w.r.t. S). The statement
of Theorem 1 is split into parts a) and b) in order to keep track of the
iISS gain. The proof of a) follows straightforwardly from Definitions 1,
3, and 4. For establishing b), we require Lemmas 3 and 4, whose proofs
are given in the Appendix.

Lemma 3: Let Assumption 1 hold. Suppose that (1) is 0-GUAS
w.r.t. S and let β ∈ KL characterize the 0-GUAS property, so that (3)
is satisfied for the zero-input system. Let χ ∈ K∞ be such that χ(r) ≥
γ(r) for all r ≥ 0, with γ as in C1) in Assumption 1. Then, for every
r > 0 and every η > 0, there exist L = L(r) > 0 and κ = κ(r, η) such
that the following holds: if x ∈ T (t0 , u, σ), with t0 ≥ 0, u ∈ Um and
σ ∈ S, and |x(t)| ≤ r for all t ≥ t0 , then

|x(t)| ≤ β(|x(t0 )|, t − t0 )+[
η(t − t0 ) + κ

∫ t

t0

χ(|u(τ )|) dτ

]
eL (t−t0 ) ∀t ≥ t0 . (5)

Loosely speaking, Lemma 3 gives an estimate of how big the mag-
nitude of the state can result depending on time and input energy, the
latter in relation to the gain χ ∈ K∞, where the relative weights of the
time- and energy-dependent terms can be modified. The estimate (5) is
useful only for small values of t − t0 , because |x(t)| ≤ r for all t ≥ t0

is already assumed.
Lemma 4 shows that for a 0-GUAS system, UBEBS in Definition 4

could be equivalently defined setting c = 0 in (4). The proof of this
fact differs from the corresponding proof in [7, Lemma 2.1] because
no existing converse Lyapunov theorem may be invoked in the current
setting.

Lemma 4: Consider system (1) and a set S of switching signals.
Let Assumption 1 hold, and let γ be as in C1) of that assumption. If (1)
is 0-GUAS and UBEBS, both w.r.t. S, with UBEBS gain α, then there
exist α̃1 , α̃2 ∈ K for which the estimate (6) holds with χ = max{α, γ}
for every x ∈ T (t0 , u, σ) with t0 ≥ 0, u ∈ Um , and σ ∈ S.

|x(t)| ≤ α̃1 (|x(t0 )|) + α̃2

(∫ t

t0

χ(|u(s)|) ds

)
∀t ≥ t0 . (6)

Proof of Theorem 1b): Let χ = max{α, γ} and let ‖u‖ = ‖u‖χ .
Let α̃1 and α̃2 be as in Lemma 4. We will establish iISS with iISS gain
χ w.r.t. S by following the items of Lemma 2.
1) Let T > 0, r > 0, and s > 0. Let x ∈ T (t0 , u, σ) with t0 ≥ 0,

u ∈ Um with ‖u‖ ≤ s and σ ∈ S, be such that |x(t0 )| ≤ r. From
(6), it follows that |x(t)| ≤ α̃1 (r) + α̃2 (s) =: C for all t ≥ t0

because being bounded, x cannot cease to exist. This establishes
the forward completeness of (1) w.r.t. S and item 1) of Lemma 2.

2) Let ε > 0. Let δ > 0 be such that α̃1 (δ) + α̃2 (δ) < ε. Then, if
x ∈ T (t0 , u, σ) with t0 ≥ 0, u ∈ Um with ‖u‖ ≤ δ and σ ∈ S,
and |x(t0 )| ≤ δ, it follows, by using (6), that |x(t)| ≤ α̃1 (δ) +
α̃2 (δ) < ε for all t ≥ t0 . This establishes item 2) of Lemma 2.

3) Let ν ∈ K∞ be defined via ν(t) = 2α̃2 (t). Let r ≥ ε > 0. Let
x ∈ T (t0 , u, σ) with t0 ≥ 0, u ∈ Um and σ ∈ S, be such that
|x(t0 )| ≤ r. Let φ ∈ K∞ be defined by φ(·) = α̃−1

2 ◦ α̃1 (·). We
distinguish the following two cases:

a) ‖u‖ ≥ φ(r);
b) ‖u‖ < φ(r).

In case a), from (6), we have |x(t)| ≤ α̃1 (r) + α̃2 (‖u‖) ≤
α̃1 ◦ φ−1 (‖u‖) + α̃2 (‖u‖) ≤ 2α̃2 (‖u‖) = ν(‖u‖) for all t ≥ t0 .
Hence, |x(t)| ≤ ε + ν(‖u‖) for all t ≥ t0 .



Next, consider case (b). From (6), we have |x(t)| ≤ α̃1 (r) +
α̃2 (φ(r)) := r̃ for all t ≥ t0 . Let β ∈ KL characterize the 0-GUAS
w.r.t. S property and let L = L(r̃) > 0 be given by Lemma 3.
Let ε̃ = α̃−1

1 (ε) and pick T̃ > 0 such that β(r̃, T̃ ) < ε̃/2. Define
η = ε̃

4 T̃ eL T̃
. Let κ = κ(r̃, η) > 0 be given by Lemma 3. Pick δ > 0

such that κδeL T̃ < ε̃/4. Define N := � φ (r )
δ

� and T := NT̃ , where
�s� denotes the least integer not less than s ∈ R.

For i = 0 to N , let ti = t0 + iT̃ . Consider the intervals Ii =
[ti−1 , ti ], with i = 1, . . . , N . From the definition of N and the fact that
‖u‖ < φ(r), there exists j ≤ N − 1 for which

∫ t j + 1
t j

χ(|u(s)|) ds <

δ. Since x ∈ T (tj , u, σ) and |x(t)| ≤ r̃ for all t ≥ tj , and by using (5)

|x(tj + T̃ )| ≤ β(|x(tj )|, T̃ ) +

(
ηT̃ + κ

∫ t j + T̃

t j

χ(|u(s)|) ds

)
eL T̃

≤ β(r̃, T̃ ) + (ηT̃ + κδ)eL T̃ < ε̃/2 + ε̃/4 + ε̃/4 = ε̃.

Therefore, using (6) with t0 replaced by tj + T̃

|x(t)| ≤ α̃1 (ε̃) + α̃2 (‖u‖) ≤ ε + ν(‖u‖) ∀t ≥ t0 + T

because t0 + T ≥ tj + T̃ , which shows that item 3) of Lemma 2 also
is satisfied.

Finally, that (1) has the χ-BEICS property w.r.t. S follows from
Proposition 1. �

IV. DISSIPATIVITY AND IISS

In this section, we show that other characterizations of iISS valid
for time-invariant and nonswitched systems, e.g., those based on dissi-
pativity and weak detectability (see [6] and [17]), only give sufficient
conditions in the current setting. We next consider system (1) with an
output of the form

y = h(t, x, u, σ) (7)

where h : R≥0 × Rn × Rm × Γ → Rp is continuous in the second
and third variables and Lebesgue measurable in the first one. We also
assume that h0 (t, ξ, i) ≡ h(t, ξ, 0, i) is essentially bounded on R≥0 ×
K × Γ, for every compact subset K ⊂ Rn such that 0 /∈ K .

Definition 5 as follows extends the dissipativity notion to our setting.
Definition 6 replaces the notion of weak detectability by a suitable
extension in terms of persistence of excitation (see the subsequent
Remark 5).

Definition 5: Let S be a set of switching signals. System (1) with
output (7) is called h-output dissipative (h-OD) w.r.t. S if there exist a
function V : R≥0 × Rn → R≥0 (the storage function) and a function
α ∈ K (the supply function) such that 1) and 2) as follows hold.
1) There exist φ1 and φ2 ∈ K∞ so that

φ1 (|ξ|) ≤ V (t, ξ) ≤ φ2 (|ξ|) ∀t ≥ 0 ∀ξ ∈ Rn . (8)

2) There exists a continuous and positive definite function α3 such
that for every x ∈ T (t0 , u, σ) with t0 ≥ 0, u ∈ Um , and σ ∈ S

V (t, x(t)) ≤ V (t0 , x(t0 )) −
∫ t

t0

α3 (|y(τ )|) dτ

+
∫ t

t0

α(|u(τ )|)dτ ∀t ≥ t0 . (9)

System (1) is called zero-output dissipative (0-OD) w.r.t. S if it is
h-output dissipative w.r.t. S for the output y = 0, i.e., the output map
h is h = 0. Note that h-OD w.r.t. S implies 0-OD w.r.t. S .

Remark 4: We highlight the fact that the storage function V need
not even be continuous. However, continuity at (t, 0) ∈ R≥0 × Rn for
every t ≥ 0 follows from item 1) of Definition 5. ◦

Definition 6: We say that the pair (h, f ) is zero-input output-
persistently exciting (output-PE) w.r.t. S if for every 0 < ε ≤ 1
there exist T = T (ε) > 0 and r = r(ε) > 0 such that for every
x ∈ T (t0 , 0, σ) with t0 ≥ 0 and σ ∈ S and every t ≥ t0 the following
implication holds:

ε ≤ |x(τ )| ≤ 1
ε

∀τ ∈ [t, t + T ] =⇒
∫ t+T

t

|h0 (τ, x(τ ), σ(τ ))|2 dτ ≥ r. (10)

Remark 5: It can be easily proved that in the case of a nonswitched
time-invariant system ẋ = f (x, u) with outputs y = h(x, u), weak
zero-detectability as defined in [6] implies that the pair (h, f ) is zero-
input output-PE. ◦

The following lemma will be used in the proof of Theorem 2. It can
be proved using [19, Corollary 1]. For the reader’s convenience, we
provide a proof in the Appendix.

Lemma 5: Suppose that (h, f ) is zero-input output-PE w.r.t. S.
Then, for any continuous positive definite function α, the pair (ĥ, f ),
with ĥ = α(|h|), is zero-input output-PE w.r.t. S.

The following theorem provides sufficient conditions for iISS. The
fact that these conditions are only sufficient and not necessary will be
established later in this section.

Theorem 2: Let Assumption 1 hold and let γ satisfy C1) in Assump-
tion 1. Then, (1) is iISS with iISS gain χ = max{α, γ} and has the
χ-BEICS property, both w.r.t. S, if either of the following conditions
holds:
a) system (1) is 0-GUAS and 0-OD with supply function α ∈ K, both

w.r.t. S;
b) there exists an output (7) for which (1) is h-OD w.r.t. S with supply

function α and (h, f ) is zero-input output-PE w.r.t. S.
Proof: a) From the definitions of UBEBS and 0-OD (Definitions 4

and 5), it straightforwardly follows that if system (1) is 0-OD w.r.t. S
with supply function α ∈ K, then it is UBEBS w.r.t. S with UBEBS
gain α. The proof of a) then follows by application of Theorem 1.

b) We first prove that (1) is 0-GUAS w.r.t.S. Let Φ be the set of all the
pairs (x, σ) with x ∈ T (t0 , 0, σ) with t0 ≥ 0 and σ ∈ S. We will show
that Φ satisfies the hypotheses of [18, Th. 1], and that in consequence
Φ is uniformly globally asymptotically stable (in the sense of [18]),
which, in turn, implies that (1) is 0-GUAS w.r.t. S. In fact, from the
h-OD condition and by using standard techniques of stability theory it
follows that Φ is uniformly globally stable (in the sense of [18]). Let
α3 be the continuous and positive definite function appearing in (9),
and let ĥ =

√
α3 (|h|). Since (h, f ) is zero-input output-PE w.r.t. S,

by Lemma 5 it follows that (ĥ, f ) also is zero-input output-PE w.r.t.
S. Then, (ĥ0 , f0 ), with f0 (t, ξ, i) ≡ f (t, ξ, 0, i), is output-PE w.r.t. Φ
(in the sense of [18]). Finally, from the h-OD condition, it also follows
that [18, condition (H1)] is satisfied by ĥ0 and Φ (see [18, Remark 8]).
Since (1) is 0-GUAS and also 0-OD (because h-OD implies 0-OD),
both w.r.t. S, then application of part a), establishes that (1) is iISS with
iISS gain χ and has the χ-BEICS property, both w.r.t. S. �

Remark 6: Theorem 2a) contains the main result of [17 Th. 3.1]
as a particular case, since our assumptions are weaker than those in
[17]. Again, we remark that the corresponding proof in [17] does not
apply in the current setting since that proof is based on the existence
of a continuously differentiable Lyapunov function for the zero-input
system. Such a Lyapunov function need not exist in the current setting,
even for a time-varying system without switching. ◦



Theorems 2a) and 2b) are extensions of, respectively, the implica-
tions 4 ⇒ 1 and 3 ⇒ 1 in [6, Th. 1] to time varying both switched
and nonswitched systems. We note that the corresponding proofs in
[6] cannot be directly adapted since they heavily rely on converse Lya-
punov theorems, which do not exist in the current setting. In [6, Th. 1]
it is shown that the converse of those implications also holds. Unfortu-
nately, the converse of Theorem 2a) or b) does not hold in our case. To
prove the latter assertion, it suffices to show that there exists a system
which is iISS w.r.t. some family of switching signals S and which is
not 0-OD w.r.t. S.

Proposition 2: There exist a system (1) and a set of switching sig-
nals S such that the system is iISS w.r.t. S but not 0-OD w.r.t. S.

To prove this proposition, we require some additional definitions and
results. Given switching signals σ1 , . . . , σk and a sequence of times
0 < t1 < . . . < tk−1 , the concatenation of them at times t1 , . . . , tk−1

is the switching signal

σ1 �t1 σ2 �t2 · · · �tk −1 σk (s) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

σ1 (s), if s < t1

σ2 (s), if t1 ≤ s < t2

...
...

...

σk (s), if tk−1 ≤ s.

Let S�
k denote the set of all the switching signals obtained by con-

catenating k switching signals in S and let S� = ∪k≥2S�
k . Note that

S ⊂ S�
k ⊂ S� for any k ≥ 2, since σ = σ�tσ for every σ ∈ S and every

t > 0.
Lemma 6: If (1) is 0-OD w.r.t. S , then (1) is 0-OD w.r.t. S� .
Proof: Let V be a storage function as per Definition 5, correspond-

ing to the 0-OD w.r.t. S property. In order to show that (1) is 0-OD
w.r.t. S� it suffices to show that the estimate (9), with y = 0, holds for
every x ∈ T (t0 , u, σ) with t0 ≥ 0, u ∈ Um and σ ∈ S� . By induction
in k, we will prove for all k ≥ 2 that the estimate (9), with y = 0, holds
for every x ∈ T (t0 , u, σ) with t0 ≥ 0, u ∈ Um and σ ∈ S�

k .
Case k = 2. Let σ = σ1 �t1 σ2 with σi ∈ S for i = 1, 2 and t1 > 0.

Let x ∈ T (t0 , u, σ) with t0 ≥ 0 and u ∈ Um . If t1 ≤ t0 , then by well-
known results on differential equations and causality there exists x∗ ∈
T (t0 , u, σ2 ) such that x(t) = x∗(t) for all t ≥ t0 . Since (9) with y = 0
holds for x∗, it also holds for x. If t0 < t1 , then by causality and well-
known results on differential equations there exists x1 ∈ T (t0 , u, σ1 )
and x2 ∈ T (t1 , u, σ2 ) such that x(t) = x1 (t) for all t ∈ [t0 , t1 ] and
x(t) = x2 (t) for all t ∈ [t1 ,∞), whence x1 (t1 ) = x2 (t1 ). Then, for
all t ∈ [t0 , t1 ], we have

V (t, x(t)) = V (t, x1 (t)) ≤ V (t0 , x1 (t0 )) +
∫ t

t0

χ(|u(s)|) ds

= V (t0 , x(t0 )) +
∫ t

t0

χ(|u(s)|) ds

and for all t ≥ t1

V (t, x(t)) ≤ V (t1 , x2 (t1 )) +
∫ t

t1

χ(|u(s)|) ds

≤ V (t0 , x(t0 )) +
∫ t1

t0

χ(|u(s)|) ds +
∫ t

t1

χ(|u(s)|) ds

= V (t0 , x(t0 )) +
∫ t

t0

χ(|u(s)|) ds.

Recursive Step: Suppose that (9) with y = 0 holds for every x ∈
T (t0 , u, σ) with σ ∈ S�

k . Let σ ∈ S�
k+1 . Then, there exist σ1 , . . . , σk+1

in S and a sequence of times 0 < t1 < . . . < tk such that σ =
σ1 �t1 σ2 �t2 . . . �tk

σk+1 . Let σ̃ = σ1 �t1 σ2 �t2 . . . �tk −1 σk ∈ S�
k . Then,

σ = σ̃�tk
σk+1 . Taking into account that (9) with y = 0 holds for all

the solutions x of (1) corresponding to switching signals in S�
k ⊃ S,

and by using the same arguments as in the case k = 2, we can conclude
that (9) with y = 0 holds for all solutions x of (1) corresponding to
switching signals in S�

k+1 . �
Proof of Proposition 2: Consider (1) with f (t, ξ, μ, i) = Aiξ +

biμ, i = 1, 2, where

A1 =

[
−1 −100

10 −1

]
, A2 = A′

1 , b1 = b2 =

[
1

0

]
.

Let S = {σ1 , σ2}, where σi (t) = i for all t ≥ 0. We note that both A1

and A2 are Hurwitz, and in consequence each subsystem, i.e., each of
the two systems ẋ = f (t, x, u, i), with i = 1, 2, is iISS. Then, (1) is
iISS w.r.t. S. We claim that (1) is not 0-OD w.r.t. S.

For a contradiction, suppose that (1) is 0-OD w.r.t. S. By Lemma 6,
then (1) is 0-OD w.r.t. S� . Therefore, there exists a storage function V
verifying (8), with φ1 , φ2 ∈ K∞, and such that for some χ ∈ K∞, (9)
holds with y = 0 for every x ∈ T (t0 , u, σ), with t0 ≥ 0, u ∈ U1 and
σ ∈ S� . It then follows that every solution x of ẋ = Aσ x with σ ∈ S�

must verify

V (t, x(t)) ≤ V (t0 , x(t0 )) ∀t ≥ t0 .

In particular, for every r > 0, there exists c(r) ≥ 0 such that for each
switching signal σ ∈ S� and each ξ0 ∈ R2 with |ξ0 | ≤ r, the unique
solution x(t, ξ0 , σ) of ẋ = Aσ x, x(0) = ξ0 satisfies |x(t, ξ0 , σ)| ≤
c(r) for all t ≥ 0.

Also, for each initial condition ξ0 �= 0, there is a switching signal
σξ 0 : R≥0 → {1, 2} (σξ 0 does not necessarily satisfy σξ 0 ∈ S� ) such
that the unique solution x(t, ξ0 , σξ 0 ) of ẋ = Aσ 0 x, x(0) = ξ0 satisfies
|x(t, ξ0 , σξ 0 )| → ∞ (see [22, Example 2]).

Pick any ξ0 �= 0 and let r = |ξ0 |. Then, there exists T > 0 such
that |x(T, ξ0 , σξ 0 )| > c(r). From the definition of S� and the fact
that any switching signal has a finite number of discontinuities
in every bounded interval, it can be easily seen that the switch-
ing signal σ̃ = σξ 0 �T σ1 belongs to S� . By causality, we have that
|x(T, ξ0 , σξ 0 )| = |x(T, ξ0 , σ̃)| ≤ c(r). Since we have arrived to a con-
tradiction, it follows that system (1) is not 0-OD w.r.t. S. �

V. EXAMPLE

We provide an example to illustrate the application of Theorem 2.
Consider the ideal switched model of the semi-quasi-Z-source inverter
[23], [24], connected to a nonlinear time-varying resistive load and
where u represents the input voltage:

ẋ = f (t, x, u, σ) = Ãσ x − e4 g̃σ (t, e′4x) + bσ u (11)

e4 = [0 0 0 1]′, P = diag(L1 , L2 , C1 , C2 )

Ã1 = P −1

⎡
⎢⎢⎢⎢⎣

0 0 0 0

0 0 1 1

0 −1 0 0

0 −1 0 0

⎤
⎥⎥⎥⎥⎦ , Ã2 = P −1

⎡
⎢⎢⎢⎢⎣

0 0 −1 0

0 0 0 1

1 0 0 0

0 −1 0 0

⎤
⎥⎥⎥⎥⎦

b1 = P −1 [1 0 0 0]′, b2 = P −1 [0 1 0 0]′

g̃i (t, v) = ai (t)sat(v/ri (t)) (12)



where sat is the unitary saturation function (sat(v) = v if |v| ≤ 1
and sat(v) = sign(v) otherwise), and ai (t) ∈ [am in , am ax ], am ax ≥
am in > 0, and ri (t) ∈ [rm in , rm ax ], rm ax ≥ rm in > 0, for all t ≥ 0
and for i = 1, 2. The positive constants L1 , L2 , C1 , and C2 repre-
sent the inverter inductance and capacitance values. It is clear that
this system verifies Assumption 1, and in particular, C1) is satisfied,
e.g., with γ(s) = s and N (|ξ|) = max{‖A1‖, ‖A2‖}|ξ| + am ax +
max{1, ‖b1‖, ‖b2‖}, with ‖Ai‖ the matrix norm induced by the Eu-
clidean vector norm.

Irrespective of the load function g̃i , stability of this inverter model
can only be ensured by constantly switching between σ(t) = 1 (mode
1) and σ(t) = 2 (mode 2), and imposing additional restrictions on the
time spent in mode 2 [15]. Let S denote the set of switching signals σ :
R≥0 → {1, 2} where each mode has minimum (dm in ) and maximum
(dm ax ) dwell times satisfying 0 < dm in < dm ax < π

√
L1C1 .

In order to show that the system is 0-GUAS and 0-OD w.r.t.
S, we consider the time-invariant positive definite quadratic func-
tion V (t, x) = V̄ (x) = 1

2 x′Px. Such a function satisfies (8), with
φ1 (s) = λm ins2 and φ2 (s) = λm axs2 with λm in , λm ax the minimum
and maximum eigenvalues of P/2, and V̇i , its derivative along the
trajectories of the ith-subsystem, is

V̇i (t, ξ) = ξ′P Ãi ξ − ξ ′C2e4 g̃i (t, e′4ξ) + ξ ′Pbiμ

= −C2 (e′4ξ)ai (t)sat(e′4ξ/ri (t))︸ ︷︷ ︸
η i (t ,ξ )

+ ξ ′Pbiμ.

Note that for i = 1, 2, P Ãi is skew-symmetric, and hence, ξ ′P Ãi ξ = 0
for all ξ ∈ R4 and that ηi is a nonnegative function because C2 > 0,
ai (t) > 0, ri (t) > 0, and v sat(v/ri (t)) ≥ 0 for all v ∈ R. To show
that this system is 0-GUAS w.r.t. S , we employ [25, Th. 3.1]. This
requires decomposing the zero-input system equations into a “nominal”
0-GUAS part f̂ and a “perturbation” part g, as follows:

ẋ = f (t, x, 0, σ) = (Ãσ − Ke4e
′
4 )x︸ ︷︷ ︸

f̂ (t ,x ,σ )

−e4 (g̃σ (t, e′4x) − Ke′4x)︸ ︷︷ ︸
g (t ,x ,σ )

,

where K > 0 is an arbitrary constant. Under this decomposi-
tion, [25, Assumption 1 of Th. 3.1] is satisfied because the
switched linear system ẋ = f̂ (t, x, σ) is 0-GUAS w.r.t. S, as es-
tablished in [24]. The function V and ηi as aforementioned sat-
isfy [25, Assumption 2 of Th. 3.1], and the functions f̂ and
g satisfy the boundedness condition of [25, Assumption 3 of
Th. 3.1]. Finally, the functions η(t, ξ, i) = ηi (t, ξ) and g satisfy con-
dition (C) of the latter theorem, and hence, the zero-input system is
0-GUAS w.r.t. S. Next, since ηi ≥ 0, then

V̇i (t, ξ) ≤ ξ ′Pbiu ≤ κ
√

V |u|

with κ = 1/
√

λm in . Then, using a comparison lemma for differential
equations, we have that for every solution x of (11) corresponding to
an input u and a switching signal σ ∈ S, the following holds:

√
V (t, x(t)) ≤

√
V (t0 , x(t0 )) +

κ

2

∫ t

t0

|u(s)| ds.

In consequence, system (11) is 0-OD w.r.t. S if we consider
√

V as
the storage function. By Theorem 2a), system (11) is iISS w.r.t. S
with iISS gain χ(s) = s. It also has the χ-BEICS property. Thus, for
x ∈ T (t0 , u, σ) with u ∈ L1 (R≥0 ) and σ ∈ S it follows that x(t) → 0
as t → ∞.

We remark that system (11) is not ISS w.r.t. S . Indeed, the second
simulation example in [15, Sec. 2.5] corresponds to the considered
system with a load of the form (12) for constant and positive ai and ri ,

for i = 1, 2, and a switching signal contained in the considered set S.
This simulation shows that the state is divergent for a bounded input u,
and hence, the system cannot be ISS w.r.t. S. Another interesting fact
about this example is that no iISS common Lyapunov function exists,
because none of the subsystems is 0-GUAS.

VI. CONCLUSION

We have provided a characterization of iISS that is valid for switched
and time-varying systems uniformly over arbitrary sets of switching
signals. We have also shown that some natural extensions of the char-
acterizations available for nonswitched time-invariant systems become
only sufficient conditions in the setting considered. Our proofs are
novel in the sense that no converse Lyapunov theorems are required.

APPENDIX

A. Proof of Lemma 1

Conditions C2) and C3) in Assumption 1 are obviously satisfied. We
proceed to prove C1). The function

γ̃(r) := sup{|f (t, ξ, μ, i)| : t ≥ 0, i ∈ Γ, |ξ| ≤ r, |μ| ≤ r}

is clearly nondecreasing, and finite for all r ≥ 0 because of the as-
sumptions of Lemma 1. In addition, if L̃ > 0 is a Lipschitz constant
for f (t, ·, ·, i) on the compact set {(ξ, μ) ∈ Rn × Rm : |ξ| ≤ 1, |μ| ≤
1}, then γ̃(r) ≤ 2L̃r for all 0 ≤ r ≤ 1. In consequence, there exists
γ ∈ K∞ such that γ(r) ≥ γ̃(r) for all r ≥ 0 and such that γ(r) = 2L̃r
for all 0 ≤ r ≤ 1/2. We note that |f (t, ξ, μ, i)| ≤ γ(|ξ|) + γ(|μ|) ≤
N (|ξ|)[1 + γ(|μ|)], with N (r) = max{1, γ(r)}. �

B. Proof of Lemma 3

For any p ∈ N and s > 0, we define B̄p
s := {ξ ∈ Rp : |ξ| ≤ s}.

Claim: For every r∗ > 0 and η > 0, there exists κ = κ(r∗, η) > 0
such that for all t ≥ 0, ξ ∈ B̄n

r ∗ , μ ∈ Rm and i ∈ Γ,

|f (t, ξ, μ, i) − f (t, ξ, 0, i)| ≤ η + κγ(|μ|). (13)

From C2) in Assumption 1, there exists 0 < δ < 1 such that for all
t ≥ 0, i ∈ Γ, and (ξ, μ) ∈ B̄n

r ∗ × B̄m
δ , |f (t, ξ, μ, i) − f (t, ξ, 0, i)| <

η. If ξ ∈ B̄n
r ∗ and |μ| ≥ δ, using C1), it follows that |f (t, ξ, μ, i)

− f (t, ξ, 0, i)| ≤ |f (t, ξ, μ, i)| + |f (t, ξ, 0, i)| ≤ 2N (|ξ|) + N (|ξ|)
γ(|μ|) ≤ 2N (r∗) + N (r∗)γ(|μ|), and hence, |f (t, ξ, μ, i) −
f (t, ξ, 0, i)|/γ(|μ|) ≤ N (r∗)[2/γ(δ) + 1] =: κ. In consequence

|f (t, ξ, μ, i) − f (t, ξ, 0, i)| ≤ κγ(|μ|) ∀ξ ∈ B̄n
r ∗ , |μ| ≥ δ.

Combining the inequalities obtained, the claim is established.
Next, let r > 0 and r∗ = β(r, 0) ≥ r. Let L = L(r) > 0 be any

Lipschitz constant for f (t, ·, 0, i) on the compact set B̄n
r ∗ valid for every

t ≥ 0 and every i ∈ Γ. Let x ∈ T (t0 , u, σ) with t0 ≥ 0, u ∈ Um , and
σ ∈ S be such that |x(t)| ≤ r for all t ≥ t0 . Let x0 ∈ T (t0 , 0, σ) be
such that x0 (t0 ) = x(t0 ). Then, both x and x0 evolve in B̄n

r ∗ for all



t ≥ t0 . Let t ≥ t0 . For all t0 ≤ τ ≤ t, we have

|x(τ ) − x0 (τ )|

≤
∫ τ

t0

|f (s, x(s), u(s), σ(s)) − f (s, x0 (s), 0, σ(s))|ds

≤
∫ τ

t0

|f (s, x(s), u(s), σ(s)) − f (s, x(s), 0, σ(s))|ds

+
∫ τ

t0

|f (s, x(s), 0, σ(s)) − f (s, x0 (s), 0, σ(s))|ds

≤
∫ τ

t0

[η + κγ(|u(s)|)]ds +
∫ τ

t0

L|x(s) − x0 (s)|ds

≤ η(t − t0 ) + κ

∫ t

t0

χ(|u(s)|)ds +
∫ τ

t0

L|x(s) − x0 (s)|ds.

Using Gronwall’s inequality, it follows that

|x(t) − x0 (t)|≤
[
η(t − t0 ) + κ

∫ t

t0

χ(|u(s)|)ds

]
eL (t−t0 ) ∀t ≥ t0 .

The lemma is then established from |x(t)| ≤ |x0 (t)| + |x(t) − x0 (t)|
and recalling the estimate (3) for x0 (t). �

C. Proof of Lemma 4

Let α1 , α2 , α, and c be as in the estimate (4) and let χ = max{α, γ}.
For r ≥ 0, define

α̃(r) := sup
x∈T (t0 ,u ,σ ) , t≥t0 ≥0 , ‖u ‖≤r, σ∈S, |x (t0 ) |≤r

|x(t)|

where ‖u‖ := ‖u‖χ . From this definition, it follows that α̃ is non-
decreasing, and from (4), that it is finite for all r ≥ 0. Next,
we show that limr→0+ α̃(r) = 0. Let r∗ = α1 (1) + α2 (1) + c, β ∈
KL be the function which characterizes the 0-GUAS w.r.t. S
property and L = L(r∗) > 0 be given by Lemma 3. Let ε > 0
be arbitrary. Pick 0 < δ1 < 1 such that δ1 ≤ β(δ1 , 0) < ε/2, and
T > 0 such that β(δ1 , T ) < δ1/2. Define η = δ1

4T eL T and let κ =
κ(r∗, η) > 0 be given by Lemma 3. Last, pick 0 < δ2 < 1 such
that κδ2e

LT < δ1/4. Then, for every x ∈ T (t0 , u, σ), with t0 ≥
0, u ∈ Um with ‖u‖ ≤ δ2 , σ ∈ S, and |x(t0 )| ≤ δ1 , we claim
that |x(t)| < ε for all t ≥ t0 . In fact, for all t ∈ [t0 , t0 + T ], we
have from Lemma 3 that |x(t)| ≤ β(|x(t0 )|, t − t0 ) + (η(t − t0 ) +
κ‖u‖)eL (t−t0 ) ≤ β(δ1 , 0) + (ηT + κδ2 )eLT < ε and that |x(t0 +
T )| ≤ β(δ1 , T ) + (ηT + κδ2 )eLT < δ1 . Since x ∈ T (t1 , u, σ), with
t1 = t0 + T , and |x(t1 )| < δ1 , then |x(t)| < ε for all t ∈ [t1 , t1 + T ]
and |x(t1 + T )| < δ1 . Therefore, by using an inductive argument, we
can prove that |x(t)| < ε for all t ∈ [tn , tn + T ], where tn = t0 + nT ,
and that |x(tn + T )| < δ1 . In consequence, |x(t)| < ε for all t ≥ t0

as we claim. Thus, if δ = min{δ1 , δ2}, for all x ∈ T (t0 , u, σ), with
t0 ≥ 0, u ∈ Um with ‖u‖ ≤ δ, σ ∈ S, and |x(t0 )| ≤ δ, we have
|x(t)| ≤ ε for all t ≥ t0 . Therefore, α̃(r) ≤ α̃(δ) < ε for all 0 < r < δ
and limr→0+ α̃(r) = 0.

Since α̃ is nondecreasing and limr→0+ α̃(r) = 0, there exists α̂ ∈
K∞ such that α̂(r) ≥ α̃(r) for all r ≥ 0. Let x ∈ T (t0 , u, σ) with
t0 ≥ 0, u ∈ Um and σ ∈ S. Let t ≥ t0 , and let ut be the input ut (τ ) =
u(τ ) for all τ ∈ [t0 , t] and ut (τ ) = 0 otherwise. From well-known
results on differential equations, there exists x∗ ∈ T (t0 , ut , σ) such
that x∗(τ ) = x(τ ) for all τ ∈ [t0 , t]. By using the definition of α̃ and

the facts that ‖ut‖ =
∫ t

t0
χ(|u(s)|) ds and α̂(r) ≥ α̃(r), we then have

|x(t)| = |x∗(t)| ≤ α̂(|x(t0 )|) + α̂ (‖ut‖)

= α̂(|x(t0 )|) + α̂

(∫ t

t0

χ(|u(s)|) ds

)
.

In consequence, the lemma follows by taking α̃1 = α̃2 = α̂. �

D. Proof of Lemma 5

Let α be continuous and positive definite. We will prove that
(ĥ, f ), with ĥ = α(|h|), is zero-input output-PE w.r.t. S by con-
tradiction. Suppose that (ĥ, f ) is not zero-input output-PE w.r.t.
S. Let ĥ0 (t, ξ, i) ≡ ĥ(t, ξ, 0, i). Then, there exist ε0 > 0 and a se-
quence {(tk , xk , σk )} such that tk ↗ ∞ and, for all k, σk ∈ S and
xk ∈ T (tk , 0, σk ), ε0 ≤ |xk (t)| ≤ 1/ε0 for all t ∈ [tk , tk + k], and

∫ tk + k

tk

|ĥ0 (τ, xk (τ ), σk (τ ))|2 dτ < 1/k.

Let ỹk (s) = |ĥ0 (tk + s, xk (tk + s), σk (tk + s))|2 for s ∈ [0, k] and
ỹk (s) = 0 if s > k. Since {ỹk } converges to 0 in L1 (R≥0 ), then there
exists a subsequence {ỹk l

} such that liml→∞ ỹk l
(s) = 0 for almost

all s ∈ R≥0 . The fact that h0 is essentially bounded on R≥0 × K × Γ,
with K = {ξ ∈ Rn : ε0 ≤ |ξ| ≤ 1/ε0}, implies the existence of a con-
stant M ≥ 0 so that |h0 (tk l

+ s, xk l
(tk l

+ s), σk l
(tk l

+ s))| ≤ M
for almost all s ∈ [0, kl ]. From the latter, the continuity and posi-
tive definiteness of α and the fact that ỹk l

→ 0 a.e., we have that for
every T > 0, liml→∞ h0 (tk l

+ s, xk l
(tk l

+ s), σk l
(tk l

+ s)) = 0 for
almost all s ∈ [0, T ]. By applying Lebesgue’s convergence theorem, it
follows that for all T > 0

lim
l→∞

∫ T

0
|h0 (tk l

+ s, xk l
(tk l

+ s), σk l
(tk l

+ s))|2 ds = 0

or, equivalently, that

lim
l→∞

∫ tk l
+T

tk l

|h0 (τ, xk l
(τ ), σk l

(τ ))|2 dτ = 0.

We have arrived to a contradiction because from the zero-input output-
PE w.r.t. S of the pair (h, f ) there exist T (ε0 ) > 0 and r(ε0 ) > 0 such
that for all l

∫ tk l
+T (ε0 )

tk l

|h0 (τ, xk l
(τ ), σk l

(τ ))|2 ds ≥ r(ε0 ).

�
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