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Abstract— Seizure detection plays a central role in most aspects of epilepsy care. Understanding the complex
epileptic signals system is a typical problem in electroencephalographic (EEG) signal processing. This problem requires
different analysis to reveal the underlying behavior of EEG signals. An example of this is the non-linear dynamic:
mathematical tools applied to biomedical problems with the purpose of extracting features or quantifying EEG data.
In this work, we studied epileptic seizure detection independently in each brain rhythms from a multilevel 1D wavelet
decomposition followed by the independent component analysis (ICA) representation of multivariate EEG signals.
Next, the largest Lyapunov exponents (LLE) and their scaling given by its ± standard deviation are estimated in
order to obtain the vectors to be used during the training and classification stage. With this information, a logistic
regression classification is proposed with the aim of discriminating between seizure and non-seizure. Preliminary
experiments with 99 epileptic events suggest that the proposed methodology is a powerful tool for detecting seizures
in epileptic signals in terms of classification accuracy, sensitivity and specificity.
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Resumen— La detección de convulsiones juega un rol muy importante en el tratamiento de la epilepsia. Entender el
sistema complejo de las señales epilépticas es un problema tı́pico en procesamiento de señales electroencefalográficas
(EEG). Este problema requiere diferentes tipos de análisis para poder determinar el comportamiento subyacente de las
señales EEG. Un ejemplo de esto es la dinámica no lineal: herramientas matemáticas aplicadas a problemas biomédicos
con el propósito de extraer caracterı́sticas o cuantificar datos del EEG. En este trabajo, estudiamos la detección de crisis
epilépticas de forma independiente en cada ritmo cerebral a partir de una descomposición wavelet multinivel 1D seguida
de un análisis de componentes independientes (ICA) de señales de EEG multivariadas. A continuación, se estiman los
mayores exponentes de Lyapunov (LLE) y su escalamiento dado por su ± desviación estándar para obtener los vectores
que se utilizarán durante la etapa de entrenamiento y clasificación. Con esta información, se propone una clasificación
usando la regresión logı́stica con el objetivo de discriminar entre convulsión y no-convulsión. Experimentos preliminares
con 99 eventos epilépticos, sugieren que la metodologı́a propuesta es una poderosa herramienta para detectar ataques
convulsivos en señales epilépticas en términos de precisión, sensibilidad y especificidad del clasificador.

Palabras clave— Máximo Exponente Lyapunov, Regresión Logı́stica, ICA, Banco de Filtros, Wavelets, Epilepsia, EEG.

I. INTRODUCCTION

E lectroencephalography (EEG) is the predominant mo-
dality to study abnormal cerebral activity, showing the

generalized activity of the cerebral cortex. The resulting signal
is composed of a range of electrical or independent brain
rhythms that closely correlate with a particular behavior or
pathology states. These rhythms help diagnose certain neu-
rological conditions such as epileptic seizures. The Interna-
tional League Against Epilepsy (ILAE) [1] defines ”epileptic
seizure” as a transient occurrence of signs and/or symptoms
due to abnormal excessive or synchronous neuronal activity in
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the brain. According the World Health Organization [2], there
are more than 50 million people worldwide that suffer from
some form of epilepsy, nearly 80% of them are in developing
regions, where it is believed that 3 out of 4 people with this
conditions do not get appropriate diagnostic and treatment.

Brain rhythms (namely the delta (δ), theta (θ), alpha (α),
beta (β) and gamma (γ) bands) play an important role in
spike timing and brain communication. Each brain region
produces distinctly different brain rhythm frequencies that are
thought to reflect unique brain activities, which is important
for the localization, parceling, and routing of information
within and between regions [3]. A recent study that compares
the spectral power in the different brain rhythms across 10
mental health disorders such as depression, bipolar disorder,
addiction, autism, ADHD, anxiety, panic disorder, obsessive-



compulsive disorder (OCD), post-traumatic stress disorder
(PTSD) and schizophrenia; suggest that it is necessary to
have caution with any interpretation of results from studies
that consider only one disorder in isolation [4]. Extrapolating
this to epilepsy disease is important, due to the considerable
variability in the studies, reports based on a subset of studies
or the highly inconsistent between experts makes it difficult
to normalize all the differences found in the researches.

The amplitude of the EEG signal strongly depends on how
synchronous is the activity of the underlying neurons, as small
electric signals sum to generate one larger surface signal when
a group of cells are excited simultaneously. However, when
each cell receives the same amount of excitation but spread
out in time, the summed signals are meager and irregular.
This behavior is usually caused by a pathological discharge
patterns generated in the basal ganglia [3]. Note that in this
case, the number of activated cells and the total amount of
excitation may not have changed, only the timing of the
activity. If synchronous excitation of this group of cells is
repeated, again and again, the resulting EEG will consist on a
signal representing the normal activity of the brain, but if this
group of cells presents an excessive excitation, it represents
an abnormal activity as is the case during an epileptic seizure
[5]. See Table I for a comprehensive relationship between the
brain rhythms and their epilepsy clinical association.

Brain Rhythm Frequency
(Hz)

Amplitude
(µV)

Region Cognitive activity Epileptic clinical association

Delta (δ) < 4 20-200 Frontal,
Temporal,
Occipital

Deep sleep, waking state, normal in infants, sleeping adults. Intermittent or non-rhythmic slow wave.
Newborn seizures.
Delta brush: beta-delta complexes and ripples of prematurity.
Semirhythmic hallmarks of slow wave sleep.
Sharply-contoured slow waves.
Hypersynchrony.
Intermittent rhythmic activity.
Focal spiking.
Chaotic bursts.

Theta (θ) 4-7 20-100 Temporal,
Occipital

It is more common in children and young adults than in older
adults, locomotion, sensory information, consciousness slips to-
wards drowsiness, unconscious material, creative inspiration, deep
meditation, maturational and emotional studies, sleeping adults,
drowsiness, spatial memory processes.

Newborn seizures.
Triphasic waves.
Burst with a morphology very similar to ictal patterns.
Rhythmic vertex.
Semirhythmic hallmarks of the onset of drowsiness.
Sleep-related hypersynchronies.
Sharply-contoured slow waves.
Sharp temporal discharges.
Theta pointu alternant: Neonatal alternating sharp theta.
Abnormal in the adult during wakefulness.

Alpha (α) 8-12 20-60 Occipital When there is no attention, mental fatigue, cognitive disorders,
awake but relaxed, attenuation as an indicator of visual activity
during dreaming, semantic memory processes, to any type of task,
during visually presented stimulations.

A slow decrease in frequency with an increase in amplitude..
Loss of reactivity to eye-opening or to mental alerting.
Desynchronization when moving a body part.
Intrude into a deep sleep or attention dramatically.
An absence of the posterior rhythm.

Beta (β) 13-29 2-30 Frontal,
Central,
Parietal

Active thinking, active attention, focus on the outside world or
solving concrete problems, is found in normal adults, panic state,
rises immediately after the task, sensory-motor area, drowsiness,
light sleep, REM sleep, a relatively sudden, diffuse increase in
activity can mark onset of early drowsiness

Increase or decrease in waves activity.
Triphasic waves.
A smaller magnitude and delayed in motor movements.
High voltage or plentiful activity.
Asymmetry.

Gamma (γ) 30 < 5-10 Frontal, Central Childhood, memory tasks, awakening, REM sleep, working, right
and left index finger movement, right toes and the rather broad and
bilateral area for tongue movement.

Highest levels of cerebral blood flow.
Asynchrony bursts

TABLE I
BRAIN RHYTHMS AND THEIR EPILEPSY CLINICAL ASSOCIATION

Independent component analysis (ICA) is a method to
find underlying sources (or components) from multivariate
or multidimensional statistical data. The main idea of ICA
is to find a linear representation of non-Gaussian data in
such a way that the components are statistically independent.
The advantage of identifying these independent features is
that, when used in combination with other methods such as
largest Lyapunov exponents (LLE), it may be possible to
distinguish between seizure (ictal) and non-seizure (interictal)
in a higher dimensional feature space [6]. ICA has been
successfully used by the scientific community and has been

applied to numerous signal processing problems in diverse
areas such as biomedicine, bioengineering, communications,
finance and remote sensing; and keeps evolving [7]. ICA is
widely used in EEG data and it applications are very varied, for
example in [8] was demonstrated that ICA can be an efficient
approach to separate responses related to epilepsy which are
commonly obtained through fMRI studies, or in [9] to select
the PROJection onto Independent Components (PROJIC) from
EEG data collected during fMRI acquisitions to detect Inter-
ictal epileptiform discharges, or by using a new deflation ICA
algorithm called penalized semialgebraic unitary deflation (P-
SAUD) in order to remove artifacts from interictal epileptic
spikes [10].

Largest Lyapunov exponents (LLE) is a time-dependent
analysis technique that can be used to infer the properties
of a system. In a medical context, they describe the time
interval over which the system’s evolution diverges, helping
to discriminate seizures from non-seizures [11], [12]. In recent
studies, the Lyapunov coefficients were applied as a filter-noise
that can be used as an epilepsy detector [13], as features in
order to predict epileptic seizures in synthetic signals [14],
coupled with the adaptive Teager energy to seizure detection in
long-term signals with a sensitivity of 91% and a specificity of
86% [15], or by using point-process to correlate the heartbeat
dynamics with the epileptic signals and SVM classifier with an

accuracy of 73.91% [16], for EEG patterns classification based
on continuous neural networks by using a generalization-
regularization with an accuracy of 97.2% [17]; as a seizure
prediction in intracraneal signals (iEEG) with a sensitivity of
89.8% and a specificity of 96.7% [18], or to detect metabolic
encephalopathy by using SVM with a specificity of 100% and
a sensitivity of 95.33% [19].

Logistic regression classifier (LRC) is one of the most
common multivariate analysis models used in biomedical
applications for analyzing binary outcome data [20], [21]. The
choice of the explicative variables that should be included in



the logistic regression model is based on prior knowledge of
epilepsy and the statistical correlation between the variable
and the epileptic event [22], [23]. In our case the correlation
between the seizure and the largest Lyapunov exponent. In
recent works, the LRC coupled with Cox regression has
been used to construct time to first EEG seizure in neonates
subjects [24] or to classifier the significant non-antiepileptic
drug predictors of psychiatric and behavioral side effects rate
[25], or in average recurrence risk estimation of ictal asystole
and its determining factors in people with epilepsy [26].

In this work, the EEG signal was decomposed for each
brain rhythms using a multilevel 1D wavelet decomposition
followed by ICA to study the epileptic dynamic features
of EEG during seizure (ictal) and non-seizure (interictal)
behavior. The difference between typical ictal and interictal
feature values enables us to distinguish between the two states,
which are identified through the largest Lyapunov exponents
(LLE). The results allow us to differentiate the distinctive and
appreciable changes during epileptic seizures, discriminating
normal from abnormal brain activity. Next, a LLE scaling
between the ± standard deviation is estimated in order to
obtain a vector can be classified between two classes, seizure
or non-seizure. Therefore, the logistic regression classifier is
proposed with the aim of discriminating between seizure and
non-seizure. All these methods have been used in epileptic
EEG signals in a wide variety of applications, but to the best
of our knowledge, this methodology has not been investigated
for EEG signal classification.

The remaining of this document is structured as follows. The
proposed methodology is explained in Section II with a brief
introduction of the largest Lyapunov exponents theory and the
logistic regression in subsections II-A and II-C respectively.
Then in Section III the methodology is demonstrated on real
EEG signals from patients suffering from epileptic seizures.
Discussions and conclusions are finally reported in Section
IV.

II. METHODOLOGY

Let X ∈ RN×M denote the multivariate matrix gathering
M EEG signals xm ∈ RN×1 measured simultaneously on
different channels and at N discrete time instants. Then
we decompose the EEG signal X to evaluate the energy
distribution throughout the neurological frequency spectrum
or brain rhythm. The following bands are commonly identified
[27] according to their frequency f :

1) Delta (δ): for f < 4 Hz.
2) Theta (θ): for 4 ≤ f ≤ 7 Hz.
3) Alpha (α): for 8 ≤ f ≤ 12 Hz.
4) Beta (β): for 13 ≤ f ≤ 29 Hz.
5) Gamma (γ): for 30 ≤ f ≤ 64 Hz.
The wavelet decomposition is done using time-frequency

Daubechies 1D wavelet decomposition [28] with 6 scales.
Therefore the brain rhythms of X is given by

XB =
[
XDδ X

T
θ X

A
α X

B
β X

G
γ

]T
(1)

where D, T ,A,B and G are the corresponding different sizes
of each brain rhythm resulting from the wavelet decomposition
(e.g. the coefficients). We use χb ∈ RM×B to reference the
content of each XB vector, where B represents the size of

each brain rhythm and 1 ≤ b ≤ 5 corresponds: 1 to the delta
band, 2 to the theta band, 3 to the alpha band, 4 to the beta
band and 5 to the gamma band.

The Independent component analysis (ICA) is a representa-
tion of a signal (the brain rhythm of equation (1) in this case)
through a set of independent constituent components given by
the likelihood

ρ (XB |S) =
T∏
t=1

ρ (χt|S) (2)

where ρ (XB |S) is the joint probability distribution, ρ (χt|S)
are the marginal distributions, S ∈ RT×B are the unknown
sources and T is the number of independent components (see
Figure 1).

Fig. 1. Example for seven electrodes, namely X1, ...,X7 and four sources
S namely s1, .., s4, representation of assumption that the source signals arrive
at the electrodes at the same time instantaneously.

We assume that the source signals arrive at the electrodes at
the same time instantaneously, thus the problem of separating
sources corresponding to the independent components for each
brain rhythm, of equation (1) is given by

χt =Hst + v (3)

where χt is the observed signal matrix, H is the mixing
matrix, s is the source matrix and v is the noise.

The separation is performed by means of a matrix W ∈
RT×M , the so-called unmixing matrix, which uses only the
information in χt to reconstruct the original source signals
(also known as the independent components) as:

yt =Wχt (4)

where yt ∈ RT×B , W ∈ RT×M and χt ∈ RM×B .



The estimation of the unmixing matrix W in equation
(4) is calculated using singular value decomposition (SVD)
through the eigenvalue decomposition of the covariance matrix
(prewhitening) and the JADE algorithm for real-valued signals
[29], to find the best estimation of the independent sources S
through

Y =WXB (5)

The independent sources Y from equation (5) for each brain
rhythm is split into sets of non-overlapping 2 seconds segments
using a rectangular sliding window so that

Y (i) = Ω(i)Y (6)

Ω(i) =
[
0L×iL, IL×L,0L×N−iL−L

]
(7)

where 0N×M ∈ RN×M is the null matrix, IN×N ∈ RN×N
is the identity matrix and L is the number of measurement
obtained in 2 seconds.

We refer the reader to [30]–[33] for a comprehensive
treatment of the mathematical properties of ICA and SVD.

A. Largest Lyapunov exponent (LLE)

Epileptic seizure detection has a great track record since
the 1970s, see [28], [34] for a comprehensive state-of-the-art
of this topic. The nonlinear prediction technique to separate
transients from background activity using Lyapunov exponents
was first investigated by Leonidas D. Iasemidis and J. Chris
Sackellares in [35] where the lowest values of Lyapunov
exponents occur during the seizure. This gives us an idea of
how much the EEG signal background changes when a small
perturbation or change occurred during the seizure process.

The largest Lyapunov exponent is estimated by means of
two time series, Y (i)

1 and Y (i)
2 (we would like to remind the

reader that Y (i) denotes each segment of the evaluated signal);
which originate from the same system and have similar initial
conditions [36], defined as a distance vector

dist(i) =
∥∥∥Y (i)

1 − Y
(i)
2

∥∥∥ (8)

and the Lyapunov exponent

λ =
1

i
log

dist(i)

dist(0)
(9)

where i is the sample number and dist(0) is the distance
between the initial sample points on the two trajectories. A
trajectory is the path that the variables trace throughout the
phase space. Phase space represents all possible internal states
of a system. The divergence value of λ magnify small changes
in a trajectory that grow over time [37], this value shows how
an increase in distance between trajectories that start from
similar conditions become increasingly decorrelated, contrary
to convergence. This can be summarized as follows
• If λ > 0 then the divergence is exponential.
• If λ < 0 then the convergence is exponential.
• If λ = 0 then there is no divergence or convergence.
For each segment of equation (6) and each brain rhythm, of

equation (1) a largest Lyapunov exponent λ is estimated using
equation (9) according to the divergence or convergence of the
considered value. This allows us to discriminate the divergence
or convergence between seizure and non-seizure in epileptic

signals. Two positive Lyapunov exponents were estimated
[38]. The presence of a positive exponent is sufficient to detect
the seizure.
We refer the reader to [36], [38]–[40] for a comprehensive
treatment of the mathematical properties of the largest Lya-
punov exponents.

B. Scaling

Each largest Lyapunov exponent value for each brain
rhythm is assigned one scale value between the minimum and
the maximum of the standard deviation, see Table II.

Let `sup = +λstd, `inf = −λstd, λmin = min(LLE) and
λmax = max(LLE), then the scale value is given by

w =
(λ− λmin)(`sup − `inf )

λmax − λmin
+ `inf (10)

The proposed seizure detection is a classifier by using lo-
gistic regression, that labels each Largest Lyapunov exponents
(λ) and their scales (w) associated with each brain rhythm
as seizure or non-seizure. Precisely, five independent two-
parameter classifiers are used in parallel to classify the feature
vector pairs φδ(n) = [λδ(n), wδ(n)], φθ(n) = [λθ(n), wθ(n)],
φα(n) = [λα(n), wα(n)], φβ(n) = [λβ(n), wβ(n)], and
φγ(n) = [λγ(n), wγ(n)].

C. Logistic Regression

Consider a classification into two possible classes: C1 for
seizure and C2 for non-seizure. The posterior probability of
class C1 can be written as

ρ (C1|x) =
ρ(x|C1)ρ(C1)

ρ(x|C1)p(C1) + ρ(x|C2)p(C2)
(11)

=
1

1 + exp(−a)
= σ(a) (12)

a = ln
ρ(x|C1)ρ(C1)

ρ(x|C2)ρ(C2)
(13)

where σ(.) is the logistic sigmoid function, and the class-
conditional densities are assumed Gaussian [20]. Then the
posterior probability of class C1 can be written as a logistic
sigmoid acting on a linear function of the feature vector φ so
that

ρ(C1|φ) = σ(wTφ) (14)
ρ(C2|φ) = 1− ρ(C1|φ) (15)

w = Σ−1(µ1 − µ2) (16)

assuming that all classes share the same covariance matrix Σ
and µ are the means of each class. For a data set {φ, tn},
where tn ∈ {0, 1}, 0 for class C2 and 1 for class C1, and
φn = φ(xn), with n = 1, .., N the likelihood can be written

ρ(t|w) =
N∏
n=1

ytnn {1− yn}1−tn (17)

where t = (t1, t2, .., tN )T and yn = ρ(C1|φb(n)). It should
be noted that the feature vector φb(n) is given by each LLE
(λ) and their scales (w) of each brain rhythm (b). We refer
the reader to [20], [21] for a comprehensive treatment of the
mathematical properties of the logistic regression.

The methodology used can be summarized in four basic
steps through the algorithm 1.



Data: Epileptic EEG signals
Result: Seizure and Non-Seizure detection
begin

1. Find all independent brain rhythms using
univariate wavelet 1D decomposition;

2. Compute the independent features of each brain
rhythms using ICA decomposition;

3. Compute LLE for all independent brain rhythms of
2.;

4. Scaled each LLE from step 3. between the
minimum and the maximum of the standard
deviation;

5. Seizure detection for each LLE and scale pairs by
using logistic regression.

end
Algorithm 1: Epileptic seizure detection algorithm

D. Database

We evaluated the performance of the proposed seizure
detector using the Children’s Hospital Boston database [41],
[42], which consists of 22 EEG bipolar recordings sampled
at 256Hz from pediatric subjects with intractable seizures.
No distinctions regarding the types of seizure onsets were
considered; the data contains focal, lateral, and generalized
seizure onsets. Furthermore, the recordings were made in
a routine clinical environment, so non-seizure activity and
artifacts such as head/body movement, chewing, blinking,
early stages of sleep, and electrode pops/movement are present
in the data. For more details see [43].

III. RESULTS

In this work, we used 99 epileptic events from 11 subjects
with the same montage of 23 channels, organized as follows:
33 events before the seizure, 33 events after the seizure and
33 events during the seizure. Hence each epoch is comprised
of non-seizure before, seizure and non-seizure after. Therefore
each signal was edited to have an epoch with the following
characteristics: 2 minutes before the seizure, seizure at minute
2 and 2 minutes after the seizure, note that the seizure begins
at minute 2. Each recording contained a seizure event with a
labeled onset that was detected by an experienced neurologist,
who worked backward from the observed clinical onset to find
the electrical onset.

Figures 2 to 6 show how the EEG signal background
changes through the six largest Lyapunov exponents (LLE)
from 9 independent components by using ICA. Two LLE be-
fore, two LLE during and two after the seizure ICA process. In
the delta, theta and alpha brain rhythms the largest Lyapunov
exponent (LLE) presents the lowest value, while in beta and
gamma brain rhythms the opposite happens. This suggests that
the algorithm is potentially interesting for epilepsy detection
systems because it permits discriminating seizure from non-
seizure in all brain rhythms.

Table II shows the minimum LLE (λmin), maximum LLE
(λmax) and the standard deviation from LLE (λstd) through all
the data utilized that permits the use of a threshold approach
in order to scale each LLE by using the equation (10).

The logistic regression classifier was trained off-line with
20 empirical fold cross-validation. In this stage, we used

Brain rhythm λmin λmax λstd

δ Non-Seizure -0.00266 0.00028 0.00074
δ Seizure -0.00328 -0.00003 0.00092

θ Non-Seizure -0.00249 0.00052 0.00064
θ Seizure -0.00368 -0.00002 0.00103

α Non-Seizure -0.00443 0.00117 0.00111
α Seizure -0.00641 0.00027 0.00147

β Non-Seizure -0.00311 0.00177 0.00068
β Seizure -0.00317 0.00346 0.00111

γ Non-Seizure -0.00281 0.00364 0.00079
γ Seizure -0.00082 0.00768 0.00149

TABLE II
MINIMUM, MAXIMUM AND STANDARD DEVIATION FROM ALL LLE FOR
EACH BRAIN RHYTHM, CALLED THE delta (δ), theta (θ), alpha (α), beta

(β) AND gamma (γ) BANDS.

two classes: seizure and non-seizure for each pair [λb, wb]
for each brain rhythm (b). The performance of the logistic
regression classification method through 792 observations with
2 predictors [λb, wb] for each brain rhythm (b) was assessed in
terms of overall accuracy classification, and achieves a 100%
of sensitivity (True positive rate) and specificity (True false
rate) for seizure detection in epilepsy signals with time-delay
of 8.9 sec in average for all brain rhythms.

We suggest that these good results in the classification are
due to the fact that the LLE coupled with their scaling can
discriminate correctly between seizure and non-seizure in all
brain rhythms, as shown in the values of the Table II and the
visual observation of the LLE figures 2 to 6.

Fig. 2. Scatter plot for six largest Lyapunov exponents (LLE) for seizure
(middle) and non-seizure before an after events observed through the delta
band. Lowest valued LLE are in the seizure event. Seizure onset begins at
minute 2

Note that, the dataset used for the training and classification
stage has an unequal class distribution. Seizure events are
related to class 1, while the seizures before and the seizures
after the seizure were concatenated in class 0. Therefore,
the proportion among the number of examples of each class
of the problem has a ratio of 1:2, 33 seizures: 66 non-
seizures. Technically our dataset is imbalanced. This can be
a great limitation in our performance because the classifier
proposed may be an accuracy oriented design, which usually
makes the minority class to be overlooked. In this sense,



Fig. 3. Scatter plot for six largest Lyapunov exponents (LLE) for seizure
(middle) and non-seizure before an after events observed through the theta
band. Lowest valued LLE are in the seizure event. Seizure onset begins at
minute 2.

Fig. 4. Scatter plot for six largest Lyapunov exponents (LLE) for seizure
(middle) and non-seizure before an after events observed through the alpha
band. Lowest valued LLE is in the seizure event. Lowest value LLE are in
the seizure event. Seizure onset begins at minute 2.

according to [44], [45], our ratio in our dataset is considered
as a low imbalanced problem, which permits suggest that
the methodology proposed is a powerful tool for detecting
seizures in epileptic signals in terms of classification accuracy,
sensitivity, and specificity.

IV. DISCUSSION AND CONCLUSIONS

This preliminary work presented a study for classification
to detect seizure and non-seizures in epileptic signals. The
method is based on two largest Lyapunov exponents (LLE)
coupled with their scaling based on the standard deviation
from the LLE in order to classify by using the logistic regres-
sion independently in each brain rhythms from a multilevel
1D wavelet decomposition followed by ICA analysis. The
performance of the proposed method was evaluated on a real
dataset containing 99 epileptic events achieving a 100% of
sensitivity (True positive rate), specificity (True false rate)
for seizure detection and area under curve of 100% for each

Fig. 5. Scatter plot for six largest Lyapunov exponents (LLE) for seizure
(middle) and non-seizure before an after events observed through the beta
band. Highest valued LLE are in the seizure event. Seizure onset begins at
minute 2.

Fig. 6. Scatter plot for six largest Lyapunov exponents (LLE) for seizure
(middle) and non-seizure before an after events observed through the gamma
band. Highest valued LLE are in the seizure event. Seizure onset begins at
minute 2.

brain rhythm, which suggests that the proposed methodology
is potentially useful for seizure detection in EEG signals but
with an time-delay of 8.9 sec in average for all brain rhythms.
This value is a bit high with respect to some state-of-the-art
methods that report their time-delay, which is a limitation of
our method, see for example [28] 4,08 sec, [46] 3.4 sec, [47]
4.5 sec, or [48] 7.2 sec.

Perspective for future work includes an extensive evaluation
of the proposed methodology, as well as performing compa-
risons with other detection methods from the state-of-the-art
and brain activity source location. Although this method is
not instant for seizure detection as the LLE computation is
quite a time consuming, further studies could be made to
quantify the variation of the LLE in the different brain states
throughout all brain rhythms. This new information may have
the potential to correlate with different characteristics of the
seizure event and eventually provide new insights to evaluate
epileptic treatments.
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