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(Integral-)ISS of switched and time-varying impulsive systems
based on global state weak linearization

J.L. Mancilla-Aguilar and H. Haimovich Senior Member, IEEE

Abstract—It is shown that impulsive systems of nonlinear, time-varying
and/or switched form that allow a stable global state weak linearization
are jointly input-to-state stable (ISS) under small inputs and integral ISS
(iISS). The system is said to allow a global state weak linearization if
its flow and jump equations can be written as a (time-varying, switched)
linear part plus a (nonlinear) pertubation satisfying a bound of affine
form on the state. This bound reduces to a linear form under zero input
but does not force the system to be linear under zero input. The given
results generalize and extend previously existing ones in many directions:
(a) no (dwell-time or other) constraints are placed on the impulse-time
sequence, (b) the system need not be linear under zero input, (c) existence
of a (common) Lyapunov function is not required, (d) the perturbation
bound need not be linear on the input.

Index Terms—Impulsive systems, impulse effects, state resets, nonlinear
systems, time-varying systems, switched systems, input-to-state stability,
bilinear systems.

I. INTRODUCTION

Systems with time-driven impulse effects, also called impulsive
systems or systems with state resets, have interesting stability prop-
erties caused by the interplay between the continuous (between
impulses) and the discontinuous (at the impulse time instant) evo-
lutions [1], [2]. The continuous evolution is defined by an ordinary
differential equation —the flow equation— and the discontinuity
occurring at an impulse instant by an algebraic equation —the jump
equation. External inputs may thus affect both the flow and the jump
equations, and input-to-state stability (ISS) and integral ISS (iISS)-
related properties [3], [4] must take this fact into account [5].

ISS and iISS results for impulsive systems based on Lyapunov-
type functions abound. These exist for impulsive systems involving
switching [6], [7], interconnections [8], [9], sampling [10], and also
for specific types of infinite-dimensional systems [11], [12]. The
results for hybrid systems in [13], [14] can also be helpful for
establishing the ISS/iISS of impulsive systems.

Lyapunov functions are a very useful tool for stability and robust-
ness analysis. However, when some stability property is required to
hold uniformly for every system in a given family of systems (e.g.
switched systems under constrained switching) a single Lyapunov
function common to all the systems in the family need not exist or
may be very difficult to find. Fortunately, some characterizations of
the iISS property can be established without the aid of Lyapunov
functions [15], and hence some well-known properties and relation-
ships between ISS and iISS remain valid for families of time-varying
and switched systems [16], even in the impulsive case [17].

Most existing asymptotic stability-related results for impulsive
systems, including those already mentioned, ensure some type of con-
vergence as continuous time advances without explicitly accounting
for the number of impulses occurring within the elapsed time. This
notion of asymptotic stability is weak in the sense that it allows for no
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meaningful robustness unless constraints are placed on the impulse-
time instants [18]. Requiring convergence not only as continuous time
advances but also as the number of occurring impulses increases
(as is standard in the context of hybrid systems [19]) leads to a
stronger notion of stability that allows to recover, for impulsive
systems, many of the robustness properties exhibited by nonimpulsive
systems [20], [21]. Moreover, this stronger stability notion becomes
equivalent to the weak and most usual one whenever the number of
occurring impulses can be bounded in correspondence with the length
of the time interval over which they occur [22, Proposition 2.3]; this
happens, e.g., when the continuous evolution (i.e. between impulses)
has a minimum, average or fixed dwell time.

Stability results for impulsive systems without inputs based on
a first-order approximation have been known for some time [2,
Theorem 37], [23]. In the presence of inputs, however, very few works
provide this type of result. In [24, Theorem 3.2], it is shown that
a linear time-varying impulsive system admits linear perturbations
without losing its exponential stability, nor its exponential ISS with
respect to additive inputs, provided a minimum dwell-time constraint
is imposed between the occurrence of impulses. Bilinear systems
[25], where the dynamic equations may contain cross products
between inputs and states, have been shown to have some interesting
properties in the time-invariant and nonimpulsive case. Sontag [4,
Theorem 5] established that asymptotic stability under zero input
is actually equivalent to iISS for time-invariant and nonimpulsive
systems. Moreover, [26, Section IV-C] strengthened this result by
showing that not just iISS but also ISS under small inputs follows
from asymptotic stability under zero input. The fact that asymptotic
stability under zero input implies iISS is extended to specific types
of bilinear infinite-dimensional systems in [27].

The main contribution of the current paper is to provide ISS and
iISS results based on linearization-type arguments that generalize
existing results in several directions. Specifically, families of non-
linear impulsive systems with time-varying flow and jump maps are
considered. It is shown that if the maps of every system in a given
family can be written in a linear-plus-perturbation form, where the
linear part is stable and the perturbation part admits a bound of
specific form, then the family of systems is uniformly iISS, ISS or ISS
with respect to small inputs, depending on the properties of the bound.
Systems that admit this decomposition are said to admit a global state
weak linearization. Such systems need not be linear under zero input,
nor linear in the input; this certainly covers bilinear systems but also
allows far greater generality.

II. PRELIMINARIES

A. Single impulsive system

Consider an impulsive system Σ of the form

ẋ(t) = f(t, x(t), u(t)), t /∈ σ, (1a)

x(t) = g(t, x(t−), u(t)), t ∈ σ, (1b)

where for t ≥ 0, x(t) ∈ Rn, u(t) ∈ Rm and σ ∈ Γ, where Γ is
the set of all sequences σ = {τk}Nk=1, with N ∈ N or N = ∞,
satisfying 0 < τ1 < τ2 < · · · and limk→∞ τk =∞ when N =∞.
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Depending on the context, σ may also be regarded as the set which
contains only the elements of the sequence.

A locally bounded and Lebesgue measurable function u : R≥0 →
Rm is called an input and U denotes the set of all inputs. A solution
to (1) is a right-continuous function x : [t0, Tx)→ Rn that is locally
absolutely continuous on each interval J = [a, b) such that (a, b) ∩
σ = ∅, its discontinuities are of first kind and satisfies (1a) for almost
all t ∈ [t0, Tx)\σ and (1b) for all t ∈ (t0, Tx)∩σ (see, e.g. [21] for
the precise definition of solution). Note that a solution always begins
by flowing and not by jumping, even if t0 ∈ σ.

B. Families of systems and basic assumptions

The bounds on the trajectory ensured by stability or other prop-
erties are many times required to hold not just for a single system
but uniformly for every system in a given family. The most usual
case when this happens is in the study of switched systems, where
each possible trajectory corresponds to a time-varying system but the
interest is placed on all the possible trajectories that may occur for
every admissible switching evolution. In order to cover these and
other cases, we consider a parametrized family {Σν : ν ∈ Λ} of
impulsive systems of the form (1),

ẋ(t) = fν(t, x(t), u(t)), t /∈ σν , (2a)

x(t) = gν(t, x(t−), u(t)), t ∈ σν , (2b)

where σν = {τνk }Nk=1 ∈ Γ, ν is a parameter that identifies a single
system within the considered family and Λ is an arbitrary nonempty
set, usually having an infinite and uncountable number of elements
(see Section IV, and [28, Section 2.3] and [22, Section V] for a
more detailed explanation on the switched-system case).

This note considers families of impulsive systems (2) that allow a
global state weak linearization as per the following definition.

Definition 2.1: The family {Σν : ν ∈ Λ} of impulsive systems
of the form (2) is said to admit a global state weak lineariza-
tion whenever there exist functions Aν : R≥0 → Rn×n having
locally bounded and Lebesgue measurable components, functions
ϕν : R≥0 ×Rn ×Rm → Rn, with ϕν(t, ξ, µ) Lebesgue measurable
in t and continuous in (ξ, µ), functions Rν : σν → Rn×n and
ψν : σν×Rn×Rm → Rn, locally bounded and Lebesgue measurable
functions Nν : R≥0 → R≥0, nonnegative constants M and c, and1

η ∈ K, such that for all ν ∈ Λ, t ≥ 0, ξ ∈ Rn and µ ∈ Rm,

fν(t, ξ, µ) = Aν(t)ξ + ϕν(t, ξ, µ) (3a)

gν(t, ξ, µ) = Rν(t)ξ + ψν(t, ξ, µ) (3b)

|ϕν(t, ξ, µ)| ≤ Nν(t)|ξ|+ (M |ξ|+ c) η(|µ|), t /∈ σν , (3c)

|ψν(t, ξ, µ)| ≤ Nν(t)|ξ|+ (M |ξ|+ c) η(|µ|), t ∈ σν . (3d)

In (3c), (3d) and from here on, | · | denotes Euclidean norm. A family
of systems admits a global state weak linearization whenever the flow
and jump equations for every system can be written in a linear plus
perturbation form, where the perturbation admits a specific type of
bound that is affine on the state. Whenever a family of systems admits
a global state weak linearization, for every ν ∈ Λ, t0 ≥ 0, x0 ∈ Rn
and u ∈ U , there exists a (not necessarily unique) forward-in-time
solution x : [t0, Tx)→ Rn of (2) satisfying x(t0) = x0.

Remark 2.2: The term Nν(t)|ξ| in (3c)–(3d) may depend on the
specific system considered, i.e. may be different for each ν ∈ Λ.
The term (M |ξ|+ c)η(|µ|) is not necessarily linear in |µ| and is the
same for all the systems in the family. The bounds (3c)–(3d) reduce
to Nν(t)|ξ| under µ = 0. Note, however, that this does not mean
that (3a)–(3b) have to be linear in ξ under µ = 0. ◦

1We write η ∈ K when η : R≥0 → R≥0 is continuous, strictly increasing
and η(0) = 0. We write η ∈ K∞ when, in addition, η is unbounded.

Remark 2.3: One important class of functions that satisfy bounds
of the form (3c) or (3d) are those that are zero at (ξ, µ) = (0, 0)
and Lipschitz in (ξ, µ). Another class is that of functions that can
be written in the form

∑m
j=1 µjBj(t)ξ + b(t)µ, where µj is the

j-th component of µ and Bj(t), b(t) are matrices of appropriate
dimensions. Therefore, (time-varying) bilinear systems admit a global
state weak linearization. ◦

C. Stability

This note considers stability properties where convergence is
ensured not only as time elapses but also as the number of occurring
impulses increases (see [22], [20] for background). For an impulse-
time sequence σ ∈ Γ, let nσ(s,t] denote the number of impulse times
lying in the interval (s, t], that is

nσ(s,t] := #
(
σ ∩ (s, t]

)
.

The superscript σ is removed whenever the corresponding impulse-
time sequence σ is clear from the context. Given u ∈ U , define

‖u‖∞ := sup
t≥0
|u(t)|, and for a given ρ ∈ K,

‖u‖σ,ρ :=

∫ ∞
0

ρ(|u(s)|)ds+
∑

s∈σ∩(0,∞)

ρ(|u(s)|).

Definition 2.4: A system Σ of the form (1) is said to be

a) Strongly Zero-input Uniformly Asymptotically Stable (S-0-UAS)
if there exist r > 0 and2 β ∈ KL such that its solutions satisfy

|x(t)| ≤ β(|x(t0)|, t− t0 + n(t0,t]), (4)

for all t ≥ t0 ≥ 0 whenever |x(t0)| ≤ r and u(t) ≡ 0.
b) Strongly Zero-input Globally Uniformly Asymptotically Stable

(S-0-GUAS) if there exists β ∈ KL such that every solution
satisfies (4) for all t ≥ t0 ≥ 0 whenever u(t) ≡ 0.

c) Strongly Zero-input (Globally) Uniformly Exponentially Stable
(S-0-(G)UES) if it is S-0-(G)UAS and there exists λ > 0 and
K ≥ 1 such that (4) is satisfied with β(s, t) = Kse−λt.

d) Strongly Input-to-State Stable (S-ISS) if there exist β ∈ KL and
γ ∈ K such that for all t ≥ t0 ≥ 0 the solutions satisfy

|x(t)| ≤ β(|x(t0)|, t− t0 + n(t0,t]) + γ(‖u‖∞). (5)

e) Strongly integral ISS (S-iISS) if there exist β ∈ KL and γ, ρ ∈ K
such that for all t ≥ t0 ≥ 0 the solutions satisfy

|x(t)| ≤ β(|x(t0)|, t− t0 + n(t0,t]) + γ(‖u‖σ,ρ). (6)

f) S-ISS under small inputs (S-ISS s.i.) with input threshold R > 0
if there exist β ∈ KL and γ ∈ K such that the solutions satisfy
(5) for all t ≥ t0 ≥ 0 whenever ‖u‖∞ ≤ R.

The definitions of ”weak” properties a)–f), are obtained replacing
β(|x0|, t− t0 +n(t0,t]) by β(|x0|, t− t0). For referring to the weak
properties we replace S by W in the acronyms.

Definition 2.5: A family of systems {Σν : ν ∈ Λ} of the form (2) is
said to satisfy any of the properties in Definition 2.4 (strong or weak)
whenever the corresponding bound on the solutions holds uniformly
for every system in the family, i.e., whenever the bounding functions
and constants are the same for every system in the family.

2We write β ∈ KL when β : R≥0 × R≥0 → R≥0 satisfies β(·, t) ∈ K
for every t, β(r, ·) is decreasing and limt→∞ β(r, t) = 0 for every r.
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D. The transition matrix

The solution of an impulsive system of the form

ẋ(t) = Aν(t)x(t) + vν(t), t /∈ σν (7a)

x(t) = Rν(t)x(t−) + wν(t), t ∈ σν , (7b)

with Aν : R≥0 → Rn×n and vν : R≥0 → Rn locally bounded and
Lebesgue measurable, can be written as

x(t) = Φν(t, t0)x(t0) +

∫ t

t0

Φν(t, s)vν(s)ds +

+
∑

s∈σ∩(t0,t]

Φν(t, s)wν(s), (8)

where the transition matrix Φν(t, s), for 0 ≤ s ≤ t, is defined as

Φνc (t,s) if σν ∩ (s, t] = ∅,
Φνc (r,rk)Rk···R2Φνc (r2,r1)R1Φνc (r1,s) if t /∈ σν ,
RkΦνc (rk,rk−1)···R2Φνc (r2,r1)R1Φνc (r1,s) if t ∈ σν ,

where Φνc (·, ·) is the transition matrix of ẋ = Aν(t)x, Ri := Rν(ri),
and r1 < · · · < rk are the impulse times lying in (s, t].

It can be shown that for a single system (7) the properties S-0-UAS
(W-0-UAS), S-0-GUAS (W-0-GUAS) and S-0-GUES (W-0-GUES)
are equivalent. This equivalence also holds for a family of systems
of the form (7) for all ν ∈ Λ. In addition, this family is S-0-GUES
or W-0-GUES if and only if there exist K ≥ 1 and λ > 0 such that
for all ν ∈ Λ and 0 ≤ s ≤ t,

S-0-GUES: ‖Φν(t, s)‖ ≤ K exp
[
−λ(t− s+ nσν(s,t])

]
, (9)

W-0-GUES: ‖Φν(t, s)‖ ≤ K exp [−λ(t− s)] , (10)

where ‖B‖ = max|ξ|=1 |Bξ| is the induced norm of the matrix B.

III. MAIN RESULTS

The main result is given in Section III-A. This gives conditions for
S-iISS, S-ISS and S-ISS s.i. of a family of impulsive systems that
admits a global state weak linearization. Section III-B first shows that
the results do not remain valid if stability is not of the strong type
but that the results can be recovered for weak stability by imposing
constraints on the impulse-time sequence. Section III-C provides a
result for establishing local exponential stability based on a first-
order approximation. The results in Sections III-B and III-C follow
as corollaries to the main result.

A. Global Strong (i)ISS

Theorem 3.1 shows that a family of systems that admit a strongly
stable global state weak linearization is both S-ISS under small inputs
and S-iISS, provided the zero-input (linear) term of the perturbation
bounds is appropriately small.

Theorem 3.1: Consider a family {Σν : ν ∈ Λ} of impulsive
systems of the form (2). Suppose that this family admits a global
state weak linearization so that (3) holds, and let Φν , for every
ν ∈ Λ, denote the transition matrix of the associated system
(7). Suppose that there exist K ≥ 1 and λ > 0 such that (9)
holds for all ν ∈ Λ and 0 ≤ s ≤ t. Suppose that there exists
N̄ < λ

Keλ
such that θν(t) := max{Nν(t) − N̄ , 0} satisfies

supν∈Λ

(∫∞
0
θν(s)ds+

∑
t∈σν θ

ν(t)
)

< ∞. Then, the family
{Σν : ν ∈ Λ} is:

a) S-0-GUES and S-iISS.
b) S-ISS s.i. with input threshold R < η−1(λ−N̄Ke

λ

KMeλ
) if M > 0.

c) S-ISS if M = 0.

In b)–c) one may take β(s, t) = K̄se−λ̄t and γ(s) = Lη(s) for the
bound (5), for some K̄ ≥ 1 and λ̄, L > 0.
The constant N̄ and the function θν in the statement of Theorem 3.1
can be interpreted as the constant and vanishing parts, respectively, of
the zero-input perturbation bounding coefficient Nν(·) in (3c)–(3d).
For stability to be possible, the constant part N̄ should not be too
large. The condition on the vanishing part θν(·) actually ensures that
stability is uniform over all systems in the family. The consideration
of the constant and vanishing parts separately allows to avoid overly
conservative requirements on Nν(·).

The proof of Theorem 3.1 requires the following lemmas.
Lemma 3.2: Let g, x : [a, b]→ Rn, N,h : [a, b]→ R≥0, and

|g(t)| ≤ N(t)|x(t)|+ h(t) ∀t ∈ [a, b]. (11)

Then, there exists B : [a, b]→ Rn×n such that ‖B(t)‖ ≤ N(t) and
|g(t) − B(t)x(t)| ≤ h(t) for all t ∈ [a, b]. If g, z, N and h are
Lebesgue measurable, then the existence of a Lebesgue measurable
B(·) can be ensured.

Lemma 3.3: Consider the family of linear impulsive systems

ẋ(t) = [Aν(t) +Bν(t)]x(t) + ṽν(t), t /∈ σν , (12a)

x(t) = [Rν(t) +B∗ν(t)]x(t−) + w̃ν(t), t ∈ σν , (12b)

with σν = {τνk }Nk=0 ∈ Γ. Let Φν be the transition matrix of the
associated system (7) and suppose that there exist K ≥ 1 and
λ > 0 such that (9) holds for all ν ∈ Λ and 0 ≤ s ≤ t. Let
Bν(·) be Lebesgue measurable and B∗ν(·) such that there exists
N̄ < λ

Keλ
so that θνc (t) := max{‖Bν(t)‖ − N̄ , 0} satisfies Θc :=

supν∈Λ

∫∞
0
θνc (s)ds < ∞ and θνd(t) := max{‖B∗ν(t)‖ − N̄ , 0}

satisfies Θd := supν∈Λ

(∑
t∈σν θ

ν
d(t)

)
< ∞. Then, the transition

matrix Φνp of (12) satisfies

‖Φνp(t, s)‖ ≤ K̂e−λ̂
(
t−s+nσν

(s,t]

)
∀ν ∈ Λ, ∀ 0 ≤ s ≤ t, (13)

λ̂ := λ−KeλN̄ , K̂ := K exp
(
K
[
Θc + eλΘd

])
. (14)

Proof of Theorem 3.1: a) Let x : [t0, Tx) → Rn, with t0 ≥
0, be a maximally defined solution of (2) corresponding to some
ν ∈ Λ, σν ∈ Γ, and an input u ∈ U with ‖u‖σν ,η < ∞, where
η ∈ K is the function appearing in (3c)–(3d). Let x∗(t0) = x0

and x∗(t) = x(t−) for all t ∈ (t0, Tx). Let t0 < T < Tx and
J = [t0, T ]. Define g, g∗ : J → Rn via g(t) = ϕν(t, x(t), u(t)) and
g∗(t) = ψν(t, x∗(t), u(t)) if t ∈ σν and g∗(t) = 0 otherwise, and
h, h∗ : J → R≥0 via h(t) = (M |x(t)| + c)η(|u(t)|) and h∗(t) =
(M |x∗(t)|+c)η(|u(t)|). Note that g and h are Lebesgue measurable,
and |g(t)| ≤ Nν(t)|x(t)|+h(t) and |g∗(t)| ≤ Nν(t)|x∗(t)|+h∗(t).
By applying Lemma 3.2 there exist Bν : J → Rn×n Lebesgue
measurable such that for all t ∈ J , ‖Bν(t)‖ ≤ Nν(t) and |g(t) −
Bν(t)x(t)| ≤ h(t), and also B∗ν : J → Rn×n with ‖B∗ν(t)‖ ≤
Nν(t) and |g∗(t)−B∗ν(t)x(t−)| ≤ h∗(t).

Extend Bν and B∗ν as 0 outside their domains. Then x restricted
to J is a solution of (12) with ṽν(t) = g(t) − Bν(t)x(t) and
w̃ν(t) = g∗(t) − B∗ν(t)x∗(t). Therefore, x(t) can be written as in
(8), with Φνp instead of Φν . The assumptions on N̄ and the facts
that ‖Bν(t)‖ ≤ Nν(t) and ‖B∗ν(t)‖ ≤ Nν(t) cause Bν and B∗ν to
satisfy the hypotheses of Lemma 3.3. Therefore, (13) holds. Since, in
addition, |ṽν(t)| ≤ h(t) and |w̃ν(t)| ≤ h∗(t) for all suitable t ∈ J
and from the definitions of h h∗, it follows that for all t ∈ J

|x(t)| ≤ K̂e−λ̂(t−t0+n(t0,t]
)|x(t0)|

+ K̂

∫ t

t0

e−λ̂(t−s+n(s,t])(M |x(s)|+ c)η(|u(s)|)ds (15)

+ K̂
∑

s∈σν∩(t0,t]

e−λ̂(t−s+n(s,t])(M |x(s−)|+ c)η(|u(s)|)
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Define γ(a, b) = b− a+ n(a,b], 0 ≤ a < b, y(s) = |x(s)|eλ̂γ(t0,s),
t0 < s, and multiply the latter inequality by eλ̂γ(t0,t). By using the
facts that n(t0,t] − n(s,t] = n(t0,s] for every t0 ≤ s ≤ t and that
whenever s ∈ σν ∩ (t0, t],

eλ̂y(s−) = |x(s−)|eλ̂(s−t0+n(t0,s)
+1) = |x(s−)|eλ̂γ(t0,s),

we have that for all t ∈ J

y(t) ≤ p(t) +

∫ t

t0

a(s)y(s) +
∑

s∈σν∩(t0,t]

b(s)y(s−),

with p(t) := K̂

[
|x(t0)|+ c

(∫ t

t0

eλ̂γ(t0,s)η(|u(s)|)ds

+
∑

s∈σν∩(t0,t]

eλ̂γ(t0,s)η(|u(s)|)

 ,
a(t) := K̂Mη(|u(t)|) and b(t) := eλ̂K̂Mη(|u(t)|).

Taking into account that p(·) is nondecreasing and applying Gronwall
inequality (e.g. [29, Lemma 3]), we get

y(t) ≤ p(t)e
∫ t
t0
a(s)ds

∏
s∈σν∩(t0,t]

(1 + b(s))

Since
∏
s∈σν∩(t0,t]

(1 + b(s)) ≤ e
∑
s∈σν∩(t0,t]

b(s), because 1 +

b ≤ eb for all b ≥ 0, and
∫ t
t0
a(s)ds +

∑
s∈σν∩(t0,t]

b(s) ≤
eλ̂K̂M‖u‖σν ,η , defining κ = eλ̂K̂M , it follows that

y(t) ≤ p(t)eκ‖u‖σν,η .

By multiplying the latter inequality by K̂e−λ̂γ(t0,t)) we obtain

|x(t)| ≤ p(t)e−λ̂γ(t0,t)eκ‖u‖σν,η .

Since

p(t)e−λ̂(t0,t) ≤ K̂e−λ̂γ(t0,t)|x0|+ cK̂‖u‖σν ,η,

|x(t)| ≤ (K̂e−λ̂γ(t0,t)|x0|+ cK̂‖u‖σν ,η)eκ‖u‖σν,η .
Let α(r) := ln(1 + r). Then α ∈ K∞. By applying α in both

sides of the latter inequality, and using that ln(1 + a) ≤ a and
ln(1 + aeb) ≤ ln((1 + a)eb) ≤ a+ b for all a, b ≥ 0,

α(|x(t)|) ≤ K̂e−λ̂γ(t0,t)|x0|+ cK̂‖u‖σν ,η + κ‖u‖σν ,η.

By applying ζ = α−1 ∈ K∞ in both sides of the inequality, and
using that ζ(a+ b) ≤ ζ(2a) + ζ(2b) for all a, b ≥ 0, it follows that

|x(t)| ≤ ζ(2K̂e−λ̂γ(t0,t)|x0|) + ζ(2(cK̂ + κ)‖u‖σν ,η).

Let β(r, s) = ζ(2K̂e−λ̂sr) and ρ(r) = ζ(2(cK̂ + κ)r). Then β ∈
KL, ρ ∈ K∞ and, for all t ∈ J = [t0, T ],

|x(t)| ≤ β(|x0|, t− t0 + n(t0,t]) + ρ(‖u‖σν ,η). (16)

Since T is any number satisfying t0 < T < Tx, it follows that x is
bounded on [t0, Tx) and therefore Tx =∞ and the family is S-iISS.

Let x and J be as above. If u = 0, then h = h∗ = 0 and therefore
ṽν = 0 and w̃ν = 0. Then, from (15) it follows that

|x(t)| ≤ K̂e−λ̂(t−s+n(t0,t]
)|x(t0)|

for all t0 ≤ t ≤ T and all T > t0 (since Tx = ∞). Therefore, the
family {Σν : ν ∈ Λ} is S-0-GUES and item a) follows.

By causality, S-iISS implies that maximally defined solutions
corresponding to any initial time t0 and input u ∈ U are defined
for all t ≥ 0. This is shown as follows. If x : [t0, Tx) → Rn is a
maximally defined solution corresponding to u ∈ U and Tx < ∞,
then |x(t)| → ∞ as t → T−x . If we define ū(t) = u(t) for t < Tx

and ū(t) = 0 otherwise, then ‖ū‖σν ,η < ∞ and x restricted to
[t0, Tx) is a solution corresponding to ū. Then the S-iISS property
implies that x is bounded on [t0, Tx) arriving to a contradiction.

b) Since N̄ < λ
Keλ

, then R > 0 satisfying R < η−1(λ−N̄Ke
λ

KMeλ
)

exists. Then, Mη(R) < λ
Keλ

− N̄ . Let x : [t0,∞) → Rn be
a solution of (2) corresponding to some ν ∈ Λ and an input u
with ‖u‖∞ ≤ R. Let T > t0 and let J , x∗, g and g∗ be as
above. Define Ň(t) = N̄ + Mη(R) + θν(t) and h̄ : J → R≥0

via h̄(t) = cη(|u(t)|). Note that |g(t)| ≤ Ň(t)|x(t)| + h̄(t) and
|g∗(t)| ≤ Ň(t)|x(t−)| + h̄(t) for all t ∈ J . By applying Lemma
3.2 again, there exist B̄, B̄∗ : J → Rn×n, with B̄(·) Lebesgue
measurable, such that for all t ∈ J , max{‖B̄(t)‖, ‖B̄∗(t)‖} ≤ Ň(t),
|g(t)−B̄(t)x(t)| ≤ h̄(t), |g∗(t)−B̄∗(t)x∗(t)| ≤ h̄(t). Extend B̄ and
B̄∗ to [0,∞) by defining as 0 outside J . Then x restricted to J is a
solution of (12) with, respectively, B̄, B̄∗ instead of Bν ,B∗ν , and with
ṽν(t) = g(t) − B̄(t)x(t) and w̃ν(t) = g∗(t) − B∗(t)x(t−). Since
N̄ + Mη(R) < λ

Keλ
, by Lemma 3.3 the corresponding transition

matrix Φ̄νp satisfies

‖Φ̄νp(t, s)‖ ≤ K̄e−λ̄(t−s+nσν
(s,t]

) ∀ 0 ≤ s ≤ t, (17)

with λ̄ = λ − Keλ(N̄ + Mη(R)) > 0 and K̄ = KeKΘc+e
λΘd .

Writing x(t) as in (8), with Φ̄νp , ṽν and w̃ν instead of, respectively,
Φν , vν and wν , applying the norm and using its properties, it follows
that for all t ∈ J

|x(t)| ≤ K̄e−λ̄γ(t0,t)|x(t0)|+ K̄c

∫ t

t0

e−λ̄γ(s,t)η(|u(s)|)ds

+ K̄c
∑

s∈σν∩(t0,t]

e−λ̄γ(s,t)η(|u(s)|)

≤ K̄e−λ̄γ(t0,t)|x(t0)|

+ K̄cη(‖u‖∞)

∫ t

t0

e−λ̂(t−s)ds+
∑

s∈σν∩(t0,t]

e−λ̄n(s,t]


≤ K̄e−λ̄γ(t0,t)|x(t0)|+ K̄c

(
1

λ̄
+

1

1− e−λ̄

)
η(‖u‖∞)

(18)

where we have used that for all r, n ≥ 0, then e−λ̄(r+n) ≤
min{e−λ̄r, e−λ̄n} and∫ t

t0

e−λ̄(t−s)ds <
1

λ̄
and

∑
s∈σν∩(t0,t]

e−λ̄n(s,t] <
1

1− e−λ̄

Since T is arbitrary, then (18) holds for all t ≥ t0. Hence, for all u
such that ‖u‖∞ ≤ R, the corresponding solution satisfies

|x(t)| ≤ β(|x(t0)|, t− t0 + nσν(t0,t]
) + ρ(‖u‖∞)

for all t ≥ t0, with the function β ∈ KL, β(s, t) = K̄se−λ̄t and the

function ρ ∈ K given by ρ(s) = K̄c

(
1

λ̄
+

1

1− e−λ̄

)
η(s). Since

neither β nor ρ depend on ν ∈ Λ, then the family {Σν : ν ∈ Λ} is
S-ISS s.i.

c) The proof for the case M = 0 is obtained by simplifying the
above derivations and is thus straightforward.
The proof of Theorem 3.1 is original in that each solution of an
impulsive system that admits a global state weak linearization is
written as the solution to a linear system of the form (12) where the
matrices B(t) and B∗(t) are constructed based on the perturbations
ϕν , ψν , their bounds, and the specific solution x(·) considered.

B. Weak ISS

The results of Theorem 3.1 do not remain valid if the linear system
(7) is assumed to be only W-0-GUES instead of S-0-GUES.
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Example 1: Consider the linear scalar impulsive system

ẋ(t) = −x(t), t /∈ σ, x(t) = x(t−), t ∈ σ, (19)

with σ = {τk}∞k=1, defined recursively by τ1 = 1, τk+1 = τk +
1/k. For every initial state x0 ∈ R and initial time t0 ≥ 0, the
corresponding solution is x(t) = x0e

−(t−t0). This system is thus
W-0-GUES. For δ > 0, consider the system obtained by slightly
perturbing the jump equation so that

ẋ(t) = −x(t), t /∈ σ, x(t) = x(t−) + δx(t−), t ∈ σ. (20)

The system (20) clearly admits a global state weak linearization
satisfying the bounds (3c) and (3d) with Nν(t) ≡ δ, M = 0, c = 0
and arbitrary η ∈ K. If x(t) is a solution of (20), then for every
τk > t0, x(τk+1) = (1 + δ)e−∆kx(τk), where ∆k = τk+1 − τk.
Since ∆k = 1/k, there exists d > 1 such that (1 + δ)e−∆k > d for
all k large enough. In consequence, x(τk) → ∞ whenever x0 6= 0
and (20) is not W-0-GUES. ◦

Example 1 suggests that some condition on the distance between
consecutive impulse times is needed for the validity of a result
analogous to Theorem 3.1 when just W-0-GUES is assumed. A
sufficient condition for this purpose is that σν ∈ Γ[N0, τD], with
Γ[N0, τD] the set of sequences having chatter bound N0 ∈ N and
average dwell-time τD > 0. More precisely, σ ∈ Γ[N0, τD] if
nσ(t0,t] ≤ N0 + t−t0

τD
for all 0 ≤ t0 < t.

Corollary 3.4: Consider a family {Σν : ν ∈ Λ} of impulsive
systems of the form (2). Suppose that this family admits a global state
weak linearization so that (3) holds, and let Φν , for every ν ∈ Λ,
denote the transition matrix of the associated system (7). Suppose
that there exist K ≥ 1 and λ > 0 such that (10) holds for all ν ∈ Λ
and 0 ≤ s ≤ t. Let {σν : ν ∈ Λ} ⊂ Γ[N0, τD] for some N0 ∈ N
and τD > 0. Suppose that there exists N̄ < λ̃

K̃eλ̃
, with λ̃ = τD

1+τD
λ

and K̃ = KeN0λ̃, such that θν(t) := max{Nν(t)− N̄ , 0} satisfies
supν∈Λ

(∫∞
0
θν(s)ds+

∑
t∈σν θ

ν(t)
)
< ∞. Then, the following

hold for the family {Σν : ν ∈ Λ}:
a) It is W-0-GUES and W-iISS.
b) It is W-ISS if M = 0 and W-ISS s.i. if M > 0.

Proof: Let ν ∈ Λ. By assumption, nσν(t0,t]
≤ N0 + t−t0

τD
for all

0 ≤ t0 < t. Therefore, t− t0 ≥ τD[nσν(t0,t]
−N0], and then

λ(t− t0) =

(
1− 1

1 + τD

)
λ(t− t0) +

λ

1 + τD
(t− t0)

≥ τDλ

1 + τD
(t− t0) +

λ

1 + τD
τD[nσν(t0,t]

−N0]

= λ̃(t− t0 + nσν(t0,t]
)− λ̃N0.

In consequence, for every 0 ≤ t0 < t it follows that

‖Φν(t, t0)‖ ≤ Ke−λ(t−t0) ≤ Keλ̃N0e
−λ̃(t−t0+n

σν
(t0,t]

)
.

Since K̃ = Keλ̃N0 , we have proved that the family of linear
systems (7) satisfies (9) with K̃ and λ̃ instead of K and λ. Applying
Theorem 3.1 and the fact that the strong stability properties imply
the weak ones, Corollary 3.4 is established.

Remark 3.5: The nontrivial part of Theorem 3.2 in [24], namely
that (iv) implies (i), is a direct consequence of Corollary 3.4. The
MiDT condition assumed in [24, Theorem 3.2] implies that the
impulse-time sequence σ belongs to Γ[1,∆inf ] and from the linear-
plus-perturbation form of the system considered therein it is evident
that the system admits a global state weak linearization. Moreover,
Corollary 3.4 implies that [24, Theorem 3.2] actually holds under
weaker assumptions, specifically under σ ∈ Γ[N0, τD]. ◦

C. Linearization-based Local (Strong) Exponential Stability

We next generalize, to the case of strong stability of impulsive
systems, the standard result on local stability of nonlinear systems
based on a first-order approximation. To keep matters simple, the
result is given for a single system. The corresponding result for
a family of systems will be true when the required bounds hold
uniformly for every system in the family. Consider a system of
the form (1) under zero input, with f(t, 0, 0) = 0 for all t ≥ 0,
g(t, 0, 0) = 0 for all t ∈ σ, f(t, ξ, 0) Lebesgue measurable in t and
f(t, ·, 0), g(t, ·, 0) differentiable at ξ = 0 for every corresponding
t, so that the matrices A(t) := ∂f

∂ξ
(t, 0, 0) and R(t) := ∂g

∂ξ
(t, 0, 0)

exist. The corresponding linearized system under zero input is

ẋ(t) = A(t)x(t), t /∈ σ, x(t) = R(t)x(t−), t ∈ σ. (21)

Corollary 3.6: Suppose that the limit operations that define the
derivatives for obtaining the matrices A(t) and R(t) are uniform
over all suitable values of t, i.e. for every ε > 0 there exists r > 0
such that whenever |ξ| < r, it happens that

|f(t, ξ, 0)−A(t)ξ| ≤ ε|ξ|, ∀t ≥ 0, and (22)

|g(t, ξ, 0)−R(t)ξ| ≤ ε|ξ|, ∀t ∈ σ. (23)

Then, the following hold.
a) If the linearization (21) is S-0-GUES, then (1) is S-0-UES.
b) If the linearization (21) is W-0-GUES and σ ∈ Γ[N0, τD] for

some N0 ∈ N and τD > 0, then (1) is W-0-UES.
Proof: a) Let K ≥ 1 and λ > 0 be the constants characterizing

the S-0-GUES property of (21). Take ε = λ
2Keλ

and consider the
corresponding r > 0 according to the assumptions. Let Λ = {ν}
be a single-element set. Let ω : Rn → [0, 1] be a continuous
function such that ω(ξ) = 1 if |ξ| ≤ r

2
and ω(ξ) = 0 if |ξ| ≥ r.

Define Aν ≡ A, Rν ≡ R, ϕν(t, ξ, µ) = ω(ξ)[f(t, ξ, 0) − A(t)ξ]
and ψν(t, ξ, µ) = ω(ξ)[g(t, ξ, 0) − R(t)ξ]. Then (3c)–(3d) hold
with Nν(t) = N̄ = λ

2Keλ
, M = c = 0 and any η ∈ K. It

follows that the single-system family given by (2), (3a) and (3b)
satisfies the hypotheses of Theorem 3.1 and is hence S-0-GUES.
In consequence, there exist K̄, λ̄ > 0 such that the solutions with
u = 0 satisfy |x(t)| ≤ K̄eλ̄(t−t0+n(t0,t]

)|x(t0)| for all t ≥ t0. The
solutions of (2) are solutions of (1) under zero input (and viceversa)
if |x(t0)| ≤ r

2K̄
, because they satisfy the condition |x(t)| ≤ r

2
for

all t ≥ t0. Therefore, (1) is S-0-UES.
b) Since (21) is W-0-GUES and σ ∈ Γ[N0, τD] then (21) is S-0-

GUES (see the proof of Corollary 3.4). By a), then (1) is S-0-UES,
and therefore W-0-UES.

Remark 3.7: Corollary 3.6 improves the stability criterion based on
first-order approximation in [2, Theorem 37], since the latter assumes
that the distance between consecutive impulse-times is bounded from
below by a positive constant. Theorem 4.1 in [30] also follows as a
particular case. ◦

IV. APPLICATION TO SWITCHED IMPULSIVE SYSTEMS

We next explain how the previous results can be applied to the
stability analysis of switched time-varying impulsive systems. To
keep matters simple, we consider switched impulsive systems where
the switching instants coincide with impulse instants. However, the
results can be applied to a more general class of systems (e.g. that
in [22, Section V]).

A. Casting switched systems as families of systems

Consider switched impulsive systems defined as follows. Let I =
{1, . . . , n̄} be the set of switching modes. For i ∈ I, the equation

ẋ = fi(t, x, u), (24)
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is the dynamics of mode i and fi : R≥0 × Rn × Rm → Rn is the
corresponding flow map. For i, j ∈ I with i 6= j, gi,j : R≥0×Rn×
Rm → Rn denotes the reset map from mode i to mode j.

Let ν : R≥0 → I be a switching signal, i.e. ν is piecewise
constant, right-continuous and with a finite number of discontinuities
in each compact interval, and let σν = {t > 0 : ν(t−) 6=
ν(t)} = {τ1, τ2, . . .} be the set of (ordered) switching times of ν.
The switched system corresponding to the switching signal ν is the
impulsive system

ẋ(t) = fν(t)(t, x(t), u(t)), t /∈ σν , (25a)

x(t) = gν(t−),ν(t)(t, x(t−), u(t)), t ∈ σν . (25b)

Note that on each interval where mode i is active (i.e. ν(t) = i),
the state x is a solution of (24) and when mode i ends and mode j
begins (i.e ν(t−) = i and ν(t) = j), the state is reset to the value
gi,j(t, x(t−), u(t)).

Stability properties of (25) which hold not only for a specific
switching signal ν but also uniformly for all signals ν within
some family Λ (e.g. all signals having some dwell or average
dwell time) can be analyzed by casting the set of switched systems
corresponding to such switching signals as a family of time-varying
impulsive systems, parametrized by the switching signal, as follows.
For each switching signal ν, let Σν denote the switched system (25)
corresponding to ν and note that it can be written in the form (2)
with

fν(t, ξ, µ) := fν(t)(t, ξ, µ), (t, ξ, µ) ∈ R≥0 × Rn × Rm,
gν(t, ξ, µ) := gν(t−),ν(t)(t, ξ, µ), (t, ξ, µ) ∈ σν × Rn × Rm.

In these expressions, ν denotes a function, ν ∈ Λ, whereas ν(t)
denotes the value of this function at time t, ν(t) ∈ I. With these
definitions, the switched system (25) has some stability property
which holds uniformly over Λ if and only if the family {Σν : ν ∈ Λ}
has the same stability property.

B. Switched systems admitting a global state weak linerization

Suppose that the maps fi and gi,j can be written in the form

fi(t, ξ, µ) = Ai(t)ξ + ϕ̂i(t, ξ, µ) (26)

gi,j(t, ξ, µ) = Ri,j(t)ξ + ψ̂i,j(t, ξ, µ) (27)

with Ai : R≥0 → Rn×n with locally bounded and Lebesgue mea-
surable entries, ϕ̂i(t, ξ, µ), Lebesgue measurable in t and continuous
in (ξ, µ) and Ri,j : R≥0 → Rn×n. Suppose also that for all t ≥ 0,

|ϕ̂i(t, ξ, µ)| ≤ Ni(t)|ξ|+ (M |ξ|+ c) η(|µ|), (28)

|ψ̂i,j(t, ξ, µ)| ≤ Ni,j(t)|ξ|+ (M |ξ|+ c) η(|µ|), (29)

with N i, N i,j : R≥0 → R≥0, N i locally bounded and Lebesgue
measurable, M and c nonnegative constants and η ∈ K. Then, it is
straightforward that the family {Σν : ν ∈ Λ} admits a global state
weak linearization as per Definition 2.1, with

Aν(t) := Aν(t)(t), ϕν(t, ξ, µ) := ϕ̂ν(t)(t, ξ, µ), t /∈ σν
Rν(t) := Rν(t−),ν(t)(t), ψν(t, ξ, µ) := ψ̂ν(t−),ν(t)(t, ξ, µ), t ∈ σν

Nν(t) := Nν(t)(t), t /∈ σν , Nν(t) := Nν(t−),ν(t)(t), t ∈ σν ,

and the same constants M and c. This fact allows application of
Theorem 3.1 and Corollary 3.4 to the analysis of switched systems.

As an example, consider a (nonlinear, time-varying) switched
system (25) and a family Λ of switching signals ν. Suppose the
switched system admits a global state weak linearization where the

linear part of the perturbation bounds is time-invariant, so that (28)–
(29) are satisfied with Ni(t) ≡ N̄ and Ni,j(t) ≡ N̄ (and therefore
Nν(t) ≡ N̄ for all ν).

In this setting, note that the transition matrix Φν(t, s) of the
associated system (7) corresponding to a switching signal ν ∈ Λ
is the transition matrix of the switched linear impulsive system
ẋ(t) = Aν(t)(t)x(t) for t /∈ σν , x(t) = Rν(t−),ν(t)(t)x(t−) for
t ∈ σν . The particularization of Theorem 3.1 and of Corollary 3.4 to
this case is as follows.

Corollary 4.1: Suppose that there exist K ≥ 1 and λ > 0 such
that Φν(t, s) satisfies (9) for all ν ∈ Λ and 0 ≤ s ≤ t. If N̄ < λ

Keλ
,

then the following hold for the considered switched system:

a) It is S-0-GUES and S-iISS, uniformly over Λ.
b) It is S-ISS if M = 0 and S-ISS s.i. if M > 0, uniformly over Λ.

Corollary 4.2: Suppose that there exist K ≥ 1 and λ > 0 such
that Φν(t, s) satisfies (10) for all ν ∈ Λ and 0 ≤ s ≤ t, and that
for some N0 ≥ 1 and τD > 0, σν ∈ Γ[N0, τD] for all ν ∈ Λ. If
N̄ < λ̃

K̃eλ̃
, with λ̃ = τD

1+τD
λ and K̃ = KeN0λ̃, then the following

hold for the considered switched system:

a) It is W-0-GUES and W-iISS, uniformly over Λ.
b) It is W-ISS if M = 0 and W-ISS s.i. if M > 0, uniformly over

Λ.

These results allow to establish stability of the original (nonlinear,
time-varying) switched system by studying its linear part and the
perturbation bound.

V. PROOF OF AUXILIARY LEMMAS

Proof of Lemma 3.2:

Let t ∈ [a, b]. If g(t) = 0 or x(t) = 0 define B(t) = 0. In both
cases |g(t) − B(t)x(t)| = |g(t)| ≤ h(t). If g(t) 6= 0 and x(t) 6=
0, pick any orthogonal matrix U such that U x(t)

|x(t)| = g(t)
|g(t)| and

define B(t) = min
{
|g(t)|
|x(t)| , N(t)

}
U . If |g(t)||x(t)| ≤ N(t), B(t)x(t) =

g(t) and then |g(t) − B(t)x(t)| ≤ h(t). In case |g(t)||x(t)| > N(t),
|g(t)−B(t)x(t)| = |g(t)| −N(t)|x(t)| ≤ h(t). Thus, the existence
of a function B : [a, b] → Rn×n such that ‖B(t)‖ ≤ N(t) and
|g(t)−B(t)x(t)| ≤ h(t) for all t ∈ [a, b] is established.

Next, let g, x, h and N be Lebesgue measurable. Define the func-
tion F : [a, b]×Rn×n×R→ R, via F (t, B, y) = |g(t)−Bx(t)|−y,
and the set-valued map Ω : [a, b] ⇒ Rn×n × R, by Ω(t) =
BN(t) × [0, h(t)], where, for r ≥ 0, Br = {A ∈ Rn×n : ‖A‖ ≤ r}.
Then F is measurable in t and continuous in (B, y), and Ω takes
compact values and is measurable. Note that the function B(t)
defined above together with the function y(t) = |g(t) − B(t)x(t)|,
t ∈ [a, b], satisfy for all t ∈ [a, b] the conditions F (t, B(t), y(t)) = 0
and (B(t), y(t)) ∈ Ω(t). So, 0 ∈ F (t,Ω(t)) for all t ∈ [a, b].
Application of Theorem 7.1 in [31] establishes the existence of a
Lebesgue measurable function (B∗, y∗) : [a, b] → Ω(t) such that
F (t, B∗(t), y∗(t)) = 0 for all [a, b]. Thus ‖B∗(t)‖ ≤ N(t) and
|g(t)−B∗(t)x(t)| = y∗(t) ≤ h(t) for all t ∈ [a, b].

Proof of Lemma 3.3:

Every solution of (12) corresponding to ṽν ≡ 0 and w̃ν ≡ 0
satisfies (8) with vν(t) = Bν(t)x(t) and wν(t) = B∗ν(t)x(t−).
Taking the norm and using its properties,

|x(t)| ≤ ‖Φν(t, t0)‖|x(t0)|+
∫ t

t0

‖Φν(t, s)‖|Bν(s)x(s)|ds

+
∑

s∈σν∩(t0,t]

‖Φν(t, s)‖|B∗ν(s)x(s−)|.
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Using (9), then

|x(t)| ≤ Ke−λ(t−t0+n
σν
(t0,t]

)|x(t0)|

+

∫ t

t0

Ke
−λ(t−s+nσν

(s,t]
)‖Bν(s)‖|x(s)|ds

+
∑

s∈σν∩(t0,t]

Ke
−λ(t−s+nσν

(s,t]
)‖B∗ν(s)‖|x(s−)|.

Define y(t) := |x(t)|eλ(t−t0+n
σν
(t0,t]

) and multiply the latter inequal-
ity by eλ(t−t0+n

σν
(t0,t]

). This gives

y(t)≤K|x(t0)|+K
( ∫ t
t0
‖Bν(s)‖y(s)ds+

∑
s∈σν∩(t0,t]

eλ‖B∗ν (s)‖y(s−)
)
,

using the facts that n(t0,t] − n(s,t] = n(t0,s] for every t0 ≤ s ≤ t
and that whenever s ∈ σν ∩ (t0, t],

eλy(s−) = |x(s−)|eλ(s−t0+n
σν
(t0,s)

+1)
= |x(s−)|eλ(s−t0+n

σν
(t0,s]

)
.

Applying Gronwall inequality (e.g. [29, Lemma 3]) yields

y(t) ≤ K|x(t0)|eK
∫ t
t0
‖Bν(s)‖ds ∏

s∈σν∩(t0,t]

(1 +Keλ‖B∗ν(s)‖)

≤ K|x(t0)| exp
{
K
(
N̄(t−t0)+Θc+e

λ(N̄n
σν
(t0,t]

+Θd)
)}
,

≤ K̂|x(t0)|eKN̄e
λ(t−t0+n

σν
(t0,t]

) (30)

where the assumptions on ‖Bν(t)‖ and ‖B∗ν(t)‖ and the fact that
1 + b ≤ eb for nonnegative b have been employed. Multiplying (30)
by e−λ(t−t0+n(t0,t]

) and recalling the definition of y and λ̂, yields

|x(t)| ≤ K̂|x(t0)|e−λ̂(t−t0+n
σν
(t0,t]

) for 0 ≤ t0 ≤ t. (31)

Since N̄ < λ/(Keλ) by assumption, then λ̂ > 0. Since (31) holds
for every x(t0), then (13) must be true.

VI. CONCLUSIONS

Results for iISS, ISS and ISS under small inputs were given for
families of impulsive systems, based on global state weak lineariza-
tion and where the convergence given by stability is ensured not
only as time elapses but also as the number of occurring impulses
increases, as is standard in the context of hybrid systems. It was
shown that the results do not remain valid if only the more usual form
of stability for impulsive systems is considered, unless constraints are
placed on the impulse-time sequences. Local exponential stability
results were also provided, based on a first-order approximation. The
given results generalize and extend existing ones in several directions.
Some important system classes, such as bilinear systems, and some
switched system stablity problems are covered. The given results do
not require the zero-input system to be linear.
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