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Abstract In recent years, applications aimed at exploring and analyzing spatial 
data have emerged, powered by the increasing need of software that integrates 
Geographic Information Systems (GIS) and On-Line Analytical Processing (OLAP). 
These applications have been called SOLAP (Spatial OLAP). In previous work, the 
authors have introduced Piet, a system based on a formal data model that integrates 
in a single framework GIS, OLAP (On-Line Analytical Processing), and Moving 
Object data. Real-world problems are inherently spatio-temporal. Thus, in this paper 
we present a data model that extends Piet, allowing tracking the history of spatial 
data in the GIS layers. We present a formal study of the two typical ways of intro-
ducing time into Piet: timestamping the thematic layers in the GIS, and timestamping 
the spatial objects in each layer. We denote these strategies snapshot-based and 
timestamp-based representations, respectively, following well-known terminology 
borrowed from temporal databases. We present and discuss the formal model for 
both alternatives. Based on the timestamp-based representation, we introduce a 
formal First-Order spatio-temporal query language, which we denote Lt, able to 
express spatio-temporal queries over GIS, OLAP, and trajectory data. Finally, we 
discuss implementation issues, the update operators that must be supported by the 
model, and sketch a temporal extension to Piet-QL, the SQL-like query language that 
supports Piet.                  Keywords OLAP · Spatio-temporal databases · GIS · SOLAP
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1 Introduction

Geographic Information Systems (GIS) have been extensively used in various appli-
cation domains, ranging from economical, ecological and demographic analysis, to 
city and route planning [52, 69]. Spatial information in a GIS is typically stored in 
different so-called thematic layers (also called themes). Information in themes can be 
stored in different data structures according to different data models, the most usual 
ones being the raster model and the vector model. In a thematic layer, spatial data 
are typically annotated with classical relational attribute information of (in general) 
numeric or string type. While spatial data are stored in suitable data structures, 
associated attributes are usually stored in conventional relational databases. Spatial 
data in the different thematic layers of a GIS can be mapped univocally to each other 
using a common frame of reference, like a coordinate system. These layers can be 
overlayed to obtain an integrated spatial view.

On the other hand, OLAP (On-Line Analytical Processing) [29, 30] provides a set 
of tools and algorithms that allow efficiently querying multidimensional data reposi-
tories usually called Data Warehouses, containing large amounts of data. In OLAP, 
data are organized as a set of dimensions and fact tables. In this multidimensional 
model, data can be perceived as a data cube, where each cell contains a measure 
or set of (probably aggregated) measures of interest. OLAP dimensions are further 
organized in hierarchies that favor the data aggregation process [10].

1.1 GIS-OLAP decision support

Different data models have been proposed for representing objects in a GIS. The 
Reference Model proposed by the Open Geospatial Consortium1 supports the idea 
of the Coverage data model. The Coverage data model, introduced by ESRI,2 and 
extensively studied by the GIS community, binds spatial objects to non-spatial 
attributes that describe them. This model was later extended with object-oriented 
support, in a way that behavior can be defined for geographic features [70]. In spite of 
the model of choice, there is always the underlying idea of associating spatial objects 
with objects or attributes stored in object-relational databases.

Nowadays, organizations need sophisticated GIS-based Decision Support System 
(DSS) to analyze their data with respect to geographic information represented 
not only as attribute data, but also in maps, probably in different thematic layers. 
In this sense, OLAP and GIS vendors are increasingly integrating their products.3

1http://www.opengeospatial.org
2http://www.esri.com
3See Microstrategy and MapInfo integration in http://www.microstrategy.com/, http://www.mapinfo.
com/solutions/capabilities/business-intelligence.
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In this scenario, aggregate queries are central to DSSs. Thus, classical aggregate
queries (like “Total sales of cars in California”), and aggregation combined with
complex queries involving spatial elements (“Total sales in all villages crossed by the
Mississippi river within a radius of 100 km around New Orleans”) must be efficiently
supported. Moreover, navigation of the results using typical OLAP operations
like roll-up or drill-down is also required. These operations are not supported by
commercial GIS in a straightforward way. The main reason for this is that the
GIS data models discussed above were developed with ‘transactional’ queries in
mind. Thus, the databases storing non-spatial attributes or objects are designed to
support those (non-aggregate) kinds of queries. Decision support systems need a
different data model, where non-spatial data, consolidated from different sectors in
an organization are stored in a data warehouse. For instance, if we were interested
in the sales of certain products in stores in a given region, we may consider the
sales amounts in a fact table over the three dimensions Store, Time and Product.
Dimensions in a data warehouse are usually organized into aggregation hierarchies.
For example, stores can aggregate over cities which in turn can aggregate into
regions and countries. Each of these aggregation levels can also hold descriptive
attributes like city population, the area of a region, etc. Another reason for the lack
of OLAP support in commercial GIS is that system integration is not an easy task,
and requires a formal data model behind. To fulfill the requirements for integrating
GIS and DSS, warehouse data must be linked to geographic data. For instance, a
polygon representing a region must be associated with the region identifier in the
warehouse. This approach also allows to integrate warehouse data with pre-existing
GIS data (or viceversa), designed and implemented independently from each other
(we denote this approach as loosely coupled). The problem of integrating OLAP-
centric systems and GIS-centric systems, has been called SOLAP [6, 7]. However,
not many proposals have formally addressed the problem of modeling and querying
a GIS-OLAP scenario. One of such works is the Piet system [16, 19].4 In Piet, spatial,
spatio-temporal, and non-spatial data (stored in a data warehouse and/or in the GIS)
are integrated in a single framework. To the best of our knowledge, Piet is the only
proposal that provides a formal data model and query language for such integration.
Moreover, recently, an SQL-like query language for Piet, denoted Piet-QL, has been
presented [18].

Tryfona et al. [62, 63] classify spatio-temporal applications according with the
kind of support of the changes occurring in the spatial objects. They distinguish
between objects with continuous motion (e.g., a car moving in a highway), objects
with discrete changes (e.g, parcels changing boundaries), and objects combining
continuous motion and changing shapes, for instance, a storm, or a stain in a river.
That means, spatial objects in thematic layers can be added, removed, split, merged,
or their shape may change. In [17, 32] the authors show that the Piet framework
supports continuous motion, following the classification above. However, Piet works
under the assumption that all objects in a layer remain unchanged across time, i.e.,
neither does Piet support objects with discrete changes nor objects combining contin-
uous motion and changing shapes. For example, Piet supports queries like “Total
number of objects going from a three-star hotel to a cheap restaurant on Monday

4A description and demo of Piet can be found at http://piet.exp.dc.uba.ar/piet.
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mornings in Antwerp”, but not queries like “Number of airports in England in 1998”.
Addressing discrete changes, continuous motion, and changing shapes, requires a
temporal data model and query language. We show below that only few proposals
address the problem of time-varying geometric objects, and, to the best of our
knowledge, none of them is oriented to GIS-OLAP integration. For example,
Hermes, a system introduced by Pelekis et al. [46, 48], supports changing objects,
although it lacks GIS-OLAP integration capabilities.

In the present paper we extend Piet to support the three types of spatio-temporal
data defined in [62] in addition to provide a GIS-OLAP integration framework. This
extension positions Piet in the ST-OLAP class, according to the classification given
in [65] (see Section 2).

1.2 Two motivating examples

Let us assume the following GIS-OLAP scenario about land property information. In
Fig. 1 we show four parcels of land, P1 through P4. They could be characterized, for
example, by attributes like type of soil, depth of underground water availability, and
vegetation. The parcels are subject to change in shape, area, and in the value of their
attributes, and we consider them as composing a single layer denoted Lland. Other
layers may contain, for instance, airports represented as points, in a layer denoted
La. We assume, without loss of generality, that each layer contains only one kind of
geometry, meaning that for representing rivers (as polylines), we must use a different
layer. To complete the picture, there is a layer containing rivers (Lr).

There is also non-spatial information stored in a conventional data warehouse. In
this data warehouse, dimension tables contain information about stores, schools, and
other demographic data. In particular, a dimension Land stores information related
to the parcels on the left hand side of the figure. The bottom level of this dimension
contains the parcel identifiers (p1 through p4). These id’s aggregate over a level
denoted region, which, in turn, aggregates over a level province. There is a mapping

Fig. 1 Motivating example:
initial situation. a Land
partition; b land dimension
hierarchy

(a) (b)



(not shown in the figure) defined between spatial objects in Lland and members of the
bottom level (parcelId) of the dimension Land. In this case, the mapping is complete,
but this is not mandatory. (The mapping associates each Pi object in the left hand side
to the corresponding dimension level member pi in the right hand side).

The scenario above could be represented in Piet in a straightforward way. We
remark that integration of GIS and warehouse data could also be possible with
existing technologies, through ad-hoc solutions, which would require data exchange
between GIS and OLAP applications to be performed. For example, the output of a
GIS query must be exported as a dimension of a data cube, and merged for further
analysis. However, these solutions, besides requiring many lines of complex coding,
are hardly portable. On the contrary, using a system that naturally integrates GIS
and OLAP information, a user would only need to bind geographic elements in the
maps to the data cube(s) that represent aggregated organizational information, and
the system will be ready to work.

Time management requirements appear when, at a certain moment, John, the
owner of P3, acquires P4. Then, parcels P3 and P4 must be merged. The new situation
is depicted in Fig. 2 (changes have also been performed at the data warehouse, as we
can see on the right hand side of the figure). Other changes may occur afterwards,
for example, P2 may grow if John decides to sell part of P3-4 in Fig. 2 to the owner
of P2. We are now in a discrete changes scenario, where, for instance, we may want
to know the history of P3-4, or the production of each existing parcel as of the year
2006, or more complex queries like “Total production by year per square mile for
each parcel of land, for the parcels in Antwerp” (note that non-spatial information
resides in the data warehouse).

The next example presents a different kind of problem involving continuous
motion plus changes in spatial objects, in terms of the classification proposed in [62].
Many industrial processes generate polluting clouds as a side-effect. These clouds
are, of course, dynamic: according to the weather conditions, they can move forward

Fig. 2 Motivating example:
situation after merging P3 and
P4. a Changes in spatial
objects; b changes in the
dimension hierarchy

(a) (b)



or backward, grow and/or shrink (or even disappear), split into two or more, or merge
with other ones. Environmental control agencies monitor these changes in order
to keep the situation within certain limits. These limits, of course, depend on the
countries involved. Figure 3 shows a typical situation: a polluting cloud denoted C1 is
moving forward (in this case, to the right hand side of the figure). The cloud has first
increased its size and changed its shape; it later split into two smaller clouds. Each
one of the new clouds further split into two new ones. Finally, C5 and C6 merged
again into a cloud we denote C7. This evolution occurs in a certain geographic space
(represented in thematic layers, not shown in the figure). Interesting information can
be obtained in this scenario, as long as we have a data model and query language
allowing representing a dynamic setting. For instance, the evolution of the cloud
across time, how far from a school it had passed, how many people were exposed
to the effect of the polluting cloud, or how does the total polluting load vary over
time, are some of the queries a user may pose. These queries may also involve
dimensional information in the warehouse. This evolution is generally recorded
through snapshots taken at regular intervals. Figure 4 depicts two such snapshots.

An even more involved situation could be addressed if we consider that, concur-
rently with the evolution of these polluting clouds, trajectories of moving objects (like
cars, or pedestrians) are registered, typically through electronic devices. A user could
be interested in asking, for instance, how many persons moved below a polluting
cloud for more than one hour without interruption. In this case the answers could
only be approximate (through the use of linear interpolation, for instance), since we
assume that the information is given in the form of snapshots.

In summary, addressing situations like the ones we have just described requires
extending non-temporal SOLAP data models and query languages with temporal
capabilities. The reader may ask herself why we need yet another data model and

Fig. 3 A pollution cloud
changing shape



Fig. 4 Snapshot at instant t = t1 (left); Snapshot at instant t = t2 (right)

system, instead of using existing ones. We argue that this could not be possible
because, among other reasons:

• It is likely that in the scenarios we presented above, data warehouses and GIS
maps will be built and maintained in an autonomous way (i.e., independently
from each other). That is:

– The GIS existed before the warehouse information was available, or
viceversa, the warehouse existed before a GIS was implemented. This means
that flexible tools are needed to integrate these pre-existing systems (loosely-
coupled approach). Existing SOLAP models and tools are based on the
assumption that the system is built as a whole (a tightly-coupled approach).

– Changes may occur in one or more layers in the map while the data ware-
house remains unchanged;

– The problem may appear the other way around: the warehouse dimensions
may change, and the GIS layers remain the same.

To handle this problem, we need to provide an updatable mapping procedure
that binds members in the warehouse dimensions to geometric objects in the
GIS layers.

• Even if updates in the warehouse and the GIS were synchronized, not many
implementations of temporal warehouses exist [36, 64]. Moreover, it is a
well-known fact in OLAP that standard applications have limited updating
capabilities.

In Section 7 we discuss the issues above in more detail. In this paper we focus on
updates and temporal issues on the GIS side.

1.3 Contributions and paper organization

In this paper we extend the Piet data model with temporal capabilities. The new
model supports objects that change across time while maintaining the GIS-OLAP
integration paradigm. We first present a brief, although comprehensive overview of
the efforts regarding GIS, OLAP and Moving Object data integration (Section 2).



Following a brief overview of the Piet data model (Section 3), we formally define
a simplified (also, non-temporal) version of such model, closer to the actual system
implementation, that also makes the presentation clearer. In addition, we discuss the
implications of these changes over the query language (Section 4). We then study two
ways of introducing time in the data model, following standard temporal database
literature: snapshot-based representation and timestamp-based representation. In
the former, snapshots of the content of the GIS layers are recorded and (most
likely, though not mandatory) regular intervals. In the latter, objects in the layers
are timestamped with their validity intervals. We present the formal definitions of
the temporal model in both cases, in order to support the choice for the timestamp-
based approach (Section 5). We then formally present a first-order query language
supporting the model and give the intuition of its expressive power through a set of
comprehensive examples (Section 6). Finally, we discuss implementation issues. This
involves the data structure to support the temporal extension, and how this structure
supports the update operators required to give functionality to the model. Also,
a temporal extension to Piet-QL is presented, although a formal definition of the
syntax and semantics of this language is beyond the scope of this paper (Section 7).
We conclude in Section 8.

2 Related work

2.1 Spatial data warehousing and SOLAP

Although some authors have pointed out the benefits of combining GIS and OLAP,
not much work has been done in this field. Vega López et al. [34] present a com-
prehensive survey on spatio-temporal aggregation that includes a section on spatial
aggregation. Also, Bédard et al. [7] present a review of the efforts for integrating
OLAP and GIS.

Stefanovic et al. [58] and Bédard et al. [6], classify spatial dimension hierarchies
according to their spatial references in: (a) non-geometric; (b) geometric to non-
geometric; and (c) fully geometric. Malinowski and Zimányi [35] later extend this
classification to consider that even in the absence of several related spatial levels, a
dimension can be considered spatial. Pourabbas [50] introduces a conceptual model
that uses binding attributes to bridge the gap between spatial databases and a data
cube. This approach relies on the assumption that all the cells in the cube contain
a value, which is not the usual case in practice, as the author expresses. Also, the
model requires modifying the structure of the spatial data, and no implementation is
reported.

Rivest et al. [53] introduced the concept of SOLAP (standing for Spatial OLAP),
a paradigm aimed at being able to explore spatial data by drilling on maps, in a
way analogous to what is performed in OLAP with tables and charts. They describe
the desirable features and operators a SOLAP system should have. Although they
do not present a formal model for this, the SOLAP concepts and operators have
been recently implemented in a commercial tool called JMAP.5 The authors propose

5JMAP was developed by the Centre for Research in Geomatics and KHEOPS, http://www.
kheops-tech.com/en/jmap/solap.jsp.
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three types of spatial measures: (a) A geometrical shape or set of shapes obtained by
the combination of multiple geometric spatial dimensions, for example, via a spatial
merge or spatial intersection. (b) A spatial measure resulting from the computation
of spatial metric or topological operators. The results of this computation are stored
in the data cube cell. Examples of this type of spatial measure are ‘area’ and
‘distance’. (c) A set of pointers stored in the cube cells, to the geometric shapes stored
in another structure or software. As the authors point out, current technologies only
allow this type of spatial measure. In addition, the authors define a set of topological
and metric operators allowing selecting database subsets based on topological and/or
geometrical constraints, and spatial roll-up and drill-down operations.

Shekhar et al. [56] presented Map Cube, an operator that, given a so-called base
map, cartographic preferences and an aggregation hierarchy, produces an album of
maps that can be navigated via roll-up and drill-down operations. The map cube
operator extends the notion of data cube operator introduced by Gray et al. [20].
The latter generates all possible (2n) so-called cuboids that can be obtained from a
base fact table with n dimensions. The extension basically consists in adding to each
element in the cuboid, the geometric extent associated with each group. Thus, the
queries corresponding to each cuboid are of the form

SELECT A,B,..,AGG(C), AGG_g(Geom)
FROM Base_Fact_Table
GROUP BY A,B,..;

Here, A and B are non-spatial dimensions, C is a numeric measure, Geom
represents a spatial dimension, AGG is an aggregation function (e.g., SUM), and
AGG_g is a geometric aggregation function, for instance the geometric union. In
summary, the proposal does not really define a language in the sense of, for example
Piet-QL (see below), but defines an operator that can be expressed as a collection
of SQL queries. This operator can be used (in conjunction with view materialization
techniques) by a visualization tool in order to efficiently roll-up and drill-down along
an aggregation hierarchy.

The Spatio Temporal Relational data Model (STRM), introduced by Tryfona and
Hadzilacos [61], provides a set of constructs consisting in relations, layers, virtual
layers, object classes, and constraints, all with spatial and temporal extent, on top of
well-established models. In this model, like in Piet (which we detail in Section 3), a
layer is a set of geometric figures like points, lines, regions or combinations of them
(although in Piet only one kind of figure is allowed in a layer) with associated values.
If a layer represents derived information, it is called virtual. The authors define a
layer algebra based of four operations over layers, the main ones being the layer
overlay and reclassification. The latter is relevant to SOLAP, since it computes the
geometric union of adjacent figures if their ranges (i.e., the associated non-geometric
attributes) are identical. In other words, the reclassification operation provides the
semantics for the cuboids discussed above [56].

Vaisman and Zimányi [65] recently proposed a comprehensive and formal clas-
sification for spatio-temporal data warehousing, that goes beyond the informal
notion of SOLAP. Using an extended relational calculus supporting aggregation,
based on the calculus first introduced by Klug [31] and the abstract data types of
Güting et al. [21], define a taxonomy of queries. For example, the SOLAP class
of queries is defined as the class containing the queries that can be expressed in



Klug’s calculus extended with the spatial data types defined in [21]. Analogously, the
ST-OLAP class of queries is the class containing the queries that can be expressed in
the calculus extended with spatial and moving types defined in [21].

Piet, named after the Dutch painter Piet Mondrian, Mondrian being the OLAP
engine used for the implementation, has been introduced in [16] and [19]. Piet
is based on a solid formal model, and the integration between GIS and OLAP
is materialized through a function that maps elements in the data warehouse to
elements in the GIS layers. A formal (based on first-order logic) query language is
also part of the proposal. Piet comes equipped with a query language, Piet-QL [18],
that supports the operators proposed by the Open Geospatial Consortium for SQL,
adding the necessary syntax to integrate OLAP operations through the OLAP
standard MDX.6 Based on the analysis of the needs of GIS-DSS users, Piet-QL is
designed to support basically four kinds of queries: (a) GIS queries filtered using
spatial conditions, like “Regions of Belgium which contain cities crossed by rivers”;
(b) OLAP queries filtered using OLAP conditions, like “Total sales of products
in cities with sales higher than 5000 units”; (c) GIS queries filtered using OLAP
conditions, like “Name of the cities with total sales higher that 5000 units”; (d)
OLAP queries filtered by spatial conditions, like “Total sales in cities within 100Km
from Nijvel”. Queries of the first two kinds allow GIS and OLAP users to query
maps and warehouses in the usual way. Queries of type (c) and (d) characterize
integrated GIS-OLAP queries. The filtering is materialized through a predicate
denoted IN. To give an idea of how a Piet-QL query looks like, let us consider a
query of type (c): “Parcels crossed by the Dÿle river, with production sales greater
than 5000 units”, which reads in Piet-QL:

SELECT GIS l.id
FROM land l, rivers lr
WHERE intersects(l, lr) AND lr.name = "Dÿle"
AND l IN(
SELECT CUBE
filter([Land].[Land parcelId].Members,
[Measures].[Parcel Sales] > 5000)
FROM [Sales]);

Here, ‘land’ and ‘rivers’ represent two thematic layers containing spatial objects
(the parcel subdivision of a given region, and the rivers, respectively). The OLAP
subquery (identified with the keyword CUBE) is linked to the outer query by the
predicate IN. We give more detail in Section 7, although a full study of Piet-QL
is beyond the scope of this paper. Note that unlike [56], we support external data
cubes. However, we cannot build a spatial data cube in the sense of the work by
Shekhar et al. Piet-QL could build the cuboids if the non-spatial information resides
in the GIS part of the system, although non-spatial information in the external data
warehouse and spatial information in the GIS cannot appear together in the SELECT

6MDX is a query language initially proposed by Microsoft as part of the OLEDB for OLAP
specification, and later adopted as a standard by most OLAP vendors. See http://msdn2.microsoft.
com/en-us/library/ms145506.aspx.
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clause. In other words, the cuboid shown above could only be written in Piet-QL if
the numeric information is stored in the GIS part; nevertheless, aggregations like
the following are supported:

SELECT GIS p.name,sum(d.area)
FROM district d, province p
WHERE inside(d,p) AND d.pop > 10000
GROUP BY p.name

Finally, let us briefly comment on continuous f ields, a topic not covered in the
present paper but which we plan to address in future research (see Section 8). In GIS,
continuous fields (from now on, f ields) model phenomena that can be represented
as a function of space and time [28]. A field is formally defined as composed of
[39]: (a) a domain D which is a continuous set; (b) a range of values R; and (c)
a mapping function f from D to R. The joint contribution of the GIS and OLAP
communities to the study of models involving OLAP and continuous fields has
been quite limited. In a first approach to the problem, Shanmugasundaram et al.
[55] propose a data cube representation that deals with continuous dimensions not
needing a predefined discrete hierarchy. More recently, Ahmed et al. proposed
to use interpolation methods to estimate (continuous) values for dimension levels
and measures, based on existing sample data values [2, 3]. Vaisman and Zimányi
recently proposed a conceptual model addressing GIS-OLAP scenarios that include
fields [66].

2.2 Implementation

From an implementation point of view, Han et al. [24] use OLAP techniques for
materializing selected spatial objects and introduce a so-called Spatial Data Cube.
This model only supports aggregation of such spatial objects (i.e., integration with
external warehouses is not studied). Pedersen and Tryfona [45] propose to pre-
aggregate spatial facts. First, they pre-process these facts, computing their disjoint
parts in order to be able to aggregate them later. That means, pre-aggregation works
if the spatial properties of the objects are distributive over some aggregate function.
Since this proposal does not consider the geometry, queries like “Give me the total
population of cities crossed by a river” are not supported. Other works addressing
implementation issues for spatial OLAP (based on indexing and pre-aggregation)
are [40, 41, 51, 71].

2.3 Spatio-temporal databases

Many proposals study moving object databases. However, the topic of moving
shapes (the issue we address in this paper) has received less attention. The Hermes
system [38, 46, 48] provides the functionality needed for handling two-dimensional
objects that change location, shape and size, through four kinds of data types: (a)
static basic; (b) static temporal; (c) static spatial; (d) moving. Data of type (a) are
the standard DBMS data types (integer, real, etc.). Data of type (b) are supported
through a library denoted TAU-TLL [46]. Temporal data types supported (extending
the ODMG data model) are Timepoint, Period, and Temporal Element. The spatial



data types (c) are provided by the Oracle Spatial library. The object type defined
in Oracle, and used by Hermes, is called Sdo_Geometry. The Moving data type
(d) encapsulates semantics and functionality of different data types: moving point,
linestring, circle, rectangle, polygon, and moving collection. Below these types, a class
hierarchy is defined. The basic type is called moving point, defined as a sequence
of different types of simple functions. It is based on the sliced representation
proposed by Güting et al. [21]. Here, a temporal development of a moving object is
decomposed in slices such that between each slice, a simple function is defined. The
idea is to decompose the definition of each moving type into several definitions, one
for each function. The composition of these sub-definitions defines a moving type.
Moving point is the basis for the other types, like moving circle or moving polygon.
These data types are discussed in detail by Pelekis et al. [48]. Objects are provided
with a set of operations: (a) topological and distance predicates, like within_distance;
(b) temporal functions, like add_unit (adds a new unit of movement), and at_instant
(returns the union of the projection of a moving object at a given time instant); (c)
distance and direction operators (e.g., the distance between two moving objects);
(d) set relationships (e.g., intersection). Also numeric operations on objects are
supported, like area or length. In consequence, it would be easy to compute, for
instance, the area of an object at a given time instant.

SECONDO [22] is another system supporting the model of Güting et al. [21].
SECONDO is an extensible DBMS platform for building research prototypes,
consisting in three major components which can be used together or independently:
(i) the kernel, which offers query processing over a set of implemented algebras, each
offering some type constructors and operators, (ii) the optimizer, which implements
the essential part of an SQL-like language, and (iii) the graphical user interface which
is extensible by viewers for new data types. In spite of their ability to handle spatio-
temporal data, neither SECONDO, nor Hermes, are oriented toward addressing the
problem of integrating GIS, OLAP and Moving Object data.

Remark 1 At the end of Section 5 we complete the discussion above, providing an
analysis of the spatio-temporal data models based on snapshots and timestamping.
In Section 7 we also comment on spatial integrity constraints.

In summary, although the proposals above address particular problems, as far as
we are aware of, Piet is the first work to address the problem as a whole, from a
formal study of the problem of integrating spatial and warehousing information in a
single framework that allows obtaining the full potential of this integration, to the
implementation of the proposal. Given these features, we believe that Piet is an
appropriate starting point for extending SOLAP with temporal capabilities. In the
next section we give a brief, yet comprehensive, overview of Piet.

3 Piet data model overview

In this section we provide a short description of Piet, only aimed at making the paper
self-contained. The interested reader is referred to [16, 19] for a detailed study.
In the Piet conceptual data model, spatial and non-spatial data are integrated in a
single framework. The model introduces the concept of GIS dimension. As usual in



databases, a GIS dimension has a schema and associated instances. A GIS dimension
schema is a collection of graphs such that for each layer there is a graph where (a)
there is a node for each kind of geometry, call it Gi; (b) there is an edge between
two nodes Gi and Gj if Gj is composed by geometries of type Gi (i.e., the granularity
of Gj is coarser than that of Gi); (c) there is a distinguished member All that has no
outgoing edges; (d) there is exactly one node representing the geometry point with
no incoming edges. Figure 5 shows the schema of a GIS dimension. At the bottom
level of each hierarchy there is the Algebraic part. Its associated instances contain
the infinite points in a layer, and could be described by means of linear algebraic
equalities and inequalities [44]. Above this part there is the Geometric part, whose
instances contain the identifiers of the geometric elements (i.e., the spatial objects) in
the GIS layers and is used to solve the geometric part of a query (e.g., intersections
between rivers and parcels). Each point in the Algebraic part may correspond to
one or more elements in the Geometric part (e.g., if two or more polylines intersect
each other, the same point—in the Algebraic part—is associated with two different
polylines in the Geometric part). At the GIS dimension instance level, two kinds of
rollup relations are defined:

– ralg, a 5-ary relation representing the rollup between the algebraic and geometric
parts. For instance, ralg(Lland, Pg, x, y, pg1) says that in the layer Lland, a point
(x, y) corresponds to a polygon identified by pg1 in the Geometric part.

– r, a rollup relation representing the rollup between any two levels in the
geometric part. For example r(Lland, Li, Pl, lid, plid) means that in layer Lland,

a line identified by lid corresponds to a polyline identified by plid.

Fig. 5 An example of a GIS
dimension schema
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Finally, there is the OLAP part for storing non-spatial data. This part contains
the conventional OLAP structures, as defined by Hurtado and Mendelzon [26, 27].
Dimension levels in the OLAP are associated with geometric objects in maps via
a function, denoted α(L, D, dimLevel, m), where L is a layer in the GIS part, D
is a dimension in the OLAP part, dimLevel is a level in D, and m is a member in
dimLevel. The range of α is the set of identifiers of the spatial objects in L. For
instance, α(Lr, Rivers, riverId, r) maps an identifier of a river r in the OLAP part
(in the dimension level riverId, of the dimension Rivers) to the identifier of the
spatial object (a polyline in Lr) in the Geometric part associated with r. The following
example is adapted from [19].

Example 1 In Fig. 5, the level parcelId in dimension Land is associated with a poly-
gon geometry in layer Lland. Note that parcelId → region, and region → province
in this example (“A → B” means that there is a functional dependency from level
A to level B in the OLAP part [10]). Each dimension level may have attributes
associated, like population or number of schools. There is also an OLAP hierarchy
associated with the layer Lr at the level of polyline. Notice that since dimension
levels are associated with geometries, it is straightforward to associate facts stored in
a data warehouse in the OLAP part, in order to aggregate these facts along geometric
dimensions.

The association between dimension levels in the OLAP part and levels in the
geometric part, i.e., the α function, is actually implemented as a relational table, and
any matching algorithm can be used to automatically perform the mapping. This is
described in Section 7. We have developed an algorithm based on weighted bipartite
graphs matching to perform this mapping in a semi-automatic way.

Figure 6 shows a portion of a GIS dimension instance for the layer Lr in the
dimension schema of Fig. 5. We can see that an instance of a GIS dimension in the
OLAP part (corresponding to the Schelde river, in Antwerp) is associated via the α

function, to the polyline pl1. For clarity, we only show four different points at the
point level {(x1, y1), . . . , (x4, y4)}. There is a relation ralg(Lr, line, x, y, lid) contain-
ing the association of (x, y) points to the corresponding objects in the line level.
Analogously, there is a relation r(Lr, line, polyline, lid, plid) between the line and

Fig. 6 A GIS dimension
instance for Fig. 5
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polyline levels, in the same layer. Note that the relation representing the association
between the algebraic and the geometric parts only has the target level as argument
(line in this case). For the relation in the geometric part, both, source and target levels
are required as attributes (in this example, line and polyline).

Spatial objects in the Geometric part can be associated with facts, each fact being
quantified by one or more measures, not necessarily a numeric value. Consider for
instance, a fact table with schema (polyId, Lland, grossProduct), where grossProduct
is the measure. Other OLAP fact tables can be defined, also including standard
OLAP dimensions. For example, the information above can also be stored in a fact
table with schema (parcelId, grossProduct), where the dimension parcelId contains
parcel identifiers in the OLAP part.

3.1 Query language

Based on the data model described above, the notion of Spatial aggregation is
defined. Spatial aggregation queries are hard to evaluate, since they require the
computation of a double integral representing the area where some condition is
satisfied. For example, the query “Total gross product of the parcels crossed by the
‘Schelde’ river” would read:

Q ≡
∫ ∫

C
f tprd(x, y, Lc) dx dy,

C = {(x, y) ∈ R
2 | (∃x′)( ∃y′)( ∃pg1)(∃c)

(ralg(Lc, Pl, x′, y′, α(Lr, Rivers, Ri, Pl, ‘Schelde’)) ∧
α(Lc, Land, parcelId, Pg, c) = pg1 ∧ ralg(Lc, Pg, x′, y′, pg1) ∧

ralg(Lc, Pg, x, y, pg1))}.

Piet addresses a class of queries denoted summable. Summable queries can be
rewritten as sums of functions of the spatial objects returned by the condition ‘C’.
More formally, a query of the form Q = ∫ ∫

C h(x, y) dx dy (C ∈ R
2) is summable if

C = ⋃
g∈G ext(g), where G is a set of spatial objects, and ext(g) means the geometric

extension of g (i.e., the subset of R
2 that g occupies), and there exists a function h′,

such that Q = ∑
g∈S h′(g), with h′(g) = ∫ ∫

C h(x, y) dx dy.7 Here S = {gid|ϕ(x, y)},
where ϕ is an FO-formula in a multi-sorted logic L over the reals, geometric objects,
and dimension level members (see Section 4). The vocabulary of L also contains
function names, together with the binary functions + and × on real numbers,
the binary predicate < on real numbers and the real constants 0 and 1. Further,
also constants for layers and attributes may appear in L.8 Atomic formulas in L

7A more complete definition of summable queries can be found in [19].
8For simplicity, we do not quantify over layers, although the language could be extended to support
this.



(basically, syntactic elements for the relations and functions described in the data
model) are combined with the standard logical operators ∧, ∨ and ¬, and existential
and universal quantifiers over real variables and attribute variables. A detailed
description can be found in [19].

Remark 2 If a query is not summable there is no way of getting rid of the task of
computing the integral, since ϕ can define any semi-algebraic set. For example, the
query “Total population endangered by a poisonous cloud described by ϕ, a formula
in first-order logic over (R, +,×,<, 0, 1))”, is not summable. The simplified model
we propose in Section 4.1 cannot express a query like the above, but actually, the
Piet-QL language neither supports it.

We now provide an example that gives the flavor of the language.

Example 2 Let us go back to the query “Total gross product of the parcels crossed
by the ‘Schelde’ river”:

Q ≡
∑

gid∈C

f tprd(gid, Lland).

C = {gid | (∃x)( ∃y)( ∃pl1)(∃p)

(α(Lr, Rivers, riverId, Pl, ‘Schelde’) = pl1 ∧ ralg(Lr, Pl, x, y, pl1) ∧
α(Lland, Land, parcelId, Pg, p) = gid ∧ ralg(Lland, Pg, x, y, gid))}.

The meaning of the query is the following: α(Lr, Rivers, riverId, Pl, ‘Schelde’) =
pl1 returns, in the variable pl1, the identifier of the polyline representing the
Schelde river in layer Lr. The relation ralg(Lr, Pl, x, y, pl1) contains the x, y co-
ordinates that correspond to the polyline identified with pl1 (in terms of the
model of Fig. 5, the x, y points that roll-up to pl1 in the Geometric part). Fur-
ther, ralg(Lland, Pg, x, y, gid) contains the association between these coordinates and
gid, the variable associated with the identifier of the parcel p by the function
α(Lland, Land, parcelId, Pg, p). Note that the only free (i.e., not quantified) variable
is, precisely, gid. Then, the expression C returns the gid values that make the
formula for C true for any instantiation of the quantified variables with values in the
database (i.e., we work with the notion of active domain). The sum of f tprd (which
represents the gross product associated with a polygon gid) over these objects, is then
performed.

Considering the classification proposed in [47], in addition to aggregation, classic
attribute, point, range, distance-based, nearest neighbor and topological queries are
supported by the language (in some cases, provided that we add some additional
functions). A formal language allows studying a language’s properties, but is not,
in general, user-friendly. Therefore, based on this language, Piet-QL, the SQL-like
query language described in Section 2 was introduced [18].



4 Problem statement and preliminaries

In the remainder of this paper we address the problem of adding temporal ca-
pabilities to Piet. More specifically, we study how the Piet data model and the
formal FO-query language can be extended to support temporal semantics. A key
difference between our approach and typical GIS-oriented ones, is that the model
we present is not based upon the object-relational paradigm, that is, we do not
provide functionality and semantics through complex data types: they are embedded
in the model and query language. This way, the theoretical framework is general
enough to be implemented in many ways. We have shown in previous work [19]
that this approach can deliver good results for query aggregation, a key issue in data
warehousing.

In what follows we restrict ourselves to the Geometric part of the data model
introduced in Section 3. We can perform this simplification due to the fact that, in
practice, we work with object identifiers. Actually, the Piet-QL language works at
this level of abstraction. We also consider, without loss of generality, that the GIS
dimension is composed of a set of layers, each of them containing a single geometry
(e.g., point, polyline). In this way, the clarity of the presentation is enhanced and
the formal language becomes more friendly to the reader, while keeping its essence.
Moreover, the expressive power is not affected by this simplification, meaning that
all summable queries that can be expressed in the full model and language, can also
be expressed in the simplified one. In the next sections we give the formal definition
of the new (non-temporal) data model and query language.

4.1 A simplified non-temporal data model

We first formally define the simplified non-temporal data model, (based on [19]),
since it implies relevant changes to the original work. We then show how these
changes impact on the query language.

We have the following sets: a set of layer names L, a set of attribute and dimension
level names A, a set of OLAP dimension names, called D, and a set of geometry
names, denoted G. There is also a set of function names, called F. Each element a of
A has an associated set of values dom(a). We assume that G contains the following
elements (geometries): point, node, line, polyline, and polygon. Each geometry G
of G has an associated domain dom(G), composed of a set of geometry identifiers
gid. In other words, gid are identifiers of geometry instances (for example, polylines
or polygons). Also, each gid is associated with a list of coordinates that defines the
geometric element. We denote this list the extension of gid, ext(gid).

Definition 1 (GIS-OLAP Dimension Schema) There is a set of layers L1, ..., Lk ∈ L,

such that for each Li there is an associated kind of geometry Gi ∈ G (e.g., a layer
can only contain points, polylines, or polygons, but it cannot contain combinations
of them). We denote H the (total) function defining this mapping, with signature
L → G.

There is also a set of dimension schemas D defined as in Hurtado and Mendelzon
[26, 27], where each dimension D ∈ D is a tuple of the form 〈dname, A,
〉, such that
dname ∈ D, A ∈ A, is a set of dimension levels, and 
 is a partial order between
levels.



We also define a set A of partial functions Att with signature A × D → L mapping
attributes in OLAP dimensions to layers (see also Definition 2).

A GIS-OLAP dimension schema is the tuple Gsch = 〈H,A,D〉

Example 3 The GIS-OLAP dimension corresponding to Fig. 5 has the schema:

H(Lr) = polyline, H(La) = node, H(Lland) = polygon.

Following our running example, in the OLAP part we have dimensions Rivers,
Airports, and Land. The Att functions are:

Att1(parcelId, Land) = Lland, Att2(riverId, Rivers) = Lr, and Att3(airportId,

Airport) = La. Thus, A = 〈Att1, Att2, Att3〉.

In dimension Land, it holds that parcelId 
 region, and region 
 province. We
omit the complete schema for the dimensions in the set D.

Definition 2 (GIS-OLAP Dimension Instance) Let Gsch = 〈H,A,D〉 be a GIS-
OLAP dimension schema. A GIS-OLAP dimension instance is a tuple 〈Gsch,I,Ainst,

Dinst〉, where I is a set of binary relations rLi , containing the identifiers of the
geometric objects (and their extensions), in each layer Li, such that H(Li) = G.

Associated with each function Att such that Att(A, D) = L, there is a function
α ∈ Ainst. The arguments of this function are a dimension name (in the OLAP part)
D, a layer L, a dimension level l ∈ L, and a member m belonging to l. Note that
the kind of geometry for L is uniquely determined by H(L), meaning that we do not
need the kind of geometry as an argument. Intuitively, α maps m to the identifier gid

of a spatial object belonging to a geometry G, thus binding a data warehouse instance
to an instance of a geometry (i.e., a spatial object) in a given layer.

Finally, for each dimension schema D ∈ D there is a dimension instance in Dinst,

defined as in [26, 27], which is a tuple 〈D, RU P〉, where RU P is a set of rollup
functions that relate elements in the different dimension levels (intuitively, these
rollup functions indicate how the attribute values in the OLAP part are aggregated).
We omit the details, which are studied in the works in the references.

Note that in Definition 2 there is a relation rL for each layer L, instead of a generic
relation r like in the original model. This decision obeys to practical reasons. The
simplified model is closer to an actual implementation that the full model. From this
point of view, a normalized set of relations seems more appropriate than a single
relation. We further illustrate this in Section 7, where we show the data structure for
the implementation.

Example 4 For the instance of Fig. 1, we have:

I = {rLland = {〈P1, ext(P1)〉, 〈P2, ext(P2)〉, 〈P3, ext(P3)〉, 〈P4, ext(P4)〉},
rLa = {〈A1, ext(A1)〉, 〈A2, ext(A2)〉}, rLr = {〈R1, ext(R1)〉, ...}}.

In this example, P1 is the identifier of the spatial object representing a parcel,
and ‘p1’ is the identifier of a parcel in the data warehouse dimension level parcelId.



A curator has determined that both of them represent an abstraction of the same
physical object. Associated with Att1 in Example 3 we have:

{α(Lland, Land, parcelId, ‘p1’) = P1, α(Lland, Land, parcelId, ‘p2’) = P2, ...}.
Analogously, there are α functions associated with Att2 and Att3.

The data model allows to seamlessly introduce other kinds of external informa-
tion. For example, moving object data can be associated with geographic information,
to produce information of interest about the trajectories followed by moving objects
registered, for instance, through GPS or GSM devices (following [62] we denote this
as continuous motion). Geographic information is stored in the GIS layers, using the
data structures described in the present section. Trajectories are given as samples of
the form (Oid, x, y, t), stating that an object Oid is at the coordinate x, y, at an instant
t. They are stored in a table denoted MOFT (moving object fact table). These new
structures can be easily introduced into the query language described below. We give
examples in Sections 6 and 7.

4.2 Query language for the simplified Piet data model

Leaving out the algebraic part of the formal data model implies that we must
modify the FO-language L in two ways: first, the terms corresponding to the rollup
relations must be removed; second, the binary relations in I must be added to the
syntax, together with the topological predicates and functions that operate over the
extensions of the geometric objects. A substantial change to the original language
is the introduction of variables for the extensions of the geometric objects. These
variables can also be existentially or universally quantified, and they provide a direct
link between theory and implementation, since these extensions can be mapped to
data of the types supported by standard GIS languages. The introduction of the
extensions, topological predicates and functions, allow preserving the expressive
power of the language. Using these three features we can define the same sets ‘C’ as
in the original model. We give the intuition of this by means of an example. Consider
again the query “Total gross product of the parcels crossed by the ‘Schelde’ river”.
In the simplified model, it reads:

Q ≡
∑

gid∈C

f tprd(gid, Lland).

C = {gid | ( ∃pl)(∃p)( ∃pl)( ∃ep)( ∃eg)

(α(Lr, Rivers, riverId, ‘Schelde’) = pl ∧
α(Lland, Land, parcelId, p) = gid ∧

rLland(pl, ep) ∧ rLr (gid, eg) ∧ intersects(ep, eg))}.
The semantics is analogous to the one explained in Example 2. However, two

facts should be noted in the expressions above: (a) the extensions of pl and gid

(denoted, respectively, ep and eg) are of a different kind: one is a polyline (in postGIS
terminology, a Linestring type) and the other one is a polygon; (b) the conjunction

rLland(pl, ep) ∧ rLr (gid, eg) ∧ intersects(ep, eg)



replaces the expression:

ralg(Lland, Pg, x, y, gid)∧α(Lland, Land, parcelId, Pg, p)=gid∧ralg(Lr, Pl, x, y, pl1)}.
that computes the geometries that intersect each other. The set of function names F
defined above, allows the introduction of these functions in the FO-language. The
simplified data model has the same expressiveness of the general model, provided
that the set F contains the appropriate functions. That is, the set F allows the
implementation of a flexible, extendible language.

We are now ready to define the temporal data model. We do this in the next
section.

5 Introducing time into Piet

A large number of temporal data models can be found in the relational database
literature [59]. Among them, the most popular ones are the snapshot and the
timestamp models. In the former, there is a function from the time domain to the
database such that, for each instant t, we have a set of timestamped relations of arity
two where the first attribute is t, and the second one is a set of tuples valid at t. In
the timestamp model, each relation is timestamped at the tuple or attribute level.
Based on the above, in this section we study two alternative ways of introducing time
into the data model: (a) A snapshot-based representation, where a temporal label is
attached to the layers in the GIS; (b) A timestamp-based representation, where the
objects in the different GIS layers are timestamped with their validity time instants.
We give the formal definition for both alternatives and discuss them. First, we need
some preliminary definitions and assumptions.

5.1 Representation of time

We consider Time as a new sort (domain) in our model. Toman [60] showed the
equivalence between abstract and concrete temporal databases. The former are
point-based structures, independent from the database’s actual implementation. The
latter are efficient (interval-based) encodings of the abstract databases. The author
also shows that there is an efficient translation from abstract to concrete temporal
databases. The point-based representation leads to a clean and elegant syntax and
semantics for temporal query languages. In the sequel, we work with point-based
temporal domains, although in the implementation, of course, we use interval-based
domains (see Section 7).

Definition 3 (cf. [60]—Point-based Temporal Domain) Let T be a set, and < a
discrete linear order without endpoints on T. Then, the structure TP = (T, <) is the
Point-based Temporal Domain.

The elements in the carrier of T model the individual time instants, and the linear
order < models the succession of time. We consider the set T to be N, standing for
the natural numbers. Unless noted, we work with the former, like in most temporal
database applications.



In temporal databases, the concepts of valid and transaction times refer to the
instants when data are valid in the real world, and when data are recorded in the
database, respectively [59]. We assume valid time support in this paper. Also, as usual
in temporal databases, a distinguished variable Now represents the (moving) current
time instant.

5.2 Model requirements

Our model must manage the types of changes described in [47], namely: changes
in attribute, geometry, topology (and all possible combinations of the three). We
assume that spatial objects in a layer can be: created, deleted, modified, merged
with other ones, and split into several ones, although the formal temporal model
is independent of these operations. We discuss these operations in Section 7. Note
that analogous operations have been defined for temporal data warehousing [25, 64].
Further, we are aimed at supporting spatio-temporal queries with or without aggre-
gation. In this way, we address, among other ones, the following kinds of queries,
discussed by Pelekis et al. [47]:

– Spatio-temporal queries about locations. For example: (a) Who is the current
owner of parcel p1? (b) Who was its owner in 1997? (c) Parcels crossed by rivers;
(d) parcels limiting with P1; (e) total number of airports in P1 in 2006.

– Queries about temporal relationships. For example: (a) average cereal produc-
tion in parcel P2 the year it was sold to its current owner; (b) Total sales in gas
stations the year when airport A1 was opened.

– Queries about moving regions (changing shapes) and trajectories (continuous
motion), like “number of people exposed to a polluting cloud in November,
2006”.

In other words, we want to keep Piet’s expressive power, while adding temporal
support. Also, note that some of the queries above do not even require the presence of
a data warehouse, and are still supported by our proposal.

Remark 3 We do not discuss the temporal aspects of the data warehouse except
when necessary for the presentation. A study of this problem can be found, among
others, in [14, 36, 37]. Besides, supporting spatio-temporal data warehousing requires
that each time an update is produced on one side of the system (i.e., the OLAP or GIS
parts), the other side must be updated accordingly, as well as the mapping function α.
We comment on this in Section 7.2 below, and assume that the update of α is
performed as required.

Remark 4 We assume that no structural changes occur at the GIS or at the data
warehouses, meaning that a layer containing polygons at its creation instant will
contain polygons throughout its lifespan (nevertheless, the extension of a geometric
object p can change, and its given, at a given instant, by ext(p)). This assumption also
implies that an OLAP dimension schema remains unchanged throughout its lifespan,
i.e., its attributes and levels do not change. However, the values of the geometric
features in the layers and the members of the OLAP dimensions can change (i.e., we
support changes in the instances) and these changes may also impact the mapping
functions. From the point of view of the classification proposed in [65], we can say



that our proposal falls somewhere in between of the ST-OLAP and ST-TOLAP
classes (spatio-temporal OLAP and spatio-temporal TOLAP, respectively), since
there is no full support of temporal data warehouses.

Now, we present the two alternative data models in a formal way. We first
introduce the snapshot-based temporal extension for Piet, and then the timestamp-
based one. In both cases we work with the point-based temporal domain TP. We also
define a time dimension DT and denote μ, a level in this dimension, the granularity
of a GIS temporal schema.

5.3 Snapshot-based representation

In this representation, the mechanism we use for adding the time dimension to
GIS layers consists in labeling the layer with intervals. A set of intervals is called
a temporal element, following standard temporal database notation. First, we need to
define the concept of lifespan.

Definition 4 (Lifespan) The lifespan of a GIS thematic layer L, denoted li f espan(L),
is the collection of all the time instants where the layer is valid.

The lifespan of a set of layers L in a GIS, denoted li f espan(L), is the union of the
lifespans of all the layers in L.

Definition 5 (GIS-OLAP Dimension Schema) A snapshot-based GIS-OLAP dimen-
sion schema TGsch is the tuple 〈H,A,D, λ, μ〉, where μ is a level in the Time
dimension DT as defined above, λ is a relation in dom(μ) × L, where each tuple
(t, Li) indicates that there exists a snapshot of L taken at instant t, and H, A, and D,
are the ones of Definition 1, satisfying the following constraints:

– H is constant throughout the lifespan of the GIS.
– For each layer L ∈ L, the functions Att are defined only in li f espan(L). where

li f espan(L) is the collection of all the instants corresponding to the snap-
shots of L.

– Once a layer is created, the functions Att ∈ A do not change. For example,
Att1(parcelId, Land) returns Lland throughout the complete lifespan of Lland.

– The schema of the dimensions in D is constant during the lifespan of the GIS.

Remark 5 Theoretically, for each time unit there is a snapshot of the database (the
set of layers, in this case). However, in practice, it suffices to assume that a snapshot
of the database is taken each time an update occurs. Thus, between two consecutive
snapshots we can assume that no changes occurred.

Definition 6 (GIS-OLAP Dimension Instance) Let TGsch be a Temporal GIS-
OLAP dimension schema. A snapshot-based temporal GIS-OLAP dimension in-
stance is a tuple 〈TGsch,I t,At

inst,Dt
inst〉, where:

– I t is a family of sets of relations rLi,t containing the geometric elements (and
their extensions) in Li at an instant t. Thus, I t contains, for each layer Li, a
set of snapshots at instants t1, ....tm, such that each one of these instants is in
li f espan(Li).



– Associated with each function Att such that Att(A, D) = L, there is a set of
functions α ∈ At

inst, containing the function α[T] as of the time instants T = {t|t ∈
(t1, ....tn) ∧ t ∈ li f espan(L)}. Thus, At

inst is a family of sets of snapshots (one set
for each function α).

– Dt
inst is a family of sets of dimension instances, one set for each dimension schema

D ∈ D in TGsch. Each set contains the snapshots of the dimension instances at
instants t1, ....tm, such that each one of these instants is in li f espan((L)).

Example 5 Let us suppose that layer Lland has the lifespan {0, 5, 10, 20, 40}. If the
instance of Fig. 1 corresponds to the situation at t = 5, and the instance of Fig. 2
corresponds to the current situation, and there was only one airport at t = 5, we may
have, for example:

I t = {rLland,5 = {〈P1, ext(P1)〉, 〈P2, ext(P2)〉, 〈P3, ext(P3)〉, 〈P4, ext(P4)〉}, ...,
rLland,40 = {〈P1, ext(P1)〉, 〈P2, ext(P2)〉, 〈P3 − 4, ext(P3 − 4)〉},

rLa,5 = {〈A1, ext(A1)〉}, ...}.
Analogously, for the function in At

inst associated with Att1 in Example 3.

{α(Lland, Land, parcelId, ‘p1’)[5] = P1, . . . , α(Lland, Land, parcelId, ‘p3-4’)

[Now] = P3-4, ...}.

5.4 Timestamp-based representation

We now discuss how we can introduce time into the data model by means of object
timestamping. That is, instead of working with a set of layer snapshots, we associate a
time instant to each object in a layer (recall that we work with the abstract temporal
database concept, although for efficiency reasons, actual implementations usually
encode these instants in intervals). Thus, the lifespan of a layer is implicit in the
lifespan of the objects composing it. The definitions of temporal schema and instance
change accordingly.

Definition 7 (Timestamp-based GIS-OLAP Dimension Schema) A timestamped
temporal GIS-OLAP dimension schema TGsch is the tuple 〈H,A,D, μ〉, where μ

is a level in the Time dimension as defined above, and H, A, and D are the ones of
Definition 1, satisfying the following conditions:

– A layer is created when the first object is added to it.
– H is constant throughout the lifespan of the GIS.
– For each layer L ∈ L, the function Att is defined only in li f espan(L), where

li f espan(L) is the collection of all the time instants associated with the geometric
objects in L.

– The functions Att ∈ A do not change with time. This means that, for example,
Att1(parcelId, Land) will always return Lland.

– The schema of the dimensions in D is constant during the lifespan of the GIS.

Note that we do not need the relation λ because the lifespan of a layer is
determined by the lifespan of its objects.



Definition 8 (GIS-OLAP Dimension Instance) Let TGsch be a Temporal GIS-
OLAP dimension schema. A timestamped temporal GIS-OLAP dimension instance
is a tuple 〈TGsch,I t,At

inst,Dt
inst〉, where:

– I t is a set of sets of relations rt
Li

such that each tuple 〈gi, ext(gi), t)〉 in rt
Li

,

represents the existence of an object gi (and its extension) in Li at the instant t.
– Associated with each function Att such that Att(A, D) = L, there is a set of

functions α ∈ At
inst, with signature L × D × A × dom(A) × dom(μ) →

dom(G), where A ∈ A, and G is such that H(L) = G in TGsch.

– Dt
inst is a set of sets of dimension instances, one set for each dimension schema

D ∈ D in TGsch. Each set contains the dimension instances represented in the
timestamp model (see [36] for details).

Definitions 7 and 8 assume that the attributes associated with each GIS layer are
invariant, i.e., if the polygons representing parcels in Lland have the same attributes
throughout their lifespan, which is a reasonable assumption in practice. For instance,
a designer may define that a parcel has attributes associated with land use or land
ownership, and in case part of this information is missing, this will occur at the
instance level, but the attributes will still be present in the schema of the layer.

Example 6 Consider again the layer Lland, with lifespan {[0, 5], [10, 20], [40, 80]},
and the situation in Example 5. We instantiate the current instant with the value
‘80’ to be consistent with the definition of the time domain TP. In an actual
implementation, the distinguished variable Now is used. Then,

I t = {rt
Lland

= {〈P1, ext(P1), 0〉, 〈P1, ext(P1), 1〉, 〈P1, ext(P1), 2〉, 〈P1, ext(P1), 3〉,
〈P1, ext(P1), 4〉, 〈P1, ext(P1), 5〉, 〈P1, ext(P1), 10〉, ...,
〈p3 − 4, ext(p3 − 4), 80〉, ...}, ...,

rt
La

= {〈A1, ext(A1), 0〉, 〈A1, ext(A1), 1〉, ..}, ...}.
In a concrete temporal database, the former could be encoded in the form:

I t = {rt
Lland

= {〈P1, ext(P1), {[0, 5], [10, 20], [40, 80]}〉, ...},
rt

La
= {〈A1, ext(A1), {[0, 5], [10, 20], [40, Now]}〉, 〈

A2, ext(A2), {[10, 20], [40, 80]}〉, ...}}
Analogously, for At

inst,

{{〈α(Lland, Land, parcelId, ‘p1’, 0) = P1〉, . . . ,
α(Lland, Land, parcelId, ‘p1’, 80) = P1〉}, ...}.

In a concrete temporal database, the former would be encoded in the form:

{[〈α(Lland, Land, parcelId, ‘p1’, [0, 5]) = P1〉, ...,
〈α(Lland, Land, parcelId, ‘p1’, [10, 20]) = P1〉....]}.

The fact tables are defined analogously to the non-temporal case, and we omit
details to avoid redundancy.



5.5 Discussion

Technically, the snapshot and timestamp models have the same expressiveness. This
means, we can switch between each other and still be able to represent the same
situation. This happens if there is a snapshot (or an encoding of a snapshot) for
every time instant in TP. In a real-world situation this cannot be guaranteed, since
snapshots are generated, in the best case, at regular time intervals. Therefore, in
practice, we cannot guarantee the equivalence between the two models, and we need
to choose one of them as the basis of our spatio-temporal data model.

The snapshot model supports essentially transaction time. On the other hand, the
timestamp model favors the valid time approach, allowing retroactive updates. Also,
for the timestamp model, time is added to the model just as a new data type, whereas
in the snapshot-based model this requires different data structures to be added. In
this sense, two typical representations exist: the first normal form (1NF) and the
non-1NF timestampings. In the first one, a new tuple is generated each time an object
changes (this is also called tuple timestamping). In the latter, there is always a unique
tuple for each object, and attributes are temporally ordered lists containing the value
of the attribute in different intervals. This is also called attribute-timestamping.

With respect to querying, it is a well-known fact that the snapshot model makes it
difficult to evaluate queries of the form “give me all the time instants where a formula
ϕ holds in the database”.

Examples of both kinds of models discussed here exist (not for SOLAP, but for
spatio-temporal GIS). Space-time composite (STC) is a model based on attribute
timestamping proposed by Langran and Chrisman [33]. The model represents the
world as a set of spatially homogenous objects in a layer. Every space-time composite
has its unique temporal course of changes in attributes, and attribute changes are
recorded at discrete times. The model does not capture temporality among attributes
across space, and updating the database requires reconstruction of the STC units.
Therefore, the database needs to be re-organized when geometric and topological
relationships among STC units change. On the other hand, a model based on
snapshots has been proposed by Armstrong [5], with the problems already discussed,
common to the general snapshot approach.

Other spatio-temporal data models exist, based on the Object-oriented para-
digm [67, 68] (some of them were discussed in Section 2) or Event-Oriented data
models [49]. However, since Piet is based on the relational model, we do not consider
those models in this discussion. Pelekis et al. [47] give a comprehensive overview of
spatio-temporal models.

We conclude that in order to extend Piet with spatio-temporal GIS-OLAP
capabilities, the timestamp-based model fulfills the requirements stated in Section
5.2 better than the snapshot-based model. Thus, in what follows, we work with the
former.

6 Query language

We now study the temporal extension of the language L introduced in Section 3.
We denote this language Lt. Recall that in Section 4 we introduced the temporal
domain TP. To support temporal queries we need to add this sort, and the relations



studied in Section 5, to the FO-language of Section 4.2. We stress the fact that
the FO-language is not aimed at being a working query language for Piet, given
that no many regular users could be able to write queries in this language, but
it is a clean and formal tool for gaining insight on what could be expressed in
FO. Further, in databases, formal languages can be the basis of more user-friendly
query languages. Finally, note that in this simplified version of the data model, each
structure can be almost straightforwardly mapped to a construct in a language like
postGIS.

6.1 Lt syntax and semantics

In the Lt-definable sets considered in the previous section, we can see that there
are variables of different kinds, like Oid, t, x, y and gid (actually, Lt is a multi-sorted
first-order logic). We now define Lt formally.

Definition 9 (The Lt Query Language) The first-order query language Lt has the fol-
lowing types of variables: real variables x, y, z... . . . , ranging over R; name variables
Oid, ..., ranging over Object identifiers in the database; geometric identif ier variables
gid, ..., ranging over identifiers of geometric objects in the database; variables for
members of dimension levels, a, b , c, ..., (which are also used for dimension level
attributes), ranging over members in the dimension levels in the data warehouse;
temporal variables defined over TP, denoted t, . . . , ti, . . . tn; and extension variables,
ei, e j, which range over geometric data in the database (e.g., in a sense, these are
a kind of second order variables). Atomic formulas in Lt are built via existential
and universal quantification over these variables, and the usual logical connectives
∧,∨,¬, plus a set of functions and relations. We now define how these atomic
formulas are formed.

Terms The following are the only terms in the language.

– A function symbol f
li→l j

D (t), where li and l j are levels in the dimension D, and
t is a temporal variable, is a term; There is one function symbol for each rollup
function in the OLAP part.

– A function symbol β A→B
D that maps elements of A to elements of B in dimension

D (in the OLAP part), is a term; for every dimension level A, and every attribute
B of A, denoted A.B, there is one function symbol.

– A function symbol α(L, D, Ai, a, t), where Ai is a level in dimension D, L is a
layer, a is a variable for a dimension level member, and t is a temporal variable,
is a term; There us one function symbol for every α function in At

inst associating
the OLAP and GIS parts.

– Metric functions, e.g., distance(e1, e2) where e1 and e2 are extension variables, are
terms;

– There are functions that can be applied to the alpha-numeric data in the OLAP
part (for instance, the function concat on string values); these functions are also
terms in the language.

Atomic Formulas In Lt we have arithmetic operations + and ×, the constants 0 and
1, and the relation < for real numbers and temporal variables. We also assume the



equality relation for all types of variables. There are numeric, string, and temporal
constants. Atomic formulas are formed as follows.

– For every relation rt
L in I t, we have a relation symbol rt

L(g, e, t), where g is a
geometric identifier variable for a geometry in L, e is an extension variable, and
t is a temporal variable; thus, rt

L in I t is a formula.
– There are topological relations rtop(e1, e2) (e.g., intersects, adjacent, touches),

where ei are extension variables; thus, rtop(e1, e2) is a formula.9

– For every external fact table of arity n, like, for instance, the MOFT mentioned
in Section 4, we have an n-ary relation Mi; Mi is a formula.

– If v is a variable of one of the sorts defined above, (∃v) and (∀v) are formulas.
– If term1 and term2 are terms, term1 = term2 is a formula.
– If F1 and F2 are formulas, F1 ∧ F2 and F1 ∨ F2 are formulas. Also, if F is a

formula, ¬F is a formula.
– Parentheses are also allowed, with the usual precedence.
– Nothing else is a formula.

The Lt language could be used in two ways: (a) As a language to define the
aggregation region C of Example 2; (b) As a query language in itself. Also in this
case, aggregation could be applied. For example, the Count, Max and Min operators
could be applied to sets of the form {t | φ(t)}, when the Lt-definable condition φ

defines a finite set of time instants. Or the TimeSpan operator could be applied when
φ defines an infinite, but bounded set of time instants. The semantics of Count,
Max and Min is clear and TimeSpan returns the difference between the maximal
and minimal moments in the set. Other (temporal and non-temporal) aggregate
operators can be applied in analogous way.

Example 7 Let us start with the query “Total production of the parcels crossed by
the river ‘Schelde’ in 2004”:

Q ≡
∑

gid∈C

f tprd(gid, Lc, 2004).

C = {gid | (∃p)( ∃pl)( ∃p1)( ∃eg)( ∃er)

(α(Lr, Rivers, Ri, p1, 2004) = pl ∧ p1.name = ‘Schelde’ ∧
α(Lland, Land, parcelId, p, 2004) = gid ∧

rt
Lland

(gid, eg, 2004) ∧ rt
Lr

(pl, er, 2004) ∧ intersects(eg, er))}.
Here, we do not use temporal variables. The example is aimed at showing that the

model supports these kinds of historical queries. The fact table stores, for each tuple
〈gid, ext(gid), t〉 in Lc, the production associated with gid at instant t. For example, if
〈g1, ext(g1), 2004〉 is a tuple in I t for Lc, there is an attribute population associated
with g1. Besides, rt

Lland
(gid, eg, 2004) and rt

Lr
(pl, er, 2004) represent the geometric

extensions as of 2004 of the spatial objects identified by gid and pl (parcels and rivers,
respectively). Thus, if in 2004 pl and gid intersected, the latter contributes to the

9Egenhofer and Herring defined the 9-intersection model for binary topological relations [15], where
every set of 9-intersections, represented as a 3 × 3 matrix, describes a binary topological relation.



aggregation. Note that intersects(eg, er) is not explicitly a function of time, because
eg and er correspond to the year 2004. Finally, note that the geometric identifiers are
unique at a given time instant (in the granularity of the layer).

Remark 6 We do not get into granularity details, which have been extensively
studied in the temporal database literature. We assume that the necessary functions
for date conversion would be available [8, 13, 57], if needed, for handling different
temporal granularities between the warehouse and GIS historical data, or even
between different layers in the GIS.

Definition 9 describes the syntax of the language Lt. The interpretation of all
variables, functions, relations, and constants is standard, as well as that of the
logical connectives and quantifiers. We illustrate the semantics through a series of
examples. These examples are also aimed at showing that the four kinds of queries
supported by Piet-QL are also supported in our temporal query language: GIS,
OLAP, GIS filtered by OLAP cubes (or fact tables), and OLAP queries filtered by
GIS constraints (see [18] for details), now including the time dimension.

The following queries refer to our first running example, introduced in Section 1,
namely the Land Information System. Recall that we have thematic layers containing
information about land use, rivers, and airports, labeled Lland and Lr, and La,

respectively. Historical data recording the gross product for each parcel in Lland is
stored in a fact table f tprd. Unless indicated, we assume granularity year. We start
with an aggregate query over a fact table defined over attributes in the map layers.
This query also includes attributes and distance computation.

Q1: Total production in parcels within 100 KM from Brussels, in 2006

Q1 ≡
∑

gid∈C

f tprd(gid, Lc, 2006).

C = {gid | (∃pg1)(∃eg)(∃ep)(∃c)

(α(Lcities, Cities, cityId, c, 2006) = pg1 ∧ c.name = ‘Brussels’ ∧
∧ α(Lland, Land, parcelId, p, 2006) = gid ∧ rt

Lland
(pg1, ep, 2006) ∧

rt
Lland

(gid, eg, 2006) ∧ distance(ep, eg) < 100)}
Here, we added a layer Lcities, linked to a dimension Cities by the α function. The

variable c ranges over the dimension level cityId, and c.name represents the name
of the city corresponding to the identifier that instantiates c when evaluating the
expression (this is actually an attribute of the dimension level cityId). The problem
of how the distance is computed is beyond the scope of this work, although it is easy
to see that it is computable. The expression α(Lland, Land, parcelId, p, 2006) = gid

returns true if the function α maps the dimension member p in level parcelId, to the
polygon gid in layer Lland in 2006. The semantics is similar to the one explained in
Example 2: the only free variable in C is gid; thus, for a given instantiation of the
quantified variables, C returns the values of the gid’s in the database that make the
formula true.

The next query includes topological relations, and temporal relationships. In the
terms of Piet-QL, it is an OLAP query filtered with a GIS condition. Also, in this



query we assume a granularity of month, in order to show OLAP capabilities. We
use the rollup function for this.

Q2: Number of airports currently located in parcels that were adjacent to parcel p3
in November, 2004

This is expressed by:

Q2 ≡
∑

gid∈C

1,

where C is defined by the expression:

C = {gid | (∃t1)( ∃p)( ∃p1)(∃ea)(∃ep)( ∃ep1)

(α(Lland, Land, parcelId, ‘p3’, t1) = p ∧ rt
Lland

(p, ep, Now) ∧ rt
La

(gid, ea, Now) ∧
rt

Lland
(p1, ep1 , t1) ∧ f day→month

Time (t1) = ‘November’ ∧ f day→year
Time (t1) = ‘2004’ ∧

adjacent(ep1 , ep) ∧ within(ep, ea))}
The predicate adjacent(ep1 , ep) returns true if ep1 and ep are instantiated with

extensions that correspond to parcels adjacent to each other in November, 2004.
Analogously, within(ep, ea) returns true if an instantiation of ep and ea is such that
currently the latter is inside the former. We also assume that ‘p3’ is the identifier of
the parcel in the data warehouse (dimension level parcelId), so we used the mapping
function to find the corresponding identifier of the spatial object in layer Lland,

represented by the variable p. Note the use of the relations rt
Li

. They allow to tell
the state of each object at a given time; thus, the topological functions are exactly the
same as in the non-temporal case. The terms f day→month

Time and f day→year
Time represent the

rollup functions over the Time dimension in the warehouse. As a final observation,
note that in case ‘P3’ would have been the identifier of the corresponding spatial
object, we would not have needed the α function.

The next query includes a rollup function over an external warehouse, filtered
by both, a GIS condition and aggregated data in an external fact table (in Piet-QL
terminology).

Q3: How many parcels currently located in the province of Antwerp, with more than
600mm of annual rain in 2006, are crossed by the Schelde river?

(to simplify presentation, we go back to the use of granularity year).

Q3 ≡
∑

gid∈C

1.

C = {gid | ( ∃p)( ∃p1)( ∃rid)( ∃erid)(∃egid)( ∃rain)

(α(Lland, Land, parcelId, p, Now) = gid ∧ α(Lr, Rivers, riverId, p1, Now) = rid ∧
p1.name = ‘Schelde’ ∧ rt

Lland
(gid, egid , 2006) ∧ rt

Lr
(rid, erid , 2006) ∧

f parcelId→province
Land [Now](p) = ‘Antwerp’ ∧ intersects(egid , erid) ∧

WeatherFacts(p, 2006, rain) ∧ rain ≥ 600)}



Here, the expression f parcelId→province
Land [Now](p) = ‘Antwerp’ represents the rollup

function in dimension Land, such that it returns true if parcel p currently rolls up to
the province of Antwerp. There is a fact table in the warehouse, denoted Weather-
Facts in the warehouse, with measure rain (the annual average precipitation).

The next one is a non-aggregate query, using only the relations rt
Li

.

Q4: Parcels having an area larger than 100 Ha in 1996, and currently larger than they
were at that time.

Q4 = {p | (∃ep)( ∃ep1)(∃a)

(rt
Lland

(p, ep1 , 1996) ∧ rt
Lland

(p, ep, Now) ∧
area(ep1) = a ∧ a > 100 ∧ area(ep) > a)}.

This query does not mention warehouse data. Here, rt
Lland

holds the parcels existing
in 1996 and today, and their areas. This relation refers to two different time instants,
indicated as constants (note that variable p is used in both cases). The function area
is similar to the function extent in postGIS.

The second motivating example in Section 1 allows to show some more involved
temporal queries. We want to assess the effect of the polluting clouds over people.
Thus, we are interested to know how many people were exposed to this cloud
for some time. For this, we combine trajectory information and moving regions.
Trajectories are given as samples of the form (Oid, x, y, t), stating that an object Oid is
at the coordinate x, y at an instant t, stored, as we explained above, in a table denoted
MOFT (standing for Moving Object Fact Table, although this is a special kind of -
measureless- fact table). We assume that the trajectory of the cloud is recorded as a
‘temporal’ layer rt

Lc
. For example, satellite images are recorded at regular intervals

and stored in a thematic layer.

Q5: Objects whose trajectories had passed below a polluting cloud

{Oid | (∃c)( ∃ec)( ∃t)( ∃x)( ∃y)

(rt
Lc

(c, ec, t) ∧
MOFT(Oid, x, y, t) ∧ within(〈x, y〉, ec))}

Q6: Objects that remained below a polluting cloud for more than fifteen consecutive
minutes.

{Oid | (∃c)( ∃ec)(∃c1)( ∃ec1)(∃c2)( ∃ec2)

( ∃t1)( ∃t2)( ∃x)( ∃y)( ∃x1)( ∃y1)( ∃x2)( ∃y2)

(rt
Lc

(c, ec1 , t1) ∧ rt
Lc

(c2, ec2 , t2) ∧
MOFT(Oid, x1, y1, t1) ∧ MOFT(Oid, x2, y2, t2) ∧

∧ within(〈x1, y1〉, ec1) ∧ within(〈x2, y2〉, ec2)

¬(∃t)¬(∃c)¬(∃ec)(rt
Lc

(c, ec, t) ∧ ¬(within(〈x, y〉, ec))) ∧
t2 ≥ t1 + 15 ∧ t1 ≤ t ≤ t2)}



Note that we need three variables for the object c, because the object can change
between t1 and t2. The only free variable is Oid. Since we use the notion of active
domain [1], xi, yi and ti are instantiated only with values in the MOFT.

Complexity Although a thorough study of complexity of Lt is a topic of further
research, we now briefly comment on this issue. A particularity of our language
(which we characterized according to [66] as falling in-between the ST-OLAP and
ST-TOLAP classes of queries), is that it involves aggregation, spatial objects, and
temporal variables. Thus, we start analyzing known results in the field of query
languages. First, Lt could be seen as a FO language over R with the addition of aggre-
gation, spatial data and topological relations, and it has been proved that FO queries
have data complexity QLOGSPACE [1]. With respect to the impact of aggregation,
it is well-known that non-recursive stratified datalog (SNR-DATALOG) expresses
exactly FO queries, and in [12] it is shown that SNR-DATALOG extended with
aggregate functions (SNR-DATALOGAGG) is equivalent to the relational algebra
with aggregate functions defined by Klug [31] (in turn, equivalent to relational
calculus with aggregate functions), denoted FOAGG (the calculus over which the

classification in [66] is built). The authors show that FOAGGL ⊆ QLOGSPACE,

where AGGL is the set of aggregate functions such that the decision problem
associated with the evaluation of the aggregate operations is in LOGSPACE (the set
AGG, composed of the five classic aggregate functions MAX, MIN, SUM, COUNT,
AVG, is strictly contained in AGGL). In light of these discussion, the complexity

of Lt can be assessed as the complexity of FOAGGL affected by the impact of
computing the binary topological relations rtop.

7 Implementation, updates and TPiet-QL

In this section we sketch how the ideas in the previous sections are implemented in
Piet. We first give an overview of the data structure of Piet, and then we discuss how
we add temporal support.

7.1 Piet data structure

The data structure for the current Piet implementation is organized in:

– Application information. This is the data warehouse structure, which can be
navigated with OLAP tools.

– GIS information. Corresponds to the data structure for the map layers, including
the spatial (geometric) objects in each layer, and associated attributes.

– GIS-OLAP mapping information. These are the data structures for storing the
relationship between geometric and application information. (Actually these
structures store the α functions).

– There are also data structures to store precomputed information containing
the overlay of different layers. We do not discuss this issue in this paper. The
interested reader is referred to [16].

In Fig. 7, the “Application Information” part contains the warehouse dimensions
and fact tables (we show portions of schemas of the dimensions Land and Airports,



Fig. 7 Piet data structure

and the fact table WeatherFacts). The “GIS Information” part contains a table for
each layer in the system (we show Land, Rivers and Airports). Each table schema
has, at least, a unique layer identifier, and the extension of the geometric objects.
There is additional information (not shown in the picture, since we do not use it for
the temporal extension) used to compute the overlay when needed. The tables also
contain non-spatial attributes (e.g., area). Finally, there is the GIS-OLAP mapping
part. There, elements in the OLAP dimensions are matched with elements in the
GIS. This matching is performed in a semi-automatic fashion. First, a program based
on weighted bipartite matching ir run. A curator should later verify the accuracy of
this matching, and make the necessary changes.

7.2 Implementing the temporal extension: updates

The system must be able to manage changes to the geometric objects. We are aimed
at supporting the following changes, usually found in the literature [47] (a full study
of the implementation of these operators is outside the scope of this paper):

– Creation;
– Update (e.g., a change in the object’s extension, or in the object’s location in

space);
– Deletion (in the temporal sense, i.e., without losing the object’s history);
– Reincarnation (an object is deleted, and then re-created)
– Split (an object generates two or more new ones, and then it is deleted).
– Merge (two or more objects are merged into a new one, and deleted)

The different states are materialized as usual in temporal databases, adding two
attributes (denoted FROM and TO) of temporal type, to each one of the tables in
the GIS-OLAP and GIS information parts. Let us briefly explain how the operators
above are implemented. When a new object is created at instant t1, say, in the layer



Land (e.g., a new parcel is added), a tuple is inserted in the Land table, with the
corresponding parcel information. The attributes FROM and TO are set to t1 and
the distinguished value Now, respectively. Analogously, if this parcel, call it p1, is
split into p2 and p3 at instant t2, the tuple for p1 is deleted in the temporal database
sense, that is, it is timestamped with TO=t2 − 1 (i.e., an instant immediately before
t2 in the object’s granularity); in addition, two tuples are created for p2 and p3, with
FROM=t2, and TO=Now. Later, at t4, two parcels, p5 and p6 are merged into a single
one, call it p56. The former two tuples are deleted as before (i.e., timestamped with
TO=t4 − 1), and p56 is created with FROM=t4 and TO=Now. The update operation
at instant t is equivalent to the deletion of a tuple (i.e., a timestamping with t − 1),
and the insertion, at instant t, of a new one (keeping the same identifier). The
reincarnation operator is analogous to an update, except for the fact that the instants
of deletion and insertion are not consecutive.

Note that we have not said anything yet about the data warehouse side. One of the
premises of our model is to allow autonomous maintenance of warehouse and GIS
information, i.e., that OLAP data could be managed independently from the GIS
information. There are at least two possible situations here: (a) The data warehouse
and associated data cubes are the usual ones, where fact tables are updated off-
line (usually, only data insertion is allowed), and the dimensions are static, i.e., the
history of the dimension members and hierarchies is not kept, and only the last
state of the dimension data is available. In other words, the data warehouse is non-
temporal. (b) A temporal warehouse is available, i.e., dimensions are updated and
their history is preserved. We adopt here the concept of slowly changing dimensions
[29], where a new dimension tuple is added when an update occurs (dimension tables
are extended with FROM/TO attributes). More sophisticated solutions can be found
in the literature [14, 36, 37]. In the former case, the expressive power of the query
language may be reduced, as we explain below (Section 7.3). In both cases, some the
update operations described above should also include the update of the mapping
tables between the GIS and the OLAP parts, and consistency checking against the
warehouse. This occurs when the operations require creating new identifiers. For
example, in the creation, split, and merge operations, new objects are introduced
in the GIS; thus, the objects should be inserted in the warehouse dimensions and
new mappings must be defined. However, note that an update has no impact on the
data warehouse or in the mapping, since the object identifier does not change in
this case. Note that the mentioned insertions can be performed without impacting
the warehouse or the mapping function, although this could produce incomplete
answers to some queries (the ones that involve accessing the warehouse), due to the
incomplete mapping (i.e., the object would only be in one of the parts of the system).

7.3 Temporal extension to Piet-QL

We now sketch an extension to the Piet-QL query language, based on the formal
language of Section 6. We denote this extension TPiet-QL.

Let us start with a brief overview of Piet-QL (see [18] for a detailed study). We
present the flavor of the language through an example. We have already said that
Piet-QL supports four basic kinds of queries: (a) standard GIS queries; (b) standard
OLAP queries; (c) GIS queries, filtered with an aggregation (i.e., filtered using a
data cube); (d) OLAP queries filtered with a GIS condition. To begin with, let us



show an example of a Piet-QL query of type (d). There is a data cube (denoted
Sales), containing the aggregation (at different granularity levels) of the sales of
the production of the parcels in different regions in Belgium. There is also a layer
containing the cities in Belgium. Consider now the following query: “Production
cost and parcel sales, for parcels crossed by rivers”. This query reads, in Piet-QL:

SELECT CUBE [Measures].[Production Cost],
[Measures].[Parcel Sales] ON COLUMNS,
Product.[All_Products] ON ROWS
FROM [Sales]
WHERE [Land].[All Land] IN(
SELECT GIS land
FROM land, river
WHERE intersects(river,land);

This query returns, for each parcel and product, the corresponding production
costs and sales of the parcels that verify the geometric condition. The result can
be navigated in the usual OLAP fashion. The FROM clause of the outer query
indicates the data cube (Sales) from which aggregated non-spatial information is
extracted. In the inner query, land and river are GIS layers. Now, let us suppose that
we have stored the history of the parcels and the rivers. We extend Piet-QL to be
able to query such history. This way, the query: “Production cost and parcel sales,
for the parcels crossed by rivers in 2005”, would read in TPiet-QL:

SELECT CUBE [Measures].[Production Cost],
[Measures].[Parcel Sales] ON COLUMNS,
Product.[All_Products] ON ROWS
FROM [Sales]
WHERE [Land].[All Land] IN(
SELECT GIS land
FROM land, river
WHERE intersects(river,land) AND
land.FROM < 2005 AND land.TO > 2005 AND
river.FROM < 2005 AND river.TO > 2005;

Note the similarity between this query and the expressions in the formal query
language of Section 6.

Let us now consider the following query, of type (c): “Parcels crossed by the Dÿle
river, with production sales greater than 5,000 units” (i.e., a GIS query, filtered by
aggregated values). In Piet-QL the query reads:

SELECT GIS l.id
FROM land l, rivers lr
WHERE intersects(l, lr) AND lr.name = "Dÿle"
AND l.interval overlaps lr.interval
AND l IN(
SELECT CUBE
filter([Land].[Land parcelId].Members,



[Measures].[Parcel Sales] > 5000)
FROM [Sales]);

In this query, l and lr range over the elements in the layers. For each layer
identifier in the GIS, the subquery is run over the data cube. We have included the
overlaps interval operator, but any interval operation defined in the seminal work of
Allen [4] can be used. Since the predicate intersects is time-independent, the interval
operator defines the semantics of the intersection (e.g., in the query above, intersects
will return true if the river crossed the parcel at least during some time interval). Also
note that, for the inner query, the semantics implies that all the history is accounted
for, meaning for example, that if there are several tuples for the same parcel identifier
(due to successive updates) all of them will be checked against the data cube.

Note that if dimension updates were supported in the warehouse, more powerful
queries could be supported, meaning that temporal queries could be posed in the
inner query above, along the lines of [36, 37]. Otherwise, queries cannot include
temporal conditions over the warehouse dimensions. However, temporal conditions
in queries just involving the dimension identifiers can be expressed in TPiet-QL,
even if the warehouse does not support temporal semantics. More precisely, let
us assume a parcel p1 was created in 1995, and split in 2004 into p11 and p12.
Production sales were recorded for all these years in a fact table, at the level of
parcel identifier, i.e., tuples in this fact table are of the form 〈p1, 1995, 1000〉,...
〈p11, 2007, 800〉,..〈p12, 2007, 900〉.

Querying moving object data, like in Q5 and Q6 in Section 6, requires that the
language supports external tables (currently this is not handled by Piet-QL). For
example, “Objects (and the instants) whose trajectories had passed below a polluting
cloud” (query Q5 in Section 6), would read in TPiet-QL:

SELECT DISTINCT m.Oid,m.t
FROM MOFT m, GIS cloud c,
WHERE contains(c,m.p) AND
m.t ≥ c.FROM AND m.t ≤ c.TO;

Recall that the structure of the MOFT is (Oid, point, t), where point indicates the
x, y coordinates of the object’s position at time t. Variable m ranges over the MOFT
(Moving Object Fact Table) and c ranges over the objects is the layer cloud.

7.4 Spatio-temporal integrity constraints

There exists extensive literature on the topic of integrity constraints in spatial
databases. Cockcroft [11] proposed a taxonomy for these kinds of constraints that
also includes the traditional (non-spatial) referential integrity constraints present
in relational database systems. The author defines a hierarchy of spatial integrity
constraints which includes the traditional ones, plus the new classes: topological,
semantic and user-defined constraints. The topological class includes the constraints
studied by Hadzilacos and Tryfona [23]. Semantic constraints in this taxonomy
are concerned with the meaning of geographical features. An example is a a
constraint stating that a user cannot enter a road running through a lake. Finally,
user-defined constraints resemble more classic database rules. For example, a rule



can state that gas stations cannot be located closer than a given distance from a
school. The author also suggests technologies that could be used to implement the
spatial constraints. Later, Tryfona and Hadzilacos [61] introduce a spatio-temporal
data model (denoted STRM) that includes a language to define spatio-temporal
integrity constraints, based in a predicate calculus that includes atomic formulas,
negation conjunction, disjunction, and (universal and existential) quantification. This
allows expressing complex spatiotemporal integrity constraints, using a DEFINE
CONSTRAINT statement. The statement includes the layers and objects involved,
and the specification of the constraint as an FO-formula. Borges et al. [9] propose
OMT-G, an extension of the OMT model for geographic applications for the
specification of integrity constraints in spatial databases. The model provides a col-
lection of primitives for representing spatial data, supporting topological, semantic
and user-defined integrity rules to be specified in the database schema, based on the
taxonomy defined by Cockcroft. More recently, Rodriguez et al. [54] define a repair
semantics for spatial databases with respect to spatial semantic integrity constraints
which impose semantics on topologies, in particular for binary spatial predicates
that represent topological relations between regions. In short, a repair semantics
defines admissible and consistent alternative instances to for an inconsistent spatial
database.

The formal language we propose in this paper and its implementation TPiet-QL,
can be used to specify constraints not only over the GIS layers, but also over the data
warehouse. STRM defines constraints as FO-formulas, like Lt does. In addition, the
Piet data model (and its associated language Lt) supports GIS-OLAP integration, a
feature not present in other proposals. Thus, it would be straightforward to extend
TPiet-QL (which we already commented is strongly based on Lt) to be a constraint
definition language (note that this is a concept already used in relational databases
where SQL is used a a basis for defining triggers).

8 Conclusion and future work

Based on an existing formal data model (Piet) we have discussed two ways of
introducing time into SOLAP. We first present a modified Piet conceptual model,
keeping its features while making it simpler and closer to the implementation layer.
Then, we studied two ways of adding temporal semantics to Piet, based on two
temporal database paradigms: the snapshot and the timestamp data models. We
developed a formal model for each of these alternatives and discussed their features,
showing that the timestamp model better fulfills the SOLAP requirements. We then
defined a temporal First-Order query language, providing comprehensive examples
that illustrate its use. We finally moved on to implementation issues. First, we
discussed how the data structure of Piet is modified to support temporality. Second,
how this structure supports typical updates on the GIS side and the implications of
the existence or not of a warehouse with temporal semantics. Finally, we sketched an
extension of Piet-QL (the query language of Piet), with temporal semantics.

Future work regarding TPiet-QL includes an ongoing real world case study over
river pollution in the cost of Uruguay, and the study of query optimization tech-
niques. In particular, we are planning to study mechanisms that can take advantage
of the fact that historical information can be aggregated and stored as materialized



views that will not have to be further updated as new information arrives. Techniques
of this kind have been applied in temporal data warehousing [64], and we think
that some of these ideas could be adapted to be applied in spatio-temporal query
processing. Finally, extending the language to allow the definition of constraints as
explained in Section 7.4 is another promising line of work.

Open research issues We commented in Section 2 that the contribution of the
GIS and OLAP communities to the study of models involving together OLAP and
continuous f ields has been rather limited so far. Given this, and given that the study
of continuous fields is increasingly gaining attention from the GIS practitioners,
we believe that integrating continuous fields and OLAP applications is a relevant
research topic. In this sense, one of our future research directions is oriented to
extend TPiet-QL to support not only spatial objects as we discussed in the present
paper, but continuous fields as well. This requires extending the data model and the
formal query language supporting TPiet-QL, and the implementation of the latter to
support fields. One possible approach could be to add a new f ield data type (and its
associated lifted moving type à la Güting et al. [21]). This is the approach proposed by
Vaisman and Zimányi [66], who proposed a conceptual model for multidimensional
analysis of continuous fields. This work extends the classification of spatial OLAP
queries proposed in [65] with two new query classes: SOLAP-CF and STOLAP-
CF. The former is the class containing the queries that can be expressed using the
Klug’s relational calculus [31] augmented with spatial and field types. The latter is
the class containing the queries that can be expressed using the Klug’s relational
calculus augmented with spatial types, field types, and moving spatial types.

There is also room for research on the theoretical side, as commented in
Section 6. A thorough study of the complexity and expressiveness of the formal
language presented in this paper has not yet been performed. For this, theoretical
results in spatial databases (see for example [42] and [43]) can be applied and
extended.
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