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ABSTRACT:

In this work, a new nonlocal means filter for single-look speckled data using the Shannon and Rényi entropies is proposed. The
measure of similarity between a central window and patches of the image is based on a statistical test for comparing if two samples
have the same entropy and hence have the same distribution.
The results are encouraging, as the filtered image has better signal-to-noise ratio, it preserves the mean, and the edges are not
severely blurred.

1. INTRODUCTION

The interference of waves reflected during the acquisition pro-
cess of SAR (Synthetic Aperture Radar) images give rise to a
multiplicative and non-Gaussian noise that characterizes them
and is known as speckle noise (Oliver, Quegan, 2004). Many
image filters are based on the parameter estimation of the under-
lying distribution of the data, but SAR image data have a heavy
tailed and outliers prone distribution (Rojo, 2013, Gambini et
al., 2015). Classic filters are not adequate to SAR images de-
noising, due to this noise.

Maximum a Posteriori Filters have been used to reduce the
noise of single look SAR images in (Kuan et al., 1987), model-
ing the a priori distribution of the backscatter with a Gaussian
law. In (Lopes et al., 1990, Sant’Anna, 1995) other a priori
distributions, such as the β and Γ, were utilized.

Stack filters have been studied that have shown that they pre-
serve the edges and details (Dellamonica et al., 2007). Adaptive
Stack filters have been proposed in (Lin et al., 1990) that were
improved with fast algorithms in (Lin, Kim, 1994, Buemi et al.,
2014).

In (Ferraioli et al., 2019) a nonlocal anisotropic despeckling ap-
proach for SAR images, is presented. This diversity of propos-
als generates the needing of to define criteria in order to evalu-
ate the quality of a filter in a speckled image. In (Wang et al.,
2002) the difficulty of measuring the quality of a filter, is ana-
lyzed. In (Gómez Déniz et al., 2017) as assessment of quality
filter measures, is showed.

Nonlocal Means algorithms are a successful approach for image
denoising. These filters take of a group of pixels surrounding
a target pixel to smooth the image. In (Lebrun et al., 2013) a
Bayes theorem based method, is presented.

The non-local means filtering takes a mean of a group of pixels
in the image, weighted by values. Different methods apply a
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diversity of criteria for defining the weight values. In (Torres
et al., 2014) a speckle reduction method was developed for po-
larimetric SAR imagery by means of stochastic distances and
nonlocal means.

Due to the stochastic nature of speckle noise, the statistical
modeling of SAR data is strategic for image interpretation (Chan
et al., 2019). In (Gao, 2010), the author details different models
proposed for describing these kind of data and analyzes their
properties. The multiplicative model for SAR image modeling
appears to be an excellent choice. It states that the observed data
can be modeled by a random variable Z, which is the product
of two independent random variables: X which describes the
backscatter, and Y that models the speckle noise. Following
the multiplicative model, Frery et al. (Frery et al., 1997) intro-
duced the G0

I distribution which has been widely used for SAR
data analysis. It is referred to as a Universal Model because of
its flexibility and tractability (Mejail et al., 1998). It provides a
suitable way for modeling areas with different degrees of tex-
ture, reflectivity and signal-to-noise ratio.

The G0
I distribution is indexed by three parameters:

• α, related to the target texture,

• γ, related to the brightness and called scale parameter,

• L, the number of looks, which describes the signal-to-
noise ratio.

The two first may vary among positions, while the latter can
be considered the same on the whole image. The third can be
known or estimated.

Shannon (Shannon, 1948) proposed the entropy to measure the
relative information between two random variables using their
density functions. Entropies were studied by Kullback and Lei-
bler (Kullback, Leibler, 1951) and Rényi (Rényi, 1961), among
others. These measures are basilar elements for defining di-
vergences. Liese and Vajda (Liese, Vajda, 2006) discussed the
properties of several divergences.



The Shannon entropy has been widely applied in statistics, im-
age processing, and even in SAR image analysis (Nascimento
et al., 2018).

In this work we use Shannon and Rényi entropies of the G0
I

distribution to develop our aim and we propose a nonlocal filter
for speckled images noise reduction. We construct a filter of
type non local means and employ explicit expressions of these
entropies for the selection of the weights.

This article unfolds as follows. In Section 2, the G0
I distribution

is explained. Section 3 introduces the formulae of entropies for
G0
I distribution. In Section 4, the proposal algorithm for speckle

reduction is detailed. In Section 5, the results of applying the
method to synthetic images are presented. Finally, in Section 6
conclusions and future work are exhibited.

2. THE G0
I DISTRIBUTION

Speckle noise follows a Γ distribution, with density

fY (y;L) =
LL

Γ(L)
yL−1 exp{−Ly},

denoted by Y ∼ Γ(L,L). The physics of image formation
imposes L ≥ 1.

The model for the backscatter X , may be any distribution with
positive support. Frery et al. (Frery et al., 1997) proposed using
the Reciprocal Gamma law, a particular case of the General-
ized Inverse Gaussian distribution, which is characterized by
the density

fX(x;α, γ) =
γ−α

Γ(−α)
xα−1 exp{−γ/x},

where α < 0 and γ > 0 are the texture and the scale parameters,
respectively. Under the multiplicative model, the return Z =
X.Y follows a G0

I (α, γ, L) distribution, whose density is

fZ(z) =
LLΓ(L− α)

γαΓ(−α)Γ(L)
· zL−1

(γ + zL)L−α
, (1)

where −α, γ, z > 0 and L ≥ 1. The r-order moments of the
G0
I (α, γ, L) distribution are:

E(Zr) =
( γ

L

)r Γ(−α− r)

Γ(−α)

Γ(L+ r)

Γ(L)
, (2)

provided α < −r, and infinite otherwise. To simplify calcula-
tion and with the intention of obtaining comparable results, in
most experiments we deal with a restricted case which assumes
E(Z) = 1, in this case Eq. (2) implies that γ∗ = −α− 1.

We are interested in simulating the noisiest case which occurs
when L = 1; it is called single-look and expression (1) becomes

fZ(z) =
−α

γ

(
z

γ
+ 1

)α−1

. (3)

In this case the cumulative distribution function is given by

FZ(z) = 1−
(
z

γ
+ 1

)α

. (4)

In order to estimate the parameters α and γ, the maximum like-
lihood method is used. Given the sample z = (z1, . . . , zn) of
independent and identically distributed random variables with
common distribution G0

I (α, γ, 1) with (α, γ) ∈ Θ = �−×�+,
a maximum likelihood estimator of (α, γ) satisfies

(α̂, γ̂) = arg max
(α,γ)∈Θ

L(α, γ, 1, z), (5)

where L is the likelihood function. This leads to α̂ and γ̂ such
that

n[Ψ0(−α̂)−Ψ0(1− α̂)] +

n∑
i=1

ln
γ̂ + z2i

γ̂
= 0 (6)

nα̂

γ̂
+ (1− α̂)

n∑
i=1

(γ̂ + z2i )
−1 = 0, (7)

where Ψ0(t) = d ln Γ(t)/dt is the digamma function.

3. ENTROPIES FOR THE G0
I DISTRIBUTION

Let f be a probability density function with support Ω, its (h, φ)-
entropy Hh

φ (f, θ) is given by:

Hh
φ (f, θ) = h

[∫
Ω

φ (f(x, θ)) dx

]
, (8)

being φ : [0,+∞) → R concave and h : R → R an increas-
ing function or φ : [0,+∞) → R convex and h : R → R a
decreasing function (Salicrú et al., 1994).

In this work we use Shannon and Rényi entropies, with

• Shannon Entropy: h(x) = x and φ(x) = −x lnx.

• Rényi Entropy: h(x) = (1 − β)−1 lnx and φ(x) = xβ ,
β ∈ (0, 1).

We calculate the entropies for the G0
I (α, γ, 1) distribution. The

Shannon entropy for a probability density function f with para-
meters θ = (θ1, . . . , θn) is given by:

HS(f, θ) = −
∫ +∞

−∞
f(z, θ) ln f(z, θ)dz.

Then, for the G0
I distribution, considering θ = (α, γ) and L =

1:

HS(fG0
I
, α, γ) = −

∫ +∞

0

−α

γ
(1 +

z

γ
)α−1

∗ ln(−α

γ
(1 +

z

γ
)α−1)dz

=
α− 1

α
− ln(−α

γ
).

The Rényi entropy with β parameter for any probability density
function f is given by:

Hβ
R(f, θ) =

1

1− β
ln

∫ +∞

−∞
[f(z)]β dz, β ∈ (0, 1).



And for the Single Look G0
I distribution is given by

Hβ
R(fG0

I
, α, γ) =

β

1− β
ln

(
−α

γ

)
+

1

1− β
ln

(
− γ

β(α− 1) + 1

)
.

3.1 Asymptotic Entropy Distribution

Following the result from (Salicrú et al., 1994), we know that
given θ̂ = (θ̂1, θ̂2, . . . , θ̂p) the maximum likelihood estimator
of the parameters of a distribution f(Z, θ), based on a random
sample of size N , then:

√
N

(
Hφ

h (f, θ̂)−Hφ
h (f, θ)

)
D−−−−→

N→∞
N (0, σ2

H),

being σ2
H(θ) = δTK(θ)−1δ, where K(θ) is the Fisher Infor-

mation matrix of f(Z, θ) and δ is given by:

δ = [δ1, δ2, . . . , δp] with δi =
∂Hφ

h (θ)

∂θi
(9)

and

K(θ) = E

(
−∂2 ln f(z, θ)

∂θ2

)
.

From Eq. (3),

ln f(z, α, γ) = ln(−α)− ln γ + (α− 1) ln
(
1 +

z

γ

)
. (10)

The second order derivatives are given by (Naranjo-Torres et
al., 2017):

∂2 ln f

∂α2
= − 1

α2
(11)

∂2 ln f

∂α∂γ
= − z

γ2 + zγ
(12)

∂2 ln f

∂γ2
=

1

γ2
+

α− 1

γ2

[
− z2

(γ + z)2
+

2z

z + γ

]
(13)

Then, the Fisher information matrix is given by:

K(θ) =

⎛⎜⎝
1

α2

1

γ(1− α)
1

γ(1− α)

α

γ2(α− 2)

⎞⎟⎠ (14)

From (9), for the G0
I (α, γ, 1) distribution and the Shannon en-

tropy, we have

δTS = [δ1, δ2] =

[
∂HS(α, γ)

∂α
,
∂HS(α, γ)

∂γ

]
, (15)

then

δTS =

[
1

α2
− 1

α
,
1

γ

]
. (16)

For the Rényi entropy:

δTR =

[
∂HR(α, γ)

∂α
,
∂HR(α, γ)

∂γ

]
=

[
r

1− r

(
1

α
− 1

r(α− 1) + 1

)
,
1

γ

]
.

Then, the asymptotic variance of the Shannon entropy is given
by:

σ2
HS

=
(

1
α2 − 1

α
; 1
γ

)( 1
α2

α
γ2(α−1)

α
γ2(α−1)

α

γ2(α− 2)

)−1 (
1
α2 − 1

α
1
γ

)

The Inverse of the Fisher Information Matrix expression for the
G0
I distribution is:

[K(θ)]−1 =

(
(α− 1)2α2 αγ(α− 1)(α− 2)

αγ(α− 1)(α− 2) γ2(α− 1)2(α− 2)/α

)
(17)

Then de asymptotic variance of Shannon Entropy expression is:

σ2
HS

=
(α− 1)2

[
(−2 + 4α3 − γ2 − α2(10 + γ2) + α(5 + 2γ2))

]
α2 [(α(5 + 2γ2)− 2− γ2 − α2(2 + γ2)]

(18)
and for the Rényi entropy:

σ2

H
β
R

=
(α− 1)2(−2 + 4β + 4α3β2 − β2(4 + γ2)

(1 + (α− 1)β)2(α(5 + 2γ2)− α2(2 + γ2)− γ2 − 2)

+
α(1− 10β + 2β2(7 + γ2 − α2β(−4 + β(14 + γ2))))

(1 + (α− 1)β)2(α(5 + 2γ2)− α2(2 + γ2)− γ2 − 2)
(19)

being δ =
β(α− 1)

1− β
and λ = 1− α

β(α− 1) + 1
.

3.2 Hypothesis Testing with h-φ entropies

Let X = {x1, . . . , xN1} and Y = {y1, . . . , yN2} be two ran-
dom samples from the G0

I distribution and parameters (α1, γ1)
and (α2, γ2), respectively. In order to analyze if X and Y come
from the same distribution, it can be utilized the following hy-
pothesis test:

H0 : HM(θ̂1) = HM(θ̂2) = v (20)

H1 : HM(θ̂1) 	= HM(θ̂2), (21)

where M ∈ {S,R}, S and R indicate Shannon and Rényi en-
tropies, respectively.

Let θ̂i be the maximum likelihood estimator of θi using a sample
of size Ni. Following (Salicrú et al., 1994), for r ≥ 2

r∑
i=1

Ni(HM(θ̂i)− v̄)2

σ2
M(θ̂i)

D−−−−→
N→∞

χ2
r−1 (22)

being

v̄ =

[
r∑

i=1

Ni

σ2
M(θ̂i)

]−1 r∑
i=1

NiHM(θ̂i)

σ2
M(θ̂i)

(23)

In our case r = 2, θ = (α, γ) and N1 = N2 = N , the test



statistic is:

SM(θ1, θ2) = N
(HM(θ̂1)−HM(θ̂2))

2

σ2
M(θ̂1) + σ2

M(θ̂2)
. (24)

For large samples, SM(θ1, θ2) = s, the null hypothesis can be
rejected with significance level η if:

P (χ2
r−1 > s) ≤ η, (25)

where P (χ2
r−1 > s) is the p-value for the statistic SM, M ∈

{S,R}. It can be observed that if the null hypothesis is rejected,
it means that the samples are from different distributions with a
significance level η.

4. PROPOSAL ALGORITHM FOR SPECKLE
REDUCTION

In this section we explain the method for despeckling an im-
age by means of testing if two samples X ∼ G0

I (α1, γ1, 1) and
Y ∼ G0

I (α2, γ2, 1) have the same entropy and then they have
been drawn from the same distribution, then we pose the null
hypothesis H0 : HM(α1, γ1) = HM(α2, γ2) and we want to
know the probability of rejecting it. The test is based on the
asymptotic distribution of SM, M ∈ {S,R}.

The filter is built in the following way, we consider two sliding
windows, Wi, i = 1, . . . , n of size t × t (white) and W i

j , j =
1, . . . , t2 of size k × k (light blue), where k << t, as shown
in Figure 1. For each i ∈ {1, . . . , n}, a small window W i

c

centered in the the central pixel of the window Wi (violet), is
considered. The pixels sample from W i

c is compared with the
pixels samples of small sliding windows inside Wi.

The computed p-values of the statistics SM, M ∈ {S,R} are
used as weights of a smoothing mask. Algorithm 1 shows the
steps of the method.

Algorithm 1: Despeckling algorithm.
Input: Original image I of size n× n, t, k sizes of the

large and small sliding windows, respectively.
Output: The smoothed image.
for i = 1 to n do

Consider a sliding window Wi of size t× t.
Consider a k × k neighborhood of the central pixel xi

c

of W i, named W i
c .

Compute the maximum likelihood estimates (α̂i
c, γ̂

i
c)

for sample W i
c .

Calculate the entropy and the variance for the central
pixel of the window.

Consider k × k patches W i
1 , . . . ,W

i
t2 which are small

overlapping windows inside the window Wi

corresponding to the neighborhoods of each pixel
xj ∈ Wi, j = 1, . . . , t2.

Compute the estimates (α̂j , γ̂j) for sample
W i

j , j = 1, . . . , t2 and then calculate the entropy and
its asymptotic variance for the pixel xj , j = 1 . . . , t2.

Compute the statistic Si
j , using Eq. (24) and the

corresponding p-value pij , j = 1, . . . , t2 using the
asymptotic distribution χ2

1.
Compute xsmooth

i =
∑t2

j=1 p
i
jxj .

end
return xsmooth

W i
1 W i

2 W i
3

xi
c

Figure 1. The large sliding window and small patches inside the
window.

5. RESULTS

In order to assess the smoothing quality, we follow the proposal
in (Gómez Déniz et al., 2017) and we compute the equivalent
number of looks, and the average over the whole image. A
good smoothing method should increase the equivalent number
of looks, and retain the average of whole original image in the
resulting image.

Figure 2 shows the result of applying the method to a simulated
image generated under the G0

I distribution. For this construc-
tion we apply the recommendations of (Chan et al., 2018). Fig-
ure 2(a) shows the original data, the two halves of the image
were generated with G0

I (−4, 3, 1) and G0
I (−1.5, 0.5, 1) distri-

butions, respectively. Figure 2(b) shows the filtered image with
patches of size 5× 5, a sliding window of size 25× 25 and the
statistic is computed with the Rényi entropy.

For cases where reference ground truth image is not available,
the estimations of image mean preservation and variance reduc-
tion, estimated in a user-selected homogeneous area, are neces-
sary for assessing the despeckling quality of the methodology.

In the smoothed image the ENL should be as high as possible,
because a high ENL value reveals a greater speckle rejection
and therefore an improved ability to distinguish different tex-
ture levels.

Given an image I and considering an homogeneous region Ih,
with intensity average value z and a standard deviation s, its
ENL is estimated:

ENL =
μ2

σ2
(26)

Table 1 shows the estimates of the equivalent number of looks
(ENL) and average for the original and the smoothed images.
It can be observed the increment in the ENL value while the
average is almost the same.

Figure 3 shows the result of applying the method to a syn-
thetic image generated with the G0

I distribution. Figure 3(a)
shows the original data, the four regions of the image are gen-
erated with G0

I (−5, 10, 1), G0
I (−5, 1, 1), G0

I (−1.5, 10, 1) and



(a) Original image.

(b) Despeckled image.

Figure 2. Result of applying the despeckling method using
Rényi entropy.

G0
I (−1.5, 1, 1) distributions. Figure 3(b) shows the filtered im-

age with a small windows of size 7× 7, a large window of size
49× 49 and the statistic is computed with the Shannon entropy.

Table 2 shows the estimates of the equivalent number of looks
and average for the original and the smoothed images. It can
be observed the increment in the ENL value while the average
keeps the same.

6. CONCLUSIONS AND FUTURE WORK

We have proposed a new nonlocal means filter for single-look
speckled data based on the asymptotic distribution of the Shan-
non and Rényi entropies for the G0

I distribution.

The measure of similarity between the central window and the
patches is based on a test statistic for checking if the two samples
come from the same distribution.

Table 1. Estimates of the equivalent number of looks for both
images from Figure 2.

Figure ENL Average
2(a) 0.85 1.04
2(b) 58.36 0.96

(a) Original image.

(b) Despeckled image.

Figure 3. Result of applying the despeckling method using
Shannon entropy.

The results are encouraging, as the filtered image has better
signal-to-noise ratio, it preserves the mean, and the edges are
not severely blurred.

In future works, we want to asses with several criteria the per-
formance of this filter in case of contaminated data and we
will consider another measures as Kullback-Leibler distance
and test its performance for a similar construction of a filter
on actual SAR data.
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