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Abstract— One of the main challenges in automatic glycemic
regulation in patients with type 1 diabetes (T1D) is to dispense
with carbohydrate counting. In this context, we propose to
equip a previously introduced switched Linear Quadratic Gaus-
sian (LQG) controller—the so-called Automatic Regulation of
Glucose (ARG) algorithm—with an automatic switching signal
generator (SSG). The ARG algorithm not only regulates the
basal insulin infusion rate but also generates feedback insulin
spikes at meal times, i.e., no open-loop insulin boluses are
needed to mitigate postprandial glucose excursions. However, in
its former version, it was required to announce the meal time.
In this work, the performance of the ARG algorithm combined
with the proposed SSG is assessed in silico with unannounced
meals. In addition, the response of the SSG is estimated using
clinical data obtained with the ARG algorithm in the first-ever
artificial pancreas (AP) trials carried out in Latin America.

I. INTRODUCTION

The traditional treatment for type 1 diabetes (T1D)
requires multiple daily injections (MDI) of exogenous
insulin, together with constant glycemic monitoring using
a glucometer and test strips. However, in recent years new
technology to treat T1D has been developed. One that stands
out is the so-called artificial pancreas (AP), which connects
an insulin pump with a continuous glucose monitoring
(CGM) sensor through a control algorithm. This algorithm
calculates the adequate amount of insulin to be infused to
maintain the patient’s glucose concentration in a safe range
[1]. Nevertheless, this is still an open problem, primarily
due to the large delays introduced by the subcutaneous
route [2]. It has been proven that the open-loop procedure
is optimal under nominal conditions [3], [4]. However, as
both disturbances and models are unknown in practice, a
feedback solution is necessary.

In this context, several control strategies to automatically
regulate the blood glucose (BG) level have been proposed
by the scientific community, being most of them based
on model predictive control (MPC) [5], [6], proportional-
integral-derivative (PID) control [7], [8], and fuzzy logic
(FL) [9]. Since high model uncertainty and large delays
limit the autonomy of glucose controllers, the great
majority of the proposed control strategies are hybrid, i.e.,
a combination of open-loop (manual) meal boluses and
a closed-loop algorithm that modulates the basal infusion
rate. Each meal bolus is calculated before the meal time
from the estimated amount of carbohydrates (CHO). This
is a significant burden for patients with T1D who, in
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addition, are exposed to the risk of postprandial hypo- or
hyperglycemia in case of miscounting [10].

A few research groups have developed meal detection
methods. In [11], a voting algorithm is proposed based on
different detection methods applied to the CGM signal. The
meal is detected when two out of three or three out of
four methods detect the meal with an average delay in meal
detection of around 30 min. In [12], the proposed detector
uses a modified version of Bergman’s minimal model with
an unscented Kalman filter for state estimation, and the esti-
mated rate of appearance is used for meal detection. In [13],
a method for anticipating meals through the use of behavioral
profiles is presented. There, a stochastic MPC strategy is used
to anticipate the meal arrivals. In [14], the approach is to give
reasonable amounts of insulin boluses based on a series of
meal impulses, and not to estimate the amount of CHO ac-
curately. The algorithm is based on continuous observations
of the first and second derivatives of glucose to produce a
series of meal impulses when a set of conditions are satisfied
(detection delay of ∼30 min). The insulin boluses are then
combined with a MPC algorithm. In [15], a probabilistic
method for meal detection is developed. This algorithm
compares the CGM signal to no-meal predictions made by
a simple insulin–glucose model. Then, residuals are fit to
potential meal shapes, and lastly, these fits are compared and
combined to detect any meal. However, since these methods
are based on CGM readings, there is always an unavoidable
compromise between fast detection and false positives.

Recently, an AP control law called Automatic Regulation
of Glucose (ARG) was clinically evaluated in five patients
with T1D at the Hospital Italiano de Buenos Aires (HIBA)
[16], [17]. It consists of a switched Linear Quadratic
Gaussian (SLQG) controller that works together with a
sliding mode safety layer called Safety Auxiliary Feedback
Element (SAFE) [18], [19]. In this work, an automatic
switching signal generator (SSG) is proposed to be
integrated into the ARG algorithm. The core element of this
switching module is a Kalman filter that generates a filtered
version of the amount of glucose in the stomach. The
performance of the ARG algorithm combined with the SSG
is evaluated using both (a) simulated data obtained from
the UVA/Padova simulator [20], and (b) real data obtained
during the clinical trial that was carried out at the HIBA.

The paper is organized as follows. Next section describes
the ARG algorithm briefly. Section III introduces the pro-
posed SSG module. In silico results are presented and
analyzed in Section IV. Finally, in Section V, the performance
of the SSG using clinical data from the clinical trial at the
HIBA is discussed.
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Fig. 1: Block diagram of the ARG algorithm.

II. THE ARG ALGORITHM

The ARG algorithm regulates glycemia without requiring
open-loop prandial boluses. Instead, it switches between two
LQG controllers Kσ: one aggressive (K2) that counteracts
the effect of meals, and one conservative (K1) that takes
over the insulin delivery at all other times. Figure 1 shows
a block diagram of this AP algorithm. The SSG block
commands the switching signal σ: [0,∞) → I = {1, 2}
that determines which LQG controller is active. Since the
controller does not have integral action, the patient-specific
basal rate is added to the insulin dose calculated by the
SLQG controller (uc), yielding u. Signal u is then modulated
by the SAFE block through factor γ ∈ [0, 1] in order not to
violate an imposed limit on the insulin-on-board (IOB). To
this end, the SAFE mechanism defines a sliding function
σSM as the difference between the predefined IOB threshold
(IOB) and the IOB estimate, and computes a switching logic
ω. To avoid the chattering phenomenon in the control action
γu, the modulation factor γ is defined as a low-pass filtered
version of ω. In this way, the gain of the SLQG controller
is smoothly attenuated when the given IOB limit is reached.

As previously stated, controllers K1 and K2 respond
differently. While K2 generates large insulin spikes to reduce
postprandial glucose excursions, K1 slightly modulates the
basal insulin rate. For this reason, the weighting matrices
used to design controller K2 were tailored to generate a faster
and more aggressive response than controller K1 (see details
in [16]). In its current state, the switching between K2 and K1

occurs automatically one hour after K2 is selected, although
other techniques that involve the SAFE layer were explored
[21]. On the other hand, the switching between K1 and K2

can be done with or without meal announcement. Although
we had successfully evaluated closed-loop strategies with
fully automatic SSG algorithms in simulation studies [22]–
[24], meal announcement was required to enable the con-
troller to switch from K1 to K2 in the first in vivo evaluation
of the ARG algorithm. In this way, the compromise between
fast detection and false positives was eliminated, focusing
the trial on testing the feasibility of the control strategy.

It is important to emphasize that controller K2 is not
immediately selected when a meal is announced, but instead

a listening mode is triggered for 90 minutes. During that
mode, the CGM trend is analyzed by a SSG module, and the
SLQG switches to its aggressive mode only if an increasing
trend is detected. In addition, the patient does not have to
inform the exact amount of CHO. Instead, he/she has to
classify the meal as small, medium or large to adapt the
IOB proportionally to the informed meal size. A meaningful
difference with treatments that require exact CHO calculation
and even others that also use meal classification [25] is that
the ARG does not deliver priming meal boluses. Another
feature based on the SAFE mechanism that was added to the
ARG algorithm is the possibility of decreasing the IOB when
risk of hypoglycemia is detected. A more detailed description
of how the IOB is defined can be found in [16], [17].

III. THE SSG MODULE

The signal that commands which LQG controller is
selected is σ. In order to eliminate the meal announcement
input to the SSG module and take a step towards fully
automatic control, an algorithm to automatically establish σ
based on CGM readings is described in this section.

Figure 2 shows a block diagram of the proposed SSG
module. The first block is a noise spike filter (NSF) that
limits the maximum BG rate of change to 3 mg/dl/min [26].
The filtered signal gf is the input to the second block, which
is a Kalman filter. The Kalman filter is used to approximately
estimate the amount of glucose in the first phase of the
stomach Q̂sto1, which according to [27] can be modeled as:

Q̇sto1(t) = −kgri ·Qsto1(t) +Dδ(t) (1)

where kgri [min�1] is the rate of grinding, D [mg] is the
amount of ingested glucose, and δ(t) is the Dirac delta
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Fig. 2: Block diagram of the SSG module.



function. Thus, the problem of estimating Qsto1 can be
associated with an initial condition problem, and therefore,
Qsto1 can be estimated purely with CGM feedback. In
the UVA/Padova simulator, a meal is represented by a
rectangular signal in [mg/min] with a default duration of
15 minutes, which in any case, is considerably less than the
time constant of the meal-glucose system.

To design the Kalman filter, a linearized model from the
meal input to the glucose output was obtained for each
virtual adult of the UVA/Padova simulator at the basal state.
Due to high measurement noise and the fact that the system
input (meal intake) is unknown, the estimation of Qsto1 will
be rather slow and attenuated. However, the goal here is not
to track Qsto1 perfectly, but to combine this signal with gf
to establish a switching policy that provides a good trade-off
between fast detection of hyperglycemic conditions and
false positives due to noisy CGM readings. In this regard,
the meal-glucose model associated with the most sensitive in
silico subject, adult #007, was selected at this stage where
no model personalization was performed. Then, the selected
model was discretized with a sampling time of 5 minutes:

xm(k + 1) = Amxm(k) +Bmum(k) (2)
ym(k) = Cmxm(k)

where um is the meal input and ym is the glucose deviation
output from the basal value. In order to estimate Qsto1, the
following Kalman filter was designed:

x̂m(k + 1|k) = Amx̂m(k|k − 1)

+ Lm[ym(k)− Cmx̂m(k|k − 1)] (3)

Q̂sto1(k) = [1 0 ... 0]x̂m(k)

where Lm was obtained using the expected variances of
the process (W) and measurement noise (V) as tuning
parameters (W/V = 500).

The aim of the SSG module is to detect via gf and Q̂sto1
hyperglycemic events that require the controller to switch to
its aggressive mode, for example, to mitigate meal-related
glucose excursions. To this end, the following conditions
were defined to guarantee CGM noise immunity using the

sensor model of the simulator in approximately 80% of the
cases. If Q̂sto1 is greater than 1625 mg and increasing, and
if gf is greater than 140 mg/dl, the controller switches to
its aggressive mode for an hour, as in the clinical trials at
HIBA. To make the system more robust to false positives at
night and during postprandial periods (multiple detections of
a single meal), time-dependent thresholds for gf and Q̂sto1
can be defined. In this work, the threshold for gf is raised
to 250 mg/dl in the time range from 11:30 PM to 6:30 AM,
and the threshold for Q̂sto1 is increased to 3000 mg during
the two hours after a hyperglycemic event is detected. It is
worth remarking that in a real-life scenario, these thresholds
can be personalized according to the system performance
and subject’s behavior.

As previously mentioned, the filter is not able to properly
track the peak in Qsto1 after a meal, meaning that it cannot
be directly used to adapt the IOB limit. Therefore, at this
stage, it was decided as a trade-off to switch IOB from
IOBs (constraint defined for a small-sized meal) to IOBm
(constraint defined for a medium-sized meal) during the 90
minutes after hyperglycemia is detected. It is worth noting
that the IOB limit implies only a constraint and not the
exact amount of insulin to be delivered. Even so, as with
the thresholds for gf and Q̂sto1, the IOB can be tuned to a
particular subject based on the hyper- and/or hypoglycemia
frequency.

IV. ARG WITH UNANNOUNCED MEALS: IN SILICO TESTS

The performance of the ARG algorithm working together
with the proposed SSG module was tested in silico, con-
sidering CGM as the sensor, unannounced meals and all
10 adults of the distribution version of the UVA/Padova
simulator. To this end, the 36 h protocol defined for the
clinical trial at HIBA is recreated in this section. Simulations
start with subjects at their fasting state and involve 5 meals
that are distributed as follows: two dinners of 55 grams of
carbohydrates (gCHO) each, one breakfast (28 gCHO), one
lunch (55 gCHO) and an afternoon snack (28 gCHO). Thus,
a total of 50 meal tests are performed to: (a) verify the
performance of the SSG module per se, and (b) evaluate

Dinner 1 Breakfast Lunch Snack Dinner 2
Adult # ∆t1 ∆t2 ∆t1 ∆t2 ∆t1 ∆t2 ∆t1 ∆t2 ∆t1 ∆t2
001 0 20 0 25 -5 15 0 30 5 20
002 0 15 5 30 -10 10 0 20 0 15
003 0 25 -5 30 0 20 -5 35 10 30
004 0 15 -10 25 5 20 -5 30 5 15
005 0 15 0 25 0 15 0 30 5 15
006 0 15 0 25 0 30 0 40 10 20
007 0 15 5 25 -10 5 -5 25 5 15
008 0 15 -5 25 0 20 0 25 5 15
009 -5 15 5 30 -5 25 -5 25 5 20
010 5 25 -5 25 0 20 0 40 5 20
Mean (STD) 0 (2.4) 17.5 (4.2) -1 (5.2) 26.5 (2.4) -2.5 (4.9) 18.0 (7.1) -2 (5.6) 30.0 (6.7) 5.5 (2.8) 18.5 (4.7)
Median [IQR] 0 [0–0] 15 [15–20] 0 [-5–5] 25 [25–30] 0 [-5–0] 20 [15–20] 0 [-5–0] 30 [25–35] 5 [5–5] 17.5 [15–20]

TABLE I: Time difference in meal detection (in minutes) between the ARGmd and the SSG module with open-loop insulin
infusion (∆t1), and between the ARGmd and the ARGma (∆t2).



Fig. 3: Closed-loop response for adult #001 obtained with the ARGma (purple) and the ARGmd (orange). The light-blue
line plotted in the controller-mode figure indicates the meal time, and the dotted lines in the IOB figure represent the IOB
limits.

the performance of the ARG algorithm when its switching
behavior is commanded by the SSG module, ARGmd. These
results are compared to the ones obtained with the ARG
algorithm with meal announcement, ARGma.

Table I indicates the time delay in selecting the aggres-
sive mode between the ARGmd and the SSG module with
open-loop basal insulin infusion (∆t1), and between the
ARGmd and the ARGma (∆t2). Results evidence that the
performance of the SSG module is scarcely affected by the
ARG algorithm, and that the delay in triggering controller K2

without meal announcement is on average less than 30 min.
The reason for such delay is that the meal announcement
informs the ARGma that an increasing CGM trend during the
listening mode is likely related to a meal intake. On the other
hand, the ARGmd must verify additional conditions to avoid
false positives that might lead to insulin overdose. Overall,
the delay between the meal is ingested and the ARGmd
switches to controller K2 is on average 50 min for the 55
gCHO meals and 60 min for the 25 and 28 gCHO meals.
Another interesting observation of Table I is that the larger
the meal, the less the delay. This is particularly important
since large meals are the ones that might lead to more
pronounced hyperglycemia, and a fast detection is desired.

Figure 3 shows the outcome of the closed-loop simulation
for adult #001. As shown in that figure, both ARGma and
ARGmd result in similar glucose control in terms of hyper-
glycemia (% time > 180 mg/dl: 17.5 with ARGma; 19.4 with
ARGmd) and hypoglycemia (% time < 70 mg/dl: 0.0 with
ARGma; 0.0 with ARGmd). The slight tendency towards
postprandial hyperglycemia observed in both versions is due

Fig. 4: Closed-loop responses for all in silico adults obtained
with the ARGma (purple) and the ARGmd (orange). The
thick lines are the mean glucose values, and the boundaries
of the filled areas are the mean ± 1 STD values. The yellow
and green dashed lines represent the 70-180 mg/dl and 70-
250 mg/dl ranges, respectively.

to the absence of feedforward meal boluses. In addition, note
that the insulin delivery experiences larger spikes with the
ARGmd than with the ARGma for the 55 gCHO intakes
but not for the smaller ones. This confirms the fact that IOB
represents only a limit and not the exact amount of insulin to
be infused. Lastly, as expected, Figure 3 shows that insulin
response with the ARGmd is shifted in time compared to
the response obtained with the ARGma due to the delay
introduced by the SSG module.

Figure 4 shows the mean ± 1 STD glucose values obtained



Fig. 5: Controller mode (1 - conservative, 2 - aggressive) selected by the ARGma (purple) and the ARGmd (dashed orange),
and the meal announcement (light-blue line) using data from the clinical trial performed at HIBA.

Participant # Dinner 1 Breakfast Lunch Snack Dinner 2
54112 12 7 12 0 28
54113 -26 | FP 29 FN 34 24
54114 -18 -13 | FP 11 31 48
54115 - 31 26 11 21
54116 5 55 30 FN 10
Mean (STD) -6.8 (18.1) 21.8 (25.8) 19.8 (9.7) 19 (16.3) 26.2 (13.9)
Median (IQR) -6.5 [-22–8.5] 29 [2–37] 19 [11.5–28] 21 [5.5–32.5] 24 [18.3–33]

TABLE II: Time difference in the switching to the aggressive controller (in minutes) between the ARGmd and the ARGma
using data from the clinical trial at HIBA. (FN: false negative, FP: false positive).

with both methods. It can be observed that although post-
prandial glucose peaks are slightly higher with the ARGmd
due to the larger delay in switching to K2 (% time >
250 mg/dl: 0.4 [0.0-2.7] with ARGma; 2.1 [0.0-3.6] with
ARGmd), no hypoglycemic event was detected under both
controllers (% time <70 mg/dl: 0.0 [0.0-0.0] with ARGma;
0.0 [0.0-0.0] with ARGmd). It is important to highlight that
the time spent in the acceptable range was nearly not affected
(% time in [70, 250] mg/dl: 99.6 [97.3-100.0] with ARGma;
97.9 [96.4-100.0] with ARGmd). Thus, the main advantage of
using the ARGmd resides in the increased freedom provided
to the patient.

V. TESTS USING CLINICAL DATA

The ARGma was clinically evaluated at the HIBA in
2017 in 5 subjects with T1D [17]. Here, the CGM readings
obtained from that clinical trial are used to evaluate the
performance of the SSG module.

In the previous section, it was shown through simulations
that the increased delay in selecting controller K2 when

the ARG is used without meal announcement does not
produce a significant impact on the overall glucose control.
Figure 5 shows the controller mode (1- conservative, 2-
aggressive) during the clinical trial using the ARGma, and
the controller mode that would have been selected by the
ARGmd. Readings for participant #54115 were discarded
during the first dinner (Dinner 1) due to pump occlusion.
As shown, the SSG module triggered the aggressive mode
(σ = 2) twice when there was no meal, and did not trigger
the aggressive mode twice when there was a meal. Therefore,
in terms of meal detection, it had an efficiency of 83.3%: 2
false positives (8.3%) and 2 false negatives (8.3%) out of the
24 meals. Table II shows the time difference in selecting the
aggressive mode between the ARGmd and the ARGma. As
indicated, although results related to Dinner 1 are affected
by the initial transient of the controller, results for the other
meals are in agreement with what was previously detected
in simulation (see Table II). Note that in three cases the time
difference was negative, meaning that controller K2 would
have been triggered before using the ARGmd. In two of



them, the detection by the ARGmd happened even before
the meal was announced (participants #54113 and #54114
- Dinner 1). The reason is the initial insulin infusion was not
sufficient to maintain those participants at normoglycemia,
and sustained glucose increases were observed. In the case
of participant #54114, the switching of the ARGmd to
the aggressive mode during breakfast coincides with the
announcement of the meal. The two false positives that
took place (patient #54113 - Dinner 1 and patient #54114
- Breakfast) were both consecutive to a faster detection
by the ARGmd. It is reasonable to suppose that the early
detection of the meal by the ARGmd would have reduced
the postprandial glucose excursion and, therefore, avoided
the second detection. Lastly, the two false negatives took
place because the ARGma significantly limited the glycemic
excursions associated with those meal ingestions.

It is worth remarking that the CGM readings used in this
analysis are affected by the performance achieved by the
ARGma, and conclusions should be made taking that into
account. In addition, it should be considered that either a
false negative, because glucose excursion was not enough to
be detected, or a false positive, due to insulin underdosing,
could be a desired behavior in terms of glycemic control.

VI. CONCLUSIONS

In this work, an automatic SSG module was proposed to
be integrated into the ARG algorithm. Its performance was
evaluated in silico and using clinical data. Although both
tests evidenced a larger delay in selecting the aggressive
mode after a meal when the ARGmd is used instead of the
ARGma, simulations indicated that this does not significantly
increase neither hypo- nor hyperglycemia. In terms of meal
detection, results from clinical data indicated that false posi-
tives and false negatives were scarce (16.67 % of the meals),
and that it should be taken into account that, in certain
situations, their occurrence could be desired from the control
view point. In addition, the performance using both in silico
and clinical data was similar, although at this point it has no
statistical relevance. Despite limitations, these preliminary
results indicate that an automatic SSG implemented into the
ARG algorithm is feasible.
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