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Abstract—There is abundant literature on positioning
systems based on WiFi signals. Most of the systems with
off-the-shelf hardware use RSSI measurements. In this paper,
we try to determine the highest achievable accuracy of such
systems. Instead of resorting to a theoretical analysis, e.g.,
Cramér-Rao or Ziv-Zakai bounds, we apply state-of-the-art
localization algorithms to measurements in a well-controlled
experimental setup. We conclude that an accuracy of less
than 1 meter seems unrealistic.

Resumen Hay una abundante literatura acerca de sistemas
de posicionamiento usando señales de WiFi. La gran mayorı́a
de los sistemas con hardware comercial no especı́fico, utilizan
mediciones de RSSI. En este artı́culo, intentamos determinar
cuál es la máxima exactitud de este tipo de sistemas. En vez
de realizar un análisis teórico, por ej., con cotas del estilo
de Cramér-Rao o Ziv-Zakai, aplicamos el estado del arte en
algoritmos de localización a mediciones propias realizadas
en condiciones experimentales bien controladas. A partir de
este trabajo, concluimos que es difı́cil obtener una exactitud
menor a 1 metro.

I. INTRODUCTION

Location systems based on Receive Signal Strength In-
dication (RSSI) have been around for, at least, 50 years
[1], and those based on WiFi appeared almost as soon
as the technology was in place 20 years ago. There is
a vast literature on the subject (see, e.g., [2], [3] and
references therein). Most common approaches are based
on the Received Signal Strength Indicator RSSI, i.e., the
received power, but there are also other alternatives such as
the use of the Channel State Information [4]–[6] and Fine
Time Measurement [7].

In this work, we focus on positioning systems based
on simple RSSI measurements and we try to answer the
question posed in the title: how accurate can they be?
This question can be tackled from a theoretical point of
view using tools such as the Cramér-Rao bound (see [8]
and references therein). Another possibility is to try to
answer the question experimentally, using state-of-the-art
algorithms. Although there are many surveys on the subject,
only few of them make a comparison of the state-of-art
based on measurements on a single scenario.

Through a careful experimental setup in a quite ideal
scenario, we present a comparison of several positioning al-

gorithms based on RSSI of WiFi signals, offering a possible
answer to the question of the achievable accuracy.

In Section II we make a quick review of some of the
literature which can give us hint on the order of magnitude of
the accuracy of localization systems based on RSSI values.
Section III gives an overview of the algorithms that we use
to estimate the achievable accuracy. Since it is unreasonable
to try all algorithms proposed in the literature, we describe
and use a few typical localization approaches. Section IV
deals with the details of the experimental setup. Results
are analyzed in Section V. We close the paper with some
conclusions in Section VI.

II. RELATED WORK

A complete survey of the state-of-the-art is out of the
scope of this paper. There are many surveys than can be
consulted, e.g., [3], [9]–[13]. In the literature on the subject,
localization errors are estimated through experiments in
a diverse set of scenarios and using different algorithms.
The diversity of scenarios and algorithms makes a fair
comparison impossible and that is the main motivation of
this paper. However, we can still get a hint on the order of
magnitude of the errors that we might expect. For example,
Ref. [3] presents mean localization errors between 0.6 and
10 m, depending on several variables such as the number
of access points and the localization algorithm. Correa et
al. [13] review several papers and records errors of the order
of 1-3 m (either mean, median or third quartile).

There are several competitions for positioning algorithms.
Some of them are hosted together with the International
Conference on Indoor Positioning and Indoor Naviga-
tion (IPIN). We take the results of the off-site track of
the EvAAL-ETRI Indoor Location Competition at IPIN
2015 [14] as reference values. Teams were given a training
and a validation dataset with fingerprints from almost 30
mobile devices and 520 APs in almost 110.000 m2 (three
buildings with up to five floors). A test set was reserved to
score the competitors. The best median error was ∼ 4.5 m
(a 4 m penalty was added for each wrong floor).

Let us review some of the limitations found when posi-
tioning using WiFi RSSI measurements. A simple propaga-



tion model is described by [15]

Prx = Ptx − 10γ log10

(
d

d0

)
+ S, (1)

where Ptx and Prx are the transmitted and received power,
respectively; γ is the path loss exponent; d is the distance
between transmitter and receiver and d0 is a reference
distance. S represents variations due to shadowing caused
by obstacles in the path between the transmitter and the
receiver, for example, people moving around. It is usual to
model S as a Gaussian random variable with zero mean and
variance σ2

S . The effect of shadowing on range estimation
can be ameliorated by averaging several measurements. The
Cramér-Rao lower bound (CRLB) for distance estimation
under this model is given by [16]√

Var
(
d̂
)
≥ ln(10)
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σS
γ
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Both γ and σS depend on several factors. To gain some
insight on the order of magnitude of the lowest expected
estimation error, let us fix γ = 1.5 and σS = 4 dB. These
figures are similar to those in Ref. [17]. A fit of our own
measurements gives γ ≈ 1 and σS ≈ 4 dB, although the
distribution is clearly non-Gaussian and other factors (some
of them explained in the following paragraphs) besides
shadowing may have affected our results. We must note that
even larger values of σS can be found in the literature (see,
e.g., [18]). Fixing d = 1 m, we get a minimum ranging

error
√

Var
(
d̂
)
≥ 0.6 m. Although the error on the location

estimate depends on other factors such as the positions of
the access points (see, e.g., [8]), this figure gives us an idea
of the order of the error we might expect. Accuracy can be
improved by taking several independent measurements with
the purpose of averaging out the random shadowing, but this
solution leads to a longer positioning delay.

Eq. (1) does not include details such as multipath fading.
Although we may approximate Prx by RSSI, the latter is the
result of adding up the energy from all paths and, hence, the
relation between the received power and the distance cannot
be represented a by single path loss exponent [19].

Even in absence of multipath fading, there might be
measurement errors. Off-the-shelf wireless chipsets were
not devised as calibrated instruments and only approximate
RSSI measurements are needed for, e.g., AP selection.
Systematic errors may vary from chipset to chipset and,
therefore, localization of different devices becomes even
more difficult. The authors of Ref. [20] found differences
of up to 14 dBm for measurements made by identical
models of WiFi cards. In order to gain some intuition on the
localization errors that can be expected from measurement
errors, we may assume that they are random. Let us further
assume that errors are normally distributed with zero mean
and variance σ2

E . In this case, we can modify Eq. (1) to

P̃rx = Ptx − 10γ log10

(
d

d0

)
+ S + E, (3)

where P̃rx is the measured received power and E is the
measurement error. Since S and E are clearly independent,

the CRLB for ranging becomes√
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Using the same values as before and letting σE = 2.5 dB,

we get
√

Var
(
d̂
)
≥ 0.7 m. Although we have made many

assumptions to compute this value, it may give us an idea
of the order of the magnitude of the ranging (and, hence,
positioning) errors. If measurement errors are not random,
but systematic, then they would not influence most of the
localization algorithms we deal with in this work.

Another limitation of a RSSI-based localization approach
is the fact that signal propagation conditions change with,
for example, furniture re-arrangements or the density of
people in the building. Indeed, these variations have been
advantageously used to estimate the number of people [21].
We have tried to minimize the effect of these changes in
our experimental setup. In particular, there was only one
individual in the room and he was seated for most of the
measurements.

III. LOCALIZATION ALGORITHMS

From the literature, we have selected several localization
methods, trying to include both traditional and newer ap-
proaches to the problem. Leaving out some algorithms may
generate uncertainty on whether we have forgotten to in-
clude a relevant and outperforming approach. However, the
fact that the algorithms that we use are diverse and perform
similarly, together with their accuracy being comparable,
in order of magnitude, to the minimum achievable error
predicted by theoretical arguments (Section II), reassure us
that a significant loss due to our choice is improbable.

All algorithms have at least two phases. First, a calibration
phase takes place. Measurements are taken on R calibration
or reference points (RPs). Let us assume that on each RP, the
signal strength from A access points is measured N times.
Then, let us call u(n, r, a) the n-th measured signal strength
(n ∈ {1, 2, · · · , N}) from access point a (∈ {1, 2, · · · , A})
at reference point r (∈ {1, 2, · · · , R}). Whenever we deal
with the case N = 1, we omit n. For each reference point
r, we define vectors ~unr , ~ur ∈ RA as

~unr (a) = u(n, r, a), ~ur =
1

N

N∑
n=1

~unr , ~̄u(a) =
1

R

R∑
r=1

~ur(a).

(5)
The position of reference point r is given by ~xr = (xr, yr)
and that of access point a is ~Xa = (Xa, Ya). Let us define
U as the matrix with vectors ~unr as rows and X ∈ RRN×2

as the matrix with the corresponding RP’s positions.
The second phase is the online or positioning phase. Let

us assume that the signal strength from the A access points is
measured M times and let us call s(m, a) the m-th measured
signal strength from access point a. If M = 1, we omit
m. We define S as the matrix S(i, j) = s(i, j). We define
~s ∈ RA as the vector of average values, i.e.,

~s(a) =
1

M

M∑
m=1

s(m, a). (6)



A. Model-based algorithms

Although many localization approaches may be included
under the model-based category, we reserve this term for
those algorithms for which an experimentally-fit propagation
model is its most important component. Based on the
implementation in Ref. [22], for each access point (only
three with known positions in our experiments), we fit a
polynomial to the relation between distance and RSSI:

d = α0 + α1 × RSSI + α2 × RSSI2 + · · · . (7)

The order of the polynomial is chosen through trial and
error in order to get the best results. In the online phase,
localization is based on least squares

~̂x = arg min
~x

A∑
a=1

(∥∥∥~x− ~Xa

∥∥∥
2
− d̂a

)2
, (8)

where d̂a is the distance to AP a estimated with the fitted
polynomial. Yang et. al. [22] propose further refinements
which we do not implement.

B. k-nearest neighbors

Given an online measurement ~s, the k-nearest neighbors
(kNN) algorithm looks for the k closest examples ~ur1 , ~ur2 ,
· · · , ~urk recorded in calibration phase and estimates the
current position of the device as

~̂x =

k∑
i=1

wi~xi, (9)

where wi are suitably chosen weights. This is one of the
simplest and earliest positioning algorithms based on RSSI
of WiFi signals. It was the core of the RADAR system [23].
Algorithms vary in the metrics used to measure closeness
and the way in which weights are computed. A usual choice
for the metric is the simple Euclidean distance, although
other alternatives such as cosine similarity can be found in
the literature [24]. The simplest alternative is to use use
uniform weights. However, sometimes it is convenient to
use weights which are proportional to the inverse of the
distance.

In this paper, we use Euclidean distance and uniform
weights. The number of neighbors is chosen on a trial and
error basis to get the best results.

C. HORUS

HORUS [25] is a positioning system which is commonly
used as a benchmark for comparison with new algorithms.
HORUS can be considered an extension of the k-nearest
neighbors algorithm in which the distance is inversely
proportional to the posterior probability p (~xr|~s) and the
weights are given by

wi =
p (~xri |~s)
k∑
j=1

p
(
~xrj
∣∣~s) . (10)

Using Bayes’ theorem and assuming a uniform distribution
on all possible locations, posterior probabilities can be
replaced by prior probabilities in this equation. Calculations

are further simplified if independence between different APs
is assumed, i.e.,

p (~s| ~xr) =

A∏
a=1

p (~s(a)| ~xr) . (11)

Prior probabilities have to be estimated from the mea-
surements and several variants of this approach differ on
the way that such probabilities are estimated. Ref. [25]
suggest the use of both parametric and non-parametric
distributions. While for the parametric case HORUS uses a
simple Gaussian approximation, for the non-parametric case
it estimates the probabilities by means of several histograms.
We use simple Gaussian fits in our experiments.

D. Kernel density estimation

HORUS’ estimator can be considered an approximation
to the conditional expectation of the position given current
measurements. Kushki et al. [26] propose to estimate this
expectation using kernel density estimation (KDE). Assume
that k = R in Eq. (9). Then, the weights are computed as

wr =
1

nσA

N∑
n=1

K

(
~s− ~unr
σ

)
, (12)

where K is a suitably chosen kernel function and σ is a
parameter. In this work, we used a simple Gaussian kernel
and estimated σ as suggested in [26]. We also tried variable
kernel density estimators, but we did not find significant
differences in performance.

E. General regression algorithms

A straightforward approach to localization is to fit a linear
model using least squares

~̂α = arg min
~α

‖U~α−X‖2 . (13)

It is well-known that this type of fit tends to overfit training
data. An usual alternative is to add a penalty (regularization)
term

~̂α = arg min
~α

‖U~α−X‖2 + λ ‖~α‖2 . (14)

The resulting approach is known as ridge regression [27]
and favors ‘smaller’ solutions. λ is a parameter that must
be chosen, e.g., by cross-validation. An alternative is to use
an l1 penalty

~̂α = arg min
~α

‖U~α−X‖2 subject to ‖~α‖1 ≤ t, (15)

where t is a parameter that needs to be tuned. This is
the LASSO regression approach [28] which favors ‘sparser’
solutions. Elastic net regression [29] uses both types of
penalties

~̂α = arg min
~α

‖U~α−X‖2 + λ ‖~α‖1 + λ2 ‖~α‖2 . (16)

These regression methodologies have already been used
for localization [30]. Further details can be found, e.g., in
Ref. [31].

A limitation of all these approaches is that they use linear
models. Nonlinear models can be incorporated by resorting
to the kernel trick [31], [32]. Indeed, through the kernel trick,



(linear) ridge regression is done in a higher dimensional
feature space.

In this work, we choose t, λ, λ1 and λ2 through cross-
validation. We use a Gaussian kernel for kernel ridge re-
gression.

F. Support vector machines

Support vector machines (SVMs) have also been used for
positioning [33]–[36]. One of the alternatives to use support
vector machines for regression is through what is known as
ε-insensitivity [31], [37]. The problem solved, in the linear
case, is

~̂α, α̂0 = arg min
~α,α0

R∑
r=1

N∑
n=1

Lε
(
~αT~unr + α0 − ~xr

)
+
λ

2
‖~α‖2 ,

(17)

Lε(r) =

{
0 if |r| < ε

|r| − ε otherwise.
(18)

Note that small errors (< ε) are not taken into account. This
approach can be extended by using the kernel trick. For more
details, see the [31], [37] and references therein. Let us just
note that there is a connection between variants of support
vector regression (SVR) and ridge regression in the previous
section [38]. In this paper, we choose hyperparameters
through trial and error and we use a Gaussian kernel.

G. Neural networks

Neural networks have been extensively used for local-
ization (see, e.g., [39]–[43]). In this work, we focus on
multilayer perceptron (MLP) neural nets. In particular, we
use a single hidden layer network with logistic nodes. The
size of the network was chosen on trial and error basis.

H. Access point selection and outlier detection

Power measurements from different APs are not nec-
essarily independent. Therefore, there are measurements
from certain access points which may be left out without
significant loss of information. Moreover, the use of weak
signals from distant APs may degrade positioning accu-
racy [3]. For these reasons, it makes sense to select a subset
of all observable access points. From the many selection
methodologies, in this work we use two of the most common
ones [3]:

1) Strongest APs: Only those access points with highest
mean power are selected.

2) Fisher criterion: Received power from an access point
may be high, but it may also exhibit a high variance.
The Fisher criterion selects those APs with high values
of a metric that takes into account the stability of the
measured power from each access point. The score for
each AP is given by

Fa =

R∑
r=1

(
~ur(a)− ~̄u(a)

)2
1

N−1

N∑
n=1

R∑
r=1

(u(n, r, a)− ~ur(a))
2

. (19)

We study the influence of the AP selection algorithm and
the number of chosen APs in our experiments.

Erroneous measurements may lead to errors in the training
of the positioning algorithm. For this reason, it may be

useful to leave out suspicious training samples or outliers.
We used Hampel filter (see [3] and references therein). For
each measurement, we defined

MAD(n, r, a) =
|u(n, r, a)−median(~uar)|

median {|u(n, r, a)−median(~uar)|}
.

(20)
Those measurements for which MAD(n, r, a) > η, where
η is a suitably chosen threshold, are discarded as outliers.
In this paper, we analyze the influence of outlier detection
in the offline/calibration phase, but we did not implement
outlier detection in the online phase.

IV. EXPERIMENTAL SETUP

We used a Lenovo Yoga Tablet 2 and we developed a
simple Android application to handle measurements from
several sensors, including WiFi signals. The application
asked the operating system to continuously scan for wireless
access points (APs) and asynchronously received informa-
tion on all WiFi networks detected in the area. Although
the time between information updates was not controlled,
the application received one update every 5 seconds, ap-
proximately. We must observe that RSSI measurements
reported by the operating system were not calibrated and
their accuracy depended completely on the underlying hard-
ware. Disassembly of the tablet [44] reveals that it uses a
Broadcom BCM43241 chip. Its datasheet [45] summarized
the accuracy of the RSSI measurements at a 95 % confidence
level as shown in Table I. Although it is not clear the
nature of the measurement errors, say, random errors in a
single device or measurement differences among devices, a
standard deviation of ∼ 2.5 dB is found for the lower power
range under a normality assumption.

Measurements were taken in a large room, often used
for motion capture experiments, at one of ITBA’s buildings.
As seen in Fig. 1, the room was almost empty. We set up
a measurement grid on the floor. A coarse, 1 × 1-meter
measurement grid, was refined with several intermediate
points, as shown in Fig. 2. An even finer grid was deemed
unnecessary in view of the order of magnitude of the
theoretical accuracy bounds. Exactly 20 measurements were
taken at each location. The Lenovo tablet was placed on a
short stool (see Fig. 2). In order to get LOS signals, we also
placed three APs on the same room, at heights similar to
that of the tablet or slightly higher. These APs were based
on RaspBerry Pi running a Linux variant. We must note
that an analysis of the resulting radiomaps suggested that
the antennas on these access points were far from isotropic.

Besides the three APs placed inside the room, the tablet
recorded information from other APs. A set of nine access
points was detected at all measurement locations. These
APs transmitted beacons on the following frequencies: 2412,
2417, 2437, 2462 and 5745 MHz. RSSI measurements
ranged from -85 to -18 dBm.

TABLE I
RSSI ACCURACY.

Range Accuracy [dB]
[dBm] Minimum Maximum

-98 to -30 -5 5
> -30 -8 8



Fig. 1. Experimental setup.
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Fig. 2. Simplified measurement setup. Crosses and circles mark measure-
ment locations. Crosses form a 1× 1-meter grid. Filled squares mark the
location of the three access points placed inside the room.

V. RESULTS

We randomly chose 80% of the reference points for train-
ing and the remaining 20% for testing. Empirical cumulative
distribution functions and quartiles are based on 100 hundred
random partitions in order to average out the effects of
particular training and testing datasets. We implemented all
algorithms in Python, using Scikit-learn [46], SciPy [47],
NumPy [48], Pandas [49] and Matplotlib [50].

Fig. 3 presents the effect of the maximum-mean-power
criterion for the selection of access points when kNN, KDE
and LASSO are used. The performance of kernel-density
estimation and LASSO improves significantly when more
access points are taken into account. The behavior of all
other algorithms (not shown for in the figure for the sake
of clarity), with the exception of kNN and neural networks,
is similar to that of KDE. Indeed, a larger number of APs
provides more information and, at least in our experiments,
it seems that there are no access points providing highly
erroneous or misleading data. K-nearest neighbors, however,
does not show a significant accuracy improvement with
increasing number of access points. A possible explanation
is that, if there are no APs that provide highly erroneous
information, no matter the number of access points chosen,
the same nearest neighbors are always selected. Fig. 4 shows
the results for the neural network algorithm. In this case,
the performance is highly dependent on the number of APs,
not showing any increasing or decreasing tendency, and we
have not been able to come up with an explanation for such
a puzzling behavior.

Fig. 5 presents the effect of the Fisher criterion for
the selection of access points when kNN, KDE and ridge
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Fig. 3. Effect of the maximum-mean-power criterion for the selection of
APs. Only deviations of the median errors from the 3-APs case are shown.

3 4 5 6 7 8 9
Number of Access Poin s

−0.2

−0.1

0.0

0.1

Er
ro

r [
m

]

MaxMean
Fisher

Fig. 4. Effect of the maximum-mean-power (triangles) and the Fisher
(circles) criteria for the selection of APs when the neural network algorithm
is used. Only deviations of the median errors from the 3-APs case are
shown.

regression are used. The conclusions are similar to those
from Fig. 3.

Sometimes, selecting a subset of APs for localization may
help to lower the complexity of the algorithms. In this sense,
it is interesting to study which criterion performs better at
the task of access point selection. Fig. 6 shows the median
error when 5 APs are selected according to each criterion
and reveals that the Fisher criterion performs consistently
better for all localization algorithms.

—
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Fig. 5. Effect of the Fisher criterion for the selection of APs. Only
deviations of the median errors from the 3-APs case are shown.

Fig. 7 presents the effect of the Hampel filter on kNN,
support vector regression, KDE and the model-based algo-
rithm. Results are shown for η (see Eq. (20)) ranging 3.5
(many examples are discarded as outliers) to 5 (no example
is discarded). The performance of all algorithms, including
those not shown in the figure for the sake of clarity, but with
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Fig. 6. Comparison of the maximum-mean-power and Fisher criteria for
the selection of APs. Bars present the median errors for the 5-APs case.

the exception of the model-based methodology, increases
as more data is included (less “outliers” are discarded). In
the case of kernel-density estimation, the improvement is
significant. A larger number of examples allows a better
density estimation. In the case of the model-based algorithm,
a few “bad” training examples may harm the model fitted
according to Eq. (7).
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Fig. 7. Effect of Hampel filter. Only deviations of the median errors from
the η = 3.5 case are shown.

As we have already mentioned, one factor that affects
localization accuracy based on power measurements is shad-
owing (see Eq. (1)). By averaging several measurements,
we may reduce the effect of shadowing, at the expense of
increasing the localization time. Fig. 8 shows that averaging
can indeed increase the localization accuracy. This figure
presents the cumulative distribution function (CDF) of the
errors when SVR is used and either the average of 20
measurements or no averaging is carried out. The first two
rows of Table II present the same result in a different
way. The median error when measurements are averaged
is ∼ 10% less than when there is no averaging.

Finally, Fig. 9 and Table II present the performance results
for the localization algorithms, using the best hyperparam-
eters, number of APs and Hampel filter threshold. Some
algorithms were not included in the figure for the sake of
clarity. Indeed, LASSO, elastic net, ridge regression and
kernel ridge regression have a similar performance and, thus,
only the latter is shown. As it can be observed, support
vector regression gives the best results, although they are
not significantly better than those of many other algorithms.
kNN and HORUS give poorer results. The model-based
methodology gives the worst results, but it has to be taken
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Fig. 8. Effect of averaging several RSSI measurements for Support Vector
Regression. Empirical cumulative distribution functions of the error when
20 measurements (circles) are averaged and when no averaging takes place
(squares).

into account that only three access points were considered
in this case.
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Fig. 9. Empirical cumulative distribution functions of the error for different
algorithms.

TABLE II
LOCALIZATION ACCURACY.

Algorithm 1st Quartile Median 3rd Quartile
[m] [m] [m]

SVR w/averaged meas. 0.72 1.24 1.89
SVR 0.90 1.40 2.05
Elastic Net 0.92 1.45 2.11
LASSO 0.92 1.45 2.11
Ridge Regression 0.91 1.45 2.12
Kernel Ridge Regr. 0.95 1.48 2.08
Neural Net 1.03 1.56 2.24
KDE 1.06 1.61 2.26
kNN 1.11 1.70 2.48
HORUS 1.31 1.96 2.70
Model-based 2.23 2.69 3.48

VI. CONCLUSION

In this paper, we focused on the question of the attainable
accuracy of WiFi RSSI-based localization algorithms using
off-the-shelf hardware. In order to answer this question, we
obtained measurements from a carefully planned experiment
and we tried several state-of-the-art localization algorithms.
We found improbable to obtain median positioning errors
below 1 m. Indeed, the best performing algorithm gave a
median error of 1.4 m.

Under our experimental setup, we found convenient, in
general, to use the information from as many access points
as possible. In the case where there is a need to restrict



the set of APs, the Fisher criterion performs better than the
simpler maximum-mean-power criterion.

We also found that discarding plausible outliers does not
seem to help. However, averaging several measurements
may help to diminish the effect of signal shadowing.

Although localization algorithms based on RSSI mea-
surements have dominated the commercial products, new
hardware allows the precise measurement of round-trip
signal traveling times. In particular, the latest standards
allow measurements with a precision of up to 1 ns [7],
equivalent to a ranging precision of ∼ 30 cm. This new
technology will certainly allow greater accuracy in coming
localization developments.
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