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In this paper it is shown that an algorithm for the stabilization of switched systems introduced by
Mancilla-Aguilar and Garćıa (Automatica, 49 (2013) 441-447) is robust with respect to perturbations
which are unbounded in the supremum norm, but bounded in a power-like sense. The obtained stability
results comprise, among others, both the exponential input-to-state stability (ISS) and the exponential
integral input-to-state stability (iISS) properties of the closed-loop system and give a better description
of the behavior of the closed-loop system.

Keywords: Switched systems, Robust stabilization, ISS, Exponential stabilization.

1. Introduction

In the last years switched systems turned out to be a well established area of research in control, 
both in theory and applications, mainly because they allow one to describe the behaviour of a 
large class of plants resulting from the interactions of continuous dynamics, discrete dynamics, and 
logic decisions (Liberzon, 2003). Many instances of mechanical, electric power and control systems 
can be modeled as switched systems (Liberzon, 2003; Liberzon and Morse, 1999; Matveev and 
Savkin, 2000; van der Schaft and Schumacher, 2000). Informally, a switched system is a family 
of continuous-time dynamical subsystems and a usually time-dependent or state-dependent law
—the switching signal — that rules the switching between the subsystems. Although these systems 
may look simple, their behavior may be very complicated. The stability properties of switched 
systems for instance, may radically differ from those of their component dynamical subsystems. In 
fact, switching between two stable linear time-invariant subsystems may result in unstable behavior, 
while switching between two unstable linear time-invariant subsystems may yield stability (De Carlo 
et al., 2000). Consequently, many efforts have b een devoted to the s tudy o f the d ifferent stability 
properties of switched systems (see De Carlo et al., 2000; Liberzon, 2003; Liberzon and Morse, 
1999; Lin and Antsaklis, 2009; Shorten et al., 2007, and references therein). Another important 
problem in the theory of switched system is the so-called switching stabilization problem (Liberzon 
and Morse, 1999), that may be stated as follows:

Construct switching signals that make the origin an asymptotically stable point of the switched 
system.

In the case of continuous-time switched linear systems different s olutions t o t his p roblem were 
presented in the literature, either with state-feedback switching laws that stabilize the switched 
system (see Bacciotti, 2004; Lin and Antsaklis, 2009; Peleties et al., 1994) or with mixed time-
driven (i. e. open-loop) and state-feedback switching mechanisms (Sun, 2006, 2012; Sun and Ge,
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2011). Recent developments for discrete-time switched linear systems can be found in (Hu et al., 
2009; Lee and Khargonekar, 2009; Sun, 2009).

In the construction of state-feedback stabilizing switching laws for nonlinear systems, a weak (or 
control) Lyapunov function or a family of them (see Bacciotti, 2004; Liberzon, 2003; Liu et al., 2010, 
and references therein) is usually employed, and the switching signal is implemented by using some 
kind of hysteresis in order to avoid both Zeno behavior and chattering. For time-driven stabilizing 
switching signals some results can be found in (Bacciotti and Mazzi, 2010) and in (Mancilla-Aguilar 
and Garćıa, 2013) where the stabilization is with respect to compact sets and in a practical sense. 
It must be pointed out, that in this case, the design of the switching signal does not rely on the 
knowledge of Lyapunov functions of any kind.

Closely related to the stabilization problem is that of the robustness of the stabilizing switching 
laws, that is, to seek proper switching mechanisms that make the system stable and attenuate 
possible system disturbances or perturbations. Design schemes for robust switching of switched 
linear systems when the design is based on control Lyapunov functions, were presented in (Sun, 
2009, 2012; Xie and Wang, 2005; Xu et al., 2007). In (Mancilla-Aguilar and Garćıa, 2015) it was 
shown that for continuous-time switched systems whose subsystems are linear, or, more generally, 
homogeneous of degree one (see the definition b elow), t he d esign p resented i n (Mancilla-Aguilar 
and Garćıa, 2013) exponentially stabilizes the switched system in a practical sense, with a final 
error which depends linearly on the bounds of both the model uncertainties and the measurement 
errors. In other words, the closed-loop system is exponentially input-to-state stable (exponentially 
ISS) if the perturbation in the system model and the measurement error are seen as inputs.

Although the ISS property is important and useful for a wide range of control problems (see 
Khalil, 2002), it gives no robustness information in the case in which the inputs have bounded 
power or energy but are unbounded. This fact motivates the introduction of different characteri-
zations of robustness (see Angeli and Nešić, 2001). In this paper we consider the case in which the 
perturbations are bounded in a novel, compared to previous characterizations, power-like sense. 
One of the contributions of the paper is to show that the design presented in (Mancilla-Aguilar and 
Garćıa, 2013) semi-globally stabilizes the perturbed switched system in a practical sense, and that 
the stability is robust with respect to small errors in the measurements and to small (in a power-like 
integral norm) perturbations. Another contribution of the paper is, in the case of switched systems 
whose subsystems are homogeneous of degree one, to prove for this controller robust exponential 
stability results in the case of locally integrable perturbations. It must be pointed out that this 
general result comprises, among others, the exponential ISS and exponential iISS (integral input-
to-state-stability, (see Sontag, 1998)) properties of that design, but gives us a better description of 
the closed-loop system.

The paper is organized as follows. In section 2 we give the basic definitions, embed the switched 
system into a control-affine nonlinear one and recall the stabilizer algorithm fo r the control-affine 
systems presented in (Mancilla-Aguilar and Garćıa, 2013). In section 3 we prove for this stabilizer 
robustness results for locally integrable perturbations, and obtain robust exponential stability re-
sults for switched homogeneous systems with this type of perturbations. In section 4 we illustrate 
the obtained results by means of an example while in section 5 we present some conclusions.

2. Preliminaries

In the sequel 〈∙, ∙〉 is the standard inner product on Rn and |ξ| = 〈ξ, ξ〉1/2 is the Euclidean norm 
of
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A function f : Rn → Rn is homogeneous of degree one if f(λx) = λf(x) for all x ∈ Rn and for
all λ > 0. We note that an homogeneous of degree one map which is locally Lipschitz is indeed
globally Lipschitz.

In this work we will consider the switched system

ẋ(t) = fσ(t)(x(t)), (1)

where σ : [0,∞) → {1, . . . , N} is the switching signal, i.e. σ is a piecewise constant and continuous
from the right function, and for each i ∈ {1, . . . , N}, fi : Rn → Rn is locally Lipschitz

As in (Mancilla-Aguilar and Garćıa, 2013) we embed system (1) into the control-affine system

ż(t) =
N∑

i=1

ui(t)fi(z(t)) := F (z(t))u(t) (2)

where F (z) = [f1(z) . . . fN (z)] ∈ Rn×N and for t ≥ 0, z(t) ∈ Rn and u(t) ∈ U = co(U∗), with
U∗ = {e1, . . . , eN}, where ei ∈ RN denotes the i-th canonical vector of RN . We assume that the
admissible controls of (2) belong to U , the set of all the Lebesgue measurable functions u : [0,∞) →
U .

The embedding of (1) into (2) is performed by identifying the set S of all the switching signals
of (1) with the set U∗

pc of all controls u ∈ U that take values in U∗ and are piecewise constant and
continuous from the right, by means of the bijection σ 7→ uσ, uσ(∙) = eσ(∙).

Remark 1: We note that the trajectories of (1) corresponding to a switching signal σ are the same
as those of (2) which correspond to the control uσ. In consequence, in the sequel we will identify
the trajectories of the switched system with those of the control system corresponding to piecewise
constant controls.

For z0 ∈ Rn and u ∈ U , we denote by z(∙, z0, u) the unique maximally defined solution of (2)
which verifies z(0, z0, u) = z0, and by Iz0,u = [0, tz0,u) its interval of definition.

Next we recall some definitions introduced in Mancilla-Aguilar and Garćıa (2013) and Mancilla-
Aguilar and Garćıa (2015).

Definition 1: The control system (2) is U -stabilizable if there exists a parametrized family Σ =
{uz0}z0∈Rn of controls in U such that for some function β ∈ KL1 and for all z0 ∈ Rn ≥ 0 and all
t ≥ 0,

|z(t, z0, uz0)| ≤ β(|z0|, t).

In the sequel, Σ will be referred to as a U -stabilizer of (2).

Definition 2: A parametrized family of controls Σ = {uz0}z0∈Rn is scale-invariant if for any z0 6= 0,
uz0 = uz′ 0

with z′
0

= z0

|
z0|

.

Remark 2: We note that the controls in a U -stabilizer Σ asymptotically drive the states of the
control system to the origin. We also note that they are not necessarily switching signals.

1As usual, by a K∞-function we mean a continuous function α : R≥0 → R≥0 that is strictly increasing and unbounded, and

satisfies α(0) = 0 and by KL the set of functions β : R≥0 ×R≥0 → R≥0 that are of class K∞ in the first argument and decrease

to 0 when the second argument goes to ∞.
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2.1 Control algorithm

Here we recall the control algorithm C(T, τ, Σ) introduced in (Mancilla-Aguilar and Garćıa, 2013)
for the stabilization of switched systems. In order to take into account external disturbances, model
uncertainties, and measurement errors in the analysis of the closed-loop system, instead of (2), we
consider the perturbed control system

ż(t) = F (z(t))u(t) + ρ(t), (3)
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that ẑ(∙) satisfies

|ẑ(t) − z(t)| ≤ ρ2 ∀t ≥ 0, (4)

for some positive number ρ2. In the sequel we will denote by ε the measurement error, i.e. ε(∙) =
ẑ(∙) − z(∙).

Controller C(T, τ, Σ).
Let T > 0 be a tracking period, τ > 0 be a dwell-time such that T = kτ with k ∈ N, and let
Σ = {uz0}z0∈Rn be a U -stabilizer of (2). Then, the stabilizer controller C(T, τ, Σ) generates the
control u(∙) ∈ U∗

pc to be applied to (3) as follows:

Initialization
j := 0, T0 := 0
Recursive step
(*) Tj+1 := Tj + T and u(t) = uj(t) for all t ∈ [Tj , Tj+1), where uj(t) is the control signal provided
by the tracking controller T (T, τ, ξj) with ξj : [Tj , Tj+1) → Rn defined by

ξj(t) = z(t − Tj , ẑ(Tj), uẑ(Tj)); (5)

j := j + 1. Go to (*).

Tracking controller T (T, τ, ξ).
Given a tracking period T > 0, a dwell-time τ > 0, and a trajectory of (2) ξ : [s, s+T ) → Rn, with
s ≥ 0, which is generated by some control v ∈ U and which is to be tracked by (3), the tracking
controller T (T, τ, ξ) generates the control u : [s, s + T ) → U∗ to be applied to (3) as follows.

Let ti = s + iτ , i = 0, . . . , bT
τ c be the switching times of u. Then the control u(t) is defined by

the rule:

u(t) = u(ti) on [ti, ti + τ) ∩ [s, s + T ),

u(ti) ∈ ϕ(ξ(ti), ẑ(ti)).

where the set-valued map ϕ : Rn × Rn  U∗ is defined by

ϕ(ξ, z) = arg maxv∈U∗〈ξ − z, F (z)v〉.

Remark 3: The controller C(T, τ, μ, Σ) has three components: a) a generator of references which
are obtained from an internal model of the control system controlled by Σ, b) a tracking algorithm
which provides to the system the control signal for tracking the reference given by the generator
of references and c) a supervisor that periodically updates the reference to be tracked.
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Remark 4: We note that if u ∈ U∗ belongs to ϕ(ξ, z), then u = ek, with k ∈ {1, . . . , N} such that

〈ξ − z, fk(z)〉 = max
1≤j≤N

〈ξ − z, fj(z)〉.

For such u it also holds that

〈ξ − z, F (z)u〉 = max
v∈U

〈ξ − z, F (z)v〉.

Remark 5: The controller C(T, τ, Σ) generates a piecewise control u which can be converted into
a switching signal σ by means of the inverse of the bijection described above, that is, for any t ≥ 0,
σ(t) = k if and only if u(t) = ek. By construction such a σ has dwell time τ .

3. Robustness results for integrable perturbations

In previous works it was proven that by a proper selection of the parameters T and τ the control
algorithm C(T, τ, Σ) semiglobally stabilizes the perturbed control system (3) in a practical sense
(see Theorem 11 in (Mancilla-Aguilar and Garćıa, 2013)), provided that the magnitudes of the
perturbation ρ(∙) and of the bound ρ2 of the measurement error ε(∙) are small enough. In (Mancilla-
Aguilar and Garćıa, 2015), it was shown that in the case in which the maps fi are homogeneous
of degree one and Σ is an scale-invariant U -stabilizer of (2), the controller C(T, τ, Σ) with properly
selected parameters T and τ , exponentially stabilizes the unperturbed system (2) and renders the
perturbed system (3) ultimately bounded when both the perturbation ρ(∙) and the measurement
error ε(∙) are bounded; more precisely, the closed-loop system is exponentially input-to-state stable
(exponentially ISS) if the perturbation ρ(∙) and the measurement error ε(∙) are seen as inputs.
Although ISS is a very interesting and useful property, it cannot deal with perturbations (or inputs)
which are unbounded. Neither does it give a good description of the behaviour of the system when
the perturbations take occasionally values of very high magnitude but have uniformly bounded
energy on intervals of fixed length, for example, when the perturbation is a train of equally spaced
pulses of high magnitude, short duration and uniformly bounded energy.

In order to analyze the effect of perturbations ρ like those mentioned above in the behaviour of
the control system (3) controlled by C(T, τ, Σ), we introduce the following family of norms, which
we will collectively name the power norms. Given p ∈ [1,∞) and T > 0, we define for ρ ∈ L∞

m,loc:

‖ρ‖p,T := sup
t≥0

(∫ t+T

t
|ρ(s)|p ds

)1/p

. (6)

Remark 6: The following assertions hold.

(1) Given positive real numbers T and T ′, there exists a constant k = k(T, T ′) such that ‖ρ‖1,T ≤
k‖ρ‖1,T ′ . In consequence, if ‖ρ‖1,T is finite for some T > 0, then ‖ρ‖1,T ′ is finite for every
T ′ > 0.

(2) Taking into account that for p > 1, T > 0 and every t ≥ 0,
∫ t+T
t |ρ(s)| ds ≤

T 1/q(
∫ t+T
t |ρ(s)|p ds)1/p, where q is the conjugate exponent of p (i.e. 1/p + 1/q = 1), we

have that ‖ρ‖1,T ≤ T 1/q‖ρ‖p,T .
(3) Since for every T > 0 and every t ≥ 0,

∫ t+T
t |ρ(s)| ds ≤ T (ess.sup.{|ρ(s)| : t ≤ s ≤ t + T}) ≤

T‖ρ‖∞, it follows that ‖ρ‖1,T ≤ T‖ρ‖∞.
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3.1 General switched systems

First we study the behaviour of the perturbed control system (3) when it is controlled by C(T, τ, Σ)
and ‖ρ‖1,T is finite for any T > 0, without introducing further hypotheses.

In order to do so we introduce the following constants. For a given non-empty compact set
K ⊂ Rn let l = lK and m = mK be such that

|fi(x) − fi(z)| ≤ l|x − z|, ∀x, z ∈ K, ∀i ∈ {1, . . . , N}, (7)

and

|fi(x)| ≤ m, ∀x ∈ K, ∀i ∈ {1, . . . , N}. (8)

We also define the constants Λi, i = 1, 2, as follows

Λ1 = 4(l + m) and Λ2 = 4lm + 8m2.

Finally, for nonnegative real numbers t, τ , ρ1 and ρ2 let

ΓK(t, τ, ρ1, ρ2) =

[

(ρ2
2 + ρ1)e

2lt +
e2lt − 1

2l
(Λ1(ρ1 + ρ2) + Λ2τ)

]1/2

.

We note that ΓK(∙, τ, ρ1, ρ2) is strictly increasing and that ΓK(t, τ, ρ1, ρ2) → 0 as τ + ρ1 + ρ2 → 0,
uniformly when t varies on a compact set of [0,∞).

Lemma 8 in (Mancilla-Aguilar and Garćıa, 2013) shows that, for a fixed T > 0, the tracking

controller T (T, τ, ξ) previously described is robust with respect to small measurement errors and
perturbations which are small in magnitude (i.e. in the supremum norm). Since the system is
modelled by a differential equation (see equation (3)), the interval under analysis has length T
and the perturbation is additive and affects the state via its derivative, what really matters is the
integral of the absolute value of the perturbation on that interval. So, it is plausible that a result
analogous to the lemma mentioned above holds with a power norm of the perturbation instead of
the supremum one. This result is stated in the following lemma.

Lemma 1: Let ξ : [s, s + T ] → Rn , with s ≥ 0 and T > 0, be a trajectory of (2) corresponding
to a control w ∈ U . Let K ⊂ Rn be a compact set such that |ξ(t)|Rn\K ≥ 2 for all t ∈ [s, s + T ].
Assume that τ > 0, ρ1 > 0 and ρ2 > 0 verify ΓK(T, τ, ρ1, ρ2) < 1.

Then, if z(∙) is a trajectory of (3) controlled by T (T, τ, ξ) such that ρ(∙) in (3) satisfies ‖ρ‖1,T ≤ ρ1,
|ε(t)| ≤ ρ2 for all t ∈ [s, s + T ] and |z(s) − ξ(s)| ≤ ρ2, we have that

|z(t) − ξ(t)| ≤ ΓK(t − s, τ, ρ1, ρ2) ∀t ∈ [s, s + T ]. (9)

Proof. Let z(∙) be a trajectory of (3) controlled by T (T, τ, ξ) and let μ(t) = z(t) − ξ(t) for all
t ∈ [s, s + T ]. Assume that the perturbation ρ(∙) in (3) satisfies ‖ρ‖1,T ≤ ρ1, that |ε(t)| ≤ ρ2 for all
t ∈ [s, s + T ] and that |μ(s)| ≤ ρ2. Also suppose that ΓK(T, τ, ρ1, ρ2) < 1.

Let I = {t̂ ∈ [s, s + T ] : |μ(t)| ≤ 1 ∀t ∈ [s, t̂]}. Then I is a closed interval, i.e. I = [s, tz]
and tz > s since |μ(s)| ≤ ρ2 ≤ ΓK,U (T, τ, ρ1, ρ2) < 1. The lemma follows if we prove that (9)
holds for all t ∈ I, since in that case tz = s + T . In fact, if tz < s + T , it follows from (9) that
|μ(tz)| ≤ ΓK,U (T, τ, ρ1, ρ2)) < 1; given that μ(∙) is a continuous function, there exists t′ > tz such
that |μ(t)| ≤ 1 for all tz ≤ t ≤ t′ and, in consequence, [s, t′] ⊆ I, which is a contradiction.

Let r(t) = |μ(t)| 2 for all t∈ [s, s + T ]. Then r(∙ ) is absolutely continuous on I and, for almost all
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t ∈ I,

ṙ(t) ≤ 2〈μ(t), F (z(t))u(t)) + ρ(t) − F (ξ(t))w(t)〉

≤ 2|μ(t)||ρ(t)| + 2〈μ(t), F (z(t))u(t) − F (ξ(t))w(t)〉

≤ 2|ρ(t)| + 2〈μ(t), F (z(t))u(t) − F (ξ(t))w(t)〉, (10)

where u(∙) is the control provided by the controller T (T, τ, ξ).
In order to bound c(t) = 〈μ(t), F (z(t))u(t) − F (ξ(t))w(t)〉, we write

c(t) = c1(t) + c2(t) + c3(t) + c4(t) + c5(t), (11)

where

c1(t) = 〈μ(t), F (z(t))w(t) − F (ξ(t))w(t)〉

c2(t) = 〈μ(t), F (z(t))u(t)) − F (ẑ(tk))u(t) + F (ẑ(tk))w(t)) − F (z(t))w(t))〉

c3(t) = 〈μ(t) − μ(tk), F (ẑ(tk))u(t) − F (ẑ(tk))w(t))〉

c4(t) = 〈z(tk) − ẑ(tk), F (ẑ(tk))u(t) − F (ẑ(tk))w(t))〉

c5(t) = 〈ẑ(tk) − ξ(tk), F (ẑ(tk))u(t) − F (ẑ(tk))w(t))〉,

and tk = s + kτ is such that tk ≤ t < tk+1.
Since for all t ∈ I, |ξ(t)|Rn\K ≥ 2, |μ(t)| ≤ 1 and |ε(t)| ≤ ρ2 ≤ ΓK(T, τ, ρ1, ρ2) < 1, it follows that

z(t) ∈ K and ẑ(t) ∈ K for all t ∈ I.

(12)
Then, from (7)

c1(t) ≤ l|μ(t)||μ(t)| = lr(t), ∀t ∈ I.

Taking into account (7), (8) and that for all t ∈ I

|z(t) − z(tk)| ≤
∫ t

tk

(|f(z(s), u(s))| + |ρ(s)|)ds

≤ mτ + ‖ρ‖1,T ≤ mτ + ρ1,

|z(t) − ẑ(tk)| ≤ |z(t) − z(tk)| + |z(tk) − ẑ(tk)|

≤ mτ + ρ1 + ρ2,

and

|ξ(t) − ξ(tk)| ≤

∫ t

tk

|f(ξ(s), w(s))|ds ≤ mτ,

it follows that for all t ∈ I

c2(t) ≤ 2|μ(t)|l|z(t) − ẑ(tk)|

≤ 2l[mτ + ρ1 + ρ2], (13)

c3(t) ≤ 2|μ(t) − μ(tk)|m

≤ 2m(2mτ + ρ1), (14)

c4(t) ≤ 2mρ2. (15)
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Finally, from the fact that u(tk) ∈ ϕ(ξ(tk), ẑ(tk)) and from Remark 4, we have that

c5(t) ≤ 0 ∀t ∈ I. (16)

Therefore, from (11)-(16),

c(t) ≤ lr(t) + 2l[mτ + ρ1 + ρ2] + 2m(2mτ + ρ1) + 2mρ2,

and, in consequence,

ṙ(t) ≤ 2lr(t) + 2|ρ(t)| + Λ1ρ1 + Λ2ρ2 + Λ3τ

for almost all t ∈ I. Then Gronwall-Bellman Lemma yields

r(t) ≤ r(s)e2l(t−s) +
∫ t

s
e2l(t−y)|ρ(y)| dy +

(e2l(t−s) − 1)
2l

[Λ1(ρ1 + ρ2) + Λ2τ ]

≤ (ρ2
2 + ρ1)e

2l(t−s) +
(e2l(t−s) − 1)

2l
[Λ1(ρ1 + ρ2) + Λ2τ ]

= (Γ(t − s, τ, ρ1, ρ2))
2,

or, equivalently,

|μ(t)| ≤ Γ(t − s, τ, ρ1, ρ2)) ∀t ∈ I.

∗
1

∗
2

∗
1

∗
2

The next result, which is one of the main ones of the paper, can be obtained following the same 
steps that those used in the proof Theorem 11 in (Mancilla-Aguilar and Garćıa, 2013), but using
Lemma 1 instead of Lemma 8 in that paper. It shows that the family of controllers C(T, τ, Σ) 
semi-globally stabilizes the system (2) in a practical sense, and that the stability is robust with
respect to small errors in the measurements and small (in a power norm) perturbations.

Theorem 1: Let Σ a U -stabilizer of (2) and 0 < ε0 < R0. Then there exist positive numbers T , 
τ0, ρ and ρ , such that if the perturbation ρ(∙) in (3) verifies ‖ ρ‖1,T ≤  ρ  and t he measurement
ẑ(∙)

There
of z(∙)

exist
v 

α
erifies |ε(t)|

and
≤ ρ

T ′  >
for

0
all
suc

t
h
≥ 0,
that

the
any

follo
tra

wing
jectory

holds.
z( )∈ K∞ ∙ of (3) controlled by C(T, τ, Σ) with 

0 < τ ≤ τ0 and such that |z(0)| ≤ R0, satisfies the following:

(1) z(t) is defined for all t ≥ 0;
(2) | z(t)| ≤ α(R0 + ε0 ) + ε0 forall t ≥ 0;
(3) |z(t)| ≤ ε0 for all t ≥ T ′.

Remark 7: We note that Theorem 1 implies that the algorithm C(T, τ, Σ), with T and τ properly
selected, is also robust with respect to perturbations which are small in magnitude (i.e. in the
supremum norm). In fact, suppose that T , τ , ρ

∗
1 and ρ

∗
2 are as in Theorem 1 and that z(∙) is a

trajectory in the conditions of that theorem, but that the perturbation ρ(∙) is bounded and satisfies
|ρ(t)| ≤ ρ

∗
1 /T for all t ≥ 0. Then ρ(∙) verifies ‖ρ‖1,T ≤ ρ

∗
1 , and the conclusions of Theorem 1 hold

for that trajectory.
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3.2 Switched homogeneous systems

In this section, in addition to the assumptions made so far, we assume that the maps fi in (1) are
homogeneous of degree one. Next we prove the following result, which is the other main one of the
paper.

Theorem 2: Suppose that the maps fi are homogeneous of degree one for all i = 1, . . . , N . Suppose
also that Σ is a scale-invariant U -stabilizer of (2). Then there exist T > 0 and τ0 > 0 such that the
following holds.

There exist positive constants c1, c2 and μ such that, if z(∙) is a trajectory of (3) controlled by
C(T, τ, Σ) with 0 < τ ≤ τ0 for which the perturbation ρ(∙) in (3) satisfies ‖ρ‖1,T < ∞, and the
measurement error ε(∙) is bounded, then

|z(t)| ≤ c1|z(kT )|e−μ(t−kT ) + c2 max{‖ρk‖1,T , ‖εk‖∞} ∀t ≥ kT, ∀k ∈ N0, (17)

where εk(s) = ε(s + kT ) and ρk(s) = ρ(s + kT ) for all s ≥ 0. In addition

lim sup
t→∞

|z(t)| ≤ c2 max{lim sup
t→∞

|ε(t)|, lim
k→∞

‖ρk‖1,T }. (18)

Remark 8: Note that due to causality ‖ρk‖1,T and ‖εk‖∞ can be replaced in (17) by, respectively,
‖ρt

k‖1,T and ‖εt
k‖∞, where we define for t ≥ kT

ρt
k(s) =

{
ρk(s) if 0 ≤ s ≤ t − kT
0 if s > t − kT,

and εt
k in a similar way.

Remark 9: From Remark 6 it follows that the conclusions of Theorem 2 remain valid, if we replace
‖ρk‖1,T by ‖ρk‖p,T , with p > 1, or by ‖ρk‖∞, and if we replace c2 by max{c2, T

1/qc2} in the case
of the norm ‖ ∙ ‖p,T and by max{c2, T c2} in the case of the supremum norm.

In particular, it results that the control system (3) controlled by C(T, τ, Σ) is exponentially ISS
if we see the perturbations ρ and the measurement errors ε as inputs. It also results that the
closed-loop system is exponentially iISS w.r.t. the perturbation ρ. This assertion follows from the

fact that ‖ρ‖1,T ≤
∫∞
0 |ρ(s)|ds for all T > 0. Nevertheless, the bound obtained in Theorem 2 in

terms of the norm ‖ ∙ ‖1,T gives us a better description of the behaviour of the closed-loop system
than the bounds given by the ISS or iISS properties. In fact, if we consider the perturbation ρ(t) =
2n if t ∈ [n, n + 1/2n], n ∈ N and 0 elsewhere, we have that ‖ρ‖1,1 = 1, that limt→∞ ‖ρt

0‖∞ = ∞
and that limt→∞

∫ t
0
|ρ(s)|ds =∞ . From the bound (17) in Theorem 2 with k = 0, we have that

|z(t)| ≤ c1|z(0)|e−μt + c2 max{1, ‖ε0‖∞} ∀t ≥ 0,

and hence the states converge to a ball of radius c2 max{1, ‖ε0‖∞}. On the other hand, from the
ISS and the iISS bounds and by using causality, we obtain

|z(t)| ≤ c1|z(0)|e−μt + c2 max{‖ρt
0‖∞, ‖ε0‖∞} ∀t ≥ 0, and

|z(t)| ≤ c1|z(0)|e−μt + c2 max

{∫ t

0
|ρ(s)|ds, ‖ε0‖∞

}

∀t ≥ 0,

inequalities that do not provide any information about the convergence of the states.
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The proof of Theorem 2 requires the following result, whose proof can be obtained mutatis
mutandis from that of Lemma 2 in (Mancilla-Aguilar and Garćıa, 2015).

Lemma 2: Suppose that the maps fi are homogeneous of degree one for all i = 1, . . . , N . Let Σ
be a scale-invariant U -stabilizer of the control system (2). If z(∙) is a trajectory of (3) controlled
by C(T, τ, Σ) with measurements ẑ(t), and z(0) 6= 0, then

(1) w(∙) = z(∙)/|z(0)| is a trajectory of (3), with perturbation ρ(∙)/|z(0)| instead of ρ(∙), controlled
by C(T, τ, Σ) with measurements ŵ(∙) = ẑ(∙)/|z(0)|.

(2) For any non-negative integer k, w(∙) = z(∙+kT ) is a trajectory of (3) controlled by C(T, τ, Σ)
with the measurements ŵ(∙) = ẑ(∙ + kT ).

Proof. of Theorem 2. Pick any ε0 ∈ (0, 1), set R0 = 1 and let T, τ0, ρ
∗
1, ρ

∗
2, T

′ and α be as in Theorem
1. We can assume without loss of generality that T ′ = mT for some m ∈ N. Let ρ

i
, i = 1, 2 be

positive real numbers, and let z(∙) be a trajectory of (3) controlled by C(T, τ, Σ) with 0 < τ ≤ τ0

and measurements ẑ(∙) such that ‖ε‖∞ ≤ ρ2. Also suppose that the perturbation ρ(∙) in (3) satisfies
‖ρ‖1,T ≤ ρ1. Finally, let R = maxi=1,2(ρi/ρ

∗
i ).

Suppose that |z(kT ′)| ≥ R for certain k ∈ N0. Then the following hold

1. |z(t)| ≤ [α(1 + ε0) + ε0]|z(kT ′)|, ∀t ∈ [kT ′, (k + 1)T ′];
2. |z((k + 1)T ′)| ≤ ε0|z(kT ′)|.

In order to prove this assertion consider w(t) = z(t + kT ′)/|z(kT ′)| for all t ≥ 0. By Lemma
2, w(∙) is a trajectory of (3), with perturbation ρ(∙ + kT ′)/|z(kT ′)| instead of ρ(∙), controlled
by C(T, τ, Σ) with measurements ŵ(∙) = ẑ(∙ + kT ′)/|z(kT ′)|. From the facts that |w(0)| = 1,
|w(t)− ŵ(t)| ≤ ρ2/R ≤ ρ∗2 for all t ≥ 0 and ‖ρ(∙+ kT ′)/|z(kT )|‖1,T ≤ ρ1/R ≤ ρ∗1, and the selection
of T , τ0 and ρ∗i , i = 1, 2, it follows that

• |w(t)| ≤ α(1 + ε0) + ε0, for all t ∈ [0, T ′];
• |w(T ′)| ≤ ε0.

Therefore 1. and 2. hold.
Now, suppose that for some k ≥ 0, |z(jT ′)| ≥ R for j = 0, . . . , k. Then, by applying 1. and 2.

above recursively, it follows that

(19)
|z(t)| ≤ [α(1 + ε0) + ε0]ε

j
0|z(0)|, for all t ∈ [jT ′, (j + 1)T ′], for all 0 ≤ j ≤ k. 

If we define c = [α(1 + ε0) + ε 0]/ε0 and μ = − ln(ε0)/T ′ , (19) implies that

|z(t)| ≤ c|z(0)|e−μt, ∀t ∈ [0, (k + 1)T ′].

As a consequence, there exists k̄ ∈ N0 such that

(i) |z(t)| ≤ c|z(0)|e−μt for all t ∈ [0, k̄T ′];
(ii) |z(k̄T ′)| < R.

We note that k̄ = 0 when |z(0)| < R.
Next we will show that

|z(t)| ≤ c(R + ρ1)e
LT , ∀t ≥ k̄T ′, (20)

where L ≥ 0 is a Lipschitz constant for F (∙), which exists since F is assumed locally Lipschitz and
homogeneous of degree one and therefore globally Lipschitz.

We prove (20) by reductio ad absurdum.
Let J = {t ≥ k̄T ′ : |z(s)| ≤ c(R + ρ1)eLT , k̄T ′ ≤ s ≤ t} and suppose that t̂ = sup J is finite.
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Since |z(∙)| is continuous, J = [k̄T ′, t̂ ]. As |z(k̄T ′)| < R, |z(t̂)| = c(R + ρ1)eLT > R (since c > 1)
and z(∙) is continuous, there exists t̃ ∈ [k̄T ′, t̂) such that |z(t̃)| = R and |z(t)| > R for all t ∈ (t̃, t̂].

Let k̃ ∈ N be such that (k̃ − 1)T ≤ t̃ < k̃T . From (3) and the fact that |F (ξ)v| ≤ L|ξ| for all
ξ ∈ Rn and all v ∈ U , it follows that

|ż(t)| ≤ L|z(t)| + |ρ(t)| a.e. on [t̃, k̃T ].

Gronwall’s Lemma and the fact that c > 1 yield for all t ∈ [t̃, k̃T ],

|z(t)| ≤ |z(t̃)|eL(t−t̃) +
∫ t

t̃
eL(t−s)|ρ(s)| ds

≤ (R + ‖ρ‖1,T )eLT ≤ c(R + ρ1)e
LT .

In consequence, it follows that t̂ > k̃T and that |z(k̃T )| ≤ c(R + ρ1)eLT . Since |z(t)| ≥ R for all
t ∈ [k̃T, t̂], it follows that

|z(t)| ≤ c(R + ρ1)e
LT e−μ(t−k̃T ), ∀t ∈ [k̃T, t̂]. (21)

In fact, if we consider w(∙) = z(∙ + k̃T ) and k∗ = b(t̂ − k̃T )/T ′c, we have that |w(jT ′)| ≥ R for
j = 0, . . . , k∗. Then, with the same argument employed in the first part of the proof, we prove that

|w(t)| ≤ c|w(0)|e−μt, ∀t ∈ [0, (k∗ + 1)T ′],

and from the latter and the definitions of w(∙) and k∗ we arrive to (21).
From (21) it follows that |z(t̂)| < c(R + ρ1)eLT . Then, by continuity, there exists δ > 0 such that

|z(t)| < c(R + ρ1)eLT for all t ∈ [t̂, t̂ + δ), which contradicts the definition of t̂.

Taking into account (i) and (20), we have that

|z(t)| ≤ max
{
c|z(0)|e−μt, c(R + ρ1)e

LT
}

, ∀t ≥ 0,

and then

|z(t)| ≤ 2c|z(0)|e−μt + 2c(R + ρ1)e
LT , ∀t ≥ 0.

Therefore, by considering the definition of R, it follows that

|z(t)| ≤ c1|z(0)|e−μt + c2 max{ρ1, ρ2}, ∀t ≥ 0, (22)

where c1 = 2c and c2 = 2ceLT 1+ρ∗
1

min(ρ∗
1 ,ρ∗

2) . Since (22) holds for every ρ1 > 0 such that ‖ρ1‖1,T ≤ ρ1

and for every ρ2 > 0 such that ‖ε‖∞ ≤ ρ2, we have that

|z(t)| ≤ c1|z(0)|e−μt + c2 max{‖ρ‖1,T , ‖ε‖∞}, ∀t ≥ 0. (23)

Taking into account (23) and the fact that z(∙ + kT ) is a trajectory of (3), with ρk instead of ρ,
controlled by C(T, τ, Σ) with measurements ẑ(∙ + kT ), we arrive to (17). Finally, by taking first
lim supt→∞ and then limk→∞ on both sides of (17) we obtain (18) and the thesis holds.

The proof of the following result, which considers the case in which the perturbations and mea-
surement/estimation errors are exponentially convergent, can be obtained mutatis mutandis from
that of Theorem 4 in (Mancilla-Aguilar and Garćıa, 2015). Here, the exponential convergence of
the perturbations means that ‖ρ(∙ + t)‖1,T ≤ re−αt for some positive constants r and α.
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Theorem 3: Suppose C(T, τ, Σ) is a controller for which the conclusions of Theorem 2 hold. Given
positive constants ki and μi, i = 1, 2, there exist positive constants c̃ and μ̃ so that any trajectory
z(∙) of (3) controlled by C(T, τ, Σ), for which the perturbation ρ(∙) in (3) verifies for some r1 ≥ 0,
‖ρ(∙ + t)‖1,T ≤ k1r1e

−μ1t for all t ≥ 0, and the measurement error ε(∙) verifies for some r2 ≥ 0,
ε(t) ≤ k2r2e

−μ2t for all t ≥ 0, satisfies

|z(t)| ≤ c̃ max(r1, r2, |z(0)|)e−μ̃t ∀t ≥ 0. (24)

3.2.1 Observer-based stabilization

In some cases, instead of a measurement we have an estimation ẑ(t) of the state z(t) of (3) which
is provided by an observer. In the case in which the controller C(T, τ, Σ) satisfies t he conclusions 
of Theorem 2, it straightforwardly follows that the implementation of the controller by using the
estimations ẑ(t) given by an observer, practically stabilizes the perturbed system (3), provided
the perturbations are bounded in the norm ‖ ∙ ‖1,T and the supremum norm of the estimation 
error ε(∙) = ẑ(∙) − z(∙) is bounded. If, in addition, the estimation error converges to 0 and the
perturbation ρ in (3) satisfies ‖ρ(∙ + t )‖1,T →  0  a s t  →  ∞ , t hen t he s tates z (t) c onverge t o the 
origin, and, due to Theorem 3, that convergence is exponential when both the perturbations and
the estimation error exponentially converge to zero.

In the case of switched linear systems ẋ(t) = Aσ(t)x(t) with a switched perturbed output y(t) = 
Cσ(t)x + p(t) such that every pair (Ci, Ai) is observable, it can be proved, by using arguments 
similar to those used in the proof of Theorem 5 in (Mancilla-Aguilar and Garćıa, 2015), that there
exists an observer wich provides an estimation ẑ(t) of the state z(t) such that ε(t) = ẑ(t) − z(t) 
verifies the following:

• ε(∙) is bounded when the system perturbation is bounded in a power norm and the output
measurement error p(∙) is bounded in the supremum norm;

• ε(∙) exponentially converges to zero when both the perturbations and the output measurement
errors converge exponentially to zero (see Mancilla-Aguilar and Garćıa, 2015, for details).

4. Example

In this section we present a numerical example that shows the behaviour of the proposed controller
when it is applied to a switched system with a three-dimensional state-space, and whose subsystems
are linear and unstable. The controller is driven by estimations of the state of the switched system,
which are obtained from a perturbed output by means of an observer.

Consider the switched system (1) composed by two subsystems ẋ = fi(x), given by f1(x) = A1x,
f2(x) = A2x and

A1 =




0 2π 0

−2π 0 0
0 0 1



 , A2 =




1 0 0
0 −2 −3
0 3 −2



 ,

with output given by y(t) = Cσ(t)x(t) + p(t), where

C1 = [1 0 1], C2 = [1 1 1],

and where p(t) is the measurement error. It follows readily that the pairs (C1, A1) and (C2, A2)
are observable.
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Let {ν1, ν2, ν3} be the canonical base of R3. It is easy to see that the projection of the trajectories
x(t) of the first subsystem onto the plane span{ν1, ν2} are circles and grow exponentially in the
direction of the axis ν3 if x3(0) 6= 0 (see Figure 1). On the other hand, the projection of the
trajectories x(t) of the second subsystem onto the plane span{ν2, ν3} are spirals that converge to
the origin of that plane, while the trajectories grow exponentially in the direction of the axis ν1 if
x1(0) 6= 0 (see Figure 2). Let us as in (2) consider the control system associated with these vector
fields:

ż = u1f1(z) + u2f2(z) = F (z)u, (25)

with u = [u1 u2]T ∈ co({e1, e2}) ⊂ R2.

According to the remarks above, given an initial condition z0 = (z01, z02, z03), we consider the
following open-loop stabilizing law:

(1) if z01 = 0, uz0(t) = e2 for all t ≥ 0,
(2) if z01 6= 0, uz0(t) = e1 for t ∈ [0, tf ), and uz0(t) = e2 for all t ≥ tf where tf is the time elapsed

until the trajectory z(t, z0, u) corresponding to the constant control u(t) = e1 reaches the
plane span{ε2, ε3}.

The family Σ = {uz0}z0∈R3 so generated is clearly a scale-invariant U -stabilizer of system (25). In
the simulations below we used this stabilizer in the control algorithm C(T, τ, Σ).

We assume that the system is perturbed and in consequence, instead of (25) we have

ż(t) = u1(t)f1(z(t)) + u2(t)f2(z(t)) + ρ(t) = F (z(t))u(t) + ρ(t), (26)

with ρ(t) ∈ R3 the system perturbation.
We also assume that the estimations of the state ẑ(t) of (26) are given by the observer

dẑ

dt
(t) = u1(t) [(A1 + K1C1)ẑ(t) − K1y(t)] + u2(t) [(A2 + K2C2)ẑ(t) − K2y(t)] .

Next we present the results of the simulation of the evolution of the switched system when the
switching signal σ(t) is obtained from the control u(t) given by the tracking controller C(T, τ, Σ)
(see Remark 5). According to the proofs of Theorem 1 (Theorem 11 in (Mancilla-Aguilar and
Garćıa, 2013)) and Theorem 2, the values of T ≈ 20.2 sec. and τ ≈ 10−10 sec. should be used to
guarantee the stabilization. Nevertheless, by a trial and error process we found that the algorithm
works properly with considerably larger values of τ and smaller of T , showing the conservativeness
of the bounds (of worst case type) obtained in that theorems. Some of the parameters taken in
the simulation are: initial condition of the system z0 = (6, 4, 8), initial condition of the observer
ẑ0 = (3, 2, 4) tracking period T = 1 sec., dwell-time τ = 0.01 sec. and time of simulation Tsim = 20
sec. The gains of the observer were taken as

K1 =




−10.812
−7.215
−5.188



 , K2 =




−11.667
−3.167
2.833



 .

In this way the poles of (A1 + K1C1) and (A2 + K2C2) are −4, −5 and −6. In the simulations
we assumed that the measurement error is p(t) = r(t) with r(t) a random process with uniform
distribution on (−5/2, 5/2). The euclidean norm |ρ(t)| of the system perturbation is shown in
Figure 3, where we note that ‖ρ‖1,T = 1, while ‖ρ‖∞ = 25.

Figure 4 shows the components of the state z(t) of the switched system, while Figure 5 shows
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the euclidean norm of the state |z(t)| and of the observer |ẑ(t)|. In this last figure it can be clearly
seen the exponential decay of the states and that they remain bounded but do not converge to
zero. Finally in Figure 6 we present the stabilizing switching signal σ(t) and in Figure 7 a detail
of this signal can be seen.

5. Conclusions

We have shown that the algorithm for the stabilization of switched systems introduced in (Mancilla-
Aguilar and Garćıa, 2013) stabilizes switched systems (exponentially in the case of homogeneous
switched systems) in a robust way with respect to perturbations which are bounded, with an integral
bound. These results comprise, among others, both the exponential ISS and the exponential iISS
properties of the closed-loop system. Nevertheless, they are stronger than those stability properties,
since a better description of the behavior of the closed-loop system is obtained, in the case in which
the perturbations are unbounded and non-integrable on [0, +∞).
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Figure 1. Trajectory of the first subsystem (solid) and its projection onto the plane span{ν1, ν2} (dashed)
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Figure 2. Trajectory of the second subsystem (solid) and its projection onto the plane span{ν2, ν3} (dashed)
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Figure 3. Model perturbation |ρ(t)|
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Figure 4. State components of z(t).
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Figure 5. State and observer norms |z(t)| and |ẑ(t)|.
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Figure 6. Switching signal
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