
Temporal Graph Visualizer

Authors: Diego Orlando, Joaquin Ormachea
Co-directors: Alejandro Vaisman, Ariel Aizemberg

2020-11-17

Abstract. Real world scenarios are increasingly being represented with graph
databases. Networks in general, and social networks in particular, can be rep-
resented as node in a graph, linked through edges. When relationships and
node include temporal information, the graphs are called temporal. Temporal
graphs are then, graphs that keep track of the history of their nodes and edges.
Although these scenarios are normally found in real-world scenarios, there is
no tool in the market that can handle appropriately the temporal dimension
in graphs. The present work introduces a platform to address this problem.
The framework presented here allows displaying temporal graphs and navigat-
ing them across time. The result of queries expressed in a high level temporal
query language can also be captured and navigated using this tool.

Keywords: Graph Visualization, Temporal Graphs, Temporal Database, Neo4j

1

Contents
1 Introduction 4

1.1 Contributions . 5
1.2 Document Organization . 5

2 Related work 5
2.1 Information Visualization . 5
2.2 Graph Visualization . 7
2.3 Temporal Graph Models . 9

2.3.1 Duration-labeled Temporal Graphs 9
2.3.2 Interval-labeled Temporal Graphs 10
2.3.3 Snapshot-based Temporal Graphs 11

3 Problem Description and Requirements 12
3.1 Platform . 12
3.2 Visualization . 12

4 A Platform for Graph Visualization 13
4.1 Language and Frameworks . 13
4.2 Visualization Libraries . 13
4.3 Platform interface . 14

4.3.1 Layout . 14
4.3.2 Settings View . 15
4.3.3 Visualization View . 18

4.4 Untangling the Information Flow 19
4.5 Underlying Structure Abstraction 21
4.6 Visualization Rebuilding Process 22
4.7 Color Criteria . 25

5 Implementation Details 26
5.1 Granularity . 26

5.1.1 The value "NOW" . 26
5.2 Integration . 27

5.2.1 Embedding . 27
5.2.2 Compatibility & Reconstruction 27
5.2.3 Paths . 27

5.3 Preprocessing the Query . 28

6 Experimental Evaluation 28
6.1 Social network . 29
6.2 Airport . 33

7 Limitations 38
7.1 Working With Deeply Interconnected Networks 38
7.2 Different Path Coloring . 38

8 Conclusion and Open Problems 38
8.1 Color Scales for Temporality Density 38

Appendices 39

2

A Visualization Research Extension 39
A.1 OGMA . 39
A.2 G6 . 39
A.3 VX . 39

B React Template 39

3

1 Introduction
These days, organizations are facing the need of not only managing large

databases but also of being able to gain insight from them. This makes relation-
ships between data points as relevant as the data points itself. Graph databases
address this need. These databases follow the NoSQL paradigm, therefore they
are schemaless, and represent and store data by means of nodes and edges, being
ideal to produce information and discover implicit relationships between data.
Furthermore, the use of graph databases also provides other interesting benefits
over traditional databases. These are:

• Performance, since traditional structures must deal with the rapid increase
in relationships depth.

• Flexibility, thanks to not needing to define a fixed schema and allowing to
restructure data model along with application and business change.

• Agility, due to its perfect alignment with agile and test driven development
of today.

While graph databases have been a solution to store and display highly con-
nected information, there is an important dimension which is normally missing:
time. Temporality is a key factor to consider since it helps to represent data
and their relationships across time. For example, in a social network, where
relationships change constantly, it is easy to find that two nodes that have been
connected at some point in time, are now disconnected. So adding the temporal
dimension to the relationships and nodes can correctly determine the validity
of the queries.

As another example, assume a user is working with a graph database rep-
resenting flights between airports. She wants to find a trip from New York to
London. When querying for flights between these destinations, a relationship
pops out as there are lots of flights between these two cities. But a user who
wants to travel not only wants to know if there is a flight at some point in time,
but also, when is that flight happening. By adding the time of the flights to the
relationship, we are creating more relationships between these two cities, each
one representing a different flight at a different time, which lets the user search
for the time desired as well as the date, which results in a better experience.

Since temporal graphs store the state of the data and relationships across
time, the amount of information that they contain is normally huge. Thus,
a relevant problem that arises when working with temporal graphs is how to
display these graphs (usually very large) in a way that can be useful and friendly
to the users, regardless how data are stored. Due to the large amounts of
information and the level of abstraction present in these databases, showing
properly the history of a graph is not a trivial problem. As mentioned before,
some relationships may be present at a given time and then disappear, so an
accurate way to differentiate each relationship is needed.

Debrouvier et al [1] propose a model and a query language (T-GQL) to
address temporal graphs, that is, to represent and query the evolution of a
graph across time. They also present a high-level query language that allows
the user to query Neo4j 1 databases that comply with the Temporal Property

1https://neo4j.com/

4

Graph model structure, providing mechanisms to leverage their interval fields
in order to get the full potential out of the database.

T-GQL queries are executed through a client tool called TDBG. However,
as in all temporal query languages, visualizing the results in a way that allows
the user to navigate the history of the database, remains a challenge. In this
project, we address this problem, and implement a framework for interaction
and visualization of temporal graphs which will be addressed as Temporal Graph
Visualizer (TGV).

1.1 Contributions
This document describes the design and implementation of a web plat-

form and tools that allows visualizing and querying temporal property graph
databases using T-GQL query language. The key idea is building a web plat-
form that provides abstraction from the structure that extends property graphs
with temporal information.

More concretely, this work includes:

• A user interface allowing to define settings for connection and visualization
characteristics.

• A query editor for the T-GQL language.

• A temporal graph visualization tool for proper representation of the database
information.

• A filtering tool for results manipulation, either over information types or
temporality for nodes and edges.

1.2 Document Organization
This document is organized as follows. Section 2 studies related work to

understand the current context of the relevant topics, not only for visualization
but also for temporal graph databases. Section 3 provides with a reflection of
problems encountered during the development. Section 4 describes, documents
and reviews the development process for the whole work. Section 5 explains how
the implementation was done and every decision taken in order to achieve the
proposed goals. Section 6 has an in-detail analysis for testing where the scope
of the project is showed. Section 7 discusses limitations and finally Section 8
proposes further improvements for future development.

2 Related work
This section reviews existing work about general concepts in the world of

information visualization, existing visualization tools, and the different temporal
graph models that tackle the problem of temporality in graph visualization.

2.1 Information Visualization
Visualizing information in a way that it is both informative and appealing

to read has been a research topic for many years. To begin with, it is impor-
tant to define what information visualization really means. Stuart et al. [2]

5

define information visualization as the “use of computer-supported, interactive,
visual representations of abstract data to amplify cognition”. Lima [3], a leading
voice in the information visualization field, mentions three hypothesis that he
comprises and explains:

1. Humans prefer curves: He says that from the moment that we are babies
we show a preference from curves, a statement corroborated by Bar and
Neta [4], which reveals a strong human preference for curved objects and
typefaces. Also, in Chatterjee et al. [5], a similar inclination in architec-
tural spaces was reported.

2. Circles equal happiness: This theory is explained by an experiment by
Bassili in 1978 [6], where the faces of participants are painted black and
subsequently are covered by dozens of luminescent dots. Participants are
then asked to express different emotions in order to better understand the
visual contour of each sentiment. Using Lima’s words, this experiment
concludes that: “while expressions of anger showed acute downward V
shapes (angled eyebrows, cheeks, and chin), expressions of happiness were
conveyed by expansive, outward curved patterns (arched cheeks, eyes, and
mouth). In other words, happy faces resembled an expansive circle, while
angry faces resembled a downward triangle.”

3. Spherical geometry of the eye: In this third hypothesis he talks about
how the circular framing and spherical geometry of our visual field, which
causes a distortion similar to a "fish-eye lens" or a "crystal ball", could
further "reinforce our innate tendency toward all things circular. Perhaps
the brain prefers forms and contours that have a better fit within such a
conditioned field of view.”

Another relevant work from Manuel Lima, is the "Information Visualiza-
tion Manifesto" [7]. The manifesto explains that any information visualization
project should follow 10 rules. From these ten, two are the most relevant to
the present work. The first one is "Interactivity is key". About this he says:
"By employing interactive techniques, users are able to properly investigate and
reshape the layout in order to find appropriate answers to their questions. This
capability becomes imperative as the degree of complexity of the portrayed sys-
tem increases." The second rule is "Embrace time", from which he highlights
that: "If we consider a social network, we can quickly realize that a snapshot
in time would only tell us a bit of information about the community. On the
other hand, if time had been properly measured and mapped, it would provide
us with a much richer understanding of the changing dynamics of that social
group. We should always consider time when our targeted system is affected by
its progression."

Finally, it is important to mention a very well-known visualization tool called
Observable.2 One of the creators of this tool is Mike Bostock, another influential
author on the subject of visualization, and key developer of the widely used
Javascript library d3.js. Observable is a Javascript sandbox for code sharing
and open collaboration in which non-specialized users can visualize data in real
time, which uses d3.js as the visualization tool.

2https://observablehq.com/

6

2.2 Graph Visualization
Graph visualization is a particular branch of information visualization. The

Visual Complexity platform,3 is a unified resource space for anyone interested
in the visualization of complex networks. It was launched in October, 2005, and
its main goal is to leverage a critical understanding of different visualization
methods, across a series of disciplines, as diverse as Biology, Social Networks
or the World Wide Web. There is an interesting project about websites which
can be visualized as graphs which was created in 2006 by Sala [8]. HTML
consists of tags, like the A tag for links, IMG tag for images and so on. Since
tags are nested into other tags, they are arranged in a hierarchical manner, and
that hierarchy can be represented as a graph. By adding some processing, Sala
creates an application that visualizes any input URL as a graph.

Figure 1: Graph visualization of the website msn.com by Sala.

Figures 1 and 2 show examples of websites visualized as graphs. 1 shows the
MSN4 website and 2 shows the Yahoo website5. Each node corresponds to a an
HTML tag from the web page. Blue correponds to the the A tag, red for tables
(TABLE, TR and TD), green for the DIV tag, violet for the IMG tag, yellow
for forms, orange for line breaks, black for HTML tag, and grey for the rest.

Moreover, Bostock published a notebook which allows visualizing a temporal
network that changes over time, using Observable. The work, called Temporal
Force-Directed Graphs [9], shows data from face-to-face interactions at a two-
day conference, where each node and link has a start and end specifying its
existence. In Figure 3, in the top right left corner, there is a slider which
shows the progression of the graph, with a play button and the date from which
the data are obtained. A similar tool is used in the project presented in this
document. The previously mentioned work introduces the concept of dynamic

3http://www.visualcomplexity.com/vc/
4https://www.msn.com/en-us
5https://yahoo.com/

7

Figure 2: Graph visualization of the website yahoo.com by Sala.

graphs, showing that as information changes, visualization should change at
par.

Figure 3: Temporal Force-Directed Graph by Mike Bostock.

NeoVis [10] is an open-source and publicly accessible graph visualization
tool created by eleven developers from Neo4j. This tool is built on vis.js, a very
popular Javascript library.6 It works with Neo4j, the most popular database
for graph visualization. It is easy to use, as it only needs a query in Cypher

6https://visjs.org/

8

language, and it returns an already built graph that can be shown directly on
any canvas. It also allows the developer to tweak some features, like colours or
families to generate different groups.

Figure 4: NeoVis visualization of a social network.

One of the most recent developments for graph visualization from Cambridge
Intelligence, ReGraph [11], is a full plain graph visualization tool designed for
React7. In 2019, ReGraph was released focusing all of their efforts in building
a toolkit specific for React development. React is actually one of the most used
frameworks nowadays for web development, and the one chosen in the present
project to solve the dilemma of temporal graphs’ visual representation. This
API provides a number of fully-reactive, customizable components that can be
embedded into applications. It has two visualization components: a chart and
a time bar. To update, filter, style or highlight items in the data, users push
an updated item’s object into the component on the next render. ReGraph
updates the React network visualization to reflect the change. Like other Re-
act components, ReGraph sits in the front end of the application, completely
separate from the back end. Data are passed as a plain JavaScript object.

2.3 Temporal Graph Models
We classify temporal graphs as: duration-labeled, interval-labeled and snapshot-

based.

2.3.1 Duration-labeled Temporal Graphs

These kinds of graphs are not property graphs, meaning nodes and edges are
not labeled with a sequence of attribute-value pairs, but simple graphs where
nodes are represented as strings, and the edges labeled with a value representing
the duration of the relationship between the two nodes. The main use of this
kind of temporal graphs is scheduling problems, where some sort of shortest

7https://reactjs.org/

9

Figure 5: ReGraph visualization of a social network.

path must be computed, therefore, implementing some ad-hoc variation of the
Dijkstra’s algorithm.

In Debouvier et al. [1], the authors define four types of minimum temporal
paths. These are: earliest-arrival path, which computes the earliest arrival time
departing from a source location to a target location, latest-departure path,
defined as the path that allows the latest departure form source location whilst
arriving at destination at a targeted time frame, fastest path, where this path is
the one with shortest elapsed time between source and destination and shortest
path, showing the path of least overall traversal time from from origin to target
location.

2.3.2 Interval-labeled Temporal Graphs

An interval-labeled temporal graph is a graph where each edge is a temporal
edge representing a relationship from a vertex to another vertex, valid during
a time interval and denoted as [ti,tf]. Valid time is considered in the remain-
der, that is, the times where the edges are valid in the real world, opposite to
transaction time, which reflects the time where the information is stored in the
database. This model also permits, for example, the representation of instant
messaging where each label is time stamped with the interval [t,t] meaning that
duration of the message is negligible.

The graph to the right of Figure 7 shows a graph equivalent to the one on
the left, with the distinction of the type label used in the edges. In the graph
on the right, for example, the edge between nodes b and g is labeled with the

10

Figure 6: Temporal duration-labeled graph (a) vs static graph (b).

interval [3, 4]. This can be explained by comparing it to the same edge on the
left graph, which is labeled with value 3, that represents the initial time, with
a duration of 1.

This type of graph representation is ideal for social networks, travel schedules
and trajectory representation, thus being the one chosen to develop throughout
this document.

Figure 7: Left: duration-labeled temporal graph. Right: interval-labeled tem-
poral graph.

2.3.3 Snapshot-based Temporal Graphs

Based on the work by Semertzidis and Pitoura [12], the history of a node-
labeled graph is given in the form of graph snapshots corresponding to the
state of the graph at different time instants. Given a query, it is a problem
to efficiently find those matches in the graph history that persist over time,
those matches that exist for the longest time, either contiguously (in consecu-
tive graph snapshots) or collectively (the largest number of graph snapshots).
These queries are called graph pattern queries. Locating durable matches in

11

the evolution of large graphs has many applications, like for example, lasting
relationships in social networks.

Another relevant work is the one from Huo and Tsotras [13], which analyses
the problem of efficiently computing shortest-paths on evolving social graphs.
The authors use an extension of the Dijkstra’s algorithm to achieve this for a
time-point or a time-interval. Their main goal is to efficiently solve shortest-
path queries within the graph’s evolving history. This temporal queries are
represented as a historical graph snapshot. For example, these queries in a social
network can show how two people were connected in the past, with a historic
snapshot of the graph at the time, and the evolution of their relationship is
showed as updates.

3 Problem Description and Requirements
We tackle visualization of temporal property graphs using two different ap-

proaches. The first one focuses on the platform development and its functional-
ity, and the second one focuses on the visualization capabilities that were needed
to correctly handle the interaction with the database.

3.1 Platform
This work aims at providing a platform that encapsulates every function-

ality. Since the importance of providing intuitive interfaces is increasing [14],
developing a comfortable and modern interface for user interaction is one our
main goals.

According to Kreitzberg [15], users of software like this are usually thinking
about the problem they are solving, so a well-designed one should reduce user’s
effort to think about the way of using itself to the minimum. So the idea for
this work is to maintain a low cognitive load for the platform to allow users to
focus on the data they are analyzing and also reduce the amount of training
needed to use the application.

The platform presented here includes a space for users to write their own
queries using the T-GQL query language. This work provides, then, a visual-
ization platform that integrates with the query engine described in [1].

3.2 Visualization
We also address the visualization of a temporal graph across time, by select-

ing a date interval with a slider. Time is one of the most important factors to
consider in the design of this project, as temporal property graphs are not static
graphs, but they change in time. Surprisingly, there are not many proposals in
this sense.

The property graph model [16] stores information with an underlying struc-
ture that allows to use nodes as property labels and values for them. The
temporal graph data model adds structural information that allows handling
time in a transparent way. This structure is described in [1], and the visual-
ization tool must hide it from the user, leaving only the nodes and edges to be
seen, since users are interested in looking at such information. To show them
what they are really expecting we handle the abstraction of this underlying

12

structure when creating the visualization. This is described with further detail
in Section 4.5.

Lastly, the tool to be developed must be able to handle a large number of
nodes and edges, usually much more that the number of them than can fit on
a screen. How to deal with these amount of nodes and edges is one of the
challenges of this work.

4 A Platform for Graph Visualization
As stated before, one of the main goals of this work is to seamlessly integrate

a graph visualization tool with the T-GQL engine in [1]. The first step set by
this goal is to select the language and technologies.

4.1 Language and Frameworks
We chose Javascript as language, since it is a powerful and versatile language

mainly used for front-end systems. The main drivers behind this decision are:
facilitating our access to interface and visualization libraries, and bootstrapping
our work allowing us to focus on the actual problems.

As part of the consequences of the previously mentioned decision, the se-
lection of technologies and framework are encouraged to take advantage of
Javascript libraries. React.JS framework was chosen in order to facilitate con-
structing the platform and handling user interaction. React.JS framework pro-
vides the work with structure and a thought model to organize the whole system.

4.2 Visualization Libraries
Javascript and React.JS decision, set some restriction when thinking about

which libraries and tools should be chosen for visualization. Compatibility is no
easy task, although it helps to shrink the options.

The compatibility constraint is due to the way the selected library and
React.JS framework handle DOM elements8. React manages DOM elements
through a Virtual DOM hooked to the Real DOM, so the chosen library must
be able to adapt towards this. Failure to handle this will generate conflicts from
React’s side when trying to synchronize its Virtual DOM with the real one.
Some of the most interesting visualization libraries and frameworks work with
their own Virtual DOM or even modifying the real DOMin order to leverage
visualization elements creation, which actually ends up messing with React’s
job.

In the meantime, while trying to solve this issue with some candidate li-
braries, advantages have been taken of these situation to explore most of the
existing libraries. The resulting list from this research is too broad to go through
so this section details only some of them. The most interesting ones that were
not used are OGMA, G6, VX. Further discussion is addressed on Appendix A.

8According to W3.ORG [17] DOM is the acronym for Document Object Model and it is
the application programming interface (API) for HTML and XML documents. It defines the
logical structure by which the information of the document might be accessed or manipulated.
Elements in this structure represents an object which encapsulates not only structure but
identity and functionality. In an HTML web page, there is only one DOM that is visually
represented and this document refers to it as the Real DOM.

13

OGMA G6 GOjs
Popoto Vis.js ProtoVis
JSPlumb VivaGraphJS AmCharts

VX React-Vis

Table 1: Different Visualization Libraries Tested

Finally, Vis.JS [18] has been chosen because it is 100% compatible with
React and there is a way to avoid component references and only re-render
through normal components lifecycles. Furthermore, this library has an ex-
tremely detailed documentation and explains perfectly their solution to graph
visualization. Regarding this last point, this is very compatible with the needs
of this project according to the format and data handling. Distribution of the
graph is not something that needs to be handled, so, just setting forces simula-
tion the layout is automatically displayed. Also it provides a very well developed
events API which is useful for interaction with the visualization.

Lastly, there is a React component wrapper which has already been imple-
mented for their graph solution. This is perfect since having the main compo-
nent already correctly embedded inside the react application as a reference is
very helpful to avoid stepping into the problem of DOM management from each
framework or library.

4.3 Platform interface
Regarding the application interface, the decision is to have a straightforward

design where information is clearly presented to the user without any useless
information generating distractions for them. In other words the intention is to
have a clean interface. On the basis of having some material design styled
user interface, the intention is to leverage the most out of other existing projects
with open source licenses.

4.3.1 Layout

To fully provide the cleanness mentioned above, a simple layout is needed.
Figure 8 depicts the welcome screen. This layout is the same for every view
across the whole platform. The template theme that is used to bootstrap general
component design is further explained in Appendix B.

Section 1 in Figure 8, is the navigation drawer which contains the different
navigation links to switch between the different screens. This navigation drawer,
as its name states, is collapsable into single icons in order to provide a larger
main section area when preferred. This can be seen in Figure 9 . Section 2 is
the main panel and is intended to hold the varying information regarding the
different tabs.

With this fixed layout the user is provided with consistency to be able to
focus only on the information in the main section. This is similar to the way in
which Bloom 9, the Neo4j’s visualization platform, handles its interface and as
most users will be handling Neo4j databases, it is a good idea to stick to what
they are probably familiarized with.

9https://neo4j.com/product/bloom/

14

Figure 8: TGV noted layout

Figure 9: TGV collapsed drawer

4.3.2 Settings View

The first view is the Settings View. In Figure 10 the settings navigation
item is selected on the navigation bar and the main panel has the different
configuration settings available for the user. In order to comply with material
design principles proposed in [19], the focus is on the layout and motion inside
each view. As different information is needed from the user it is useful to group
pieces of information into card modules appearing whenever they are required.

Beginning with just one module, the user can understand easily that to start
configuring the application they just need to enter connection information. Once
this information is provided, the user has only one button to continue and test
the connection. The idea of motion and change from material design allows us
to provide the user with a determined configuration flow.

Once the connection is successfully tested, the remaining card modules stack
up under the connection setting’s card. There are two distinguishable group
settings, one for nodes and one for edges. Both are arranged on their own cards
that contain a table with rows for each type. This allows an expandable layout
that can easily adapt for the different possible databases.

All the information needed is retrieved through a direct query to the database
that was provided in the previous module. Moreover, there is a default selector

15

Figure 10: TGV Settings View

from which the user can choose to have the visualization view up and running
as fast as possible.

Node settings
For each node type there are four available settings from where three are

strictly used for visualization styling purposes and one has to do with the query
generator. Each of this four columns has its own type of button. The most
common ones are for the icon and main attribute settings with normal dropdown
buttons.

• Type. Indicates the type of node corresponding to the configuration
selected in the row.

• Color. This selector provides the user with the customization she wants
for the visualization. Node color is is the main way to distinguish between
node types among many nodes. The Color Picker has palette selection,
gradient and even manual RGB color insertion. This is really useful for
managing big graphs, since the user can easily relate similar colors with
related node types and find anomalies in an instant.

Figure 11: TGV Color Picker

• Icon. This option allows the user to choose from a list of pre-loaded icons
to be used in the selection module on the visualization view to quickly
identify the node type they are viewing.

16

• Main Attribute. This setting has two main purposes. Due to the nature
of the temporal property graph structure, every object type can have
several attribute nodes with their own value nodes. So a way to determine
which of this variable options is more important to use for node distinction
is needed. In the first place, this attribute is used to determine which
variable is used to show while hovering over a node. Secondly, it is used to
determine which attribute is wanted in lookup for the following column,
related to the query builder.

• Query. Last but not least, there is a query filter builder. This feature
allows starting focusing the visualization from the very beginning. The
idea behind this selection is to determine if any of the node types should be
filtered to just show a set of values. To fulfill this and prevent the user from
doing unnecessary work, a specific component was defined. First of all, the
component is populated through a query for the available values related
to the selected attribute in the previous column. Secondly, selection inside
the dropdown is through checkbox, to make it really easy to make multiple
selections at the same time. And lastly, as lists could be quite big, the
component also has a search box that filters the dropdown list through a
fuzzy search 10. This last feature not only makes the user find the correct
values fast, but it also allows for some typo errors, providing with a list
that has been already filtered with most close results.

Edge Settings
Regarding edges the user is provided with only one customization, color. As

in every test case the only need for the user is to distinguish the type of the
relationship, it makes sense that this is the only characteristic necessary. The
selection component is the same Color Picker which has been described before
for nodes.

Temporality Settings
As the document describes in the following section, the mechanism to man-

age and select temporality filters is done through a slider component. This
slider component, that can be appreciated in Figure 13, has several character-
istics that affect its usability depending on the type and amount of data that
the user will be manipulating. To allow the user to work comfortably with the
slider they are provided with options to tweak both limits and granularity.

• Limits. Since the data in relation to the visualization can be widely
spread over time. To make things more clear, usually different node types
like cities have temporal ranges that are in magnitudes (years) different
that other ones, for example events (hours). So most of the time, the user
queries about events that are related to cities, so the temporal spread of
the whole result is fairly wide since cities influence this total spread. With
the intention to automatize the limit this spread, the user can choose the
limits of it, so that in cases of misleading general spread, the user would
be able to use the slider for the filtering needed.

10A fuzzy search is done by means of a fuzzy matching program, which returns a list of
results based on likely relevance even though search argument words and spellings may not
exactly match. Exact and highly relevant matches appear near the top of the list. (see https:
//whatis.techtarget.com/definition/fuzzy-search). A comparison between the different
available algorithms and their conflicts can be found at https://aip.scitation.org/doi/10.
1063/1.5114193

17

• Granularity. Again, following functionality comments regarding the
slider use, the best way to find precision is to define the step in which users
can increment or decrement the selection for the sliding filter. Though,
when granularity or step is too small the step is changed towards a contin-
uous slider, desisting the idea of precision. This options provide the user
with four step selections: Years, Months, Days, Hours. Depending on
the spread of the slider, the selection transforms into continuous selection
instead of discrete.

4.3.3 Visualization View

The second and main view is shown in Figure 12 as a screenshot of the main
panel. In this view, following the same idea from previous views, several mod-
ules or boxes can be defined that clearly behave differently and group different
characteristics.

This is intended to provide the user with the notion that they are working
with a ’toolbox’ where each tool is on its own place and allows them to use only
what they need.

Figure 12: TGV visualization view

The different modules include the following:

• A. Query Box. On the upper part of the main panel, the root trigger
for almost every interaction can be found. As it is described later in this
document, the visualization tool permits customizing and exploring the
results of temporal graph visualizations, so this box is used to input and
edit the main query that can fetch the results from our colleagues service.
This box component aims at simulating a code editor, and was chosen to
provide consistency between this and the previous project, since they were
using it. The name of the component’s project is CodeMirror11

• B. Graph Module. This is is the main module where the results to
the input query are represented visually. Figure 12 shows this module
can be divided into two parts: the center one, which shows the visual

11More information related to the project can be found in https://codemirror.net/

18

representation, and the bottom part, with the color references to provide
more information for better understanding of the visualization. Something
important to highlight, that Figure 13 shows on the top, is the selection
of the different shapes that conform the color references. In this case we
leverage the use of shape and color as two variables that easily establish
visual association allowing to use space more efficiently without creating
confusion. Colors are used to distinguish types, while shapes distinguish
elements, circles referring to nodes and lines referring to relationships.
This practice of taking advantage of n-dimensions of visualization comes
from the idea of visual variables and their categorizations presented by
Jacques Bertin on his work Sémiologie Graphique [20] originally published
on 1968.

Figure 13: TGV Slider

Below these references, the slider which has two selection points to filter
results for a period of time. As it was mentioned earlier, the granularity of
the steps can be changed in the settings view and the extremes of the slider
can be set manually as well. On the right hand side, there is a text that
describes the period selected with the slider for clearer understanding of
the filtering that is applied. This characteristic becomes important when
using the continuous slider, since it is more difficult to precisely select the
desired time.

• C. Selector Module. On the upper right of the panel there is a mod-
ule to provide detail for any node that is selected. Since the nature of
the data in Temporal Graphs allows nodes to have infinite information-
related nodes with lots of values, it was decided to provide a separated
box for exploring the content. Pushing this information into the visualiza-
tion module can end up messing the neat representation and can interfere
with the main objective of understanding the visual representation of the
data. This module displays information about the node, referencing its
color and icon for node type and listing its different attribute and value
nodes related. Additionally, besides each of the attributes, the temporal-
ity related to them was added, so that behaviour can be better understood
when filtering the graph through the slider.

• D. Filters. Last but not least, the filtering module on the bottom right
section of the main panel. In this module, selections can be performed
regarding the amount of nodes to be displayed and the types of nodes
and edges for the visualization. Although this are simple filters which are
performed after the query is consulted, they can be really handy to clean
and focus on the visualization that really matters to the user.

4.4 Untangling the Information Flow
One of the main advantages for using react as a framework for the platform

is its capability to naturally work with components and states. Since this web

19

application is intended to handle lots of interactions with the user and different
data sources, this functionality becomes proves to be useful.

Figure 14: TGV’s Component Tree Section

However, problems occur when components need to interact in a deeply
nested tree from far apart branches in this hierarchy. Figure 14 is a segment of
the react components’ tree of the platform hiding the DOM elements. The right
way of handling state is that each component is able to interact with its parent
and its children, so when we are trying to get information from the red node
towards the green node we have to go through their parent which is something
quite easy since this is probably something doable in the same line of code.

The problem appears when these components need to interact between nodes
that have a very far away common parent. This is the case for components
red and violet seen in Figure 14. The only way to connect between them,
without breaking the order in which information is intended to flow is through
orange node, which is seven levels apart from each of them. Furthermore, this
state must be stored in the shared component in order to be able to share this
information in some cases without going all the way down towards the other
side of the tree. So what it is usually done is to "Lift the state Up" allowing the
information to bubble up towards the component in common. This is depicted
in Figure 15.

This becomes quite problematic, since one has to waste lots of time develop-
ing wrappers to handle these methods and information is being passed through
the different layers. So in this heavily component dependant applications an-
other solution is usually brought to handle shared state.

20

Figure 15: TGV’s Component Tree Section

One popular solution would be to use Redux12 but this one implies lots of
overhead configuration for the few information that this application was holding
in the "root" of the project. So the chosen solution was to use React’s own
workaround that was introduced with the feature of React hooks, Context13.
The idea behind Context is to have a way to avoid this information flowing
from the top component in the tree to handle data used by many different
components at different nesting levels. It achieves this by creating Context
objects which are hold in Providers. Then interested Components to subscribe
to this Context and consume the broadcasted values through the information
held in the nearest Provider.

In other words Context acts like a hub storing data widely used from elements
across the whole platform and Providers are direct links towards this hubs.
Then elements can interact with data in hubs as if data would be in an element
right on top of them in the structure. This whole mechanism permits global
information to be handled correctly without tangling up the information flow
between components.

4.5 Underlying Structure Abstraction
One of the main goals of this project is to be able to abstract the underlying

structure of temporal property graphs from user’s handling. In Figure 16 the
schema of the a social network temporal property graph is shown. This is what
visualizations will usually show, since Cypher queries won’t automatically hide
this information from the user. In order to do so, users must explicitly build
the expected outcome. A key feature of this work is that the visual interface
hides these structural details.

12https://redux.js.org/
13https://reactjs.org/docs/context.html

21

Figure 16: Social Network Temporal property graph example schema

Therefore, the project offers a way to visualize this same schema in a concise
format, trying to shrink every attribute nodes and their corresponding values
into object nodes, allowing user’s to see the information only when needed by
selecting that node but providing a cleaner look when consulting just for objects.

The other benefit that this work provides to the user is to be able to suc-
cessfully visualize different object types as really different types through color
representation. When we analyze the underlying structure we are only viewing
all nodes as object. This can be seen in Figure 16.

In Figure 17 we can see this different object types and their relationships
avoiding every other nodes that store their information, although this informa-
tion is still accessible through other methods such as hovering or selecting the
node. To the right of the same figure, we can appreciate one Person node be-
ing selected in order to explore values for its corresponding attributes without
cluttering in the visualization.

4.6 Visualization Rebuilding Process
It is relevant to discuss the process through which the visualization of the

graph is rebuilt. To properly describe this process, the steps of the normal work
flow of the application are enumerated below:

1. Connection Information. The first step is to input the connection

22

Figure 17: Relevant structure exposed and compacted attributes

information for the database. This immediately tries to use the credentials
provided verifying that they are working and fetching useful information
to fill the following section that configures settings that are specific to the
database connected.

2. Visual Settings. Once connection is successful, user selects visual pref-
erences which has been previously described in this document. Changes
to this settings are instantly reflected on the visualization.

3. Input Query. Once user preferences are set, user heads towards visual-
ization view and begins by entering the query corresponding to T-GQL
language. This triggers the query towards TBDG service and later starts
the rebuilding process mentioned above.

4. Type Filtering. After the visualization result is prompted into the main
panel, user uses filtering through the filtering module to narrow types and
amounts of nodes towards their interests.

5. Temporal Filtering. At the same time temporal filtering can be applied
through the slider component, hiding every node and edge out of selected
range.

6. Node Selection and hovering. Lastly, once the visualization is rep-
resented on the main panel, user is able to hover over nodes and edges
to analyze information about types and temporal ranges at a glance. If
more information is needed about the node, they are able to click on any
represented node and the selection module fills with related information.

Back to the rebuilding process , the steps needed in order to take advantage of
the TDBG service and the results it provides are described below. The following
simple query example helps to understand the idea. It has been performed on
TDGB service and on TGV:

SELECT p1.Name, p2
MATCH (p1:Person), (p2:Person)
WHERE p2.Name = ’Williams Little’ and cPath((p1)-[:Friend*1..3]->(p2))

23

Figure 18: TGDB Service JSON response

• Results from TDBG. First, the response that the TDBG service pro-
vides is in JSON format. This includes the list of nodes and attributes
that appear in the result to the query. As Figure 18 shows in an extract
of the results table, the result provides no information about edges which
are needed to be able to show them on the visualization.

• Fetching attributes. In order to be able to apply filtering and provide
with hover information it is necessary to fetch attribute nodes and their
values related to the nodes involved in the query result. Note on Figure 18
that when the user queries for the name attribute - in p1 node - the result
comes with this attribute embedded on the node object, but in the case of
querying only for the node, the attribute information won’t be returning.

• Fetching edges. Performing a direct fetch to the database to get the
missing information was proposed by our colleagues from the TDBG project.
This is finally working by collecting every node id - [nodeIds] - from the
result response and using it in the following query:

MATCH (n:Object)-[r]->(m:Object)
WHERE n.id in [nodeIds]
AND m.id in [nodeIds]
RETURN collect([[n.id,m.id], type(r), r.interval]

• Differ from path response. In the case of manipulating a path query
response, a different mechanism is applied. The TDBG response gives the
nodes involved in each path in the correct order. So each path is iterated
and given a different path color code. The color code is stored in the node,
thus when a node participates in more than one path, as each node can
be painted in only one color, the last path in which that node appears
is the one that gives the color to it. Each color code is an integer from
0 to 11. So the first path in the iteration has a color code of 0 and the
last one a color code of 11. Color criteria is explained in the following
subsection. Moreover, every different node encountered is stored in a list,
that is used to fetch the edges involved with the mechanism which was
explained above.

• Build graph. Using all these data, iteration through the result nodes is
done, validating node limit and types from filters and skipping if necessary.

24

Once those filters are done, temporal filtering is applied by performing an
interval check that is later explained in Section 5.1. Then, the color is
chosen depending on whether the node is part of a path or not. If it is,
the color which was previously chosen is used. If it is not part of a path,
the specific color for that type of node is used (which was selected in the
settings view). And before consolidating this node in the visualization, a
check is made to corroborate if it belongs to the WHERE clause. After
nodes are set, the work on the edges starts. An iteration over all the
edges is made, validating interval and type from filters and skipping if
necessary. In case of working with paths, some special "restricted" edges
filter applies. Restricted edges is a set that contains every edge with its
direction. This set was built earlier when the edges were obtained from
the database and is used to avoid inserting the same edge twice in different
directions. Finally, the color is chosen, again taking into account if it is
part of a path or not. If it is, it looks for the color of the nodes it connects
and chooses the one with a higher color code, meaning that the last paths
in the iteration have precedence over the first ones. If it is not part of a
path, the specific color for that type of edge is used (which was selected
in the settings view). Figure 19 shows the final result of the recreation of
the visualization for the sample query in this project.

Figure 19: TGV sample visual representation

4.7 Color Criteria
To choose the color criteria when drawing the graphs, specifically when draw-

ing paths, inspiration was taken from Cynthia Brewer. Among other things, an
online tool for choosing color palettes was developed by her [21], as she believes
that choosing effective color schemes to represent data is complex. There are
three types of schemes, which are: sequential, diverging and qualitative. In this
project a qualitative palette was selected because it works better to differentiate
the different paths as the colors are more contrasting. To be more specific, the
palette which was chosen is the 12-class paired, with 12 different colors. The

25

important thing to clarify is that when there are more than 12 different paths
to show, the colors repeat, meaning that path 13 has the same color as path
number 1.

Figure 20: 12-class paired color palette by Cynthia Brewer.

5 Implementation Details
This section explains some details on how the implementation deals with

some problems, like granularity, integration and query processing.

5.1 Granularity
Some interesting fact about how the database actually works is that it can

handle different temporal granularities at the same time, even in the same result.
This means that different elements, nodes or edges, can have their time property
set to anything in between years and seconds. This becomes clear when filtering
the results. The year "2020" is greater than day "20-10-2019" but a comparison
can not be made between "2020" and "20-20-2020". To do so, you must convert
them into the same granularity.

So to correctly compare these two values, a conversion must take place.
This is, in fact, easier when the context of this conversion is taken into account
because the comparisons in between the values of the graph elements is not
needed and the only focus is on the temporal filtering.

Time filtering is triggered through the slider having two extremes, one for
the minimum and one for the maximum. So the only conversions are the mini-
mum to the minimum that is allowed for that granularity completion, and the
maximum to the max. This is done with a completion string of the complete
granularity: "-01-01 00:00:00" and "-12-31 23:59:59" for max. Depending on
the precision of the granularity more or less characters from the string are com-
pleted.

After this is done, two conversions into timestamp values occurs, in order to
compare precisely with a numeric value. This is the clue to understand that the
problem of conversion in time properties for the graph elements can be faced in
the same way. Time properties are intervals so they have both a minimum and
a maximum, which allows to use the same mechanism.

In the end, there are two intervals, which are completed to the same gran-
ularity and are converted into timestamps, leaving just a simple comparison to
evaluate if the temporality of the element has some overlap with the temporality
of the filter.

5.1.1 The value "NOW"

Most of these databases actually have moving time intervals and they address
this characteristic with the value "now" for the upper bound of intervals. This
is not compatible with the string completion solution but it is easily solved by

26

tweaking the interval comparison formula to interpret the value "now" as the
greatest number allowed by the database system.

5.2 Integration
This subsection intends to explain the integration with the T-GQL engine

developed in [1] and create a user-friendly interface.

5.2.1 Embedding

The first thing is to understand the way TGQ-L processor works in order to
use it inside this solution. After a meeting with the developers and reviewing
the code, interaction interface was chosen to be the integration point. Since the
previous project has its way to input their queries, this project has to connect
its the platform to that input.

To avoid making big changes, this project hooks up to their back end through
an endpoint, using it as service provider. This is very handy since it avoids
creating interfaces to interact between both projects, which generates constrains
for languages, technology and more time spent on non-user features.

5.2.2 Compatibility & Reconstruction

The above solves the problem of integrating the two projects but it forces to
handle the information which is returned from the T-GQL engine in a different
way. The T-GQL engine works processing queries and returning, in JSON
format, results to those particular cosults. On the other side our goal is to
visually represent everything related with that result.

As expected, the query result is not enough to reconstruct the whole graph
visually, since results are just nodes. So edges are missing. To solve this issue
several queries need to be made directly to the database to support the recon-
struction of the missing information related to the result. This was suggested
by the colleagues from the other project. So a collection of all the nodes that
are present in the result is created and is used to consult through a single Neo4j
query for the corresponding edges. Although a bit more expensive this returns
the information necessary to reconstruct most of the results. The reconstruction
process is further explained on Section 4.6.

5.2.3 Paths

Taking into account the lack of information in the previous project’s results,
to construct path queries the order of the sequence in which the collection of
nodes is presented is used to infer the directions of the paths.

Moreover, to reference different paths, different colors were used, but after
several iterations, this feature was rolled back due to overlapping of nodes.
Some results with several paths, have multiple paths that coincide in multiple
nodes. So, having overlapping nodes, it is difficult to select the predominant
color between this paths. This causes confusion. So it was decided to leave
colors referencing only their corresponding node types and rely only in edges
arrows to distinguish different paths.

27

5.3 Preprocessing the Query
Previous to the building of the graph, a preprocessing of the query needs to

be done in order to obtain useful results to then generate the graph.
First, attributes are stripped out from the select clause, meaning that the

following query:

SELECT c.Name
MATCH (c:City)

is transformed into:

SELECT c
MATCH (c:City)

The reason behind this is that with the first query, the TDBG returns the list
of nodes, but the ids of those nodes corresponds to the id of Value nodes. To
correctly obtain the involved edges in the query, the ids of the Object nodes
are the ones needed. So by converting c.Name to c, the TDBG now returns the
ids of the Object nodes and with that list of ids the edges can be retrieved as
explained earlier. For this project, it does not matter which attribute the user
wishes for, because the graph when displayed shows all the attributes in the
selector module.

This stripping of the select clause is done by obtaining the index of the
start of the select clause, the index of the start of the match clause and then
getting the sub-string in between of these indexes. Then a split is done using
the coma as the separator. Now every element corresponds to a an item of the
select clause. Finally, every item is searched for a dot, and when found from
the dot on wards everything is sliced. So every item now has only object and
no attributes. The select clause is built again with the new items.

Second, a pre-processing of the select clause is made to find all the items
wanted by the query to then highlight them when building the graph. To achieve
this, the following two custom regex functions are used:

1- /\s?(\w+.?\w+|\w+\[\w+\])\s?=\s?(’[\w\s-._]+’|\d+)/g
2- /(\w+).?\[?(\w+)\]?\s?=\s?(’[\w\s-._]+’|\d+)/

The first one is used to obtain the where clause and the second one extracts
every value wanted in the query. This values are stored in a array that is then
used to highlight those wanted nodes.

6 Experimental Evaluation
To analyze the power of the application a thorough plan to test the perfor-

mance under different scenarios was designed, which includes different databases
with varying amounts of nodes and edges as well as a number of queries which
were designed specifically to test each possible aspect. Each of these queries were
then executed on the different databases and the execution times extracted, to
make an analysis on the performance of each query. Two times were computed
for every query. The first one starts when the processing of the query starts and
ends when the graph is built. It includes the time it takes to parse the query,
the time involved in asking the TDBG for a result of that query and finally

28

Social Network 1 Social Network 2 Social Network 3
Nodes 392 1950 2100
Edges 1348 13537 23870

Parameters:
Persons 70 500 500
Cities 30 50 100
Brands 30 100 100

Max friendships 5 25 100
Max friendship intervals 2 2 2

Max fans 2 25 10
Max fan intervals 2 2 2
Number of cPaths 2,1 2,1 2,1
cPath min Length 5,10 5,10 5,10

Table 2: Parameters used in the creation of each database.

the building of the graph. The second one is the the time involved in asking
the TDBG for a result of that query. Then, these times are subtracted from to
obtain the difference to compare how much processing this project adds.

6.1 Social network
Three different social network databases were created with an increasing

number of nodes and edges. Below in Table 3 the different parameters of each
database are shown:

In the following list, the five different queries used to analyze the social
network database are listed, along with a code that is used when showing the
response times for each of them:

SN0 - SELECT p, c, n
MATCH (p:Person),(c:City),(n:Brand)

SN1 - SELECT paths
MATCH (p1:Person), (p2:Person),
paths = cPath((p1)-[:Friend*2..3]->(p2))
WHERE p1.Name = ’Hilton Turner’ and p2.Name = ’Jan Dickens’

SN2 - SELECT c.Name , p1.Name, p2.Name
MATCH (p1:Person)-[:Friend]->(p2:Person),
(p2)-[:LivedIn]->(c:City)
WHERE p1.Name = ’Hilton Turner’
BETWEEN ’2000’ and ’2004’

SN3 - SELECT p2.Name as friend_name, p1
MATCH (p1:Person)-[:Friend]->(p2:Person)
WHERE p1.Name = ’Hilton Turner’
WHEN
MATCH (p1)-[e:LivedIn]->(c:City)
WHERE c.Name = ’Danaeview’

29

SN4 - SELECT paths
MATCH (p1:Person), (p2:Person),
paths = cPath((p1)-[:Friend*2]->(p2))
WHERE p1[id] = 250

To get a better understanding of what each query does, an explanation for
each of them is needed. SN0 just searches for all the people, cities and brand
in the database. SN1 searches for all the friendships of distance 2 to 3 between
Hilton Turner and Jan Dickens. SN2 searches for all the friends from Hilton
Turner and the cities they lived between 2000 and 2004. SN3 searchers for all
the friends from Hilton Turner when he was living in Danaeview. Finally, SN4
searches for all the friendships of distance 2 from the person with id 250.

Taking all this into account results are reported. Figures 21, 22, 23 show
the response times of each query in the social network 1, 2 and 3 respectively.
Each figure shows times for TGV (meaning the time it takes to do query plus
build the graph) and for the TDBG (the time needed just to query the graph).
The column nodes on the TGV table shows the amount of nodes that the query
gives as result. The idea behind this is to compare both times and understand
how much more processing the application adds.

Figure 21: Response times for social network database 1.

Figure 22: Response times for social network database 2.

Figure 23: Response times for social network database 3.

The first thing to notice is that in social network 2 and 3, SN0 does not
work. This happens because of the increase in the maxFriendship parameter.
In social network 1, maxFriendship is 5 while in 2 and 3, maxFrindship is equal
to 25 and 100 respectively. 5 and 20 times more.

Second, the response times in SN0 and SN4 are much greater than in the
other queries, surpassing the 1000 milliseconds. The reason behind this is the

30

amount of nodes the response has. It can be noted that over the 100 nodes, the
response time is greater than 1 second.

Going into detail regarding the difference in time between TVG and TDVG,
Figure 24, shows specifically this.

Figure 24: Difference between the average TVG and TDBG response times.

For SN1 to SN4, the difference in response times is nearly constant around
40 milliseconds in Social Network 1. All these queries have less than 10 nodes
as result. The same happens for SN1 and SN2 in Social Network 2 and 3. For
SN2 in Social Network 2 and 3, the difference is around 60 milliseconds, and
the result nodes are greater than 10. Finally, for SN0 in Social Network 1 and
SN4 in Social Network 2 and 3, the difference is greater than 100 as the result
nodes are greater than 100 too.

Form these results, a conclusion starts to be noticeable. This is that as
the amount of nodes in the result of the query increases, so does the difference
between the response times in TVG and TDBG. For similar numbers of nodes,
the difference is constant, which shows the consistency of this project when
building the graph. Moreover, In every case, the difference is lower than 1
second.

For a better understanding of the above, Figures 25, 26 and 27 were made
about the results obtained.

Figure 25: Response times depending on the number of nodes.

Figure 25 shows both TVG and TDBG response times depending on the
number of nodes. All the queries for the 3 databases are present in this graph.

31

Both lines in this graph are overlapping each other, meaning that the difference
in response times is small.

Figure 26: Response times depending on the number of nodes up to 100 nodes.

Figure 26 shows the same graph as Figure 25 but for the first results with
less than 100 nodes. This graphs shows that the difference between the lines is
almost constant all the time showing the consistency previously mentioned.

Figure 27: Difference between the average TVG and TDBG response times
depending on the number of nodes.

Finally, Figure 27 shows the difference between the average TVG and TDBG
response times depending on the number of nodes. All the queries for the 3
databases are present in this graph. It is clear that below the 100 nodes, the
line is almost straight, again showing the consistency intended. And the max
difference in the graph is less than 1000 milliseconds which is less than a second
and almost imperceptible for humans.

32

Airport 1 Airport 2 Airport 3
Nodes 60 600 1800
Edges 82 788 2400

Parameters:
Cities 10 100 300

Outgoing flights per airport 3 6 9
Flights per destination 3 6 9

Table 3: Parameters used in the creation of each database.

6.2 Airport
For further testing, three different airport databases were created with an

increasing number of nodes and edges. Below the different parameters of each
database are shown:

In the following list, the 5 different queries used for airport databases are
enumerated with a code that is used when showing the response times for each
of them:

A0 - SELECT a, c
MATCH (a:Airport), (c:City)

A1 - SELECT path
MATCH (c1:City)<-[:LocatedAt]-(a1:Airport),
(c2:City)<-[:LocatedAt]-(a2:Airport),
path = fastestPath((a1)-[:Flight*]->(a2))
WHERE c1.Name = ’Port Berniecebury’
AND c2.Name = ’West Hipolitohaven’

A2 - SELECT path
MATCH (c1:City)<-[:LocatedAt]-(a1:Airport),
(c2:City)<-[:LocatedAt]-(a2:Airport),
path = latestDeparturePath((a1)-[:Flight*]->(a2),
’2020-12-11 17:04’)
WHERE c1.Name = ’Port Berniecebury’
AND c2.Name=’West Hipolitohaven’

A3 - SELECT a1, a2, c1
MATCH (c1:City)<-[:LocatedAt]-(a1:Airport)-[:Flight]
->(a2:Airport)
WHERE c1.Name = ’Port Berniecebury’

A4 - SELECT a1, a2, c1
MATCH (c1:City)<-[:LocatedAt]-(a1:Airport)-[:Flight*4]
->(a2:Airport)
WHERE c1.Name = ’Port Berniecebury’

To get a better understanding of what each query does, we will explain
them one by one. A0 is the first query and just searches for all the airports and
cities in the database. A1 searches for the fastest paths between the airports

33

located in the cities of Port Berniecebury and West Hipolitohaven. A2 searches
for the lastest departure path since 17:04 in 2020-12-11 between the previously
mentioned cities. A3 searchers for all the airports and cities which have direct
flights from Port Berniecebury. Finally, A4 searches for all the airports and
cities at a 4-scale distance from Port Berniecebury.

Taking all this into account results are now exposed. Figures 28, 29, 30 show
the response times of each query in the airport 1, 2 and 3 respectively. Each
figure shows times for TGV (meaning the time it takes to do query plus show
build the graph) and for the TDBG (the time needed just to query the graph).
The column nodes on the TGV table shows the amount of nodes that the query
gives as result.

Figure 28: Response times for Airport database 1.

Figure 29: Response times for Airport database 2.

Figure 30: Response times for Airport database 3.

34

The first thing to noticed is that unlike in social network databases, A0
works. This is because the parameters outgoingFlights and flightsPerDestina-
tion are not that big. This was done on purpose to analyse the different response
times in the first query, that searches for everything, as in social network it was
not been possible to test.

Secondly, these databases show much better response times than the social
network databases. All the response times are below 1000 milliseconds except
for A0 in Airport 3. Even in the case of A0 in Airport 2 where the mount of
nodes is 200. This improvement is because of the maxFlights parameter. As
each node has clearly less relationships than in social network, queries are much
faster.

Going into detail regarding the difference in time between TVG and TDVG,
Figure 31 shows specifically this.

35

Figure 31: Difference between the average TVG and TDBG response times.

Again, a clear pattern can be found, where queries with less than 10 nodes
have response times around the 20 milliseconds. Although in these databases,
even with 36 nodes response times remain in the 20 millisecond mark. which is
an improvement over the other case. For 200 nodes, the difference increases to
66 and for 600, to 130. Conclusions from this test are the same as with social
network databases. As the number of nodes increases, the difference in response
times does too, though, the increase is less steep. For similar numbers of nodes
the difference remains constant. Further, in this case, the maximum difference
between response times is 130 milliseconds for 600 nodes.

The case of A0 in Airport 3 is the reason why the parameter maxFlights
is less than 10 in every database. To test the performance with big amount of
nodes. And the results are better than expected. Less 150 millseconds difference
between the two projects for 600 nodes and a total time of nearly 3 seconds to
show 600 nodes.

Figure 32: Response times depending on the number of nodes.

Figure 32 shows both TVG and TDBG response times depending on the
number of nodes. All the queries for the 3 databases are present in this graph.
Both lines in this graph are overlapping each other, meaning that the difference
in response times is small.

Figure 26 shows the same graph as Figure 33 but for the first results with
less than 100 nodes. This graphs shows that the difference between the lines is

36

Figure 33: Response times depending on the number of nodes up to 100 nodes.

almost constant all the time showing the consistency previously mentioned.

Figure 34: Difference between the average TVG and TDBG response times
depending on the number of nodes.

Finally, Figure 34 shows the difference between the average TVG and TDBG
response times depending on the number of nodes. All the queries for the 3
databases are present in this graph. Unlike in social network databases, below
the 100 nodes, the line is less straight. Still the difference between values is
low, less than 10 milliseconds. The max difference in the graph is less than 140
milliseconds as said before.

37

7 Limitations

7.1 Working With Deeply Interconnected Networks
This might not be related to this project directly but as the querying engine

from T-GQL is fully used, results are limited to queries that work in there. Any
limitation regarding the T-GQL project is extent towards this project, since no
further work was provided on the T-GQL project.

7.2 Different Path Coloring
As it was mentioned earlier, the decision to roll back path coloring to dis-

tinguish different paths when shown in the same query result had to be made.
This is a clear limitation to show the ideal solution where everyone can easily
distinguish between them. A feasible way to do this could not be found but
there can be some other solution to implement if some clicking behaviour and
highlight in the path is added. Of course this is not an easy thing to do, due
to the overlapping edges, which would generate ambiguous selections in some
cases.

8 Conclusion and Open Problems
The platform and visualization work described throughout this document

proved to become a useful tool for exploring and analyzing temporal property
graphs. Regarding the visualization solution proposed, the main important
points were solved. The abstraction of the underlying structure of the temporal
graphs was successfully performed through the model proposed. Integration
with the T-GQL engine was solved to full extent, empowering users with the
possibility of using T-GQL language and hooking visualizations to the results.
The platform is also considered a success since users can easily work through
it and use the tools with ease. Several usability concerns where tackled, not
only through the right color criteria for visualization, but also by paying close
attention to components such as the starting query generator with fuzzy search.

8.1 Color Scales for Temporality Density
One feature to include is a density scale to gain more insight from result

temporal distribution. This can provide further information to the user without
using any further screen space. The idea behind this feature is to count the
amount of nodes and/or edges for every time block in the whole time interval.
Once the "histogram-like" information is obtained, the next step is to flatten
this down towards a color scale to show this on the same line of the slider.

After working on the implementation strategies available for the feature, it
is clear that all the data cooking process can become quite costly, since the
information for temporality is returned as string types referencing dates, so
dumping this into a scale is not trivial. Nevertheless, this feature can be imple-
mented in future developments, since there is probably a moment during graph
reconstruction where temporality values are converted into timestamps, so this
information can be leveraged to get the distribution information.

38

Appendices
A Visualization Research Extension

A.1 OGMA
This first one that has been mentioned is a Javascript library designed for

large-sacle interactive graph visualizations[22]. It is designed with WebGL but
it does support HTML5 Canvas and SVG. Its features go from displaying to
interactin with graph data, embedded in a web application. The issue with this
project is that although all the information is public and seemed to be accessible
for our work, this is a commercial library and they are not giving any academic
license at the moment.

A.2 G6
Coming to G6 [23], this D3 superlibrary is very well documented and is ac-

tually open-source. This typescript library has been designed as a graph visu-
alization engine, which provides a set of basic mechanisms, including rendering,
analysis, interaction, and other auxiliary tools.

Although documentation is detailed, everything is clearly written, first, in
Chinese and then translated. This generates some comprehension complexities
that make implementation for this tool, quite a struggle. Furthermore, nodes
data handling by G6 is very visually precise, so every position has to be set by
indicating their coordinates. Viewing it from a visualization perspective this is
a really good feature but handling space distribution adds another complexity
for our platform engine, which is not under the scope for this project.

A.3 VX
The last one is a React wrapper library for a subset of D3 components[24].

This was by far the most flexible library that was actually easy to support inside
our React platform. As D3 this library has no complete solution for graph visu-
alization but it has several small components that give the granularity needed to
implement our solution, focusing on logic and not on the actual graphic imple-
mentation. Nevertheless making all this smaller components to work and reach
a useful visualization requires lots of time spent on understanding the library
and every component functions. Since our main goal is to solve visualization
problems from temporal property graphs, most of the time needs to be saved
for it.

B React Template
A React template from Creative Tim 14 was chosen as a starting point. In

past experiences we’ve come into his contributions and we’ve found that his work
had a very clear structure and good documentation for further development.

14Any of his templates, either free and paid, can be found at https://www.creative-tim.com/

39

Since this was just the base of our platform, clear documentation was really
important and a key to build up the rest of the platform.

References
[1] Ariel Debrouvier, Eliseo Parodi Almaraz, and Matías Perazzo. 2020. Tem-

poral information query language for graph databases. Master’s thesis.
CABA, Argentina.

[2] Stuart K. Card, Jock D. Mackinlay, and Ben Shneiderman, editors. 1999.
Readings in Information Visualization: Using Vision to Think. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA. isbn: 1558605339.

[3] Manuel Lima. 2017. The Book of Circles: Visualizing Spheres of Knowl-
edge. Princeton Architectural Press, (May 2017).

[4] Moshe Bar and Maital Neta. 2006. Humans prefer curved visual objects.
Psychological Science, 17, 8, (August 2006), 645–648. doi: 10.1111/j.
1467-9280.2006.01759.x.

[5] O. Vartanian, Gorka Navarrete, A. Chatterjee, L. B. Fich, H. Leder, C.
Modroño, M. Nadal, Nicolai Rostrup, and M. Skov. 2013. Impact of con-
tour on aesthetic judgments and approach-avoidance decisions in architec-
ture. Proceedings of the National Academy of Sciences, 110, (April 2013),
10446–10453. doi: 10.1073/pnas.1301227110.

[6] John N. Bassili. 1978. Facial motion in the perception of faces and of emo-
tional expression. Journal of Experimental Psychology: Human Perception
and Performance, 4, 3, 373–379. doi: 10.1037/0096-1523.4.3.373.

[7] Manuel Lima. 2009. Information visualization manifesto. (August 2009).
http://www.visualcomplexity.com/vc/blog/?p=644.

[8] Sala. 2006. Websites as graphs. http://www.aharef.info/2006/05/
websites_as_graphs.htm.

[9] Mike Bostock. 2017. Force-directed graphs. (November 2017). https://
observablehq.com/@d3/force-directed-graph?collection=@d3/d3-
force.

[10] Neo4j-contrib. 2016-2020. Neovis.js. https://github.com/neo4j-contrib/
neovis.js/.

[11] Cambridge Intelligence. 2021. The regraph toolkit. https://cambridge-
intelligence.com/regraph/.

[12] K. Semertzidis and E. Pitoura. 2019. Top-k durable graph pattern queries
on temporal graphs. IEEE Transactions on Knowledge and Data Engi-
neering, 31, 1, 181–194. doi: 10.1109/TKDE.2018.2823754.

[13] Wenyu Huo and Vassilis J. Tsotras. 2014. Efficient temporal shortest path
queries on evolving social graphs. In Conference on Scientific and Statis-
tical Database Management, SSDBM, Aalborg, Denmark, June 30 - July
02, 2014 Article 38. ACM, 1–4. doi: 10.1145/2618243.2618282.

40

[14] Anja Naumann, Jörn Hurtienne, Johann Israel, Carsten Mohs, Martin
Kindsmüller, Herbert Meyer, and Steffi Husslein. 2007. Intuitive use of
user interfaces: defining a vague concept. In (January 2007), 128–136.
isbn: 978-3-540-73330-0. doi: 10.1007/978-3-540-73331-7_14.

[15] Charlie Kreitzberg. 2017. The intuitive interface. (February 2017). https:
//ux.princeton.edu/learn-ux/blog/intuitive-interface.

[16] Renzo Angles. 2018. The property graph database model. In Proceedings
of the 12th Alberto Mendelzon International Workshop on Foundations of
Data Management, Cali, Colombia, May 21-25, 2018 (CEUR Workshop
Proceedings). Volume 2100. CEUR-WS.org.

[17] Texcel Research Jonathan Robie. 1998. Rec-dom-level-1. (October 1998).
https://www.w3.org/TR/REC-DOM-Level-1/introduction.html.

[18] Vis.JS. 2018. Vis-network. https://visjs.github.io/vis-network/
docs/network/index.html.

[19] Prakash Patel and Samvid Mistry. 2016. A guide to material design, a
modern software design language, (April 2016), 65–66.

[20] Jacques Bertin. 1983. Semiology of Graphics. University of Wisconsin
Press. isbn: 0299090604.

[21] Cynthia Brewer. 2002. Colorbrewer 2.0. Colorbrewer2.org.

[22] Linkurious. 2013. Ogma. https://doc.linkurio.us/ogma/latest/.

[23] AntV Team. 2018. G6: a graph visualization framework in typescript.
https://github.com/antvis/G6.

[24] hsoff. 2017. Vx = react + d3. https://vx-demo.now.sh/gallery.

41

