
Performing OLAP over Graph Data:Query Language,
Implementation, and a Case Study

Leticia Gómez

Instituto Tecnológico de Buenos

Aires,Buenos Aires, Argentina

lgomez@itba.edu.ar

Bart Kuijpers

Databases and Theoretical Computer

Science Research Group, Hasselt

University and Transnational

University of Limburg, Belgium

bart.kuijpers@uhasselt.be

Alejandro Vaisman

Instituto Tecnológico de Buenos

Aires,Buenos Aires, Argentina

avaisman@itba.edu.ar

ABSTRACT
In current Big Data scenarios, traditional data warehousing and On-

line Analytical Processing (OLAP) operations on cubes are clearly

not sufficient to address the current data analysis requirements. Nev-

ertheless, OLAP operations and models can expand the possibilities

of graph analysis beyond the traditional graph-based computation.

In spite of this, there is not much work on the problem of taking

OLAP analysis to the graph data model. In previous work we pro-

posed a multidimensional (MD) data model for graph analysis, that

considers not only the basic graph data, but background informa-

tion in the form of dimension hierarchies as well. The graphs in

our model are node- and edge-labelled directed multi-hypergraphs,

called graphoids, defined at several different levels of granularity.

In this paper we show how we implemented this proposal over the

widely used Neo4J graph database, discuss implementation issues,

and present a detailed case study to show how OLAP operations

can be used on graphs.

CCS CONCEPTS
• Information systems → Online analytical processing;

KEYWORDS
OLAP, Graph Databases

1 INTRODUCTION
Online Analytical Processing(OLAP) [14] comprises a set of tools
and algorithms that allow querying multidimensional (MD) data-
bases. In these databases, data are modelled as data cubes, where
each cell contains one or more measures of interest, that quantify
facts. Measure values can be aggregated along dimensions, organized
as a set of hierarchies. Traditional Online Analytical Processing
(OLAP) queries aggregate fact measure data along a set of dimen-

sions, or select a portion of the cube. In Big Data scenarios, graph

databases are becoming increasingly popular, although, still, OLAP

operations can expand the possibilities of graph analysis beyond the

traditional graph-based computation. The present paper addresses

this problem.

In previous work, Kuijpers and Vaisman [12] proposed a formal

MD data model for graph analysis. Graphs in this model are node-

and edge-labelled directed multi-hypergraphs, called graphoids,
defined at several different levels of granularity, according to di-

mension hierarchies associated with them. Over this model, graph

OLAP operations are defined. These OLAP operations, although

analogous to the classic ones, are more powerful and have their own

clearly defined semantics. It was also proved that classic OLAP is a

particular case of graph OLAP. The running example introduced

next, gives the flavour of the hypergraph MD model.

Running example. In Section 5we present an example that shows

the advantages of using graphs instead of the typical relational MD

model. For now, we use a simple example to illustrate the MD graph

model and its associated operations. The example concerns movies,

actors, and movie critics that publish reviews and scores they gave

to actors performing in those movies. The base graph is given

in Figure 1. The nodes in this example are of the types: #Movie,
#Actor, and #Critic, and have an identifier as their first attribute.

Further, nodes of type #Movie are described by the movie’s name,

and the studio which produced the movie. Nodes of type #Actor
are described by the actor’s name. The hyperedges are of types

#Rating, #StarsIn and #DirectedBy. #Rating associates a score and

a date with a movie-actor pair. #StarsIn connects actors to movies in

which they played. If an actor directed a movie, there is an edge of

type #DirectedBy. As background information there are the classic

OLAP dimensions, like Time ,Movie , Actor , and Company, and an

Identi f ier dimension, which is explained in Section 3. Examples of

these are shown in Figure 2. Note that this is a simplified example.

In a real-world case, for instance, the geographic hierarchy would

be shared by other dimensions, or would be itself a dimension, or

Producer would be a dimension instead of a level in dimension

Movie .

Contributions and paper organization. In this paperwe: (a) present
a proof-of-concept implementation of the data model based on the

notion of graphoids; (b) implement a query language based on the

graph OLAP operations; (c) discuss a real-world case study, us-

ing the Internet Movie Database
1
data. Section 2 discusses related

work, while Section 3 reviews the model introduced in [12]. Sec-

tion 4 presents implementation details. Section 5 discusses our use

case, and present the query language, concluding in Section 6.

1
http://imdb.com

https://doi.org/10.1145/3129292.3129293
https://doi.org/10.1145/3129292.3129293
http://imdb.com

[#DirectedBy] [#StarsIn]
[#Rating, 10, 6/8/1992]

[#Rating, 9, 9/2/1979]

[#Rating, 9.7, 11/18/1992]

[#StarsIn]

[#StarsIn]

[#Actor, 3, Eastwood]

[#Actor, 1, D. Washington]

[#Actor, 2, Ho↵man]

[#Movie, 4, “Malcom X”, Warner Bros.]

[#Movie, 5, “Unforgiven”, Warner Bros.]

[#Movie, 6, “Kramer vs Kramer”, Columbia]

[#Critic, 7, Peter Travers]

Figure 1: Base movie critic data.

2 RELATEDWORK
There is an extensive bibliography on graph database models, com-

prehensively studied in [1, 2]. Two database models are used in

practice: (a) Models based on RDF
2
, oriented to the Semantic Web;

and (b) Models based on Property Graphs. Models of type (a) repre-

sent data as sets of triples of the form (subject ,predicate,object),
which in turn form an RDF graph. Hartig [7] shows that both mod-

els can be reconciled. The present paper is based on the Property

Graphs model.

GraphOLAP [3] is a conceptual framework for OLAP on a col-

lection of homogeneous graphs. Aggregations of the graph are

performed by overlaying a collection of graph snapshots. Along

similar lines, Qu et al. [13] present techniques for topological OLAP

analysis of graphs, and propose to optimize measure computation

through the different aggregation levels, based on the properties

of the graph measures. GraphCube [16] addresses OLAP cubes

computation through the different levels of aggregation of a graph,

targeting single, homogeneous, node-attributed graphs. Pagrol [15]

studies the use of Map-Reduce for distributed OLAP analysis of

homogeneous attributed graphs. Also, Distributed Graph Cube [5]

is a distributed framework for graph cube computation and aggre-

gation of homogeneous graphs. Finally, in [6] the authors propose

a method for defining OLAP cubes from graph data, aimed at ex-

tracting the candidate multidimensional spaces in heterogeneous

property graphs limited to binary relationships between nodes.

Compared to the works described above, our proposal has a key

difference: it supports the notion of OLAP hypergraphs, allowing n-

ary, probably duplicated relationships (i.e., multi-hypergraphs), as

typically found in real-world Big data scenarios. Some works have

addressed hypergraphs in MD databases. For example, in [8] the

authors present an approach based on hypergraphs for modelling

MD databases for dynamic web-based analysis and adaptive users’

requirements. Although they provide some constructs to represent

MD elements, OLAP operations are not described, and operations

over the hypergraphs are not detailed. This is another important

difference between our work and other proposals: we base ourselves

2
https://w3c.org/RDF/

on the classic OLAP operations, and formally define their meaning

in a graph context. Therefore, a final OLAP usermay express queries

conceptually, using the operators she knows well, and also take

advantage of the graph model flexibility.

3 PRELIMINARIES AND BACKGROUND
We first review the notions of dimension schema and instance.

Details can be found in [10, 11]. Let D be a name for a dimension. A

dimension schema σ (D) for D is a lattice, with a unique top, called

All , and a unique bottom, called Bottom, such that all maximal-

length paths in the graph go from Bottom to All . Any path from

Bottom to All in σ (D) is called a hierarchy of σ (D). Each node

in a dimension schema is called a level. For a dimension schema

σ (D), and a level ℓ of σ (D), a level instance of ℓ is a non-empty,

finite set dom(D.ℓ). If ℓ = All , dom(D.All) = {all }. If ℓ = Bottom,

then dom(D.Bottom) = dom(D). A dimension instance I (σ (D)) over
σ (D) is a directed acyclic graph with node set

⋃
ℓ dom(D.ℓ), where

the union is taken over all levels in σ (D). Further, let ℓ and ℓ′ be
two levels of σ (D), and let a ∈ dom(D.ℓ) and a′ ∈ dom(D.ℓ′). Then,
only if there is a directed edge from ℓ to ℓ′ in σ (D), there can be a

directed edge in I (σ (D)) from a to a′. If H is a hierarchy in σ (D),
then the hierarchy instance is the subgraph IH (σ (D)) of I (σ (D))
with nodes from dom(D.ℓ), for ℓ appearing in H . Also, if a and b
are two nodes in a hierarchy instance IH (σ (D)), such that (a,b) is
in the transitive closure of the edge relation of IH (σ (D)), then we

say that a rolls-up to b and we denote this by ρH (a,b). We assume

that we work with dimension graphs that guarantee that rolling-up

from a through different paths gives the same result [10, 11].

Example 3.1. Figure 2 (left) shows the schema of the background

dimensions. Dimension Id in (e), represents identifiers (explained
later). On the right-hand side, an instance I (σ (Actor)) for σ (Actor)
(which is (b) on the left hand side) is shown. ⊓⊔

3.1 The Base graph and Graphoids
To make this paper self-contained, we next present the graph data

model in a streamlined fashion (details and proofs are in [12]). We

assume that there are dimensions D1, ...,Dd in our application do-

main, with schemas σ (D1), ...,σ (Dd), and instances I (σ (D1)), ...,
I (σ (Dd)). There is also a special dimension D0 = Id, called the Iden-
tifier dimension (Figure 2(e)). As a basic data structure we use the

notion of graphoid (analogous to a MD cuboid in classical OLAP).

A graphoid is composed of attributed nodes and edges. There is

a finite, non-empty set N of node types. Nodes are described by

attributes A, which are levels in the background dimensions, i.e.,

A = {D.ℓ | D ∈ {D0,D1, ...,Dd } and ℓ is a level of D}. To each A
in A, a domain dom(A) is associated. The first attribute in a node

type corresponds to the Identifier dimension. We assume that a

dimension appears only once in a node type. There is also a finite,

non-empty set E of edge types, disjoint fromN , defined analogously

to the node types, except that no identifier dimension is required.

Formally, given D0 = Id,D1, ...,Dd , defined as above, and ℓ1, ..., ℓd ,
levels for these dimensions, a (D1.ℓ1, ...,Dd .ℓd)-graphoid is a multi-

hypergraph (i.e., there can be repeated hyperedges), where all at-

tributes in nodes and edges are defined at the granularity indicated

by Di .ℓj . The (D1.Bottom, ...,Dd .Bottom)-graphoid is called the

base graph, and is designed to contain all the information of the

application domain.

https://w3c.org/RDF/

All

Country

All

Y ear

Month

(a) (b)

City

All

Actor

All

(c)

Movie

Producer

All

(d)

IdCompanyDay

(e)

all

Rome

ItalyUS

Ho↵man Eastwood D. Washington

Mount VernonLos Angeles San Francisco

Figure 2: Schemas for the background dimensions in the running example (left); A dimension instance for the dimensionActor
(right).

[#DirectedBy]

[#StarsIn]

[#StarsIn]

[#StarsIn]

[#Actor, 1, All]

[#Movie, 4, “All”, All]

[#Critic, 7, Peter Travers]

[#Rating, 9.7, 1992]

[#Rating, 10, 1992]

[#Rating, 9, 1979]

Figure 3: A minimal (Time.Year,Movie.All,Company.All)-
graphoid, for data of Figure 1.

Example 3.2. Figure 1 shows a base graph with node set N =
{1, 2, 3, 4, 5, 6, 7}, and node types #Actor, #Movie, and #Critic. For
#Movie, the first attribute is a node identifier, and the other at-

tributes are elements in the bottom levels of dimensionsMovie and
Company. The #Rating edge type represents reviews by a critic for

an actor-movie pair. The #StarsIn edge type tells who performed

in a movie. Finally, #DirectedBy indicates the movie director. ⊓⊔

Note that more than one (D1.ℓ1, ...,Dd .ℓd)-graphoid can exist.

The definition of the OLAP operations requires producing a nor-

malized equivalent graphoid. For this, nodes with identical labels,

apart from the identifier, are merged, keeping the node with the

smallest one, call it n, and deleting the others. All edges leaving

from the latter nodes will be redirected to n. A graphoid built in this

way is denoted a minimal graphoid of G, and it can be proved that

it is unique. This minimisation process is denoted Minimise(G).
For example, Figure 3 shows the minimal (Time.Year,Movie.All,
Company.All,Actor.All)-graphoid for the base graph in Figure 1

(see also Example 3.3 below).

3.2 OLAP Operations on Graphs
We now review the OLAP operations over graphoids, which sim-

ulate the typical OLAP operations on cubes when they are repre-

sented as graphs.

Climbing and Aggregation. Let #n1, ..., nr be node types in a

(D1.ℓ1, ...,Dd .ℓd)-graphoidG; and let #e1, ..., es be edge types inG .
The Climb(G, {#n1, ..., #nr , #e1, ..., #es },Dk .(ℓk → ℓ

′
k)) operation

[#DirectedBy]

[#StarsIn]

[#StarsIn]

[#StarsIn]

[#Rating, 10, 1992]

[#Rating, 9.7, 1992]

[#Rating, 9, 1979]

[#Movie, 4, All, All]

[#Critic, 7, Peter Travers]

[#Movie, 5, All, All]

[#Movie, 6, All, All]

[#Actor, 1, All]

[#Actor, 2, All]

[#Actor, 3, All]

Figure 4: Climbing to the Year level along the Time dimen-
sion, and to the All level along dimensionsMovie,Actor , and
Company, for data of Figure 1.

along the dimension Dk from level ℓk to level ℓ′k in all nodes and

edges of type #ni and #ei , respectively, replaces any attribute valuea
fromdom(Dk .ℓk) by the new value ρℓk→ℓ′k

(a) fromdom(Dk .ℓ
′
k), in

all nodes (edges) ofG of types #n (#e), leavingG unaltered otherwise.

Intuitively, the granularity of the graph is modified along Dk .

Example 3.3. A climbing operation to the Year level along di-

mension Time , and three climbs to the All level, along dimensions

Movie , Actor , and Company, produce the (Time.Year,Movie.All,
Company.All, Actor.All)-graphoid shown in Figure 4. Its minimal

graphoid is the one in Figure 3. ⊓⊔

Consider a minimal (D1.ℓ1, ...,Dd .ℓd)-graphoidG , and a dimen-

sion Dk that appears in the hyperedges of G of type #e, and that

plays the role of a measure, to which the aggregate function Fk
can be applied. The aggregation of G over Dk (using Fk), denoted
Aggr(G, #e,Dk , Fk), returns a graphoid G ′ over the same sets of

nodes and edges, built as follows: If the hyperedges e1, e2, ..., er are
all of the same type and the nodes and edges agree in all attributes

except (possibly) from an identifier attribute (and except from the

dimension Dk), then e1, e2, ..., er are replaced by one of them (say

e1) of the same type and with the same attribute values, apart from

[#DirectedBy]

[#StarsIn]
[#StarsIn]

[#StarsIn]

[#Rating, 9.85, 1992]

[#Actor, 1, All]

[#Movie, 4, “All”, All]

[#Critic, 7, Peter Travers]

[#Rating, 9, 1979]

Figure 5: Roll-Up to Year, Actor, Movie, and Company for
data of Figure 1.

the identifier. The value of Dk .ℓk becomes the value of the function

Fk applied to the values of Dk .ℓk in the edges e1, e2, ..., er . To ag-

gregate multiple dimensionsM1, ...,Mk , using functions F1, ..., Fk ,
simultaneously, we write Aggr(G, #e, {M1, ...,Mk }, {F1, ..., Fk }). We

are now ready to define the well-known roll-up operation.

Roll-Up . Let G be a (D1.ℓ1, ...,Dd .ℓd)-graphoid, a dimension

Dc , and measure dimensionsM1, ...,Mk that appear in the hyper-

edges of type #e of G, associated with the aggregate functions

F1, ..., Fk ; Also, let #ni and #ei be node and hyperedge types appear-
ing inG . The roll-up ofG over dimensionsM1, ...,Mk (using functions
F1, ..., Fk), along the climbing dimension Dc from level ℓc to level ℓ′c
in nodes of types #n1, ..., #nr and edges of types #e1, ..., #es , called
Roll-Up(G, {#n1, ..., #nr , #e1, ..., #es },Dc .(ℓc → ℓ

′
c); #e,M1, ...,Mk ,

F1, ..., Fk), is defined as: Aggr(Minimise(Climb(G, {#n1, ..., #nr ,
#e1, ..., #es }, Dc .(ℓc → ℓ

′
c))), #e,M1, ...,Mk , F1, ..., Fk).

Example 3.4. The operationRoll-Up(G, {#Rating},Time.(Day→
Year); #Rating, score,Avg) over the graphoid of Figure 3, produces

the graphoid of Figure 5. The aggregated hyperedges are the two

ones in Figure 3 that contain a #Rating node with Year=1992, and

scores 9.7 and 10, respectively. ⊓⊔

The Drill-Down operation does the opposite of Roll-Up, taking
a graphoid to a finer granularity level, along a dimension Dd . De-
scending from a level ℓd down to a level ℓ′d along Dd is equivalent

to climbing from the bottom level to the level ℓ′d along Dd . Thus,

we do not discuss this operation further here.

Dice. Given a (D1.ℓ1, ...,Dd .ℓd)-graphoid, and a Boolean for-

mula φ, a Boolean combination of atomic conditions of the form:

(a) D.ℓ < c , D.ℓ = c and D.ℓ > c , where D is a dimension, ℓ is a
level in that dimension, and c ∈ dom(D.ℓ); (b)m < c ,m = c and
m > c , wherem is a measure and c as in (a). Dice(G,φ), produces a
subgraphoid of G, whose nodes are the nodes of G and whose edges
satisfy φ. When an edge does not satisfy φ, the whole hyperedge is
deleted. All other edges of G belong to Dice(G,φ).

Example 3.5. Applying Dice(G,Actor.Name = “Hoffman”) to
the graphoid in Figure 1, produces the one in Figure 6 (left). ⊓⊔

Slice. The Slice operation on cubes, drops a dimension Ds , and
aggregates all measures over Ds . We first need to roll-up to All
along Ds , such that its domain is a singleton. On graphoids, the

slice operation is thus defined as a roll-up to Ds .All as follows.
Given a graphoid G, a dimension Ds that appears in some nodes

and/or hyperedges of G, measure dimensions M1, ...,Mk that ap-

pear in the hyperedges of G, and aggregate functions F1, ..., Fk
associated with them; The slice of the dimension Ds from G, de-
noted Slice(G,Ds ;M1, ...,Mk , F1, ..., Fk), is defined as Roll-Up(G, ∗,
Ds .(ℓs → All); ∗,M1, ...,Mk , F1, ..., Fk).

Example 3.6. Applying Slice(G,Movie; Score,Avg), and Slice(G,
Company; Score,Avg) to the graphoid of Figure 1, produces the

graphoid of Figure 6 (right). ⊓⊔

The following theorem, proved in [12], supports our proposal.

Theorem 3.7. The cube OLAP-operations Roll-Up, Drill-Down,
Slice and Dice can be expressed by OLAP-operations on graphoids.

4 IMPLEMENTATION
We are now ready to present our proof-of-concept implementation

of the hypergraphMDmodel, and the OLAP operators of Section 3.2.

For this, we chose the widely used Neo4J property graph database.
3

Although there are other options, like the orientdb graph database,
4

at the moment of writing this paper, theoretical research on Neo4J’s

declarative query language Cypher is being carried out, and there

is a large number of users and developers working on Neo4j.

4.1 Dimensions and Graphoids
We next describe the representation of the background information,

and how the base graph and the graphoids are implemented. The

examples in this section are based on the case study that will be

discussed in detail in Section 5.

4.1.1 Background information. Dimension schemas are repre-

sented as trees whose nodes are dimension levels. These nodes have

two labels: the string DimSchema, and the name of the dimension

schema; and a property called level , along with its value. For exam-

ple, the schema of dimension GeoPerson (representing persons) is

the tree containing nodes (DimSchema,GeoPerson, {level:Person}),
(DimSchema, GeoPerson, {level:Country}), and (DimSchema,
GeoPerson, {level:All}), shown on the left-hand side of Figure 7.

Dimension instances are also represented as trees, whose nodes

are members of dimension levels. These nodes are connected ac-

cording to the information in the dimension schema. When the

Extraction, Transformation and Loading (ETL) process (that takes

source data to the graph database) reads the information of level

members, it creates the nodes, connects them to each other, and vali-

dates these links against the dimension schema. Moreover, since the

new nodes store the information of the level to which they belong,

this information can be used while processing the OLAP Operations

without accessing the schema. A dimension instance node contains

two labels: DimInstance, and the name of the dimension. There are

also two property-value pairs: one for the for the level name (called

level), and another one for the member value (called value). The
right-hand side of Figure 7 illustrates this, showing a portion of the

dimension instance for the dimension GeoPerson.
We reuse nodes whenever possible. That is, if a node is used

multiple times, it is created only once, together with as many

from/to links as needed. This strategy does not only save space, but
also makes navigation more efficient. For example, in a dimension

schema with multiple hierarchies, bottom and top levels are created

3
http://neo4j.org

4
http://orientdb.com/

http://neo4j.org
http://orientdb.com/

[#Rating, 9, 9/2/1979]

[#StarsIn]

[#Actor, 1, D. Washington]

[#Movie, 4, “Malcom X”, Warner Bros.]

[#Actor, 3, Eastwood]

[#Movie, 5, “Unforgiven”, Warner Bros.]

[#Actor, 2, Ho↵man]

[#Movie, 6, “Kramer vs Kramer”, Columbia]

[#Critic, 7, Peter Travers]

[#DirectedBy]

[#StarsIn]

[#Rating, 10, 6/8/1992]

[#Rating, 9, 9/2/1979]

[#Rating, 9.7, 11/18/1992]

[#StarsIn]

[#StarsIn]

[#Movie, 4, All, All]

[#Actor, 3, Eastwood]

[#Actor, 2, Ho↵man]

[#Actor, 1, D. Washington]

[#Critic, 7, Peter Travers]

Figure 6: Dicing the graph for data aboutDustinHoffman for data on the right of Figure 1 (left); Slicing theMovie andCompany
dimensions for the data on the right of Figure 1.

[DimSchema,
GeoPerson, level=All]

[DimSchema,
GeoPerson,
level=Country]

[DimSchema,
GeoPerson,
level=GeoPerson]

[DimInstance,
GeoPerson,
value=USA,
level=Country]

[DimInstance,
value=all,
GeoPerson,
level=All]

[DimInstance,
GeoPerson,
value=Germany,
level=Country]

[DimInstance,
GeoPerson,
value=England,
level=Country]

[DimInstance,
GeoPerson,
value= D.Keaton,
level=GeoPerson]

[DimInstance,
GeoPerson,
value= W.Allen,
level=GeoPerson]

[DimInstance,
GeoPerson,
value= J. Zaks,
level=GeoPerson]

[DimInstance,
GeoPerson,
value= M. Caine,
level=GeoPerson]

Figure 7: Schema representation for GeoPerson (left); An in-
stance of GeoPerson (right).

only once and used multiple times. The same idea is used for di-

mension instances. This is somehow similar to a snowflake schema

in relational data warehouses (DW), where tables representing

dimension levels are linked via foreign keys.

Given that dimension hierarchies are graphs, the choice of rep-

resenting them using the same kind of data structure arises natu-

rally. Since facts are graphs, this choice also prevents impedance

mismatch. The latter would appear for example, when storing di-

mensions in a relational structure.

4.1.2 Implementation of base graphs and graphoids. Graphoids

are multi-hypergraphs. However, Neo4J (like most graph databases)

supports only binary relationships. Thus, we decided to represent

both, node and edges types, as nodes, where “edge type” nodes are

used to connect any number of node types. The direction of these

relationships depends on the application. This way of modelling

the hypergraph resembles the RDF graph data model, where blank

nodes, typically used to represent n-ary relationships, are in some

sense analogous to the “edge type” nodes. Another option could be

to use a native hypergraph database (e.g., HypergraphDB
5
), which

are not mature technologies so far. On the other hand, RDF triple

stores have the drawback of not using native graph storage.

Figure 8 shows a small portion of the base graphoid of our case

study (explained below). There are two edge types, #Participated

5
http://hypergraphdb.org/

[NodeType,
BaseGraph,
hashtag=#Person,
id=22
value=J. Zaks]

[NodeType,
BaseGraph,
hashtag=#Person,
id=202
value=D. Keaton]

[NodeType,
BaseGraph,
hashtag=#Movie,
id=1
value=Marvin’s
Room]

[NodeType,
BaseGraph,
hashtag=#Award,
id=3
value=Best Actress,
in a leading Role]

[NodeType,
BaseGraph,
hashtag=#Nomination,
value= 1997,
m2=1, m3=0] [NodeType,

BaseGraph,
hashtag=#Participated,
value=Director,
m1=1]

[NodeType,
BaseGraph,
hashtag=#Participated,
value= Actress,
m1=1]

Figure 8: Representing a graphoid with Neo4j.

and #Nomination. The former binds #Person and #Movie node

types. The latter binds #Person, #Movie and #Award node types.

A #Nomination edge type has an incoming edge from an #Award
node type, and two outgoing edges to other node types. Again, we

reuse nodes whenever possible. Node and edge types are labelled

with the terms NodeType and EdдeType , respectively, and a unique
name that indicates to which graph the nodes belong. This name

can be the base graph (like in Figure 8), or a new graph produced

by a query (see Section 4.2). Properties are also used to represent

dimensions or measures (in the case of edge types).

4.2 Implementation of the OLAP Operations
We next describe the implementation of the operations presented

in Section 3.2. Queries are expressed as a sequence of graph OLAP

operations. The base graphoid is labelled BaseGraph. All the other
graphoids are labelled with a new name created on-the-fly. Thus,

the Neo4J database is composed of as many graphoids as queries

were posed, each labelled with a different name. Graph OLAP oper-

ations first clone the graphoid over which they are posed; the new

graphoid is then updated according to the operation’s semantics.

For instance, aDice operation removes nodes and arcs, and a Rollup
changes properties and merges nodes. As an example, the query:

http://hypergraphdb.org/

Q1 <- Rollup(Nomination, Award->Organization, sum, sum)
first creates a graphoid labelled Q1, containing the information of
the graphoid Nomination, except for the label. Q1 is then modified
according to the semantics of the Rollup operation.

OLAP queries over graphs produce a sequence of immutable
graphoids. In other words, each OLAP operation does not transform
the original graphoid, but generates a new immutable one. Since
we are aimed at addressing scenarios with multiple users querying
the same original graphoid, an optimizer may take advantage of the
intermediate graphoids and avoid recomputing them in different
queries (graphoids which are rarely used could be removed from
the system). In some sense this reminds Apache Spark’s RDDs
(Resilient Distributed Dataset),6

that are immutable collections of
elements, such that each transformation operation over an RDD
generates a new one. Taking advantage of graphoid materialization
for optimization is outside the scope of this paper.

Neo4j comes with a pattern-based query language named Cypher,
and provides an API for embedding, e.g., a Java program. The API
allows managing the underlying database and executing Cypher
queries. The OLAP operators were implemented using this API in-
terface. For example, the API: Rollup(DBConn, “Nomination”,“Q1”,
“Award”,“Award”,“Organization”, SUM, SUM), where DBConn is an
object that encapsulates the database connection settings, imple-

ments the query above. The strings “Nomination” and “Q1” are the
labels of the input and output graphoids, respectively. The next
three arguments correspond to the dimension, source level and
target level of the roll-up operation. Finally, SUM is a Java interface
that implements the sum operation.

5 CASE STUDY
We now present a case study that uses a portion of the Internet
Movie Database (IMDB). The problem consists in the analysis of prizes
and nominations for people working in film making across t ime. We
aim at showing that, for some cases, representing the problem as
graphs leads to a more natural and powerful representation than
traditional OLAP modelling using cubes (in particular, we focus on
Relational OLAP). For example, we will show that facts involving a
variable number of dimensions and measures can be represented
(and therefore analyzed) in a natural and flexible way. This is a well-
known problem in classic OLAP, quite difficult and inefficient to
represent in the typical star or snowflake models, usually leading to
complex implementations [14]. We remark that our intention at this
time is to study how OLAP techniques can enhance graph analytics.
Query optimization and performance are thus left for future work,
and we do not present here results for query execution times, since
they would not be representative of actual performance. Also, for
the sake of space, we do not include the details of the algorithms.

5.1 Classic OLAP Modelling
The following dimensions are defined as background information:
Movie , with hierarchy Movie → All ; GeoPerson, with hierarchy
Person → Country → All ; Role , with hierarchy Role → All ;
Time , with hierarchy Year → All ; and Award , with hierarchy
Award → Orдanization → All . As an example of an (instance)
path in the Person hierarchy, we have W oody Allen → U SA → all ;
an example of a path instance in the Award hierarchy is Best
Actress in a Leadinд Role → OscarAward → all .

6
http://spark.apache.org

In traditional MD modelling based on facts and dimensions, a

possible solution would be a model based on two fact tables: (a) one

to represent the roles in which a person participated in a movie,

e.g., with schema Participation(Movie, Person,Role, Participates),
where the measure Participates represents the occurrence of a par-
ticipation; and (b) one to represent nominations of a person for an

award on a certain year, with schema, Nomination(Movie, Person,
Award,Year ,Nominated,Won),where themeasureWon tells if the
award was obtained or not. We next show some example queries

over this DW. Queries are expressed using a “data type agnostic”

query language denoted Cube Algebra [4, 10, 11]. This language

allows querying a data cube regardless its underlying data structure.

Query 1. “Number of movies where Woody Allen participated as
an actor”.

The query reads in Cube Algebra:

Q1 <- Dice(Participation, Person = 'Woody Allen')
Q2 <- Dice(Q1, Role='Actor')
Q3 <- Slice(Q2, Role, count)
Q4 <- Slice(Q3, Movie, count)

Here the result will be a one-dimensional cube, with one cell con-

taining the actor’s name and the number of movies. Note that

Person was not sliced out. Thus, in a relational representation, the

result will be a two-column table.

Query 2. “Number of Oscar nominations and prizes by movie”.

This is expressed in Cube Algebra as:

Q5 <- Rollup(Nomination, Award->Organization, sum, sum)
Q6 <- Slice(Q5, GeoPerson, sum, sum)
Q7 <- Dice(Q6, Award.Organization = 'Oscar Award')
Q8 <- Slice(Q7, Time, sum, sum)

The result will contain, e.g., the tuple (or, in MD jargon, ‘cell’)

(Manhattan, OscarAward, 2, 0), since the movie was nominated

for two Oscars, winning none of them. The resulting cube will

contain two dimensions, since GeoPerson and Time are sliced out.

Finally, we show a rather more complex query, involving the

two cubes (or fact tables).

Query 3. “Pairs of Movies and Persons, such that only people who
played more than one role in it (other than Director), participated,
listing only persons who were nominated for an Oscar in that movie,
but did not win the award”.

This is expressed as:

Q9 <- Dice(Participacion, Role<>'Director')
Q10 <- Slice(Q9, Role, SUM)
Q11 <- Dice(Q10, Participates > 1)
Q12 <- RollUp(Nomination, Award->Organization,SUM,SUM)
Q13 <- Dice(Q12, Award.Organization = 'Oscar Award'

AND Won=0)
Q14 <- Slice(Q13, Award, SUM, SUM)
Q15 <- Slice(Q14, Year, SUM, SUM)
Q16 <- DrillAcross(Q11, Q15)

Here, two Cubes are queried: Participation, to compute the multiple

roles played by a person in a movie, excluding the Director role; and

Nomination, to find people andmovies nominated to the Oscars, but

who did not won it. Finally, a Drill Across operation between both

cubes is performed. Behind the scenes, this operation is translated

into an expensive join operator between two fact tables.

http://spark.apache.org

5.2 OLAP Modelling of Graphs
We now address the problem above using graph OLAP instead

of the classic solution. We consider the same dimensions and hi-

erarchies as in Section 5.1. There are three node types, each one

corresponding to a background dimension: #Movie, #Person, and
#Award. Each node type is associated with a dimension as follows:

(a) (#Movie, id,Movie); (b) (#Person, id, GeoPerson); (c) (#Award,
id,Award). Two edge types are also defined: (a) (#Participated,
Role,m1); (b) #Nomination,Time,m2,m3). Type #Participated in-

dicates who participated in a movie, and in which role. Measure

m1 is analogous to Participates in the OLAP cube Participation
of Section 5.1. The edge type #Nomination links a person with a

movie and an award. Measuresm2 andm3 represent the number of

nominations and of successful nominations, respectively, similarly

to both measures in the OLAP cube Nomination. Note the use of
dimensions Role and Time in the graph representation. These di-

mensions here appear in the edge types, rather than as node types.

Figure 9 shows a small portion of the IMDB database, represented

as a Neo4j graph. Let us consider the #Person node forWoody Allen

(on the left of the figure). We can see that he performed and directed

the movie “Annie Hall” (there are two #Participated hyperedges,

one with the role attribute Director , and the other with the role

attribute Actor). We can also see (close to the top-left part of the

figure) two #Nomination hyperedges, composed of the node types

#Award, #Person, and #Movie. These indicate the Oscar and BAFTA
awards for best direction. The Oscar nomination is represented by

the hyperedge with identifier ‘116’, while the node identifier for

the BAFTA nomination is ‘124’. The graph also shows that Diane

Keaton was nominated (and won) the “Best Actress in a Leading

Role” Oscar, and the “Best Actress” BAFTA awards. Note that the

two cubes in the previous section are now represented in a single

graph, which is more natural, and closer to the real world situation.

We show next how the queries above are expressed over this graph

and the background information.

5.3 OLAP queries over Graphoids
Query 1. “Number of movies in which Woody Allen participated

as an actor”.

The base graphoid is named BaseGraph. Thus, the query, is writ-
ten as the following sequence of function calls:

Operators.Dice(graphDB,"BaseGraph","Q1","GeoPerson",
"GeoPerson", "=", "Woody Allen");

Operators.Dice(graphDB,"Q1","Q2","Role","Role","=",
"Actor");

Operators.Slice(graphDB, "Q2","Q3","Role",
Arrays.asList("m1","m2","m3"),
Arrays.asList(COUNT,COUNT,COUNT));

Operators.Slice(graphDB,"Q3","Q4","Movie",
Arrays.asList("m1","m2","m3"),
Arrays.asList(COUNT,COUNT,COUNT));

Note that the sequence of API calls replicates the sequence of Cube

Algebra operations for the queries in Section 5.1, so the API details

could be easily hidden. Figure 10 (left) shows a portion of the result-

ing graphoid, telling the number of movies in the sample database

where Woody Allen performed.

Query 2. “Number of Oscar nominations and prizes by movie”.

Operators.Rollup(graphDB,"BaseGraph","Q5",

Arrays.asList({#Award}),
Award.(Award->Organization),
"#Nomination", Arrays.asList("m1", "m2", "m3"),
Arrays.asList(SUM,SUM,SUM));

Operators.Slice(graphDB,"Q5","Q6","GeoPerson",
Arrays.asList("m1","m2","m3"),
Arrays.asList(SUM,SUM,SUM));

Operators.Dice(graphDB,"Q6","Q7","Award",
"Organization", "=", "Oscar Award");

Operators.Slice(graphDB,"Q7","Q8","Year",
Arrays.asList("m1","m2","m3"),
Arrays.asList(SUM,SUM,SUM));

A portion of the result is shown in Figure 10 (center). We can see

information of four movies. “Cafe Society” appears as an isolated

node, because it did not receive any Oscar nomination. The node

type #Personwas sliced out by the query, thus, it appears with value
“all”. The node type #Award appears with the value “Oscar”, since
this node was rolled-up to the level Orдanization and later diced.

The edge type #Nomination appears with attribute “all” on the

Time dimension. Its measures show the number of (summarized)

nominations and prizes. For instance, “Manhattan” received two

Oscar nominations but won none of them, at it is shown in the

leftmost path in the figure.

Query 3. “Pairs of Movies and Persons, such that only people who
played more than one role in it (other than Director) are considered,
listing only persons who were nominated for an Oscar in that movie,
but did not win the award”.

Operators.Dice(graphDB,"BaseGraph","Q9","Role","Role",
"<>", "Director");

Operators.Slice(graphDB,"Q9","Q10","Role",
Arrays.asList("m1","m2","m3"),
Arrays.asList(SUM,SUM,SUM));

Operators.Dice(graphDB,"Q10","Q11","measures","m1",
"<>","1.0");

Operators.Rollup(graphDB,"Q11","Q12",
Arrays.asList("#Award"),
"Award", "Award", "Organization","#Nomination",
Arrays.asList("m1","m2","m3"),
Arrays.asList(SUM,SUM,SUM));

Operators.Dice(graphDB,"Q12","Q13","Award",
"Organization","=", "Oscar Award");

Operators.Dice(graphDB,"Q13","Q14","measures",
"m3","=","0");

Operators.Slice(graphDB, "Q14","Q15","Award",
Arrays.asList("m1","m2","m3"),
Arrays.asList(SUM,SUM,SUM));

Operators.Slice(graphDB, "Q15","Q16","Year",
Arrays.asList("m1","m2","m3"),
Arrays.asList(SUM,SUM,SUM));

Here we can clearly see the advantage of the graph approach over

the relational OLAP one. The query is answered navigating a single

graph, avoiding joining tables (that means, the join is performed

through navigation, in a more efficient way), or drilling across two

or more cubes (which is required by the representation shown in

Section 5.1). In a real-world ‘Big Data” setting, this can also simplify

the ETL process, especially when source data come as unstructured

data. Figure 10 (right) shows part of the result.

Figure 9: IMDB use case in Graph OLAP.

Figure 10: Portion of the results for Q1 (left), Q2 (center), and Q3 (right), in the Neo4J interface.

6 CONCLUSION AND FUTUREWORK
Wehave presented a proof-of-concept implementation, over a Neo4j

database, of a MD data model for graph analysis and its associated

OLAP operators. We also discussed a case study, showing that

modelling an analysis problem as graphs may lead to a more natural

and efficient solution. Our next steps will focus on efficiency, and,

for that, we think on using the graphoids as materialized views,

along the lines suggested in [15].

Acknowledgments. Alejandro Vaisman was supported by a travel

grant from Hasselt University (Korte verblijven–inkomende mo-

biliteit, BOF16KV09), and by the PICT-0787-2014 project.

REFERENCES
[1] R. Angles. A Comparison of Current Graph Database Models. In Proceedings of

ICDE Workshops, pages 171–177, 2012.
[2] R. Angles and C. Gutierrez. Survey of graph database models. ACM Comput.

Surv., 40(1):1:1–1:39, 2008.
[3] C. Chen, X. Yan, F. Zhu, J. Han, and P. Yu. Graph OLAP: a multi-dimensional

framework for graph data analysis. Knowl. Inf. Syst., 21(1):41–63, 2009.
[4] C. Ciferri, R. Ciferri, L. Gómez, M. Schneider, A. Vaisman, and E. Zimányi. Cube

algebra: A generic user-centric model and query language for OLAP cubes.

IJDWM, 9(2):39–65, 2013.

[5] B. Denis, A. Ghrab, and S. Skhiri. A distributed approach for graph-oriented

multidimensional analysis. In IEEE Big Data, pages 9–16, 2013.
[6] A. Ghrab, O. Romero, S. Skhiri, A. Vaisman, and E. Zimányi. GRAD: Modeling

and Querying Data Warehouses. In Proceedings of ADBIS, pages 92–105, 2015.
[7] O. Hartig. Reconciliation of RDF* and property graphs. CoRR, abs/1409.3288,

2014.

[8] D. T. A. Hoang, T. Priebe, and A. M. Tjoa. Hypergraph-based multidimensional

data modeling towards on-demand business analysis. In Proceedings of iiWAS,
pages 36–43, 2011.

[9] R. Kimball. The Data Warehouse Toolkit. J. Wiley and Sons, 1996.

[10] B. Kuijpers and A. Vaisman. A formal algebra for OLAP. CoRR, abs/1609.05020,
2016.

[11] B. Kuijpers and A. Vaisman. An algebra for OLAP. Intelligent Data Analysis,
21(5), 2017.

[12] B. Kuijpers and A. Vaisman. OLAPing graph data. Submitted manuscript, 2017.
[13] Q. Qu, F. Zhu, X. Yan, J. Han, P. S. Yu, and H. Li. Efficient topological OLAP on

information networks. In Proceedings of DASFAA, pages 389–403. Springer, 2011.
[14] A. Vaisman and E. Zimányi. Data Warehouse Systems: Design and Implementation.

Springer, 2014.

[15] Z. Wang, Q. Fan, H. Wang, K.-L. Tan, D. Agrawal, and A. E. Abbadi. Pagrol:

Parallel graph OLAP over large-scale attributed graphs. In Proceedings of ICDE,
pages 496–507, 2014.

[16] P. Zhao, X. Li, D. Xin, and J. Han. Graph cube: on warehousing and OLAP

multidimensional networks. In Proceedings of SIGMOD, pages 853–864. ACM,

2011.

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries and background
	3.1 The Base graph and Graphoids
	3.2 OLAP Operations on Graphs

	4 Implementation
	4.1 Dimensions and Graphoids
	4.2 Implementation of the OLAP Operations

	5 Case Study
	5.1 Classic OLAP Modelling
	5.2 OLAP Modelling of Graphs
	5.3 OLAP queries over Graphoids

	6 Conclusion and Future Work
	References

