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Abstract

With the shift towards a more sustainable energy system, the need for a better understanding
of the behavior development over time of consumers and prosumers arises. Despite the
growing penetration of smart meter infrastructure, the availability of energy usage behavior
data is still limited, due to privacy and security concerns. Thus, connecting and comparing
existing datasets is the key to observe the user behavior shifts as well as enhancing the utility
of the available data.
In the present work, a novel work�ow for combined analysis on multiple smart meter datasets
is proposed, which links datasets with di�erent scopes, temporal origins and speci�cations.
In general, there are 4 steps: data preprocessing, clustering, location dependency check and
dataset linking. First, the meteorological seasons combined with weekdays and weekends are
picked for data segmentation in the data preprocessing, followed by missing value validation
and normalization based on themaximum andminimum consumption value of each household.
Thereafter, K-means clustering algorithm is applied to group the user behaviors, which stands
out by 0.8186 Silhouette coe�cient (SIL) and 0.2884 Davies-Bouldin Index (DBI) among Fuzzy
C-Means and hierarchical clustering approach. Subsequently, two validation approaches
on the location dependency, cluster center correlation (0.8048) and location share among
clusters (4.99 % variability), prove the minor impact of the household location on the electricity
consumption behavior within Germany. Based on the location dependency check, ultimately,
the combined analysis of the two datasets reveals the temporal development of the residential
consumption behaviors. It shows that new technologies, especially Photovoltaics (PV), Electric
Vehicles (EV) and heat pumps, have in�uence on the user behavior shift and the energy
consumption level.
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Zusammenfassung

Mit dem Übergang zu einem nachhaltigeren Energiesystem entsteht der Bedarf nach einem
besseren Verständnis der zeitlichen Entwicklung des Verbraucherverhaltens von Konsumen-
ten und Prosumenten. Trotz der zunehmenden Verbreitung von intelligenten Zählern, ist die
Verfügbarkeit von Daten zum Energienutzungsverhalten aufgrund von Datenschutz- und
Sicherheitsbedenken begrenzt. Daher ist das Verknüpfen und Vergleichen von verfügbaren
Datensätzen der Schlüssel zur Beobachtung von Änderungen im Nutzerverhalten und steigert
den Nutzen vorhandener Daten.
In der vorliegenden Arbeit wird ein neuartiger Arbeitsablauf für die kombinierte Analyse
mehrerer Smart-Meter-Datensätze vorgeschlagen, der Datensätze mit unterschiedlichem
Umfang, zeitlichem Ursprung und Spezi�kationen miteinander verbindet. Im Wesentlichen
werden 4 Schritte durchgeführt: Datenvorverarbeitung, Clusterbildung, Überprüfung der
Standortabhängigkeit und Verknüpfung der Datensätze. Zunächst werden bei der Daten-
vorverarbeitung die meteorologischen Jahreszeiten in Kombination mit Wochentagen und
Wochenenden für die Datensegmentierung ausgewählt, gefolgt von der Überprüfung feh-
lender Werte und der Normalisierung auf der Grundlage des maximalen und minimalen
Verbrauchswerts der Haushalte. Anschließend wird der K-Means-Clusteralgorithmus, der mit
einem Silhouette-Koe�zienten von 0,8186 und einem Davies-Bouldin-Index von 0,2884 unter
den Fuzzy-C-Means- und hierarchischen Clustering-Ansätzen hervorsticht, angewandt, um
die Haushalte nach ihrem Konsumverhalten zu gruppieren. Die beiden Validierungsansätze
zur Standortabhängigkeit, eine Korrelation der Clusterzentren unterschiedlicher Standorte
von 0,8048 und die Standortverteilung innerhalb der Cluster mit durchschnittlich 4,99 %
Variabilität, belegen anschließend den geringen Ein�uss des Haushaltsstandortes auf das
Stromverbrauchsverhalten innerhalb Deutschlands. Nach der Überprüfung der Standortab-
hängigkeit zeigt die kombinierte Analyse der beiden Datensätze schließlich die zeitliche
Entwicklung des Verbrauchsverhaltens der Haushalte auf, insbesondere dass neue Techno-
logien wie Photovoltaik (PV), Elektrofahrzeuge (EV) und Wärmepumpen, Ein�uss auf die
Veränderung des Nutzerverhaltens und das Energieverbrauchsniveau haben.
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1. Introduction

In this chapter, �rst the motivation and background of the thesis are presented. Thereafter,
the aim of the thesis is outlined by presenting main research questions. Subsequently, the
contributions of the thesis are listed. In the end, the structure of the thesis is presented.

1.1. Motivation

The residential sector is one of the major contributors to energy demand, in particular
electricity consumption. In Germany, the residential sector is accountable for about 26 %
of the end electricity use in 2020 [1]. Rooftop photovoltaic (PV) systems for residential
prosumers (consumers that generate energy locally), are considered an important technology
on the pathway towards a more sustainable and decarbonised energy supply, to reach the
carbon dioxide emission goals and reduce the impact of the ongoing climate change[2]. It is
estimated that 680 TWh solar electricity could be generated annually in the European Union
(EU) by rooftop PV systems, which is equal to 24,4 % of the end electricity consumption of
the EU in 2016 [3]. Thus, transferred to the German share of the electricity end use, this
potential is theoretically almost su�cient to satisfy the electricity consumption of residential
households and enable a more sustainable and decentralised energy supply. However, there are
several challenges to overcome to realise this potential. One important aspect is the temporal
di�erence between PV energy generation and household consumption. Also, the shift from
consumers towards prosumers, as more active stakeholders of the energy system, calls for a
better understanding of this transformation, to enable a fact based basis for policy making
and decision making among the energy system stakeholders. Therefore, understanding the
temporal development of the consumption behavior of residential households, is crucial.
Unsupervised machine learning methods like clustering, have proven to be a suitable

technique to �nd and analyse groups of customers with a similar consumption behavior,
when analysing electricity consumption data[4]. Thus, in the past decades a variety of
clustering and cluster validation methods have been developed [5]. Usually, these methods
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1. Introduction

use the electricity consumption data as inputs for the algorithms. An e�ective way to collect
the electricity consumption data is the advanced metering infrastructure (AMI), where the
consumption data is collected and shared automatically. The penetration of smart meters
throughout the EU is expected to increase from 44 % to 71 % from 2018 to 2023 [6]. With the
increasing penetration of smart meters, the quality and quantity of electricity consumption
has improved. Although, the amount of energy consumption data is increasing, the data
availability for research and analysis purposes is still limited due to privacy and security
concerns [7]. Therefore, it appears interesting, to combine existing datasets with di�erent
speci�cations. For example, the comparison between datasets of di�erent temporal origins
can support the understanding of how the shift of consumers towards prosumers impacts
the energy system. This can lead to recommendations for customers to conserve energy and
support decision making for investments in PV and storage systems. Furthermore, electricity
suppliers could support with the grid design and have the possibility to reduce the peak load
with methods like dynamic pricing and demand side management (DSM).

1.2. Aim of the Thesis

The central aim of this thesis is to identify how the ongoing technical shift in�uences the
residential energy system with a machine learning approach. In order to solve the issue of
limited data availability and increase the utility of available datasets, this thesis targets to
sort out the ideal pipeline settings for analyzing datasets with di�erent temporal origins and
speci�cations.
Speci�cally, for the sake of noise removal, this thesis proposes to �gure out the most suitable
group of preprocessing operations. Furthermore, in order to promote the clustering quality,
our research intends to investigate the perfect clustering algorithms for smart meter data.
Moreover, targeting at ensuring the dataset combination is reasonable, this thesis is designed
to validate the location dependency within Germany and further explore the most �tting
validation methods.
Tackling the main themes leads to the following sub-questions:

• Whether new energy technologies a�ect the residential user behaviors?

• How can di�erent residential energy consumption datasets be analyzed?

2



1.3. Contributions

• How the di�erent data preprocessing techniques a�ect the quality of the clustering
results?

• Which clustering approach is the best �tting for massive smart meter datasets?

• Which signi�cance household locations within Germany have on the consumption
behaviour of residential energy consumers?

1.3. Contributions

The key contributions of this thesis can be summarized in the following:

• Change of the consumption behavior with new technologies:

With the combined visual analysis of the residential electricity consumption data, the
impact of new technologies on the electricity behavior patterns is proven. And the
di�erent user behaviors between consumers and prosumers are con�rmed by comparing
in an intuitive way with representative consumption pro�les.

• Expanding the utility of available data by the combined analysis of smart meter datasets:

A work�ow for a combined analysis of smart meter datasets with di�erent temporal
origins and speci�cations is proposed, which consists of data preprocessing, clustering,
location dependency check and dataset linking. It is designed to support to draw a more
complete picture of the development of the energy system.

• Selection on clustering techniques for smart meter data analysis:

Based on the two cluster validation scores, Silhouette Coe�cient (SIL) and Davies-
Bouldin Index (DBI), K-Means algorithm is selected among existing clustering ap-
proaches for our massive smart meter dataset.

• Validation of the location dependency within Germany:

Cluster center correlation and the variety of location share among clusters are proposed
to validate the location dependency. Both methods indicate a low location dependency
of the electricity consumption in German households.

• Analyzing the impact of normalization techniques on the cluster analysis:

3



1. Introduction

Two ways of smart meter data normalization are evaluated. The smart meter data
normalized with the maximum and minimum value of the whole period show better
clustering validation scores but the clustering membership is more dependent on the
over all consumption level than normalized with the maximum and minimum value of
each day.

1.4. Structure of the Thesis

The thesis is structured as follows: In chapter 2 the related literature is presented and reviewed.
Thereafter, in chapter 3 an overview on the available datasets is given and the dataset selection
as well as the structure of the two selected datasets are described. Chapter 4, explains the
analysis methods used for the thesis in detail. In the following chapter 5, the performed
analysis is presented and the analysis results are discussed. The last chapter 6 summarises
the motivation, results and conclusions of the thesis and gives an outlook on the possibilities
of further research.

4



2. Literature Review

In this chapter the related literature is presented. First, the technology of SM for data collection
is treated. Thereafter, the literature on residential electricity consumption analysis is discussed.

2.1. Smart Meter

Smart meters (SMs) are energy meters, which in contrast to conventional meters are able
to exchange information with appliances, other meters and grid stakeholders. The meters
are capable to measure the consumption of individual appliances and even control them. [8]
With the enabled two-way communication, between the meter and the supplier, the term
advanced metering infrastructure (AMI) is used. Regarding the frequency, the collected data
is becoming �ner with the development of the technology. Nowadays, SMs can collect the
consumption data with di�erent time steps ranging from daily measurements to detailed
resolutions �ner than one minute [9]. SMs are available for di�erent �elds of application
such as electricity, gas, water or heating. In the following the term smart meter is used for
electricity meters even though, the methods for analyzing are expected to be transferable to
other sectors, to better understand the consumption behavior [10].
The penetration of SMs is increasing in many regions of the world. Until the end of 2016

there were 700 million SMs installed worldwide, with 350 million installed in China only [11].
The EU invested nearly 5 billion euros in smart meter related projects from 2002 to 2017 [12]
and the share of SMs in the EU is expected to rise up to 71 % in 2023 [6]. In the United States
over 94 million SM have been installed up to 2019, 83 million of those in the residential sector
[13]. Despite the increasing worldwide penetration of SMs, the data availability for research
and analysis purpose is still limited due to privacy and security concerns, like for example
the abuse of the data by criminals or for governmental surveillance[4]. Figure 2.1 from [4]
illustrates the concerns as potential risks in comparison with the prevailing possible bene�ts
that are enabled by using and analysing SM data. For residential households feedback services
can reduce the energy demand as shown in [14], a meta review which compared 118 studies

5



2. Literature Review

Figure 2.1.: Potential bene�ts and risks of using smart meter data adopted from [4]

related to feedback on the electricity consumption with the conclusion that this feedback
can reduce a households energy consumption from 5 % up to 10 %. In [15] this results was
questioned with an average energy saving of 4.5 %, reported among 12 surveyed studies.

For the energy utilities it enables demand side management (DSM), i.e., managing the peak
load of their customers with techniques such as load shifting, energy conservation, valley
�lling and �exible loads [16]. Still, the possible concerns are justi�ed and prevent that load
datasets are published without extensive preprocessing like anonymization.

The development and di�usion of the smart meter technology is accompanied by increasing
research and analysis on the consumption behavior, treated in the following section.

2.2. Electricity Consumption Analysis

In this section the relevant literature on analysis of electricity consumption is reviewed,
with a focus on the residential sector. First, the research on the determinants of residential
energy consumption is treated. Then, the relevant literature regarding cluster analysis in the
residential energy sector is presented.

6



2.2. Electricity Consumption Analysis

2.2.1. Determinants of Residential Electricity Consumption

The research to elaborate the determinants for residential energy demand is challenging as it
depends on many in�uencing factors. In [4] it was pointed out that even if the same dataset
and survey data is used, the attributes with signi�cant impact on the consumption change
between di�erent studies. For example, in [17] and [18] the same dataset [19] is used with
di�erent clustering methods and aggregation of the data, resulting in di�erent important
attributes. Therefore, di�erent determinants have been found to have an signi�cant impact on
the residential electricity demand in studies carried out in several countries, such as weather
conditions, �oor area, disposable household income, household location, head of household
gender, dwelling type, household appliances and electricity prices [20][21][22][23]. In the
following research on the household location and the impact of new technologies like PV, EV
and heat pumps are presented in detail.

2.2.1.1. Location

Research on the location dependency of the energy consumption behavior within a country as
an in�uencing factor of the consumption behavior is a �eld that has barely been discussed in
the literature. Nevertheless, in [24] the authors examine the location dependency of di�erent
determinants, on the household energy consumption in the Netherlands. The study shows that
some of the determinants like for example income and household size have a di�erent impact
on the consumption behavior in di�erent locations within the Netherlands. For instance, the
determinant household size even an opposite impact on the household energy consumption
in di�erent regions. The research on the location dependency of the consumption behavior
can also support linking datasets from di�erent locations within the same country to each
other. With this connection of the datasets recommendations might be made in the future
when only the household characteristics from survey data or only the demand characteristics
from smart meter data are known.
In [21] the authors examine the in�uence of di�erent determinants on the residential

electricity consumption in the United States (US): The Result is that locality in form of a Zip
Code is one of the determinants with the highest correlation to electricity consumption and
explains 46 % of the variability of the residential electricity consumption. It is important
to mention that the Zip code is connected to many other variables like climate conditions,
building type and socio-economic factors and that the high penetration of air conditioning
systems in the US results in a high impact of climate conditions on the electricity consumption.

7



2. Literature Review

2.2.1.2. Prosumers with PV

The impact of decentralized PV generation of prosumers on the residential electricity con-
sumption is subject of debate in the current research. In [25], a study from Sydney, Australia,
the authors conclude that households with PV installed have a signi�cantly higher electricity
consumption due to rebound e�ect eroding 21 % of the carbon mitigation. On the other
hand, in [26] a negative rebound e�ect, of distributed energy resources including PV, led to
increased energy savings.

In [27] is described, how prosumers are becoming more active stakeholders in the energy
supply chain. They tend to develop new behaviors, have a good knowledge about their
system and show higher interest in energy interventions like feedback on their consumption
[28] or DSM. Moreover, the related literature highlights that the transition of the energy
system towards prosumers with PV systems, as more active stakeholders of the energy
system, together with new technologies like EVs and heat pumps, are changing the electricity
consumption behaviour and therefore are an important factor to consider, when analysing
residential electricity consumption behavior[7][4].

2.2.2. Load Profiling

The term load pro�ling refers to the classi�cation of electricity consumers according to
their consumption behavior [7]. There are di�erent ways how these load pro�les can be
bene�cial for consumers and energy supply stakeholder. Standard load pro�les for example
are representative load pro�les composed from the average of consumers with a similar
consumption behavior and can be used by energy suppliers for network planning with load
forecasting and marketing balancing mechanisms like demand response programs [29]. For
the consumers load pro�les from smart meter data are helpful to understand their consumption
behavior, compare it to other consumers and support decision making to reduce the energy
demand.

Since the electricity consumption of residential customers is volatile among di�erent days,
households and dwelling types, a grouping into multiple load pro�les is often su�cient to
determine the consumption behaviour of a household. The unsupervised machine learning
techniques of clustering, that discover patterns from the individual load pro�les, are suitable
for this grouping task and have been widely used in the related Literature. [10] Therefore,
several clustering techniques used for load consumption analysis will be presented in the
following section.
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2.2.3. Cluster Analysis

A cluster analysis describes the task of grouping data into meaningful clusters. For the cluster
analysis �rst the data is preprocessed, then clustered with an clustering algorithm and �nally
validated, with a suitable validation measure. The relevant literature for this steps is presented
in the following sections.

2.2.3.1. Data Preparation

There are several possibilities of preparing the data for the clustering algorithms. The form of
the input data is depending on the used dataset and the aim of the analysis. When dealing
with energy consumption time series, that show di�erent levels of absolute consumption,
normalization is a common technique to set the focus on the consumption patterns. In [30]
several data preprocessing methods have been tested by clustering electricity consumption
data with the K-Means algorithm, with the result that data preprocessing methods like
principal component analysis or wavelet transformation showed no improvement of the
clustering results compared to a simple normalization of the data.

There are di�erent ways to normalize the data. The data can be normalized using the daily
peak consumption value as shown in [31] and [32] or by the consumption peak value of the
household in the dataset, as performed in [18] and [33]. The used normalization technique can
impact the results of an analysis. Still, the technique used for normalization is often insu�cient
discussed in the publications on load data analysis. For example in [34] normalization of
the residential electricity consumption data was conducted, without describing how the
normalization was performed.

2.2.3.2. Clustering

Clustering is considered as one of the most famous unsupervised machine learning technique
for pattern recognition, with multiple areas of application like bioinformatics, image analysis,
social science, text analysis or managing energy resources [35].
A distinction can be made between hard and soft clustering techniques. In the former,

each data object belongs to one cluster exclusively, while in the latter, the data object can be
assigned to multiple clusters with di�erent probabilities. For soft clustering the term fuzzy
clustering is used. [36] According to the authors of [7], clustering algorithms can be further
categorized into direct and indirect clustering approaches. For direct clustering the original
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time series is clustered so every value represents a data point. Indirect clustering aims to
reduce the dimensionality of the data through feature extraction.

Several clustering methods have been applied in the sector of energy consumption analysis.
In [37] the authors compared 11 di�erent clustering algorithms, regarding their suitability for
residential load consumption clustering on daily pro�les, resulting in the best performance of
centroid-based and hierarchical clustering methods. Despite centroid based methods showing
a good performance, the promising Fuzzy C-means clustering algorithm was not part of the
comparison.

In [38] the K-means algorithm is used for clustering residential load data for customer
baseline load estimation and demand response management. The authors of [39] use the
K-means algorithm for clustering hourly smart meter data to extract representative standard
load pro�les. Fuzzy C-means clustering is used in [40] on daily load pro�les to examine the
in�uence of a household�s lifestyle on the electricity demand. In [31] the authors use the
Fuzzy C-means algorithm, to analyze the e�ect of price signals on the consumption behavior
of residential electricity customers.

In [41] hierarchical clustering is performed on daily smart meter data and combined with
a door to door survey to de�ne power consumption pro�les of residential households. In
[42] hierarchical clustering is used for clustering the energy consumption data of university
buildings.

2.2.3.3. Cluster Validation

Since the true underlying structure of the data is unknown when using unsupervised learning,
no natural quanti�cation of the discrepancy between the model and the truth exists [43].
Therefore, validation criteria that evaluate the clustering results only with the parameters
of the resulting clusters have been developed. This kind of evaluation is called internal
evaluation and most of this internal validation indices are based on the cluster geometry.
They often de�ne a clustering result of high quality with the terms “compact” (the distance of
elements within one cluster) and “distinct” (the distance of the clustering centers) [37]. As
stated in [44] a high number of di�erent validation indices that aim to evaluate the quality of
clusters exist and the choice of index matters for the result of the clustering validation. Two
common internal validation indices, that have proven their performance in the literature, are
the Silhouette index (SIL) [18] and the Davies-Bouldin index (DBI) [38] [45].
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A method that is used when the number of clusters is to be determined for the algorithm is
the Elbow Method. It is a visual method that calculates the sum of squared errors within the
clusters. It is often used in combination with the widely used K-Means algorithm, to estimate
the number of clusters as parameter for the algorithm[46].
Further, multiple similarity and dissimilarity measures have been de�ned for time series.

In [47] Pearson correlation coe�cient is used as a similarity measure. According to [36]
the Pearson correlation coe�cient is a suitable method to measure the agreement of shapes
between two patterns.
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In the beginning of this chapter an overview of the datasets available for the thesis is given.
Thereafter, the selection of the datasets used for this thesis is described and at the end of the
chapter the structure and speci�cations of the two selected datasets are presented in detail.

3.1. Data Availability

The privacy and security-related concerns, presented in section 2.1, that arise when analyzing
smart meter data result in a limited availability of datasets available to the public. Nevertheless,
several household level load datasets have been anonymized or semi-anonymized and are
available for the present work [7]. The available datasets, together with a short description and
information on the number of participants and trial duration, are presented in the following
list:

• Ausgrid Resident [48]:

Consumption and rooftop PV generation data from 300 Australian residents. Trial
duration: 2010/7 - 2013/6; sample frequency: every 30 min.

• Customer Behaviour Trials (CBT)[19]:

Irish load consumption datasets of the Commission for Energy Regulation (CER) of
over 6000 households including survey data with demographics and socio-economic
information. Trial duration: 2009/9 - 2011/1; sample frequency: every 30 min.

• Collaborating Smart Solar-powered Micro-grids (CoSSMic )[49]:

Smart meter data from the EU project "Collaborating Smart Solar-powered Micro-grids"
(CoSSMic). Consumption data from 12 German residential, industrial and public energy
consumers. Availability of rooftop PV and appliance level data. Published by "Open
Power System Data" [50]. Trial duration: 2013/5 - 2017/8; sample frequency: every
minute.
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• Intelligent Domestic Energy Advice Loop (IDEAL) [51]:

Recently published dataset from two projects in the Edinburgh region. High frequency
consumption data of 255 households of which 39 additionally have detailed appliance
level data traced. Trial duration: 2014/12 - 2018/6; sample frequency: every second.

• Intelliekon [52]:

Consumption data of di�erent locations in Germany andAustria of over 2000 households.
Survey data on soci-economic and household characteristics available. Available for
the present thesis, not available for the public. Trial duration: 2009/5 - 2010/11, sample
frequency: every hour.

• Low Carbon London (LCL)[53]:

London area load consumption and related pricing data. Similar to CBT with over
5000 households and survey data on socio-economic factors and appliance usage. Trial
duration: 2013/1 - 2013/12; sample frequency: every 30 min.

• Pecan Street [54]:

Detailed dataset from di�erent locations in the USA of 500 households with a high fre-
quency of up to 1 min sampling rate. Household level and appliance level consumption
data available. EV and PV data available for some households. Only a part of the data
data can be recived for research purpose as a university member. Trial duration: 2005/5
- Today; sample frequency: every minute.

Further, �gure 3.1 provides an overview over the advantages and disadvantages of the datasets.
The sample frequency is of subordinate importance for the present work but may be interesting
for other As the data availability is limited, a combined analysis of datasets is a possible way
to meet this limitation. Therefore, according to [4] a standardization of the trial design
supports a inter comparison between di�erent studies. Nevertheless, in the present work it is
investigated if di�erent study designs and characteristics can also complement each other.
In terms of the geographic aspect, the datasets are mostly collected in a speci�c area or

the household locations are unavailable due to anonymization purposes. Exceptions are the
Intelliekon and Pecan Street dataset where the data is collected from several di�erent regions
within a country. This aspect was one important factor for the dataset selection, which is
explained in detail the next section.
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Figure 3.1.: Advantages and disadvantages of the datasets

3.2. Dataset Selection

For the selection of the datasets several di�erent aspects have been considered. First of all,
the dataset has to be available. This appears to be obvious but some of the datasets listed in
the previous section are available only under restrictions like a university access or other
conditions must be met. Thus, the process of dataset selection is not only to �nd and select the
best suitable datasets, but also investigating what is necessary to get access. Access conditions
include request forms or personal contact with the person responsible for the dataset. As an
overview, table 3.1 lists the access types for the di�erent datasets.
The thesis aims to discover the opportunities to increase the utility of the available data,

by a combined analysis of di�erent datasets. While the selected datasets should contain
di�erent information for this combined analysis, some aspects should be similar to enable
a reasonable linking and get informative results. Since for the present work, the temporal
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Dataset Access type
Ausgrid Open access
CBT Request form
CoSSMic Open access
IDEAL Contact via mail (Now, with the o�cial release of the dataset: Open Access)
Intelliekon Not published, access at Fraunhofer ISI inhouse database
LCL Open access
Pecan Street Sign up at "dataport"[55] with prove of institution for limited university

access

Table 3.1.: Type of access for the datasets

development of the residential energy system was of considerable interest, it was decided
to select datasets with temporal instead of geographical di�erences for the combination.
Therefore, the geographical origin of the participating households is the second important
aspect for the dataset selection. Accordingly, the datasets should be of the same country, in
order to reduce country speci�c di�erences that a�ect the consumption behavior, like for
example legislation and traditions. This led to the decision between the LCL and IDEAL
household datasets, both collected in the UK and the Intelliekon and CoSSMic dataset of
German households.

The third aspect impacting dataset selection are the data speci�cations. Here the UK
datasets have the advantage of more trial participants, while the Intelliekon dataset o�ers
more detailed survey data and the CoSSMic dataset, in contrast to the UK datasets, o�ers
PV generation data. Because of the interesting possibility to compare two datasets with and
without PV energy of di�erent temporal origins, at the end the German datasets were chosen
for the analysis and are presented in detail in the next section.

3.3. Data Structure

In this section the two selected datasets are presented. Therefore, general information and
important aspects about the trials, where the datasets were collected, as well as the structure
of the datasets are discussed.
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3.3.1. Intelliekon Dataset

The Intelliekon dataset was created within a �eld study in Germany and Austria focusing on
the e�ect of consumption information feedback for residential households. The households
were covered with a AMI and some of the households received feedback on their electricity
consumption while a randomly selected control group did not receive such feedback. The
trial was carried out in cooperation with electricity utilities in eight German municipalities,
namely Celle, Hassfurt, Kaiserslautern, Krefeld, Münster, Oelde, Schwerte and Ulm, from
�ve di�erent federal German states and one Austrian utility in Linz. The distribution of the
households among the German locations is displayed in table 3.2.
The trial duration varies among the di�erent locations. Nevertheless, from November of

2009 to November of 2010 the data collection was active for all of the households. Furthermore,
the households were requested to take part on surveys regarding socio-economic factors and
household characteristics before and after the trial. [52] In the present work only the data
from the 600 German households was used, since the dataset combination and the location
dependency of the consumption data within one country is to be explored.

Location Number of households
Linz 1624
Münster 128
Kaiserslautern 126
Hassfurt 101
Krefeld 90
Ulm 62
Schwerte 61
Celle 49
Oelde 13

Table 3.2.: Number of participating households for the di�erent locations of the Intelliekon
trial

The Intelliekon dataset is composed out of multiple tables. The most relevant table contains
the active power consumption data of the households. In �gure 3.2 a screenshot of the �rst
two rows of over 16 million rows in total of this table are displayed. All rows of this table
represent the electricity consumption value of one hour for a speci�c household. Several
identi�cation numbers, temporal information such as date, hour of the day and year as well
as the local origin of the data (“Daten_Herkunft”) and the hourly electricity demand for this
hour, are the columns of this table. The survey data is available in two tables for each survey,
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with one describing the questions asked and the other one with the quanti�ed response from
the households.

Figure 3.2.: Example of consumption data from the Intelliekon dataset

The Intelliekon dataset is not available to the public and could be accessed for the present
thesis because of the cooperation with the "Fraunhofer Institute for Systems and Innovation
Research ISI", which was a co-director of the Intelliekon trial.

3.3.2. CoSSmic Dataset

The CoSSmic dataset was collected within the scope of the EU project "Collaborating Smart
Solar-powered Micro-grids". It is composed out of 12 participants representing a neighbour-
hood with six residential, four industrial and two public (a school and a swimming pool)
electricity consumers [56]. The trial collected the baseline consumption behavior of the
electricity customers and simulated the automatic load shifting approach within the solar
powered micro grid afterwards. The participants of the trial are located in the suburban area
of Konstanz, a city in southern Germany. In the following the focus will be on the residential
electricity consumers, as they are to be compared to the smart meter data from the Intelliekon
dataset.

The collected data includes several parts. The total imported and exported electricity data
of the households as well as appliance level consumption data, from appliances considered
important for the consumption or suitable for automatic load shifting, such as fridge, freezer,
dish washer, washing machine, heat pump and EV, was collected. Additionally, the electricity
generation of the rooftop PV system was traced when available. Four of the six households
where equipped with a PV system. The traced appliances for the di�erent households are
listed in table 3.3. [49]
Originally the data is collected with a sampling frequency of 1 min. Nevertheless, the

dataset is also published with a sampling frequency of 15 and 60 min of which the 60 min
table was used in the present work to align the frequencies of the two datasets. Structure wise,
every column of the table represents either the consumption of one of the appliances, the
electricity import, export or the PV generation of one household. Figure 3.3 shows an example

18



3.3. Data Structure

Resident 1 Resident 2 Resident 3 Resident 4 Resident 5 Resident 6
10 kWp PV
system
Electrical
heat pump
Washing
machine
Freezer
Dishwasher

No PV Sys-
tem
Circulation
pump
Freezer
Washing
machine
Dishwasher

5 kWp PV system
Circulation pump
Dishwasher
Washing machine
Dishwasher
Refrigerator
Freezer

10 kWp PV
system
EV
Heat pump
Washing
machine
Refrigerator
Freezer

no PV Sys-
tem
Washing
machine
Dishwasher
Refrigerator

4 kWp + 5
kWp PV
system
Circulation
pump
Washing
machine
Dishwasher
Freezer

Table 3.3.: Traced appliances of the residential households in the CoSSMic trial

screenshot of "Resident 6" with the UTC timestamp as index and the electricity export, import,
PV generation and consumption of the washing machine as columns. As visible, in contrast
to the Intellikon dataset, where the columns are the hourly values for one household, the
table shows the meter readings and therefore, the values are given in absolute numbers.

The data from the trial is made available to the public by the project "Open Power System",
a platform, promoting the open availability of data required for research on energy systems
[50].

Figure 3.3.: Example of consumption data from the CoSSMic dataset
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In this chapter the methods used in this thesis are presented and explained. Starting with
the data preprocessing, the representation of the data and the normalization is described.
Thereupon, the used clustering algorithms are described. At the end of the chapter the
used clustering validation indices, for comparing clustering results of di�erent algorithms or
determining the number of clusters for algorithms are presented.

If a metric is necessary, in the present work, the euclidean distance de�ned as

3 (@, ?) =

vt
=’
8=1

(?8 � @8)2 (4.1)

is used. Where p and q are points or vectors in the n-dimensional euclidean space R= .

4.1. Data Preprocessing

For the data preprocessing �rst the representation of the hourly consumption data by repre-
sentative daily consumption pro�les is described. Then the two normalization techniques
used in this thesis are explained.

4.1.1. Data Representation

For an intuitive way of interpretation the electricity consumption data is transformed to
representative daily load pro�les. This representative pro�les also represent the input and
output values of the clustering algorithms. Therefore, each household is represented by a
feature vector with the average of all hourly consumption values for each hour of the day as
features. This can be formulated as:

~n =
1
⇡

⇤
⇡’
8=1

~n,i (4.2)
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where ~n is the feature vector of the household n = (1, 2, ..., N), with N representing the total
number of households used for the analysis. The feature vector contains 24 entries for each
hour of the representative day ~n = (~=,1,~=,2, ...,~=,24). Further, ~n,d denotes the vector with
one day of hourly consumption data and 3 = (1, 2, ...⇡) represents the number of days D were
the hourly consumption data is available for the speci�c household n.

4.1.2. Normalization

In this section, the two normalization techniques presented in section 2.2.3.1 are described.
The �rst technique uses the maximum andminimum values of the household of the considered
time period for the normalization. In contrast, the second technique normalizes the values
with the daily maximum and minimum value. Both techniques, result in values between 0
and 1. The former sets the focus on the shape of the daily consumption patterns while the
latter is retaining the information about the daily peak values [4]. The two approaches of
normalization can be formulated as:

~̃C,=,1 =
~C,= � ~=,<8=
~=,<0G � ~=,<8=

(4.3)

~̃C,=,2 =
~C,= � ~=,3<8=

~=,3<0G � ~=,3<8=
(4.4)

where ~C,= is the hourly consumption value of the household = = (1, 2, . . . ,# ) of the lag
C = (1, 2, . . . ,) ) where T indicates the number of hourly lags of each household. ~̃C,=,1 and
~̃C,=,2 denote the normalized hourly value calculated with the �rst and second approach. ~=,<0G
and ~=,<8= represent the maximum and minimum consumption value of this household in the
dataset, while ~=,3<0G and ~=,3<8= are the daily maximum and minimum consumption values.

4.2. Clustering algorithms

To �nd patterns in the load consumption behavior of residential electricity consumers, several
clustering methods have shown to be useful in the past decades. In a structured literature
review Tureczek and Nielsen [57] expelled the centroid based clustering techniques such as
the K-means clustering algorithm, and derived algorithms like the fuzzy K-Means algorithm,
as well as hierarchical clustering algorithms as the most popular clustering algorithms for
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smart meter data analysis. In this section the mentioned clustering algorithms are described,
and their advantages and disadvantages are compared.

4.2.1. Centroid-based Clustering

Centroid based or partitional clustering algorithms, partition N observations to k clusters by
iteratively assigning each observation to the closest centroid. The centroids are de�ned as
the mean values of all households belonging to the cluster:

ck =
1

|⇠: |

=’
8=1

~i (4.5)

where : = (1, 2, ..., ) denotes the cluster number and ck describes the cluster center of cluster
k. ⇠: is the set of feature vectors ~i of the households with the cluster membership of cluster
k and |⇠: | denotes the cardinality of the set, in this case the number of feature vectors that
belong to the set.
The centroid based algorithms aim to solve a expectation-maximisation problem that

converge when the centroids do not change, or the change is smaller than a de�ned threshold.
A drawback of this algorithms is that the number of clusters is to be determined a priori. In
the following the K-Means algorithm and the Fuzzy C-Means algorithm are presented and
discussed.

4.2.1.1. K-Means

This today widely used clustering algorithm was �rst mentioned in [58]. According to [59] it
tends to minimize the within sum-of squares objective function of:

& =
#’
==1

 ’
:=1

� (~n 2 ⇠:) (~n � 2:) (~n � ck)> (4.6)

where � (~n 2 ⇠:) is a binary variable that equals to 1 if the example ~n 2 ⇠: and 0 otherwise.
The algorithm can be described by the following steps:

1. Initialization: A random selection of k examples serve as initial the centroid seeds.

2. Clustering: For each iteration C = (1, 2, ...,) ) with T being the total number of iterations
of the algorithm. Each of the examples is assigned to the closest cluster center ck .
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3. Centroids update: Recalculation of the clustering centers ck by calculating the mean of
all assigned examples.

4. Termination: Termination of the algorithm, if either the de�ned number of maximum
iterations is reached or the improvement of & is lower than a pre-de�ned threshold Y
with & (C) �& (C + 1)  Y.

The algorithm has the drawback, that convergence in an global optimum, respectively global
minimum of the sum of squares function, is not guaranteed, which is why the algorithm
is run several times and the results with the best $ is selected as the result. Advantages
of the algorithm are the over all robustness and simplicity[7]. To improve the initialization
process, in the present work the improved K-Means++ algorithm was implemented. It uses
a heuristic to improve the selection of the centroid seeds and archives better time cost and
better solutions than the original algorithm [60].

4.2.1.2. Fuzzy C-Means

The FCM algorithm is similar to the K-Means algorithm with the di�erence that an example
can be assigned to more than one cluster, with the membership degree de�ned for the intervall
[0, 1]. Similar to K-Means the algorithm is based on theminimization of the following objective
function

&@ =
#’
==1

 ’
:=1

`@=,: (~n � 2:) (~n � ck)> (4.7)

where `=,: is the cluster membership degree of household n regarding cluster k and @ denotes
the fuzziness parameter with @ 2 (1,1). Thereby @ = 1 equals hard clustering and high values
for @ indicate a high membership distribution for the examples. The main advantage of the
algorithm is that it provides further information on the membership degree of the examples,
enabling a better representation of the reality and supporting a �ner interpretation of the
clustering results[61].

4.2.2. Hierarchical Clustering

For hierarchical clustering algorithms the dataset is divided into sequences of nested partitions,
instead of a single partition like the centroid based clustering techniques. Hierarchical
clustering can be performed bottom-up starting with each object as a single cluster also called
agglomerative hierarchical clustering or top-down, namely, divisive hierarchical clustering.
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[36] The linking of the clusters is performed with di�erent linkage methods described in the
following:

• Ward: Minimizes the SSE within the clusters, similar to the K-Means approach combined
with an agglomerative hierarchical approach.

• Complete linkage: De�nes the maximum distance between examples of a pair of clusters
as the cluster distance.

• Single linkage: The minimum distance between examples of a pair of clusters is de�ned
as the cluster distance.

• Average linkage: The average distance between the examples of a pair of clusters is
de�ned as the cluster distance.

An advantage of this algorithms is the descriptive interpretability with dendrograms that
represent the clustering in a tree-like structure. A Drawback of the algorithm is that the
clustering results are sensitive for the choice of similarity measures for the linkage of the
clusters and that the data objects cannot be reallocated if grouped wrong in an early stage of
the clustering process [36].

4.3. Cluster Validation

To evaluate the clustering results and chosen a suitable number of clusters in certain clustering
algorithm, such as centroid based methods, several clustering validation measures have been
developed. In the �eld of unsupervised learning, where the patterns in the data are not
known before the analysis, cluster validation is considered as one of the most di�cult issue
in the clustering process [33]. A distinction is made between internal and external validation
approaches. For internal validation the properties of the found clusters itself is examined,
most internal indices describe the compactness within and distinction among the clusters.
While, for external validation a part of the data with ground truth labels is used as a reference
partition to verify the clustering results. According to [5] internal cluster validation indices
can be used to compare clustering techniques among each other or evaluate clustering results
when possible outliers are excluded or the number of clusters is changed. In the following
several validation indices and similarity measures that are used for the analysis are presented.

25



4. Methodology

4.3.1. ElbowMethod

The Elbow Method is a commonly used visual method for determining the number of clusters
for the K-Means algorithm [62]. For the method the sum of squared errors (SSE) is calculated
for each example to the cluster center it belongs to. The mean SSE of all examples is then
compared for di�erent number of clusters. As the number of clusters increase, the SSE will
become smaller the aim of the method is to determine the "Elbow Point" with the best trade
of between SSE and manageable number of clusters. According to [63], the method can be
described with the following steps with k representing the number of clusters in the K-Means
algorithm:

1. Initialize the initial value of k; often k = 2 is used

2. Increase the value of k in de�ned steps up to a reasonable limit

3. Calculate the SSE results for each value of k

4. Plot the SSE results so that the number of k increase along the x-axis and the SSE
decreases

5. Visually locate the elbow-shaped k value in the plot

The SSE is a statistical method to measure the discrepancy between the data and the estimation.
It can be expressed as

((⇢ =
#:’
8==

(3)2 (4.8)

where d is the distance between the example and the cluster center it is assigned to. The
distance is calculated with a chosen distance measure.

4.3.2. Silhouette Coe�icient

The SIL is a common way to combine cohesion within and separation among the clusters in a
single measure [64]. It was �rst introduced by Peter J. Rousseeuw in 1987 [65]. The steps to
calculate the SIL are calculated as de�ned in [66]:

1. For every example, the average distance 0(8) to all examples in the same cluster is
computed:

0(8) = 1
|⇠0 |

’
92⇠0,8< 9

3 (8, 9) (4.9)
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2. For every example, theminimum average distance between the example and all examples
in each cluster not containing the analyzed example is calculated:

1 (8) = min
⇠1<⇠0

1
|⇠1 |

’
92⇠1

3 (8, 9) (4.10)

3. For each example, the SIL is calculated by the following expression:

B (8) = 1 (8) � 0(8)
max{0(8),1 (8)} (4.11)

4. If necessary the global SIL is calculated as the average SIL of all examples:

(�! =
1
#

#’
8=1

B (8) (4.12)

The SIL is de�ned in the interval [�1, 1]. The coe�cient has the advantage to provide a
simple framework for the quali�cation: positive values indicate a high separation between
the cluster, negative values are an indication that the clusters are mixed with each other and
values around zero indicate a uniformly distribution throughout the Euclidean space[67]. A
drawback of the coe�cient is the high computational time complexity of $ (3# 2, making it
di�cult to scale to large datasets[68].

4.3.3. Davies-Bouldin Index

The DBI was �rst introduced in 1979 [69]. It de�nes the average similarity between each
cluster ⇠8 and its most similar one ⇠9 , with 8, 9 = (1, 2, ..., ), the similarity is de�ned as:

'8, 9 =
3̂ (⇠8) + 3̂ (⇠9 )
3 (28, 2 9 )

(4.13)

where 3̂ (⇠8) is the average distance between each example of cluster 8 and the corresponding
cluster center. Then the DBI is de�ned as:

⇡⌫� =
1
 

 ’
8=1

max
8< 9

'8, 9 (4.14)
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The DBI has a lower computational time complexity of $ (3 ( 2 + # )) compared to the SIL
and low values correspond to a better cluster con�guration with 0 as the lowest possible value
[68].

4.3.4. Pearson Correlation Coe�icient

The Pearson correlation coe�cient is a measure of linear correlation between two sets of
data. It is de�ned as the ratio between the covariance of two variables and the product of
their standart deviations. The Pearson correlation coe�cient between two samples can be
calculated as:

AG,~ =
Õ=
8=1(G8 � G) (~8 � ~)pÕ=

8=1(G8 � G)2
pÕ=

8=1(~8 � ~)2
(4.15)

where n is the sample size, G8,~8 denote the individual sample points and G,~ are the sample
mean values. The Pearson correlation coe�cient can be interpreted as a normalized covariance.
Advantages of the coe�cient is the interpretability of the degree of relationship [36]: positive
values indicate the tendency that high values of the one example are associated to high values
of the compared examples. Negative values indicate a reversed relation with high values of
one example, leading to low values of the compared example. Values around 0 indicate no
linear relationship among the examples. A drawback of the coe�cient is that it is sensitive to
outliers [70].

4.4. So�ware

In the present thesis the programming language Python version 3.8.5 [71] was used together
with Jupyter Notebook version 6.1.4 [72] as the computational environment for the program-
ming. For most of the cluster analysis the scikit-learn package version 0.24.2 was used[73].
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In this chapter, the work�ow for the combined analysis is presented together with the
results and discussion of the processing steps.In general, there are 4 steps performed: data
preprocessing, clustering, location dependency check and dataset linking. Firstly, the data
preprocessing including data segmentation, missing value investigation and normalization is
treated. Thereafter, the cluster analysis is presented with the comparison of three clustering
algorithms. Subsequently, two approaches on the location dependency of the clustering results
are described and the results are discussed. Then the data processing of the CoSSMic data for
the combined analysis is explained. Ultimately, the results from the combined analysis of the
two data sets are discussed. An overview of the work�ow is visualized in �gure 5.1.

Figure 5.1.: Work�ow of the data set combination
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Type of sea-
son

Spring Summer Fall Winter

Seasons from
the literature

21st of March
– 14th of May

15th of May – 14th
of September

15th of September
– 31st of October

1st of November –
20th of March

Meteorological
seasons

1st of March –
31st of May

1st of June – 31st
of August

1st of September –
30th of November

1st of December –
28th of February

Astronomical
seasons

20th of March
– 20th of June

21st of June - 14th
of September

15th of September
- 31st of October

21st of December
– 19th of March

Table 5.1.: Time periods of di�erent season types

5.1. Data Preprocessing

To prepare the data presented in the chapter 3.3 for the analysis and clustering, several
preprocessing steps were conducted, including dividing the dataset into time periods to cover
seasonality and di�erences between weekdays and weekend days, the search for missing
values and the data normalization. For the normalization, the results of two normalization
techniques are presented. Since the cluster analysis was performed on the Intelliekon dataset,
our generalized data preprocessing was mainly applied to this dataset. This procedure is then
applied to the CoSSMic data set as far as necessary, because no cluster analysis was carried
out on this data set. Since the data of the CoSSMic data set is given as meter readings, and
therefore absolute numbers of energy measured by the meter so far, the data was transformed
to hourly consumption values by calculating the di�erence between the hourly time step as
additional preprocessing step.

5.1.1. Time Periods

To cover seasonality, one year of data was used for the analysis. Further, to examine the
di�erences in the consumption behavior the one year period data was divided into several
time periods. Thereby, the challenge was to observe the di�erences of the time periods, while
obtaining a clear and manageable amount of results. Therefore, possible time periods in
terms of season and weekday were de�ned and the pro�les of the mean hourly electricity
consumption values of all households of the di�erent time periods were compared for their
di�erences.
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5.1. Data Preprocessing

5.1.1.1. Seasonality

The seasons that are compared to each other are the meteorological seasons, the astronomical
seasons and seasons used in the related literature in [39] adopted from [74]. Table 5.1 shows
the di�erent starting and end dates for the di�erent season types.
To compare the di�erent type of seasons, representative load shapes were created by

calculating the hourly mean normalized consumption of all households for each season. Thus,
four representative load shapes representing the four seasons for each season type were
calculated. The resulting representative load pro�les for the di�erent type of seasons are
shown in �gure 5.2. It is visible that the di�erences among the season types are rather small.
To further evaluate the di�erences in between the season types, the mean Pearson correlation
coe�cient was used as similarity measure for the seasons within every season type. As the
division of the data set into seasons aims to �nd seasons were the consumption di�erence is
high in between the seasons, a low mean Pearson coe�cient, representing diverse patterns,
is desired. The similarity of the type of seasons is also expressed by the similarity of the
coe�cients with 0.97189 for the seasons from the literature, 0.97372 for the meteorological
seasons and 0.97481 for the astronomical seasons. It is to mention that although, the Pearson
correlation coe�cient can be used as a similarity measure for time series, it shows the linear
correlation among the seasons and not exactly how di�erent the time series are from each
other. Still, with the similar values for the season all of the seasons are reasonable choices.
Therefore, the meteorological seasons were used for the analysis due to the following reasons:

• The seasons of the literature have a unequal length of the time periods with summer
and winter season being longer than the transition seasons, resulting in less data for
the calculated hourly mean values.

• While �tting well on the Intelliekon data set, for the CoSSMic data set two households
�nished the trial in February, therefore the meteorological seasons a more suitable for
a combination of the data sets.

The use of the meteorological seasons combined with the availability of the data results in
using the data from the 1st of December 2009 to the 30th of November 2010 for the Intelliekon
data set and 1st of March 2016 to the 28th of Febuary 2017 for the CoSSMic data set. After
the investigation of the seasons and time periods used for the two datasets, the di�erences
between the days of a week are treated in the following section.
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5. Evaluation and Discussion

Figure 5.2.: Mean normalized consumption of the di�erent seasons

5.1.1.2. Day of Week

To compare the di�erent days of the week, themean normalized consumption of all households
was calculated for every day. The resulting load shapes are displayed in �gure 5.3. It appears
that the consumption behavior is similar during the weekdays and di�ers between weekdays
and weekends. The distinction between Saturdays and Sundays is reasonable, as the peak
consumption during the day is signi�cantly higher for Sundays. Yet, in order to keep the
number of generated results manageable and ensure enough data is available for all the time
periods, Saturday and Sunday were treated together as weekend days. Therefore, in this thesis
a distinction was made only between weekdays and weekends. The four seasons together with
the distinction between weekdays and weekend days results in eight time periods covering
one year of data. With this time periods distinguished, the next data preprocessing step was
to examine the missing values for these two datasets,which is explained in the next section.
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Figure 5.3.: Mean normalized consumption of the di�erent days of a week

5.1.2. Missing Values

Missing values happen to appear in smart meter data sets because of reasons like failure of
data collection, communication problems of the smart mete devices, unplanned events and
maintenance [7].
In the Intelliekon data set, smart meter data is structured with the hourly consumption

values in rows, as shown in section 3.3.1. All of the existing rows contain values, thus no null
values appear in the data set. The missing values are therefore calculated by comparing the
number of present data rows for each household ID with a complete dummy series of 8760
hourly values of the considered period of one year. This results in an overall rate of missing
values of 23.66 % for the one year period. Since this rate of missing values is relatively high, it
needs to be further examined.
With the technique of calculating the representative consumption pro�le with the mean

values for every hour of the day, missing values are of minor importance if they are evenly
distributed among the time periods and households. Therefore, the number of values for each
hour of the day was examined. This number is equal for each hour of the day, hence, it can
be concluded that only complete days are missing in the dataset, which also explains the high
rate of missing values. In addition, the number of available values over the one year period
was investigated. Figure 5.4 shows the distribution of available values for each day over the
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observed period for all households. Although, there are some �uctuations between 8000 and

Figure 5.4.: Number of values available for each day over the observed year

12000, available values are still su�ciently equally distributed among the time periods.
The distribution of the missing values among the di�erent households is less equally

distributed. Figure 5.5 shows the rate of missing values for the German households with 0
indicating no missing values for a household and a rate of 1 a household with only missing
values, calculated with the dummy variable explained earlier in this section. The households
with a high rate of missing values are a problem because they can in�uence the clustering
results with mean values as features of only a small amount of days. To exclude households
with a large share of missing values, while maintaining a high number of households for the
comparison of locations, the cut-of-value was set to a share of missing values of 0.7 (marked
with a dashed line in 5.5). This value was selected because of the high increase of the missing
values rate visible in the chart and led to 37 households being excluded from the data set.
These 37 households are from two locations only, 26 households are from Kaiserslautern
and 11 from Münster. The overall rate of missing values, without the 37 households and 563
households remaining, is 19.32 %.
The CoSSMic data set does not contain missing values in the data with the exception of

"Resident 2" that �nished the trial in February of 2017 resulting in one month of missing data.
The high completeness of the data set is due to the interpolation of the missing values that
was already performed on the published dataset[50].

34



5.1. Data Preprocessing

Figure 5.5.: Rate of missing values for the 600 German households

After the examination of missing values in the datasets, they have to be scaled for a better
comparison between the households and as input for the clustering algorithm. Therefore, a
normalization of the data was performed and explained in the following section.

5.1.3. Normalization

Normalization of the data is used to compare the consumption behavior of households with
di�erent absolute levels of consumption. In this work, the two techniques of normalization,
described in section 4.1.2, are applied to the dataset. The �rst technique calculates the
normalized value with the maximum value of the household as reference value while the
second technique uses the daily maximum value of the household for the normalization. To
visualize the di�erence between the two normalization techniques, the normalized mean
values of all households for meteorological seasons are displayed in �gure 5.6. It is noticeable
that the y-axis, where the normalized consumption is displayed, has a di�erent range of values
due to the di�erent values used for the normalization. Another important aspect is that the
di�erent levels of the consumption among the seasons are more remarkable in the where the
normalization is performed with the maximum value of the whole data set. The di�erences
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5. Evaluation and Discussion

Figure 5.6.: Comparison of normalization methods

among the seasons are useful for the comparison with the PV data of the CoSSMic data set to
keep the di�erences between consumption and PV generation between the seasons.

The impact of the normalization technique on the clustering results is discussed in the
following. Therefore, the results of the clustering, conducted with the two di�erent normaliza-
tion techniques are discussed qualitative and quantitative, supported by the cluster validation
criteria de�ned in section 4.3.

The techniques di�er by the reference value used for the normalization. While the �rst
technique uses the absolute consumption maximum and minimum value of the household for
normalization, the second technique refers to the daily maximum and minimum value of the
household for normalizing the data.

To visualize the di�erences of the clustering results, the corresponding clustering centers
of the two normalization techniques are displayed in �gure 5.7. For both techniques the
clustering results of two example time periods are shown. Similar to the di�erences among
the seasons, treated before in this section, the normalized consumption value range of the
clustering centers di�ers for the two techniques. For the �rst technique the normalized
consumption is high in the winter time period and lower in the summer time period. Thus,
it retains the di�erences between the seasons and therefore better re�ects the reality. On
the other hand it is to mention, that the resulting clustering centers of the �rst technique
do not vary as much as the clustering centers of the second technique, in terms of the time
when the energy is consumed. The �rst technique results in more similar pro�les which
di�er by their consumption level and the characteristics of their peaks. The results of the
second technique show more di�erences among the clustering centers with clusters that di�er
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Figure 5.7.: Clustering results for di�erent normalization techniques
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from the expected pro�le structure with peaks during the day or at the evening. For example
cluster 4 of the second technique shows a high consumption during the night for the winter
weekday time period and an almost constant demand during the summer weekend day time
period.
To evaluate the distribution of the households among the clusters the number of cluster

members for every cluster is presented in table 5.2. For the seasons marked with (1) or (2)
the �rst, respectively second, normalization technique is used. The number of clustering

Cluster number 0 1 2 3 4
Winter weekday (1) 107 185 107 68 45
Winter weekday (2) 97 99 147 133 37
Summer weekend day (1) 65 162 183 114 37
Summer weekend day (2) 143 150 135 120 10

Table 5.2.: Number of households per cluster with the di�erent normalization techniques (1)
and (2) for the example time periods

members indicate a more equal distribution of the households among the clusters for the
second normalization technique with the exception of cluster 4. Cluster 4 shows a low
number of cluster members for the summer time period of the second technique with only 10
households which explains the more angular shape of the cluster 4.
In order to evaluate the clustering results with a quantitative measurement, the SIL and

the DBI have been calculated as cluster validation criteria. Table 5.3 shows the validation
scores for the two example time periods discussed before and the average validation scores
for all time periods for the two normalization methods. It can be recognized that the �rst

Season SIL DBI
Winter weekday (1) 0.7612 0.3842
Winter weekday (2) 0.4720 0.8697
Summer weekend day (1) 0.8040 0.3115
Summer weekend day (2) 0.4823 0.8278
All time periods (1) 0.7780 0.3572
All time periods (2) 0.4779 0.8500

Table 5.3.: Validation scores of clustering results with the di�erent normalization techniques
(1) and (2)

technique exhibits higher SIL and a lower DBI, both indicating a higher cluster quality. It
can be concluded that the use of the di�erent reference values for the normalization results
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in di�erent information, represented by the clustering results. While the cluster validation
indices indicate a higher quality of the �rst approach, this must not relate to a increased
gain of information on the consumption behavior. For example it is possible that the good
validation values of the �rst normalization approach, are caused by a good separation among
the total energy consumption levels. Still, because it leads to more intuitive load shapes and
because the total consumption is not unimportant when including PV generation data, this
�rst approach was used for the further analysis and the combination of the data sets.
With the normalization of the data and the other preprocessing steps conducted before,

the data sets can be further analyzed. Therefore, the cluster analysis for the Intellikon data
set is presented in the next section and the further data processing of the CoSSMic data set is
described in the section thereafter.

5.2. Cluster Analysis

In this section the processing steps of the cluster analysis are presented. First it is presented
how the validation is performed. Thereafter, it is explained how the appropriate clustering
algorithm was selected, supported by the validation criteria, and what parameters have been
used. At the end of the section, the results of the cluster analysis with the selected algorithm
is presented and discussed.
The clustering was only performed for the Intelliekon data set, because the number of

participants of the CoSSMic data set was not su�cient for applying the cluster analysis. The
data processing of the CoSSMic data set is described in section 5.4.

5.2.1. Cluster Validation

The validation of the results generated by the compared algorithms was conducted with
the help of internal validation criteria that use distances within and among the clusters to
evaluate the quality of clusters as described in section 4.3. The internal validation of the
clustering results was performed with the SIL and the DBI calculated with the scikit-learn
package[73]. For similarity measures between the representative load pro�les or clusters the
Pearson correlation coe�cient was used. Further details on the validation criteria are to be
found in section 4.3.
When the number of clusters is to be determined a priori, like for the centroid based

clustering method, the so called Elbow Method presented in subsection 4.3.1 can be used.
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The resulting graph from this method for the data of all the German households from the
Intelliekon data set for 2 to 20 clusters is presented in �gure 5.8. Although, it is not possible to

Figure 5.8.: Average SSE within each cluster for di�erent number of clusters

identify a clear elbow point it becomes clear that the average SSE is declining less steep from
�ve clusters on, so according to the elbow method �ve or six clusters are a reasonable choice
and are also a manageable number of clusters for load pro�le classi�cation. Since the Elbow
Method does not show a signi�cant value for k, additionally the SIL for the di�erent number
of clusters was calculated. The results of this analysis are visible in �gure 5.9. First of all it is
to mention, that the high SIL of over 0.8 for most values of k is an indicator for well separated
clusters as explained in subsection 4.3.2. Moreover, the SIL is increasing slower from �ve
cluster on. With the combined results of the Elbow Method and the SIL the number of clusters
was set to �ve when number of clusters was to be de�ned as input for an algorithm.

5.2.2. Comparison of Clustering Algorithms

For the cluster analysis the three clustering algorithms described in section 4.2 were compared
to �nd the appropriate clustering method for the Intelliekon data set. The comparison of the
clustering algorithms was performed with a hands on approach were the three algorithms,
namely hierarchical clustering, K-Means and Fuzzy C-Means, were used on the data set. Then,
the best performing algorithm for the further analysis was selected by evaluating the results
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Figure 5.9.: Silhouette score for the di�erent number of clusters

qualitatively and quantitatively with the cluster validation indices. As described in section
4.1.1, the features for the clustering algorithms are the mean of the hourly values for the
speci�c time frame. To compare the algorithms, the hourly average of the whole year data,
without the de�ned time periods, was used. In the following, the set parameters and results of
the algorithms are presented and the selection of the used clustering algorithm is described.

Hierarchical Clustering For the hierarchical clustering, an agglomerative clustering approach
was performed on the data set. All of the linkage methods implemented in the scikit-learn
package have been tested but only the "ward" linkage method that, similar to the k-means
algorithm, minimizes the sum of squared di�erences within all clusters produced a reasonable
clustering result. Figure 5.10 shows the resulting dendrogram with the households starting as
single clusters at the bottom and hierarchically merging to the top of the chart. A distance
matrix with the pairwise calculated Pearson correlation coe�cients between the features
of the household served as input for the algorithm. Although an interesting approach the
hierarchical clustering was not used for the further analysis for the following reasons:

• Despite the additional information that may emerge from this hierarchical approach,
the clustering for the di�erent time periods results in di�erent optimal cut-o� values
and cluster numbers.
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Figure 5.10.: Dendrogram for hierarchical clustering with ward-linkage

• The typical good interpretability of the results from hierarchical clustering is in this
case reduced by the high number of households.

• The well known drawback of hierarchical clustering that once assigned to a cluster the
households can not be reassigned.

K-Means The K-Means clustering approach is a unsupervised machine learning technique,
widely used for many di�erent applications. As shown in chapter 2 it has also proven its
performance in the �eld of energy consumption analysis. The functionality and backgrounds
are speci�ed in section 4.2.1.1.

The number of clusters : = 5, as de�ned in section 5.2.1 was used for the K-Means algorithm.
The default parameters from the scikit-learn package are 10 initializations to prevent the
convergence in local optima and the stopping criteria for the algorithm were 300 maximum
iterations or a tolerance of Y = 0.0001 for the change of the clustering centers per iteration.
Since the results especially of the SIL were changing when ruining the algorithm several
times, this parameters were modi�ed to 100 initializations and 500 maximum iterations per
run. With this parameters the algorithm produced more robust results.

The features that serve as input for the clustering algorithm are the representative hourly
averaged consumption pro�les calculated for each time period. Therefore, 24 features per
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Figure 5.11.: Clustering results of the K-Means algorithm for the one year time period

time period and household are used. For the algorithm comparison the algorithm was used
with the mean hourly values for the whole year period, without using the de�ned time
periods. The resulting clustering centers are visible in �gure 5.11. The clusters are ordered by
the mean value of the clustering centers. To compare the results with other algorithms the
global SIL and the DBI where calculated with all the examples and the corresponding cluster
membership. The value for the global SIL is 0.8186 with high values up to one indicating a
good cluster quality. For the DBI the value calculated is 0.2885 with low values down to zero
indicating a better clustering quality. The results are used to compare the results with the
Fuzzy C-Means algorithm presented in the following.

Fuzzy C-Means The Fuzzy C-Means algorithm is a soft clustering algorithm were each of the
examples can belong to more than one cluster. For the implementation of the algorithm the
fuzzy logic toolbox skfuzzy 0.4.2 was used [75]. Further information on this algorithm are
presented in section 4.2.1.2.

An additional parameter compared to the K-Means algorithm is the fuzziness parameter q
that determines the degree of fuzziness in the results. To visualize the impact of the parameter
q the fuzzy partition coe�cient is plotted for di�erent possible number of clusters in �gure
5.12. The fuzzy partition coe�cient is de�ned for the range from 0 to 1. According to the
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Figure 5.12.: Fuzzy partition coe�cient of the Fuzzy C-Means algorithm for di�erent number
of clusters k and fuzziness parameters q

documentation of the used package the coe�cient is a measure to describe how cleanly the
data is described by a certain model, with 1 representing the best value. The plot with the
high values for parameters around q = 1 suggests that it is rather a measurement to evaluate
how much the results di�er from a hard clustering solution. Still, it is worth highlighting the
faster decrease of the coe�cient from �ve clusters on, indicating k = 5 as a suitable number
of clusters. To further evaluate the results the fuzzy clustering was conducted with the same
number of clusters : = 5 as the K-Means algorithm and a fuzziness parameter of q = 1.05.
The results where than defuzzi�ed by choosing the highest cluster membership as the hard
membership. In this way the clustering indices used for the K-Means algorithm could be
compared on the results.

Validation Results The comparison of the validation scores for the three clustering ap-
proaches with the two validation indices is displayed in table 5.4. The higher SIL index
and lower DBI indicate a better clustering performance of the K-Means algorithm.
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Algorithm SIL DBI
K-Means 0.8186 0.2884
Fuzzy C-Means 0.1952 1.5847
Hierarchical clustering 0.1612 1.688

Table 5.4.: Comparison of cluster validation indices

It is to mention that this comparison is of limited signi�cance, as the internal validation
criteria do not o�er a conclusion about the information contained in the clusters. For example,
the additional information of the soft clustering is a strength of the algorithm providing this
additional information that can not be expressed by the validation scores. Still, it is the best
possible way to quantify the results of unsupervised learning methods and was performed to
evaluate the di�erences among the results of the clustering algorithms.

Fuzzy C-Means clustering and hierarchical clustering provide additional information that
can support the cluster analysis. Also the Fuzzy C-Means algorithm o�ers the possibility to
include an outlier cluster, where outliers with a de�ned distance to all other examples can be
collected. For the present work, the K-Means algorithm provides the necessary information,
shows high validation scores, a low computational e�ort and over all high robustness and
simplicity. Therefore, it was selected for the analysis of the location dependency and the
linking between the data sets.

5.2.3. Clustering Results

The clustering results with the selected K-Means algorithm for the eight di�erent time periods
are displayed in �gure 5.13. The results show similar clusters among the seasons. The
di�erences between the seasons and the weekday and weekend days are clearly visible. While
showing a morning, midday and evening peak for the weekdays the weekend days show no
morning peak, a more distinct midday peaks and an evening peak similar to the weekdays. An
exception are the summer weekdays that do not show a morning peak. A possible reason is
the six weeks long summer school break. Thus, families with children that might experience
the weekdays in this time more like weekend days. Because it is di�cult to �nd out which
households have children, with school breaks that in�uence the consumption behaviour, this
exception was not further studied in the present work.
To additionally show the distribution of the households among the clusters in table 5.5

the number of the households with the cluster membership of the corresponding cluster
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Figure 5.13.: Clustering results of K-Means algorithm for selected time periods with k=5
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are displayed. It becomes clear that also the number of cluster members is similar among

Cluster number 0 1 2 3 4
Fall weekday 138 163 84 86 41
Fall weekend day 120 172 92 91 37
Winter weekday 107 185 107 68 45
Winter weekend day 120 176 96 78 42
Spring weekday 105 224 120 77 36
Spring weekend day 95 205 97 98 67
Summer weekday 78 186 162 111 24
Summer weekend day 65 162 183 114 37

Table 5.5.: Number of households with cluster membership for the di�erent time periods

the seasons. For example cluster 1 includes the most households for most the time periods
and cluster 4 exhibits the least cluster members among the time periods. Still the numbers
of clustering members are not equal among the time periods, which means some of the
households change the cluster membership among the seasons.

Over all �gure 5.13 ilustrates that the summer and spring time period distinguish from the
winter and fall time period by a less distinct evening peak and a lower normalized consumption
level. Still, most of the time periods have similar characteristics for the di�erent clusters:

• Cluster 0: A cluster with an over all low normalized consumption and only slightly
visible peaks for the midday and evening.

• Cluster 1: The cluster with the most cluster members, as shown in 5.5, for most of the
time periods. It shows two small peaks during the day and a higher evening peak for
the weekdays and two almost equally high peaks at the midday and evening for the
weekend days.

• Cluster 2: Cluster 2 is characterized by the high mid day peak on the weekend days
and an increasing consumption over the day with an evening peak on the weekdays.

• Cluster 3: A single distinct midday peak that towers or equals the evening peak on
weekdays and a higher similarity of weekday andweekend day time periods characterize
this cluster.

• Cluster 4: Cluster 4 is characterized by a distinct midday and evening peak. It exhibits
a relatively high normalized consumption in the second half of the day.
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To validate the clustering results the SIL and the DBI were calculated and are displayed in
table 5.6. As stated in chapter 4 positive SILs indicate high clusters quality and a low DBI close

Season SIL DBI
Fall weekday 0.7785 0.3609
Fall weekend day 0.7660 0.3844
Winter weekday 0.7612 0.3842
Winter weekend day 0.7448 0.4079
Spring weekday 0.7823 0.3522
Spring weekend day 0.7720 0.3586
Summer weekday 0.8152 0.2975
Summer weekend day 0.8040 0.3115

Table 5.6.: Validation scores of clustering results for the di�erent time periods

to zero indicates a good separation among the clusters. Over all the results indicate a high
cluster quality among the di�erent time periods. It is to mention, that the validation scores in
unsupervised learning, where the underlying structure is unclear, do not serve as an absolute
quality measure. Nevertheless, they are suitable to get an impression of the clustering quality
and compare the time periods among each other.

After the comparison of the clustering algorithms and the presentation of the results from
the selected K-Means algorithm, in the next section the location dependency of this results is
investigated to enable the combined analysis of the two data sets.

5.3. Location Dependency

To examine the in�uence of the location on the clustering results the data from the German
Intelliekon data were used together with the information of the household location. Two
di�erent ways of analyzing the location dependency of the data have been used. The two
approaches and the corresponding results and are presented in the following sections.

5.3.1. Cluster Center Correlation

The �rst approach was to perform the clustering analysis on the di�erent subsets of the data
set with the same household location. This resulted in eight clustering results of the di�erent
time periods for each of the seven locations. To compare the similarity of the clustering
results the values of the cluster centers for each result were compared to the results of the

48



5.3. Location Dependency

Figure 5.14.: Correlation between clustering centers of the di�erent locations for summer
weekend days

other locations for the same season with the Pearson correlation coe�cient. The result is
a matrix where the correlation of all clusters is displayed. An example of this correlation
matrix, for the summer weekend days time period, is displayed in �gure 5.14. The matrix
is symmetric with 1 as the highest possible value as the diagonal. The example time period
illustrates the main problem of this approach: The over all correlation is high for most of the
location combinations. For the location "Schwerte" the correlation with the other locations is
signi�cantly lower than for all other locations. The clustering centers and a table with the
number of cluster members per cluster for the location "Schwerte" on summer weekend days
are displayed in �gure 5.15. It shows that the reason for the lower correlation values for this
location is the unreasonable consumption pro�le of cluster 4, with only one household as
cluster member. Therefore, the main problem of this approach is the low number of clustered
households like 56 households in this example combined with unreasonable consumption
pro�les that may occur due to the limited completeness of the data or failures during the data
collection.

Another possible weakness of the approach is that the cluster centers were ordered by the
mean value for the comparison with other locations. This approach worked well when the
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Figure 5.15.: Clustering results for location "Schwerte"

time periods were compared among each other, with similar cluster characteristics as shown
in section 5.2.3. Other comparison methods for comparing the clusters that have a similar
shape are thinkable like calculating the average distance with a suitable distance measure
and compare the most similar clusters of the di�erent location. Still, the problem of clusters
with only a few members that in�uence the clustering center correlation remains. In the
present work two households with the cluster membership of clusters with only one member
were excluded from the further analysis because it occurred in several time periods and the
normalized consumption were unreasonable compared to the other clusters like the example
showed in 5.15. But even with this two households excluded, still clusters with only a few
members appeared in the results for the locations.For this households the distinction, if the
household is an outlier that has to be excluded or exception that has to be included in the
analysis was more di�cult to make. This shows the weakness of the approach and might be
cause also by the �xed number of clusters : = 5 that does not �t to the number of households
clustered for the locations.

Nevertheless, the correlation matrices have been calculated for all of the time periods
de�ned in section 5.1.1. Resulting in eight correlation matrices for the eight time periods
displayed in �gure 5.16. Although, the over all correlation appears high among the clustering
centers, no general conclusion on the location dependency of the clustering results can be
drawn. But it can be concluded that there is no clear trend between the locations. For example
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Figure 5.16.: Correlation between clustering centers of the di�erent locations for summer
weekend days
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the locations Münster, Schwerte and Krefeld are located in the similar area of north western
Germany, still the correlation is not higher among the clustering centers of this location
compared to the other locations. Still this approach is not su�cient to make assumptions on
the location dependency. Therefore, another approach that investigates the location share
of the households, within the clusters from a cluster analysis performed for all households
together, is conducted and presented in the next section.

5.3.2. Location Distribution within the Clusters

The second approach was to evaluate the share of locations within the clusters. The number
of clusters was set to �ve as this was the number of clusters found to work well with the data
set in section 5.2.1. Afterwards, the clustering was executed for all of the households for the
one year period. For all of the clusters the distribution of locations within the cluster was
determined from the survey data.
The results of this approach are visible in table 5.7. The column "Data set" shows the

Location Data set Cluster 0 Cluster 1 Cluster 2 Cluster 3 Cluster 4
Münster 0.207815 0.123077 0.174603 0.117021 0.322581 0.473684
Kaiserslautern 0.177620 0.346154 0.174603 0.117021 0.086022 0.052632
Hassfurt 0.163410 0.123077 0.185185 0.244681 0.096774 0.157895
Krefeld 0.154529 0.153846 0.190476 0.170213 0.107527 0.087719
Ulm 0.110124 0.076923 0.105820 0.138298 0.139785 0.105263
Schwerte 0.099467 0.092308 0.084656 0.138298 0.129032 0.052632
Celle 0.087034 0.084615 0.084656 0.074468 0.118280 0.070175

Table 5.7.: Location shares within the data set and the clusters

distribution of the household locations for all the analysed households followed by the
remaining columns that show the corresponding distribution within the clusters found by the
algorithm. The �rst column serves as the reference column and the more similar the locations
are compared to the �rst column with values, the smaller the probability that the location
has a high impact on the cluster membership. With the exception of a few examples, like
the high share of households with the location Münster and low share of households from
Kaiserslauatern in cluster 4 as well as the other way around in cluster 0, the location share
within the clusters is similar to the data set reference column. To further evaluate the results
the absolute di�erences to the reference column is displayed in table 5.8. The mean di�erence
of the location shares among the clusters is calculated from this table to 4.99 %.
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Location Cluster 0 Cluster 1 Cluster 2 Cluster 3 Cluster 4
Münster 0.084738 0.033212 0.094413 0.121855 0.274328
Kaiserslautern 0.168534 0.003017 0.064218 0.089708 0.124048
Hassfurt 0.040333 0.021775 0.073703 0.064509 0.002696
Krefeld 0.000683 0.035947 0.020728 0.055628 0.065244
Ulm 0.033201 0.004304 0.034206 0.021744 0.002981
Schwerte 0.007159 0.014811 0.034553 0.032401 0.045896
Celle 0.002418 0.002378 0.004560 0.033845 0.033462

Table 5.8.: Absolute di�erence to location share in the data set

In addition to the location, the in�uence of some other explanatory variables on the
clustering results is examined. Since the clustering centers are ordered by increasing mean
values of the normalized consumption it is expected that explanatory variables, that in�uence
the energy consumption, found in the literature should impact the cluster membership. In [21]
the �oor area of the households was found to be an important determinant on the residential
electricity use. Therefore, the average �oor size of the households of the di�erent clusters is
calculated from the survey data that comes with the Intelliekon data set. Furthermore, the
average hourly energy use in Wh is calculated for the clusters. The results are presented in
table 5.9. It is remarkable that the �oor size is not increasing among the cluster while the
total energy consumption is increasing. This indicates on the one hand that the di�erent
clusters still represent the total energy use even with normalized values as input features and
on the other hand, that for this data set the �oor size may not be as important for the energy
consumption as assumed in the literature.

Cluster Cluster 0 Cluster 1 Cluster 2 Cluster 3 Cluster 4
Consumption Wh 205.39 346.49 436.71 486.20 586.48
Floor size in m2 115.10 134.40 161.01 157.01 132.56

Table 5.9.: Average �oor size of the households within the corresponding clusters

In conclusion, both approaches indicated a low location dependency within the country. It
is important to mention that the distances between the locations are rather small with the
maximum direct distance of 470 km between Ulm and Celle and the climate and geographical
conditions are similar among the locations. All in all, the results support the assumption that
a combined analysis of the two data sets from Germany is not obstructed by the di�erent
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locations. Therefore, in the next sections the data processing of the CoSSMic data set, followed
by the combined analysis, are presented.

5.4. Data Proccessing CoSSMic

For the analysis of the CoSSMic data set, the one-year time period from March 2016 to
February 2017 was used. In order to display the results similar to the clustering results of
the Intellikon data set, the mean values of the households for the hours of the days have
been used. In �gure 5.17 the average of the values for the import, export and PV generation
data available for the households are shown. It is noticeable that for resident 1 only the PV
generation data but no export data is available. For this resident, it is assumed that all the
energy generated by the PV system is exported directly to the grid because the import data
shows no lower values during the hours where PV energy is generated. Unfortunately, the
documentation of the data set contains no information to verify this assumption. Further it
stands out that for resident 6, there is a high di�erence between the generated PV energy and
electricity exported to the grid. The traced appliances do not explain this di�erence. In the
documentation on the data in [56] there is mentioned, that the PV system of this resident
is composed out of a 4 kWp system and an additional 5 kWp PV system on the neighbour
roof. Thus, the export data probably includes only one of the systems while the generation
data is from both systems. Again this assumption could not be veri�ed because of limited
documentation for the data set.

The two data sets, that are to be combined in this thesis, di�er in the way the consumption
data is collected. In the Intelliekon data set the values are the hourly consumption data, while
in the CoSSMic data set the grid import and export data as well as PV generation data and
appliance level data represent the raw data. In order to enable the combined analysis of the
data sets, in the present work the consumption data of the households from the CoSSMic
data set was reconstructed for households with PV generation data from the available data.
Therefore, the import data and the PV generation data where summed as electricity input while
the export data was subtracted as electricity output. Figure 5.18 visualizes the reconstruction
of the consumption data. The reconstruction was used on the hourly values of the whole one
year time period after the normalization. Then the resulting consumption data was grouped
by the hour of the day values. The consumption was calculated with the explained method
for resident 3 and 4. For the other residents the import data was used as the consumption
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Figure 5.17.: Mean import, PV generation and export data for the households of the CoSSMic
data set
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Figure 5.18.: Reconstruction of the consumption data for the CoSSMic households

data for the following reasons: Resident 2 and 5 do not have PV and export data. For resident
1 there is no export data available, therefore, as explained earlier in this section, it is assumed
that the energy generated is exported directly to the grid. Resident 6 the export and PV data
are disregarded because of the high di�erence of export and PV generation, probably due to
split con�guration of the PV system as explained before. The results are displayed in �gure
5.19. The consumption reconstructed for resident 3 appears reasonable with the typical high

Figure 5.19.: Mean consumption pro�les of residents from the CoSSMic data set

evening peak and a distinct midday peak. For resident 4 the constant normalized consumption
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level over the day may be caused by the fact that it is the only resident with a reported EV
and additional a heat pump is installed. The representative load shapes of households 1 and 6
appear reasonable which supports the assumptions made for this households. Still, especially
for household 6 the decision to disregard the PV and export data of this household might lead
to false consumption data and is to be treated carefully. It shows that a detailed documentation
of the data is crucial for combined analysis of data sets.

5.5. Combined Analysis

For the linking the two data sets described in section 3.3 the clustering results of the Intelliekon
data set have been compared to the CoSSMic data set. The data sets di�er in several aspects
that are explained in the following:

• Temporal aspect: For both of the data sets the one year period with the highest rate of
available data has been used for the comparison. For the Intelliekon data set this is the
periode from December 2009 to November 2010. The used period of the CoSSMic data
set is from March 2016 to Febuary 2017

• Number of participants: While after the pre-processing 563 German households re-
mained for the analysis, only 6 residential households have been used of the CoSSMic
data set.

• Data structure: The di�erent structure of the data is presented in section 3.3 and made
di�erent steps for the preprocessing of the data necessary.

• Additional data: While survey data on socio-economic factors and household charac-
teristics is available for the Intelliekon data set, the CoSSMic data set exhibits traced
appliances and PV generation data with a limited documentation.

Due to the di�erences, the data processing steps could not be performed equally for the two
data sets. For the Intelliekon data set su�cient households were available to perform a cluster
analysis, to �nd clusters that represent the consumption behaviour of the households. On the
other hand, since only six households were analyzed of the CoSSMic data set, performing
the cluster analysis applied to the Intelliekon data set would not provide any additional
information for this data set. Therefore, the clustering centers of the Intelliekon data set
were compared to the mean consumption data of the households from the CoSSMic data
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set. The consumption for the CoSSMic households is composed out of the electricity import,
export and the generated PV data as explained before in this chapter in section 5.4. To keep a
good interpretability of the results a whole year period was used for the combination. The
combined visualization of the clustering centers of the Intelliekon data set and the mean
consumption values of the CoSSMic data set is displayed in �gure 5.20. The clustering centers

Figure 5.20.: Normalized mean electricity consumption of the CoSSMic residents and cluster-
ing centers of the Intelliekon data set

of the Intelliekon data set are marked with dashed lines, while the consumption data from the
CoSSMic data set are characterized by solid lines. It is visible that there are clear similarities
between the clustering centers and the residential mean consumption. For example the
reconstructed consumption pro�le of resident 3 is similar to the shape of cluster 4 with the
di�erence of a higher level of the normalized consumption.

In section 5.3.2 it was shown, that the order of the clusters ordered by the mean normalized
consumption also relates to the total consumption level. The residents with PV generation,
especially resident 3,4 and 6, exhibit a high normalized consumption level compared to
the households without PV generation in 5.20. To support this assumption the total mean
electricity value for the di�erent residents is visible in table 5.10. For resident 3 and 4 the
reconstructed consumption from import, export and PV data as well as the import data itself
is displayed. The mean consumption of the households without PV are the lowest among the
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Resident Mean hourly consumption in kWh
Import 1 (PV) 0.5826
Import 2 (no PV) 0.3164
Import 3 (PV) 0.5175
Reconstructed consumption 3 (PV) 0.6195
Import 4 (PV) 0.4936
Reconstructed consumption 4 (PV) 0.7564
Import 5 (no PV) 0.3034
Import 6 (PV) 0.3564
Intelliekon mean 0.3708

Table 5.10.: Mean electricity consumption of the CoSSMic residents

households which supports the assumptions drawn from the comparison with the clustering
results.

Interestingly, the mean hourly electricity import of the residents with PV generation
(resident 1,3,4 and 6) is 0.4815 kWh compared to 0.3099 kWh for the residents without PV
generation (resident 2 and 5), representing a 57.32 % higher electricity import of households
with PV generation. With the reconstructed consumption of households 3 and 4, the di�erence
is even higher with 86.74 %. Compared to the mean hourly electricity consumption of the
Inteliekon data set with 0.3708 kWh, the import of PV households increased by 31.48 %
and considering the reconstructured consumption by 56.07 %. This �nding is interesting
when considering the over all decreasing electricity demand of households in Germany by
-10.5 % from 2010 to 2019[76]. Explaining this behaviour is di�cult, since the information
about the CoSSMic households is limited. It is possible that the PV residents have di�erent
household characteristics that are related to the electricity consumption, which could not be
investigated due to no available survey data for the CoSSMic data set. Also, because of the
low number of residents of the data set the results are not representative. Still, PV related
mechanisms like the rebound e�ect, where the more sustainable or economical production
leads to an increased consumption, are possible explanations to consider. Another reason
could be the di�erent appliance con�guration among the households, for example two of the
households with PV have a heat pump installed and one owns a EV. This new technologies
can increase the electricity demand. Resident 4 is the only household of the data set with
PV, Ev and a heat pump installed and the representative consumption pro�les visible in 5.20
is di�erent to the other residents and the cluster of the Intelliekon data. It exhibits a more
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even electricity consumption over the hours of the day without distinct peaks, indicating a
changed consumption behavior.
It can be concluded that the general consumption behavior of residential households has

not changed fundamentally in the seven year time di�erence between the data sets but
the PV rooftop systems and other technologies like EV or heat pumps are in�uencing the
consumption level.
Moreover, despite the necessary a�ord to align the data sets with di�erent preprocessing

and processing steps, it still can support a better understanding of the temporal development
of the consumption behaviour of residential households. An important aspect is a good
documentation of the used data sets, as otherwise assumptions are necessary to conduct the
combined analysis. Further research on the impact of the new technologies is necessary for
example on the impact of di�erent appliances like PV, heatpumps or EV among the di�erent
seasons and with a more comprehensive inclusion of household characteristics, if available.
Also it is to be investigated, how transferable the combination of data sets is for other countries
and data set speci�cation.
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In this chapter, a summary of the motivation and the background of the thesis are given,
followed by the main conclusions of this thesis. In the end, an outlook on further research
directions is pointed out.

6.1. Motivation and Background

The need for sustainable transformation in the society is one of the main challenges in this
century. Thereby, the energy sector, especially the residential electricity supply, inhibits an
important role, as it is the base for multiple new technologies, like EVs and heat pumps. In
addition, residents participate more actively in the energy system by generating energy with
PV systems and even storing and managing energy with batteries and intelligent systems. A
better understanding of the temporal development of the residential electricity consumption
behaviour is crucial to ensure a fact based and e�ective decision and policy making for the
energy system stakeholders. The limited data availability of electricity consumption data, in
particular with trial duration of more than one years, is a special challenge on this pathway.
Therefore, in the present thesis, a work�ow for a combined analysis on datasets with di�erent
temporal origins and speci�cations, is proposed, which includes data preprocessing, clustering,
location dependency validation and a comparison of the consumption behaviors.

6.2. Conclusions

In the following, the main conclusions of the thesis are summarized.

• Dataset combination:

Due to the generality issue of smart data analysis methods, combining di�erent datasets
of residential electricity consumption is seldom performed in the literatures. In the
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present work, a combination of two smart meter datasets with seven years time di�er-
ence and di�erent speci�cations were compared. Therefore, a work�ow for combining
di�erent smart meter data set is proposed and visualized with an intuitive approach of
representative consumption pro�les. The combination showed comparable representa-
tive pro�les of the electricity consumption behavior among the data sets, despite the
seven year time di�erence. Still, the PV rooftop systems and other technologies like
EV or heat pumps are in�uencing the consumption level and behavior. In particular,
resident 4 from the CoSSMic dataset, the only resident with PV, EV and a heat pump
installed together, exhibits a di�erent representative load shape compared to the other
resident and compared to the clusters found in the Intelliekon dataset, for example by
not showing an distinct evening consumption peak and a relatively even consumption
among the day.

• Clustering methods:

For one of the datasets the unsupervised machine learning method clustering was used
on the data to distinguish groups of households with a similar energy consumption
behaviour. Therefore K-Means, Fuzzy C-Means and agglomerative hierarchical cluster-
ing were compared with the internal validation criteria SIL and DBI. The performance
of the K-means algorithm, with internal validation indices of SIL = 0.8186 and DBI =
0.2884, was by far the best among the algorithms. Together with the over all simplicity
and robustness this algorithm is quali�ed for a combined analysis between the two
electricity consumption datasets of the present thesis.

• Location dependency:

The location dependency of clustering results within a country has barely been in-
vestigated in the studies available to the author. It was evaluated with two di�erent
methods. The �rst approach showed a high Pearson correlation coe�cient among
the clustering results from di�erent locations of 0.8048 indicating a high similarity of
shape for the representative patterns. With the drawback of small clusters and lack of
interpretability of the results a second approach was performed. The second approach
compared the location share within the Intelliekon datasets with the location shares
within the clusters, showing an average di�erence of 4.99 %. Therefore, the impact
of di�erent locations within Germany on the clustering results, and thus electricity
consumption, was considered to not hinder the combined analysis of the datasets.
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• Normalization techniques:

Two normalization techniques have been investigated and the impact on the clustering
results was evaluated. The �rst technique, where the highest/lowest values of the dataset
were used as reference values, showed a 62.80 % increased SIL and a DBI decreased
by 57.98 % compared to the technique where the daily maximum/minimum value was
used. Thus, both indices indicate a better cluster quality of the �rst approach. Still, the
techniques show di�erent characteristics of the consumption behavior and the selection
of the technique is case dependent.

• Clustering results:

The cluster results show the di�erent consumption behavior among the clusters. Vari-
ous clusters have been distinguished, with di�erent characteristics regarding the energy
consumption levels, the distinction of the di�erent peaks and the time when the energy
is consumed. This characteristics as well as the internal validation criteria show clear
similarities among the considered time periods, while re�ecting the seasonality and
di�erences within the week. In addition, a similar distribution of the number of house-
holds per cluster indicates a small exchange of households between the clusters, among
the selected time periods.

6.3. Outlook

The combined analysis of smart meter sets enables di�erent further research possibilities. For
example, it revealed the interesting �nding that the households with PV installed, show a
57.32 % higher electricity import than the households without PV in the same dataset and a
31.48 % higher import than the mean consumption from the Intellikon dataset. Because of
the limited number of households wit PV, that have been analysed, and limited information
from the datasets it only can be speculated about possible explanations, like the impact of
modern technologies or rebound e�ects. Therefore, this high electricity import, despite the
decentralised PV generation, calls for further research with more households included and a
comprehensive inclusion of appliances, household characteristics and di�erent time periods.

Another aspect, that can be an object of further research, is the combination of other smart
meter datasets. For example, in chapter 3.2 two datasets of the UK that feature temporal
di�erences and interesting speci�cations are presented as possible candidates. With the
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combined investigation of the more datasets, also the research on the impact of the household
location on the electricity consumption behavior within other countries or even among
di�erent countries is to be can be investigated.
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A. Appendix

The source code of the analysis for the present work is available at:
https://github.com/togg-dot/Master-thesis

A revision of the source code is planned to make the code more comprehensible and to adapt
it to the structure of the thesis.

73

https://github.com/togg-dot/Master-thesis

	Abstract
	Zusammenfassung
	Introduction
	Motivation
	Aim of the Thesis
	Contributions
	Structure of the Thesis

	Literature Review
	Smart Meter
	Electricity Consumption Analysis
	Determinants of Residential Electricity Consumption
	Load Profiling
	Cluster Analysis


	Data
	Data Availability
	Dataset Selection
	Data Structure
	Intelliekon Dataset
	CoSSmic Dataset


	Methodology
	Data Preprocessing
	Data Representation
	Normalization

	Clustering algorithms
	Centroid-based Clustering
	Hierarchical Clustering

	Cluster Validation
	Elbow Method
	Silhouette Coefficient
	Davies-Bouldin Index
	Pearson Correlation Coefficient

	Software

	Evaluation and Discussion
	Data Preprocessing
	Time Periods
	Missing Values
	Normalization

	Cluster Analysis
	Cluster Validation
	Comparison of Clustering Algorithms
	Clustering Results

	Location Dependency
	Cluster Center Correlation
	Location Distribution within the Clusters

	Data Proccessing CoSSMic
	Combined Analysis

	Summary and Outlook
	Motivation and Background
	Conclusions
	Outlook

	Bibliography
	Appendix

