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Abstract. We show that, under certain conditions, modulation insta-
bility in nonlinear waveguides gives rise to the usual double-sideband
spectral structure, but with a Raman gain profile. This process is enabled
by the energy transfer from a strong laser pump to both Stokes and anti-
Stokes sidebands in a pseudo-parametric fashion. We believe this striking
behavior to be of particular value in the area of Raman-based sensors
which rely on sensitive measurements of the anti-Stokes component.

29.1 Introduction

Pulse propagation in a lossless nonlinear waveguide is well described by the
generalized nonlinear Schrödinger equation (GNLSE) [1]

∂A(z, T )
∂z

− iβ̂A(z, T ) = iγ̂A(z, T )
∫ ∞

−∞
R(T ′) |A(z, T − T ′)|2 dT ′, (29.1)

where A(z, T ) is the slowly-varying envelope, z is the spatial coordinate, and T

is the time coordinate in a comoving frame at the group velocity. β̂ and γ̂ are
operators related to the dispersion and nonlinearity, respectively, and are defined
by

β̂ =
∑
m≥2

im

m!
βm

∂m

∂Tm
, γ̂ =

∑
n≥0

in

n!
γn

∂n

∂Tn
. (29.2)

βm are the coefficients of the Taylor expansion of the propagation constant β(ω)
around a central frequency ω0. Similarly, γn are the coefficients of the Taylor
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expansion of the nonlinear parameter. It is usually sufficient to consider the
expansion up to the first term. Under this setting, it can be shown that the
total number of photons is conserved if γ1 = γ0/ω0 [2], which is the usual
approximation.

The function R(T ) models the Raman response of the medium. Stimulated
Raman scattering is a non-parametric process that involves the excitation of
molecular vibration modes of the waveguide and it does not conserve the energy
of the wave. However, it does conserve the number of photons. Qualitatively
speaking, the energy exchange experienced by a strong continuous-wave laser
involves the annihilation of a pump photon and the simultaneous creation of
another photon in a low-frequency (also known as Stokes) band. Similarly, a
photon in a high-frequency (anti-Stokes) band is annihilated and another photon
is created at the pump frequency. As a result, a gain is observed only in the
Stokes band, enabling the application of stimulated Raman scattering in optical
amplification [3].

First order linear perturbation analysis of the GNLSE reveals that, under
certain conditions (viz., anomalous dispersion), continuous-wave (CW) solutions
are unstable. This phenomenon, known as modulation instability (MI) [4–11],
is a parametric process where two photons from a CW pump are transferred to
both low- and high-frequency bands, one photon each. As a result, MI gain is
observed in both sides of the pump. It has been shown [12,13] that, when γ1 is
included, there is a power cutoff above which the MI gain vanishes.

In a recent work [14], we proved that there is still gain beyond the MI power
cutoff when Raman scattering is taken into account. Moreover, we showed that
the gain mimics the shape of the Raman response in the Stokes band. Here we
extend these observations to the anti-Stokes band. Indeed, in the next section
we show that there is MI gain in both sides of the pump with a Raman spectral
shape. Further, we show this to be a pseudo-parametric process, that is, a truly
MI-like process where the anti-Stokes gain is not the result of one mediated by
spectral generation in the Stokes band followed by four-wave-mixing generation
in the anti-Stokes band.

29.2 Raman and Modulation Instability

A few simulations may help to understand the behavior of stimulated Raman
scattering. Figure 29.1 shows simulation results of an average over 50 noise real-
izations of a CW pump with additive white Gaussian noise. The signal was
propagated a distance LR, defined as the inverse of the peak Raman gain, in a
normal dispersion regime. In particular, β2 = 50 ps2/km, βm = 0 for m > 2,
γ0 = 100 1/W/km, γ1/γ0 = ω−1

0 . The pump power was set to P0 = 50 W,
its frequency to ω0/2π = 376.73 THz, and the signal-to-noise power ratio was
50 dB. For the Raman response [1], we used R(T ) = (1 − fR) δ(T ) + fRhR(T ),
where fR weights the contributions of the instantaneous (electronic) and delayed
Raman response of the medium. We used the damped-oscillator approximation
hR(t) ∝ e−t/τ2 sin (t/τ1) Θ(t), where Θ(t) is the unit step function. We fixed
fR = 0.031, τ1 = 15.5 fs and τ2 = 230.5 fs.
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Fig. 29.1. Simulation results of an average over 50 noise realizations of a CW pump
with additive white Gaussian noise: a at a propagated a distance LR/2; b at LR. LR

is defined as the inverse of the peak Raman gain. The shape of the theoretical Raman
gain (black dashed line) is also presented for comparison

Figure 29.1a shows the spectral density at LR/2, as a function of frequency
deviations with respect to ω0. We observe that noise in the Stokes band (nega-
tive frequencies) grows following the Raman gain as expected. However, in the
anti-Stokes band noise decreases as photons are annihilated and new photons
are created at the pump frequency. In Fig. 29.1b, after the signal propagates
the remaining distance, it can be observed the growth of the anti-Stokes band
through a third-order parametric process known as four-wave mixing (FWM).
FWM involves the interaction between two pump photons with a Stokes and
an anti-Stokes photon. In this sense, modulation instability (in the absence of
Raman) is usually regarded as a four-wave mixing process.

A complete analysis of modulation instability includes the complex interplay
between high-order dispersion, nonlinearity, and Raman scattering (see, e.g.,
[15,16]). For the sake of simplicity, let us consider the case where βm = 0 for
m > 2 and γn = 0 for n > 1. It can be shown that the MI gain is given by [17]

gMI(Ω) = 2max{−Im{K1(Ω)},−Im{K2(Ω)}, 0}, (29.3)

K1,2(Ω) =
p|β2|

τ
Ω(1 + R̃(Ω)) ± |β2Ω|

√
Ω2

4
− pR̃(Ω)

τ2
+

p2R̃2(Ω)
τ2

, (29.4)

where Ω is the deviation from the pump frequency ω0 and R̃(Ω) is the Fourier
transform of the Raman response R(T ). For convenience, γ1 and the pump power
P0 have been normalized as τ = γ1/γ0 and p = P0/Pc, with

Pc =
|β2|γ0

γ2
1

. (29.5)

In the absence of Raman scattering, R̃(Ω) = 1. In this case, it is easy to verify
that there is no gain when p > 1, that is, when the pump power P0 is beyond
the power cutoff Pc. However, in the presence of Raman scattering (R̃(Ω) �= 1),
there exists MI gain even for p > 1.



In order to understand the nature of the processes involved, it is convenient
to study the number of photons, a quantity conserved when τ = ω−1

0 , as it was
already explained. Let us define the quantity

Ψ(Ω) =
|A(z,Ω)|2
� (Ω + ω0)

, (29.6)

which is proportional to the number of photons at frequency Ω. Figure 29.2a
shows simulation results for the propagation of a pump and two seeds located
at the Stokes and anti-Stokes frequencies (∓10.7 THz) under the same setting
as that of Fig. 29.1 (both seeds have the same number of photons at z = 0.)
It is observed that initially the number of photons at the anti-Stokes frequency
decreases as a consequence of Raman scattering, and then begins to increase (at a
distance z ∼ 0.4LR) due to FWM. Figure 29.2b–c show the evolution of the same
quantity in a purely parametric process such as MI in the absence of Raman.
The normalized pump power is p = 0.8, the fiber dispersion is anomalous, β2 =
−50 ps2/km, and γ0 and ω0 are as in Fig. 29.1. The propagated distance is the
characteristic MI length, defined as LMI = max(g−1

MI). In Fig. 29.2b, γ1 = 0 and,
given that the number of photons is not conserved, seeds grow unevenly. On the
contrary, in Fig. 29.2c, γ1 = γ0/ω0 and both seeds grow evenly.
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Fig. 29.2. Number of photons vs. normalized propagated distance for a pump and two
seeds located at the Stokes and anti-Stokes frequencies (∓10.7 THz): a results for the
normal dispersion regime; b anomalous dispersion regime with p = 0.8, γ1 = 0 and
no Raman scattering; c anomalous dispersion regime with p = 0.8, γ1 = γ0/ω0 and
no Raman scattering; d anomalous dispersion regime with p = 1.1, γ1 = γ0/ω0 and
Raman scattering



-30 -20 -10 0 10 20 30

Frequency [THz]

S
pe

ct
ra

l d
en

si
ty

 [d
B

/T
H

z]
(1

0 
dB

/d
iv

)
z=0
z=5L

MI

g
MI

(Ω,p=3.0)

Raman peaks

Fig. 29.3. Noise growth on the Stokes and anti-Stokes bands beyond the power cutoff
(p = 3.0). Raman peaks at the Stokes and anti-Stokes at ∓10.7 THz are shown (dotted
line). The MI-gain spectrum (black dashed curve) is also shown for comparison

If the effect of Raman scattering is included, MI gain cannot be the result
of a purely parametric process. Recall Fig. 29.2a where the pump is shown to
contribute photons only to the Stokes band, as it is the case with conventional
Raman (non-parametric) amplification, and eventually the anti-Stokes band is
amplified by means of a FWM interaction between the pump and the Stokes
sideband. However, in the anomalous dispersion region of the waveguide, we
can have Raman amplification at both low- and high-frequencies simultaneously.
Indeed, Fig. 29.2d shows the evolution of both seeds for p = 1.1 and when Raman
scattering is factored in. We observe that both seeds grow almost simultaneously
(cf. Fig. 29.2a), and the slight difference in the growth rate is due to the actual
gain of the Stokes band due to Raman. We may view the resulting behavior
as intermediate between that of a purely parametric process, such as Fig. 29.2c,
where the gain evolves simultaneously for low and high frequencies, and that of
the Raman (non-parametric) gain in Fig. 29.2a.

Finally, in Fig. 29.3 the growth of noise shows clearly the amplification of
both Stokes and anti-Stokes bands for p = 3.0 and after a propagated distance
of 5LMI. Although it is not evident from this figure, it can be shown that the
gain spectra mimics the shape of the Raman response [14].

29.3 Conclusions

In this work we showed that beyond the modulation instability power cutoff
nonlinear waveguides exhibit a gain with a Raman-like spectral shape. Inclusion
of the higher-order nonlinear term γ1 allows for the growth of both Stokes and
anti-Stokes bands to be even and simultaneous, conserving the number of pho-
tons, as if in the presence of a pseudo-parametric process. As such, the nonlinear
waveguide exhibits Raman gain in the anti-Stokes band, a striking feature that
could find applications in the sensitivity enhancement of a wide variety of Raman
sensors that rely on the monitoring of the anti-Stokes spectral component.
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